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We present a general method to calculate the periodic steady state of a driven-dissipative system coupled
to a transmission line (and more generally, to a reservoir) under periodic modulation of its parameters. Using
Floquet’s theorem, we formulate the differential equation for the system’s density operator which has to be solved
for a single period of modulation. On this basis we also provide systematic expansions in both the adiabatic and
high-frequency regime. Applying our method to three different systems—two- and three-level models as well
as the driven nonlinear cavity—we propose periodic modulation protocols of parameters leading to a temporary
suppression of effective dissipation rates, and study the arising nonadiabatic features in the response of these

systems.

DOI: 10.1103/PhysRevA.97.043851

I. INTRODUCTION

Classical Floquet theory [1] gave long-standing inspiration
for studies of a variety of time-periodic processes in nature
and has found a huge domain of applicability in fields ranging
from dynamical system theory to technology. In quantum
mechanics, Bloch’s theorem for crystals [2] represents the
momentum-space analog of Floquet’s seminal work, while in
the time domain the concept of quasienergy was introduced
only in the 1960s by Zeldovich [3].

Periodic time-dependent processes are natural in quantum
optics where the input laser field provides a fast periodic
driving of the system. To the best of our knowledge, it was
Shirley [4] who first applied a Floquet formalism in quantum
optics. He clarified the connection between a semiclassical
external field drive and its strong, quantized, resonant single-
mode field counterpart applied to an N-level atom based
on general considerations using Floquet’s theorem. Various
extensions of this work, which focused on the semiclassical
picture suggested by the strong-intensity nature of laser fields
have been reviewed in Refs. [5-7].

In the quantum regime, studies of periodically driven
dissipative (open) quantum systems—immediately relevant for
quantum optics—have led to a whole new class of physics
inaccessible in equilibrium systems. Most of the earlier de-
velopments are reviewed in Refs. [8,9], including the paradig-
matic two-level systems, tunneling problems, and spin-boson
models. More recent examples with potential for technological
applications cover the emergence of topological phases—
the so-called Floquet topological insulators [10]—nonthermal
steady states exhibiting localization [11], and artificial gauge
systems [12].

A particularly useful approach for studying driven dissi-
pative systems is the so-called Floquet-Liouvillie approach
[13] which reduces to a Lindbladian master equation under
the Floquet—-Markov approximation [14]. We note that there
is a subtlety concerning different procedures of performing
the Markovian approximation. In general, the Markovian
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approximation for the eigenenergy spectrum performed on
the level of the undriven Hamiltonian differs from performing
it on the level of the driven Floquet quasienergy spectrum.
Applications of such approaches, which have been shown
to capture some interesting features of periodically driven
dissipative quantum systems, range from transport problems
such as electronic pumping [15] to dynamical decoupling
schemes for qubit control [16]; see also Ref. [17] for a review.
However, due to the large separation of system and driving
timescales—a regime where the Markovian approximation is
very well valid—it has been most widely applied in the context
of quantum optics; see, e.g., Refs. [18-25].

Recently, there has been increasing interest in investigating
driven dissipative phase transitions where the Liouvillian gap
is generically suppressed. For example, the phase transition of
the open Rabi model [26] gives rise to long lived metastable
states [27]. We will later focus on a different system exhibiting
a dissipative phase transition, the Kerr-nonlinearity model,
which has been analytically solved for the time-independent
stationary case by Drummond and Walls [28] in the 1980s. It
has been shown experimentally, that the bistable behavior of
Kerr nonlinearities can be exploited to confine the manifold
of available states in superconducting qubits to coherent states
under special two-photon driving schemes [29]. Since then,
driving of this model has been subject to extensive theoretical
studies [30-33].

Analytical investigations employing the Floquet-Liouville
approach are in practice restricted to either adiabatic or
high-frequency limits, and only for few problems [34,35] it
is feasible to derive closed systems of equations. Whereas
for closed systems the high-frequency Magnus expansion is
typically—and successfully—used [36], the complex eigenen-
ergies characteristic for open systems prohibit any truncation
of the Magnus series because it typically yields exponentially
increasing (i.e., unphysical) terms. On the other hand, an
adiabatic approximation may be invalid even for slow driving
frequencies if the effective dissipation rate is (temporarily)

©2018 American Physical Society
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suppressed. This will be the case for models discussed in
this paper and we show that nonadiabatic effects become
prominent even when the modulation is slow compared with
bare dissipation rates.

In this paper, we establish a general framework for studying
the periodic steady state in the long-time regime of period-
ically driven-dissipative quantum systems that is capable of
systematically addressing both slow and fast modulations.
It extends the previously developed method based on the
scattering formalism [37], allowing us to capture multiphoton
processes via the equation of motion approach. The latter
is designed in such a way that an integration is required
over a single period of modulation only. The adiabatic and
high-frequency limits can therefore be efficiently benchmarked
against exact numerical results. We apply our framework to
investigate nonadiabatic effects which in general arise due to
a nearly vanishing Liouvillian gap. These effects can appear
useful for implementing adiabatic quantum computation with
superconducting qubits coupled to baths [38], and for various
dynamical decoupling schemes [39].

We apply our approach to three quantum optical systems
exhibiting a critical suppression of the smallest dissipation
rate. In Sec. IV, a two-level system with a periodically driven
coupling to the transmission line is considered. This model
exhibits the striking feature of alternating in time between
bunching and antibunching statistical behavior of reflected
photons.

In Sec. V we show that similar nonadiabatic effects can
be realized with a three-level A system when the drive-field
intensity is periodically modulated.

