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Abstract
We present a two-parameter family of exactly solvable quantum many-
body systems in one spatial dimension containing the Lieb–Liniger model 
of interacting bosons as a particular case. The principal building block 
of this construction is the previously-introduced (Stouten et  al 2018 
arXiv:1712.09375) family of two-particle scattering matrices. We discuss an 
SL(2) transformation connecting the models within this family and make a 
correspondence with generalized point interactions. The Bethe equations for 
the ground state are discussed with a special emphasis on ‘non-interacting 
modes’ connected by the modular subgroup of SL(2). The bound state 
solutions are discussed and are conjectured to follow some correlated version 
of the string hypothesis. The excitation spectrum of the new models in this 
family is derived in analogy to the Lieb–Liniger model and we show that 
for certain choices of parameters a spectrum inversion occurs such that the 
Umklapp solutions become the new ground state.

Keywords: integrable systems, Bethe ansatz, Lieb–Liniger type models, 
duality, Yang–Baxter equation, excitation spectrum
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Introduction

Exactly solvable models play a profound role in our understanding of low-dimensional statis-
tical mechanics and condensed matter physics. Of particular importance is the Lieb–Liniger 
(LL) model, representing bosons in one spatial dimension interacting through a δ-function 
potential of arbitrary strength c,

HLL = −
N∑

j=1

∂2

∂x2
j
+ c

N∑
i�=j

δ(xi − xj). (1)

Originally employed to extend the Bogoliubov theory predictions for the excitation spec-
trum [1, 2], it has emerged in quantum optics for modeling effective Kerr nonlinear media in 
the quantum regime [3–5], and photonic many-body correlated states [6, 7]. In two-dimen-
sional statistical mechanics this model appeared in the description of an interface interacting 
with impurities [8], establishing a link of this problem to the Kardar–Parisi–Zhang universal-
ity class [9–11]. This could then also be connected to the asymmetric simple exclusion pro-
cess, as discussed in [12]. Experiments with ultracold atomic systems can nowadays confine 
the motion of the constituent particles to one spatial dimension (1D), if the two-particle scat-
tering is determined by an interaction of the δ-function form, then LL model emerges [13]. 
This model then describes experimentally observed phenomena such as interaction-induced 
fermionization of bosons [14–16], suppression of three-body recombination [17, 18], absence 
of thermalization [19], stability in the attractive regime [20], and Bloch oscillations in the 
absence of a lattice [21]. For a more detailed review we refer the reader to [22].

However, the LL model does not exhaust all integrable continuum models in 1D. Gaudin 
[23], Yang [24, 25], and Sutherland [26] demonstrated that the solution to the LL model can 
be further extended to a problem of δ-interacting particles with no limitation on the symmetry 
of the wave function. In particular, the Yang–Gaudin model is a generalization to interacting 
fermions, and multicomponent mixtures of point-interacting models have also been found by 
Sutherland. In the remarkable paper [24], Yang then generalized the LL model to particles in 
arbitrary representations of the symmetric group.

The key ingredient of integrability in 1D is the Yang–Baxter equation (YBE) for the two-
particle scattering matrices Šij(ki, kj) of two particles labeled by i and j, given by

Šjk(ki, kj)Šij(ki, kk)Šjk(kj, kk)

= Šij(kj, kk)Šjk(ki, kk)Šij(ki, kj),
 (2)

in which k is the scattering rapidity of a particle. The scattering matrix found by Yang [24] was 
expressed in terms of the permutation operator Πij, which interchanges quantum spaces of two 
interacting particles, reading as

Šij(ki, kj) =
Πij − iF(ki, kj)

+ iF(ki, kj)
. (3)

Using Artin’s braid relation for the permutation operator, Π12Π23Π12 = Π23Π12Π23, com-
bined with the fact that Πab

2 = , one can easily see that the function Fij ≡ F(ki, kj) has to 
satisfy the functional equation

FijFik + FikFjk = FijFjk. (4)

Yang found a particular solution to this equation,

E Stouten et alJ. Phys. A: Math. Theor. 51 (2018) 485204
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FYang
ij =

c2
0

ki − kj
, (5)

where c0 is a free parameter. By specifying a particular representation of the symmetric group 
generated by Πij one can generate a large class of known continuum models. The LL model 
with c = c2

0 follows from the totally symmetric representation, while the model of interacting 
spin-1/2 particles can be obtained by taking Πij =

1
2 (1 + �σi · �σj) with �σ = (σx,σy,σz) the vec-

tor composed of the three Pauli matrices.
The purpose of this paper is to generalize the solution of Lieb and Liniger. In [27] we 

found a new solution to equation (4) in the class of rational functions. This solution is para-
metrized by two free (possibly complex) interaction parameters and thus generates a new class 
of integrable many-body 1D systems with possibly as many physical applications as the LL 
model. The symmetry properties and some consequences of this solution are discussed here. 
Numerical solutions of the resulting Bethe ansatz equations are presented and several impor-
tant limits are analyzed. We conclude that the model introduces many surprises which await 
further analysis.

Generalization of the model of interacting bosons

The solution of any many-body problem starts with the analysis of the two-body case. A two-
parametric generalization of the two-body scattering matrix from equation (5) was presented 
in [27], reading as

Fij =
c2

0 + c0c1(ki + kj) + c2
1kikj

ki − kj
, (6)

where both c0 and c1 are free parameters.
This two-parameter solution has two clear limiting regimes. Yang’s scattering matrix is 

reproduced in the c1  =  0 case, leading to the bosonic LL model with the usual δ(x)-interac-
tions, whereas the c0  =  0 case returns the scattering matrix used by Cheon–Shigehara (CS) 
[28, 29], representing a fermionic model with δ′′(x) contact interactions. Furthermore, in the 
limit when only the first two terms in the numerator of Fij are kept, namely when c0 � c1, one 
should retrieve results similar to those found in [30–32], where the connection with anyonic 
models is studied.