Finally, in Sec. VI we consider the Kerr-nonlinearity model
where we focus on the system’s response to changing parame-
ters across the region of the dissipative phase transition and the
emergence of the hysteretic behavior which has been recently
theoretically predicted [32] and experimentally observed [33].

II. MODEL

The models considered within this paper all share the notion
of a quantum system described by the local Hamiltonian H,(¢)
which is driven via a coupled transmission line, or waveguide,
by a coherent pulse |W,) characterized in terms of the photonic
flux f, as shown in Fig. 1. The whole setup is described by the
Hamiltonian

H(r) = H;(t) + Hy, + Hc(1), (D

with the waveguide contribution H, =), [dw(wy+
w)al, ay, written in terms of left- and a right-propagating
fields labeled by mode (w) and direction (¢« = L, R) indices.
We either assume a time-dependent coupling strength g(¢) in
the coupling Hamiltonian

H.(t) = Z/dw[%ain + Hc} )

where O is some operator of the local system, or a periodic
modulation of some parameters of the local quantum system
Hamiltonian H,(t) itself.

The form of H, implies the general assumption that the
dispersion of the transmission line can be linearized around a
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FIG. 1. Open quantum system model: A local system is coupled
to a transmission line supporting left- and right-propagating modes.
Either the system’s parameters or its coupling to the transmission line
is periodically modulated. The input pulse into the transmission line
is given by a coherent state |W) in the right-propagating mode wy.
The pulse’s intensity is characterized by the photonic flux f.

working frequency wy, such that w; = v(k — ko) + wg, where
v is the group velocity. For convenience, we employ units in
which v = /i = 1 holds. Extending the linearized dispersion to
the full spectrum is known as the wide-band approximation and
is valid if the working frequency wy is large compared with all
other energy scales, including the driving frequency, wy > €2,
and nearly resonant with a transition in the local system
described by the operator O. Note that this also falls in line
with neglecting counter-rotating terms in the rotating wave
approximation (RWA) leading to the coupling Hamiltonian (2)
and effectively constitutes the Markovian limit which holds
even in the case of time-periodic modulation as is shown in the
appendix.

Time dynamics of the system’s reduced density matrix is
then governed by the Lindblad master equation

p(t) = —i[Het(1),p(1)] + y (1)D[O]p(1), 3)

with a time-dependent dissipation rate y(¢) = 7 |g(t)|?, and

Hei(1) = Hy(1) + /7 f2()0 + Jafg" )0t  (4)

D[O1p(t) = 0p()O" = 50T0p(1) — 5p1)0T0.  (5)

III. PERIODIC STEADY-STATE FORMALISM

The aim of this section is to set up a formalism which
allows us to directly access the periodic steady-state solution
of Eq. (3) in the long-time limit by using Floquet’s theorem
in the time representation. Traditionally (see, e.g., Ref. [27],
for a recent application), Floquet’s theorem is employed to get
rid of an explicit time dependence of periodic Hamiltonians or
Liouvillians by switching to the Fourier representation. The
problem is thereby reduced to a static eigenvalue problem
for the so-called Floquet quasienergies and modes in an
enlarged Hilbert space. While this procedure is in principle
always possible, it introduces certain difficulties for practical
numerical calculations, since it necessitates a truncation of the
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infinite number of Floquet modes. This is especially perilous
if an additional cutoff, e.g., in the Fock basis, is required, such
as, for example, in the case of the Kerr-nonlinearity model
considered in Sec. VI. For this reason, we prefer a formulation
in terms of differential equations for periodic steady states
which can be solved on a single period of modulation.

The starting point of our consideration is the master equa-
tion for the reduced density operator p(¢) of the local system,

o= ~iL(p(), (©)

with the Liouvillian superoperator L(¢) generalizing the one
in Eq. (3). In spite of the time dependence, it must have a zero
eigenvalue, as it is dictated by the trace preservation of p(¢).
It is convenient to explicitly split off the corresponding zero
eigenmode of L(#). To do so, we fix some matrix representation
of p(t) and express the occupation probability of the ground
state by pgo(t) = 1 — ZlN;ll pii(t), where N is the number of
states in the system. In the vectorized form, i.e., by restacking
the columns of the matrix representation of p(¢) into an N2-
dimensional vector (pgg, )7, the master equation (6) turns into

da ('000(0> _ <—iLoo(l) ET(I) ) (,Ooo(t)) (7)
dr\ p(t) Ct) —iL)/\ s )
As aresult, all information has been encoded in the (N2 — 1)-

dimensional state vector p(t) governed by the differential
equation

d _ N N _ R N
PO =1-CH® ET —iL()1p@t) + C(t)

= APt + C(1), 8)

where E consists of ones (zeros) in the positions corresponding
to the diagonal (off-diagonal) elements of .

For a time-independent Liouvillian, Eq. (8) allows for a
direct calculation of the true stationary state pg = —A~IC.
In the case of a time-periodic driving, time translational
invariance is lost even in the long-time limit and the time-
periodic steady state pps(7) will essentially follow the persistent
external modulation after some transient time regime in which
the influence of the initial state gradually decays. We are
interested in this long-time limit and take the initial time
to = —MyT — —oo to be in the far past, where we assume
without loss of generality that it is back by a large integer
multiple My >> 1 of the driving period 7. The ansatz

p(0) = lim _O03(10) + fis(t) ©)

reflects the split structure of Eq. (8) and gives a clear physical
interpretation of the appearing vectors and matrices.

The matrix O(t) describes the gradual decay of the initial
conditions in the far past and is solely governed by the periodic
matrix A(?),

O(t) = A)O(1), 0(0)=1. (10)

Note that the reference time has been shifted from 7, to zero
which is possible here due to the periodic nature of A(%).
According to Floquet’s theorem, the solution of this differential
equation can be represented as

O(@t) = P(r)e?, (11)

where P(t) = P(t 4+ T) is a periodic matrix function with the
initial condition P(0) = 1. The constant matrix B, which is ob-
tained from the monodromy matrix O(T) = P(T)e8T = 57,
has eigenvalues with negative real parts such that
lim; .o, O(t) = 0 holds, and all information about initial
conditions in Eq. (9) is lost, as required.

After the initial conditions have fully decayed, only the
periodic steady-state vector py(f) remains. It is governed by
the differential equation

Pos() = ADGR@® + C@). - lim_ Fto) =0, (12)

where, unlike in the case of O(t), the reference time 7, remains
unaltered to account for the fact that we are interested in the
long-time limit. The differential equation (12) can be formally
integrated to

Pos(t) = O(t)/ dr' 0~ (t)C(t)). (13)

The periodicity of this solution is straightforwardly seen from
Eq. (11) and the periodicity of P(¢) and C(¢), and therefore it is
sufficient to study its behavior on the finite interval 7, € [0,T].

To further evaluate Eq. (13), we first split the integration
range into two intervals [—00,0] and [0, 7.],

0
Pps(Te) = O(Tc)/ dt'o~'t)C(t') + é(z.), (14)
where
(1) = O(1.) / “ a0l HEW) (15)
0

is defined in analogy with Eq. (13) with the reference time
shifted to zero. We note that instead of inverting the large matrix
O(t) appearing in Eq. (15), it is more favorable to instead
numerically solve the differential equation

&) = A + C(t), ¢0) = 0. (16)

Next, the interval [—00,0] is split into an infinite number
of intervals [—(n + 1)T,—nT], n € Ny. Using the periodicity
of P(t), we represent the first term of Eq. (14) by a geometric
progression with the factor 57 . Resumming it, we obtain

Ps(te) = O — O '&T) + E(x). (17)

Thus, to evaluate 5ps(t), it is sufficient to solve the set of
equations (10) and (16) on the finite interval 0 < t. < 7. In
fact, the solution (17) obeys the differential equation (12) with
periodic boundary conditions rather than the initial condition
therein.

A. Adiabatic expansion

In the adiabatic limit, the external driving of parameters is
sufficiently slow such that the state can instantaneously adapt
to its new environment, pp() ~ —ATICH) = ping(?).

To consistently compute adiabatic corrections to the in-
stantaneous solution pi(¢), we insert the relation O~'(r) =
—4107(1)]A™'(1) into Eq. (13). Integrating it by parts we
obtain

- ! 12 —_ / d !
Bos() = prost) — O(0) / a0 () ). (19)
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Iterating this procedure leads to a geometric series that can be
resummed to

Ons(t z—q,-n. t
Pps(t) l—A*I(t)%pgt()

- 04 -
N Pinst (1) + AN (O~ Bins (). (19)
We note that the convergence of this series relies on some sort
of an adiabaticity condition. If such a condition is violated or
generally not provided, the adiabatic expansion (19) breaks
down.

B. High-frequency expansion

The Magnus expansion is frequently used for analyzing
high-frequency processes in driven quantum optical systems.
Note, however, that it is originally designed for applications in
closed systems where the evolution is unitary. For driven dissi-
pative systems with Liouvillian dynamics, it often produces—
according to our experience—exponentially growing, unphys-
ical terms already in the first order of expansion.

Instead of the Magnus expansion, we perform a straightfor-
ward high-frequency expansion of the master equation (8) in
the following way: Since in the long-time limit A(¢), C(¢), and
p(t) are all periodic functions of time, let us explicitly split
off the constant zero-frequency component for each of these
objects:

T
X=X +X(@), X = % / dr'X(t). (20)
0

Here X (1) is a periodic function with zero time average. Then,
we rewrite the master equation (8), which must also hold in the
long-time limit with periodic boundary conditions, as (vector
notation omitted in the following)

d . . e
A = @+ A0)p + A + A0)p) +C +C). @2D)

The constant average p can be expressed in terms of the
periodic part p if one integrates Eq. (21) over one period,

T
5=-A " <E + % /0 dﬂK(ﬂ)ﬁ(ﬂ)). (22)

Now, perform a high-frequency expansion of p(¢) in powers
of the inverse modulation frequency Q2 = 27 /T

o0 o0

—_ 1—’1 -~ 1 n

p=> ap”’ pty="> 55‘ (). (23)
n=0 n=1

The hierarchy of differential equations resulting from this
ansatz,

d ~ ~
P00 = AOp? +Cw), (24a)
d ~ _ ~

A0 = A0p"" + A" + A0p" o)

1o~
—7/ di' Ap" (), n=2, (24b)
0

can be iteratively solved as follows: First, we extract from
Eq. (22) the leading order of the expansion for the constant
average,

¥ =-4A"C, (25)

with which we can formally solve Eq. (24a):

t T t
o) = —(/ dr' A(t') — lf dt/ dt’X(t’))Z“c_’
0 T Jo 0

t - 1 T t -
+/ dt’C(t/)——/ dtf dt'C(t)).
0 T Jo 0

Knowing p"(r), we can then also extract p" from Eq. (22):

(26)

_ 1T
D =—A"1— / dr' At p(t). 27)
T Jo
The higher-order contributions are obtained by an analogous
iterative procedure.

IV. DRIVEN TWO-LEVEL SYSTEM

Here we apply the Floquet formalism developed above to
a setup in which the local quantum system has two levels (a
qubit) and the coupling to the transmission line is periodically
modulated. We have already discussed this setup in the recent
publication [37] in the regime of weak intensities f < y of
the coherent input pulse using Floquet scattering theory. The
present approach allows us to extend our previous results to
larger input powers f > y.

The Hamiltonian (1) of this system is specified by H,(¢) =
w,010_ and O = o_. Going to the co-rotating frame, we
find that the master equation (8) for p(t) — s5(t) = (@) =
(54(0), (G-(1)), (1 + 0(1)))" uses

—i8 —y(1)/2 0 —iJ/nfg(t)
A(t) = 0 is—y®)/2 iJrfgr®) |,
2iyAfer(t) 2iJmfe(t)  —y(t)
(28)
and
Ct) = (iy/afe),—iafeg ®),0. (29)

Here we introduced the detuning 6 = wy — w, as well as
(62(1)) = (05(1) X0,

Importantly, in a broad range of f, the smallest dissipation
rate is solely determined by the coupling strength g, and
quenching g — 0 will cause a critical slowing down of the
system’s Liouvillian dynamics. We exploit this property to
design a modulation protocol g(¢) aiming to achieve time
intervals where the modulation frequency 2 = 27/ T exceeds
the scale set by the smallest dissipation rate, 2 > Yin(?).
Within these time intervals, we expect the system’s response
to be nonadiabatic such that the expansion (19) breaks
down.
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Q=0.1vy

RI?

0.00 0.25

FIG. 2. Reflection from the qubit on resonance, § = 0, for the
time-modulated coupling g(¢) = go cos 2t with slow = 0.1y (top)
and fast Q2 = 10y (bottom) modulation frequencies, expressed in the
units of y = mg2. (top) The adiabatic approximation (dashed line)
obtained from Eq. (19) deviates from the numerical solution in the
vicinities of time instants when the coupling is quenched. For all
values of f, the reflection is suppressed at these points. Atlarge f, the
reflection is completely suppressed because of the qubit’s saturation.
(bottom) The high-frequency modulation suppresses the reflection
for any input power f. The numerical result (solid lines) is well
approximated by the high-frequency result (dashed line) obtained
from Egs. (25)-(27).

A. Reflection and transmission

Applying the standard input-output relations (cf.
Appendix), we find reflection and transmission amplitudes

_ (aL,out(t)) _ z
R(t) = @) l\/;g(t)Sz(t), (30)

<aR,out(t)>
(ag.in(1))

which are expressed via the second component of the vector
5().

The numerically obtained reflection |R|?(t,) in the periodic
steady state with a cosinusoidal modulation of g(¢) is shown
in Fig. 2 for different input powers f on a single period 7.
The results for weak input powers are equivalent to those
obtained by the Floquet scattering approach in Ref. [37]. This
is confirmed analytically by perturbatively evaluating Eq. (13)
in the weak power limit f < |7 — i§|. Obtaining

t
Sps2(1) & —i/mfe /

—0Q

T@) = =1+ R(@), (1)

dt/eF(t/)g*(t/),

with F(1) = [, dt'[y(t') — i(t")], we exactly reproduce the
reflection amplitude given in Eq. (34) of Ref. [37].

We note that, for the modulation protocol g(¢) = g cos €2z,
where the coupling periodically switches its sign, the period
of the steady-state reflection (shown in Fig. 2) is exactly half
of the modulation period T. Moreover, reflection goes to zero
not only at the quench times when g(z) = O but also at some
intermediate times. Remarkably, the adiabaticity is violated
around the quench points even at sufficiently slow modulation,
as one can conclude from the comparison (see the upper panel)
of the numerical solution (solidline) for f =y =n gé with the
corresponding adiabatic approximation of Sec. III A (dashed
line). This feature has already been noticed previously in
Ref. [37] for weak input powers f, and now we see that it
persists with increasing f. In the beginning (7, = 0), in the
middle (z. & T/2), and in the end (7. & T') of the modulation
period, the instantaneous relaxation rate y(f) is larger than
2, and the adiabatic approximation approaches the numerical
result. The overall decrease of the reflection with increasing f
is naturally associated with the qubit’s saturation.

In contrast to the adiabatic approximation, the high-
frequency approximation at fast modulations, introduced in
Sec. III B, is most accurate in the vicinities of the quench points,
as follows from its comparison (dashed line) with the numerical
solution (solid lines) in the lower panel of Fig. 2. In general,
fast modulation tends to suppress the reflection for any value
of the input power f.

B. Power spectrum

The power spectrum is related to the correlation function of
outgoing photons,

g, = {a) ou(Te + Dataon(w)
= 806" fR¥(T. + T)R(T,) (32a)
+ 8o, g€ fTH(1e + T () (32b)
+ g (1. + 1)8(t)G1(T,1),  (320)

where the terms (32a) and (32b) give rise to the elastic con-
tribution to the power spectrum for reflected and transmitted
photons, respectively, while the common term (32¢) constitutes
the inelastic contribution.

A proper definition of the power spectrum requires time-
translational invariance, which can be restored in the periodic
steady state by averaging the variable t. € [0,T] over a
period of modulation. With the Fourier expansion R(t.) =
>, RMe=im% of the steady-state reflection (and, equiva-
lently, transmission) amplitude, we hence obtain for the elastic
contribution

L[ Lt ot
Sp.el(w) = . dt 7 A chgL,el(TvTc) e
—00

=Y _IR™P8(w — wy — mS), (33)

which peaks not only at the working frequency wy, but also
at frequencies shifted from wy by integer multiples of Q2. An
analogous expression holds for Sg.(w) of the transmitted
photons with the replacement R — 7.

043851-5
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Evaluation of the inelastic contribution (320) to the power
spectrum requires knowledge of the vector G(‘L’ T.) = (S(TL
)8 (7)) — sps(rc + T)sps,2(7¢) in the long-time limit. We note
that only its first component is required, which has the property
Gi(—=Itl,7e) = Gi(|7],7e)*. It is thus sufficient to find an
equation for G(r,7.) by means of the quantum regression
theorem for 7 > O only. It reads

ié(r,rc) = A(r, + 1)G(1,7.), (34)
dt

and its solution can be expressed in terms of O(t) which is
governed by the same periodic matrix A(z),
G(r.7) = 0t + )0~ ()G (x.). (35)

For the initial condition G(0,7.) = G©(z.), we employ the
periodic steady-state values of sp(7.), setting

%Spsﬁ(fc) - |sps,2(fc)|2
—5pea(Te) . (36)

_Sps,S(Tc)sps,Z(Tc)

GO, =

From the representation O(t) = P(t)e®" we find for the inelas-

tic contribution
ggzl,gnel(t’TC) = neinTG(t)‘Zr(rc +1)- eBr ‘70(7:0)
+ 7T O(—T)[Vi(ze) - e P V(e + DI,

37)
with the periodic vector functions

Vi(te) = g*(2) P(t )iy, (38)

Vo(z) = g(t) P~ (2.)GO(x,), (39)

and 71, = (1,0,0)7.

As before, we insert the Fourier expansions for the periodic
vectors V+,o(rc) =y V(m) —imQT to evaluate the T. average
over a single period of modulatlon to restore time-translational
invariance. Additionally, it is useful to express the matrix
B=Y7, b3 @ %\ in terms of its eigenvalues b; and
the corresponding biorthonormal left and right eigenvectors

obeying X(J Lo = jj-- This gives direct analytical access

to resonance posmons Wy, j = wo +m& + Imb; and widths
oj = —Reb; in the inelastic power spectrum

1 [* 1 (7 . _
Sut,inel(a)) = 5/700 dtl:?/o dtcgfx,?nel(rvtc)jle_lwr

_ZZRe (VJ(r m) if(/))()—(»l(/) V(m))
i(@—wy—mQ—1Imb;)—Reb; |

m  j=I

(40)

This result indicates equidistant additional resonances intro-
duced by the periodic modulation which can be understood
from a dressed-state picture: The periodic modulation further
splits the dressed states of the qubit driven through the
transmission line into m equidistant Floquet modes. Numerical
results shown in Fig. 3 confirm this behavior but also show
that, for the modulation protocol g(¢) = g cos 2, some of the

g(t)/go = cos Ut
I 1 Q

Sa,inel

| Q

Sa,inel

FIG. 3. Inelastic power spectra of the qubit strongly driven
(f = 200y) on resonance (§ = 0) for the (top) sign-change protocol
g(t) = gocos Qt and the (bottom) on-off protocol g(r) = %"( 1+
cos Q2t) for various modulation frequencies 2. The Mollow triplet
for the corresponding stationary case at coupling g = go is shown
for comparison in gray. Additional broadened peaks consistent with
the Floquet spectrum arise due to the periodic modulation and may
destructively interfere as seen, for example, in the missing main peak
in the case of the sign-change protocol (top). Similar features in the
power spectrum have been reported in Ref. [40] for a qubit subject to
a pulsed excitation.

resonances are suppressed and the main peak splits into two
side peaks. This behavior can in principle be used for frequency
shifting and engineering correlated states of light.

As a final consistency check, let us confirm the power con-
servation, i.e., that the output photon fluxes f;,(z.) = g(l)(O,rc)
average over one period of modulation to give the input flux
f = fi + fr. In the formal expression, we need to prove the
identity

.
fi ?/ dtc[fL(Tc)+fR(Tc)]
0

1 (7 ’
= f =g | dn| X A s + Gt
0

j=1

1 T
=f- ﬁ/ dfcjpsj(fc)s 41)
0

which is indeed fulfilled due to the periodicity of sy 3(7c).
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C. Second-order coherence function

Statistical properties of scattered photons can be analyzed
with help of the second-order coherence function

(a;oul(rc)na,out(fc + T)ag,0ut(Te))

Jo(T + 7o) fu(Te)
where ny ou = al

w.out@a,out 18 the outgoing photon number in
channel «. This function has been studied earlier in the context
of Floquet scattering theory [37] for weak input powers f, and
here we extend those results to larger values of f, for which
the scattering theory becomes impractical.

Similar to the procedure of evaluating the power spectrum,
the quantum regression theorem allows us to write the func-
tions (42) in terms of the vector

g2(r,1,) = . (42

J(1,7) = (1(T)S(T + 10)82(1.))
- %Spsﬁ(fc)gps(f + Te), (43)

obeying the same differential equation (34) in the variable ©
as G('L’ 7.) obeys, but with the initial conditions J (0)(17 )=
2sps,3(tc)spb(rc). We find

2Re[v3(T)v3(T + 1) J3(T,70)]

S = Lt ey 4
2Re[v3(z)V(t + 1) - J(7,7)]
@ ry=1
Srr(®t) = 1+ fr(t + 1) fr(te)
2Re[va(T)D(T + T.) - é(m)}ﬁ db)
fR(T + Tc)fR(Tc)
where ¥(¢) = (0, 0, %y(t))T — 5*(t) is a modification of the
vector (29).

Asshownin Fig. 4, the oscillations between strong bunching
and antibunching behavior observed in Ref. [37] become
less pronounced as the input power f is increased (see the
bottom panel of this figure), corresponding to the horizontal
(dashed gray) cut in the upper panel. This behavior can again
be attributed to the qubit’s saturation. For sufficiently fast
modulation frequencies (2 2 y), the bunching peaks remain
sizable on the range of several T in the delay time t even for
the moderate input power f = 10y; see the inset of the upper
panel corresponding to the vertical (dashed gray) cut of the
contour plot.

Thus, the rapid bunching-to-antibunching changes in be-
havior of the g function, which result from the system’s
nonadiabatic response to an external modulation and which
have been predicted in Ref. [37] for weak input powers f,
appear to persist in a broad range of input power f. We
observe that the positions of the bunching peaks remain
insensitive to f, and only their heights gradually go down with
increasing f.

V. DRIVEN A SYSTEM

Next, we consider a three-level system in the A scheme
where a direct transition from the ground state |g) to an
intermediate metastable state |s) is forbidden. Such systems
are known to exhibit electromagnetically induced transparency
(EIT), an effect which was first observed in atomic vapors

g;2(7,7.) for =5y

\ I

‘ 2.0

|| L8
- f =100y 1.6
1.4
1.2
1.0
0.8
0.6
0.4
0.2
0.0

—
o

9P (r,T/4)

sov e o

9 (3T/4,7.)

0.00 025  0.50

Te)T

0.75 1.00

FIG. 4. (top) Second-order coherence function g(LzL)(r,rC.) for the
sign-change protocol g(¢) = gocos(2t) of the moderately driven
(f = 10y) qubit on resonance (6 = 0) at fast modulation frequency
2 = 5y. The oscillations decay with the delay time t at the rate
y as can be seen, e.g., along the vertical cut at t. = 7/4 shown in
the inset. Thus, this rapidly changing behavior takes place only for
sufficiently fast modulations. (bottom) The strong oscillations in time
7. between bunching and antibunching behavior reported in Ref. [37]
become less pronounced with increasing input power f as the qubit
becomes saturated. The delay time 7 is fixed at the value 37" /4, which
corresponds to the horizontal cut in the top figure.

[41,42]. Recently, this phenomenon has also been demon-
strated in superconducting circuits [43], thus paving the way
for potential applications in quantum information processing.

The drive field at frequency wy, which is nearly resonant
with frequency (w, — w;) of the transition |s) — |e) to the
excited state, is conventionally treated classically. Our interest
lies in a time modulation of the drive amplitude F(¢) causing
a periodic switching between opaque and transparent behavior
of this system upon irradiation of the coherent probe field | W)
at frequency wp, which is nearly resonant with frequency w,
of the transition |g) — |e). This model is described by the
Hamiltonian

H(1) = w,le)(e| + asls)(s| + [F()e " |e)(s| + H.c.]

+H, +Z/dw[7alwlg><e| +H.c}. (45)
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In the following, we show that this system exhibits nonadibatic effects similar to those of the two-level system with a modulated
coupling strength. At the same time, the A-scheme with a periodically modulated drive field is more feasible for an experimental

realization.

Dissipative dynamics of the A system in the corotating frame is governed by the master equation (8) with the matrix

—y 0 —ivyYf2  iVyf2
0 0 0 0
=2i/yf]2 —iJvf]2 —i(—iy/2) 0
A= 2iYfI2  iNYf2 0 i(61+iy/2)
—iF*(t) iF*(t) 0 0
iF(t) —iF() 0 0
0 0 iF(t) 0
0 0 0 —iF*(t)
and the vector
C =(0,0,iyf/2, —iy/yf/2.0,0,0,0)",  (47)

which are written in the basis
5(1) = (5(1))
= ((P(D)). (P(0)). (5 (1)), (50 (1)), (6 0)),
(&), (57 @). (570N

Here, P. =le)(el. P, = |s)(sl. o = |g)(el. 0 = Is){el,
o =1g)(sl, Ufrg’s’r) = (%"t and the tildes indicate ex-
pectation values to be evaluated in the corotating frame anal-
ogous to the two-level system. Additionally, we have defined
the detunings §; = wy — w, and 6; = w,; — (w, — wy), and the
bare dissipation rate y = |g|?. Note that, for a computation
of the transmission amplitude 7 one can use Egs. (30) and (31)
with (5_) — (59,

Unlike in the two-level system, dissipation rates of the
A system depend on multiple parameters. At fixed y, the
smallest dissipation rate yyi, has a nearly quadratic parametric
dependence on the drive amplitude F', as shown in Fig. 5. This
indicates that we can push the system into the nonadiabatic
regime with € > yyin by sweeping the values of F towards
zero. Note that ynin shows little sensitivity to the intensity f
of the probe field.

In the EIT model with constant F' # 0, the system is fully
transparent on resonance §; = 8, = 0 leading to |7 > = 1.
When F is momentarily quenched, the metastable state |s)
is decoupled for a short while, and the remaining two-level
system {|g),|e)} tends to develop full reflection (and, hence,
zero transmission), provided that the probe field does not
saturate the system. In the next time instant, the state |s)
is recoupled again, which leads to nonadiabatic changes in
transmission properties. Changing F periodically in time,
e.g., by F(t) = 10y[1 + cos Q2¢] can thus result in a periodic
steady-state behavior of the transmission with large deviations
from unity on a single period of modulation. This is illustrated
in Fig. 6. Switching between opaqueness and transparency
closely resembles the behavior of the two-level system where
the modulated coupling effectively performs the function

—iF(t) i F*(1) 0 0
iF(t) —i F*(t) 0 0
0 0 i F*(t) 0

0 0 0 —iF(t)

., (46)

—iG—iy/D) 0 0 Y2
0 iG+iy/2) —iVf]2 0
0 —iJYF2 —i(6—8) 0

iNyf/2 0 0 i(81 —82)

(

similar to that of F, although with the reciprocal effect. As
is seen from the comparison of the adiabatic approximation
(dashed line) with the numerical solution (solid line) at f = y,
the system’s response is nonadiabatic during a large part of
the period for rather slow modulation frequency Q2 = 0.1y.
This behavior is due to the modulation protocol of F which
deeply penetrates into the critical region defined by 2 > Ymin
(ct. Fig. 5).

In the high-frequency regime of modulation, the regular EIT
effect with unit transmission on resonance is again restored
as long as the time average F # 0. For F = 0 we obtain an
effective decoupling of the metastable state |s), reproducing
the transmission of the unmodulated two-level system. These
conclusions are also supported by the high-frequency expan-
sion (23).

VI. DRIVEN KERR-NONLINEARITY SYSTEM

In the third application of our formalism, we consider the
driven Kerr-nonlinearity model. It consists of a single cavity

FIG. 5. Smallestdissipation rate y,, of the A system as a function
of the classical drive field amplitude F'. Instead of directly modulating
the coupling strength g, the three-level A system allows tuning of yiyin
by means of F. The input power f of the probe field has little effect
on this behavior.
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0.0

0.00 0.50

7e/T

0.75 1.00

FIG. 6. Transmission through the A system which is driven on
resonance (6; = 6, = 0) by both probe and drive pulses. The drive
field has a periodically modulated amplitude F(¢) = 10y[1 + cos Q¢]
at Q@ = 0.1y. The adiabatic approximation (dashed line) is only valid
far away from the critical region defined by Q > ymin (cf. Fig. 5).
In the time window where it breaks down, the system responds
nonadiabatically. At large powers f of the probe field, these effects
are, however, washed out because of the system’s saturation.

mode b with an effective local photon-photon interaction
U, which is coupled to the transmission line. Its dissipative
dynamics in the corotating frame is governed by the Lindblad
master equation (3) with O = b and

Hegp(1) = —8(1)b'h + %bT bbb + /vy f(b+b').  (48)

In the following, we consider time-modulation of the detuning
8 = wy — w,, where w, is the cavity frequency.

Before turning to the time-dependent case, let us revisit the
results obtained by Drummond and Walls [28] and recently
extended to include two-photon driving [32] in the time-
independent stationary case. The dissipative phase transition
that this system exhibits for large f > y and small |U| < y
has numerous manifestations. Experimentally, the most fea-
sible quantity is the stationary occupation (b'h). Sweeping
detuning § over the bistability critical region (i.e., where the
corresponding semiclassical solution has multiple solutions),
one can observe a strong enhancement in the occupation
number (shown in Fig. 7, bottom). Away from this region,
(b'h) decays to small values. The peak value rapidly grows
with increasing ratio f/U?. This behavior goes hand in hand
with the entropy of the cavity: Outside of the critical region, the
state is a pure coherent state corresponding to zero entropy, but
becomes a complicated mixed state within the critical region.

This critical behavior can again be attributed to the smallest
dissipation rate yyin being significantly suppressed (shown in
Fig. 7, top), a phenomenon which is also known as the critical
slowing down. In fact, the Liouvillian gap does not completely
close. The minimal value of the dissipation is reached at §
where also the occupation number peaks.

Of particular interest is a periodic modulation of parameters
which drives the system in and out of the critical region.
Recently, it has been proposed [31] that in this way one
can dynamically simulate a hysteretic behavior in the Kerr

1 . T T T T T T 3
< ok
g 1077 1
g E F
T 10T 1
L | | | | | | 3

15 I I I I I I
= 10 -
= 5L i

0 | | | | | |
-30 —-25 —-20 —-15 —-10 -5 0 5

S/

FIG. 7. (top) Smallest dissipation rate Y, of the undriven Kerr-
nonlinearity model as a function of detuning § for U = —y /2 and

f = 16y. Similar to the two- and three-level systems, the smallest
dissipation rate is significantly suppressed within the critical region,
although it remains finite. (bottom) One of the important signatures of
the dissipative phase transition is a prominent increase in the station-
ary occupation number (b'b) which peaks at the same parameter value
for which the minimal dissipation rate is reached. In the following,
the periodic modulation of § is considered across the whole critical
region with modulation frequency Q2 < y.

model, which has been experimentally observed [33] in the
corresponding setup soon after. Interestingly, the hysteresis-
like behavior follows the stable branches of the semiclassical
mean-field solution rather than the exact stationary quantum
solution. An explanation of this property has been provided in
the context of the driven-dissipative Rabi model [27] where
it has been shown that long-lived metastable states with a
small effective decay rate prevent reaching the true stationary
state. As pointed out in Ref. [31], this goes together with a
breakdown of adiabaticity, which we have also seen in the
previously discussed models. The studies cited above give
strong indications that such behavior seems to be common
for all systems featuring dissipative phase transitions.

In contrast to modulating f as discussed in Ref. [31], we
choose to vary in time the parameter 8. This is advantageous
since one can sweep in and out of the critical region in
the positive and negative sweep directions, starting on both
sides from noncritical regions characterized by zero values
of entropy. In particular, we have found that it is hard to
ensure this when sweeping f at fixed §. Our modulation
protocol is designed to cover the whole critical region; namely,
8(t) = —15y[1 4+ cos Q2t] for the parameters U = —y /2 and
f =16y.

The periodic steady-state occupation over a single period
and its parametric dependence on the parameter § is shown
in Fig. 8. The left panel of Fig. 8 reveals a clear rise in
occupation whenever § is deep inside the critical region, which
is followed by an exponential drop. Note that, in comparison
with the time-independent stationary state, the occupation is
significantly enhanced for intermediate modulation frequency
Q = 0.2y (dotted line). A further increase of 2 up to the
value 2y does not further enhance the occupancy (solid line);
moreover, hysteretic properties are no longer seen in the
parametric representation of the right panel of Fig. 8.
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FIG. 8. (left) Periodic steady-state occupation (b'b)(t) of the
Kerr-nonlinearity model under periodic modulation of detuning
8(t) = —15y[1 + cos Q] for various modulation frequencies €.
(right) The same dependence in the parametric representation. For
moderate modulation frequencies, the occupation is strongly en-
hanced compared with the true stationary state shown in the lower
panel of Fig. 7. The adiabatic approximation based on Eq. (19) is given
by the light brown curve (note that in the parametric representation it
lies very close to the stationary-state result). The numerical results for
rather small frequency © = 0.002y (brown) still drastically deviate
from the corresponding adiabatic approximation (light brown). As
discussed by Casteels et al. [31], the dynamical hysteresis seen in the
parametric plot is directly related to the breakdown of adiabaticity in
the critical region, and the hysteresis area depends on the width of the
parameter range where Q > Y.

For slow modulation, the periodic steady-state solution does
not converge to the adiabatic approximation based on Eq. (19)
(light brown curve) even for 2 = 0.002y. This points towards
the nonadiabatic system’s response when its parameters are
driven across the region of bistability.

VII. SUMMARY

Based on Floquet’s theorem, we have proposed a repre-
sentation for the periodic steady-state density operator of a
periodically driven dissipative open quantum system. We have
established both adiabatic and high-frequency expansions in
a systematic way. Importantly, the corresponding approxi-
mations can be efficiently benchmarked against numerical
results which are achieved by integration over a single period
of modulation. A breakdown of the adiabatic approximation
signals the nonadiabatic system’s response when it enters the
regime of critical slowing down.

We applied the developed formalism to three different
models with periodically time-dependent parameters, which
all exhibit a temporary suppression of the smallest dissipation
rate.

For the two-level system, a modulation of the coupling
strength to the transmission line causes significant changes
in transmission properties, power spectra, and statistical prop-
erties of scattered photons.

For the three-level A system, a modulation of the classical
driving of the metastable state can lead to considerable modi-
fications of the EIT phenomenon.

In the driven Kerr-nonlinearity model, we studied periodic
sweeping of the detuning § across the parameter region featur-
ing the driven dissipative phase transition. We have found that,
even for slow modulation frequencies, nonadiabatic effects
dominate, indicating that adiabatic expansions will generally
fail in the critical parameter regimes of such systems.
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APPENDIX: DERIVATION OF LINDBLAD
MASTER EQUATION

In this appendix, we show how the Lindblad master equation
(3) can be derived from the microscopic model defined by
the total Hamiltonian (1) and the coupling to the reservoir
(2) within the RWA even in the presence of time-dependent
modulation.

To this end, consider the Heisenberg equation of motion for
the reservoir field operators

. . 4
dao(t) = —i(wy + w)age(1) — Eg(I)O(I), (AL)
and formally integrate them to obtain
Ago(t) = e—i(wo+w)(t—lo)a »(t0)
i g(tho). (A2

\/_

This solution can now be used to eliminate the reservoir degrees
of freedom by inserting it into the Heisenberg equations of
motion for the system operators e;,, = |I)(m| and averaging
over the initial state of the reservoir. In fact, the frequency
integration appearing in

eim(t) = —ilepm, Hy(D)](t)

_l@(Z/da)aT () ezm,O](f))
£ 2 1m0 Y [ doan) a3
V2 .

can be performed within the RWA to give a § function in time,

/ dway,(t) = f dwe™teli=g, (1)
t . ’
—fda)/ dt' i@+t ”)g(t’)O(l/)

= ‘/_aa in(t) —

g8(n0@), (A4)

f
making explicit the Markovianity of this approximation even
in the presence of periodic driving. In the last step, we defined
the input field as the Fourier transform of the bare reservoir
field in the far past. Analogously, we can also define the output
field corresponding to the reservoir field in the far future,

aa,oul(f) = tIILH;O E dweii(woer)(ti[])aaw(tl)
= agin(t) — iN/7TNOW), (A5)
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which is needed for the calculation of observables such as
reflection and transmission coefficients.

The initial state of the reservoir is considered to be a right-
moving coherent wave packet of width d with a mean number
of photons N corresponding to a photonic flux f = N/d. This
state can be defined via

|Wo) = &2V N0k|0), (A6)
in terms of normalizable wave-packet operators
1 [dr ‘
by = — / dxay(x,tp)e " * (A7)
o \/3 —ap o

from the Heisenberg coordinate representation a,(x,t) =
f dway,(t)e'“* //2m. The commutation relations with the
wave-packet operator,

ar
[duobh] = 8u.r f S 1 fod,

—d2

(A8)

imply the action of the input field on the initial state (A6) to be

o in(D|W0) = 80,k fOW@/2 = |t — 10D Wo).  (A9)

With this, the Heisenberg equations of motion (A3), when
averaged over the initial state pu(fg) = p(fo) ® [Wo)(Wol,
become

(eim (1)) = Trlé1m (1) proi(to)]

= (m| — i[He(1), ()] + y(O)DIO]p®Il), (A10)
where the effective Hamiltonian H.g(#) and the Lindblad
dissipator D[ O] are specified by Eqgs. (4) and (5), respectively,
and follow from switching back to the Schrédinger picture. The
Lindblad master equation (3) can be directly identified by the
matrix elements p,,; = (¢;,,) of the reduced density operator.
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