SL(2) group structure of the model

In this section we repeat some of our previous findings [27] and specialize them to continuum 
models. Previously, we noted that our solution has an intrinsic SL(2) duality symmetry associ-
ated with a transformation of the rapidities combined with a transformation of the couplings 
c0,1. One can notice that if we transform the rapidities ki and kj of the scattering matrix (3) and 
Fij from equation (6) according to the fractional-linear (Möbius) transformation,

k̃i,j =
αki,j + β

γki,j + δ
, αδ − γβ = 1, (7)

the solution (6) remains the same iff we simultaneously transform the couplings c0 and c1 as
(

c̃0

c̃1

)
=

(
δ β

γ α

)(
c0

c1

)
. (8)

E Stouten et alJ. Phys. A: Math. Theor. 51 (2018) 485204
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Here, the unimodularity condition αδ − γβ = 1 is essential. The rapidities ki,j are in principle 
allowed to take arbitrary complex values (corresponding to bound states), so in principle the 
parameters α,β, γ, δ  could be complex as well, thus transforming under the group SLk(2,C) 
(the subscript k denotes that they act on rapidities). At the moment, the couplings c0,1 can be 
considered as complex as well. The SL(2,R) transformation connects rapidities of different 
models with different coupling constants, and so it acts as a duality symmetry, similar to the 
electric-magnetic duality in field theory. In particular, the LL and CS models are connected 
by the inversion

kj ↔ −k−1
j , (9)

which would correspond to the S-transformation in the modular group case (see below).
Interestingly, one can understand the structure of the model by looking into the algebraic 

properties of SL(2). Indeed, one can notice that the vector (c0, 0)T  (corresponding to the LL 
model) only undergoes a scaling when transformed by the upper-triangular matrices. The vec-
tor (0, c1)

T  (corresponding to the fermionic model of CS) has the same property with respect 
to the lower-triangular matrices. Algebraically speaking, upper-triangular matrices represent 
the parabolic elements of SL(2). In general, SL(2) has four conjugacy classes characterized 
by the trace (α+ δ): the parabolic class, when α+ δ = ±2; the elliptic class, if |α+ δ| � 2 
and α+ δ  is real; the hyperbolic class if α+ δ  is real and |α+ δ| � 2, and finally the loxodro-
mic one, when α+ δ  is a complex number. Geometrically, these different classes correspond 
to different transformations: the parabolic class (generated by the nilpotent element of the 
algebra) is responsible for the shear mappings (the LL model), while the elliptic elements are 
interpreted as Euclidean rotations, while the hyperbolic elements correspond to squeeze map-
pings (boosts) of the plane.

A particularly interesting subgroup of SL(2) is given by SL(2,Z), the group of matrices 
with integer elements and unit determinant. Indeed, we will show in the next section that this 
(modular) subgroup plays an important role in physics of the model.

The group-theoretical aspect of the model brings the following parallel with a problem of 
self-adjoint extension [33–36]. Consider a single particle problem, where the kinetic energy 
operator is defined as K = d2/dx2. The requirement of self-adjointness 〈ψK|ψ〉 = 〈ψ|Kψ〉 in 
the domain Ω = R − {0} as written in coordinate representation translates into

0 =

∫

Ω

dx[ψ∗Kψ − (Kψ)∗ψ]

= [ψ∗ψ′ − (ψ′)∗ψ](0+)− [ψ∗ψ′ − (ψ′)∗ψ](0−),
 (10)

where we have applied integration by parts. This condition is equivalent to the require-
ment of probability current j conservation across the boundary at x  =  0, where 
j = −i[(ψ′)∗ψ − ψ∗ψ′]/2. Considering gluing conditions consistent with self-adjoint exten-
sions at x  =  0 for a function ψ and its derivative ψ′, it was shown in [33] (see also section 1 of 
[36] for a review) that the most general gluing condition is given by

(
ψ(0+)

ψ′(0+)

)
= eiφ

(
a b
c d

)(
ψ(0−)

ψ′(0−)

)
, (11)

where φ ∈ [0,π] and the real coefficients a, b, c, d  satisfy the unimodularity condition

ad − bc = 1. (12)

The central point of this construction is the conservation of the probability current across the 
internal boundary. This can be compared with the case of the 1D Bose gas, where, because of 

E Stouten et alJ. Phys. A: Math. Theor. 51 (2018) 485204
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the bosonic symmetry of the wave function, regularity of the wave function has to be imposed, 
while its spatial derivative can experience a jump proportional to the interaction strength. In 
the case of fermions the opposite situation occurs—the derivative is continuous while the 
wave function exhibits a jump discontinuity. The most general potential v(x) respecting these 
internal jump boundary conditions is a combination of δ(x), δ′(x) and δ′′(x) [33–36],

1
2

v(x) = g1δ(x)− (g2 − ig3)
d
dx

+ (g2 + ig3)
d
dx

δ(x)− g4
d
dx

δ(x)
d
dx

,
 (13)

where the parameters gi, i = 1, . . . , 4 can be related to the elements of the transfer matrix (11) 
across the boundary at x  =  0. Note that the bosonic and fermionic limits nicely correspond to 
the lower- and upper-triangular matrices, similar to the discussion of SLc(2) in the scattering 
matrix (note the transposition involved in going from SLk(2) to SLc(2)).

Combining this with explicit computations similar to [30], motivates us to conjecture7 that 
the scattering matrix corresponding to Fij in equation (6) gives rise to the following many-
body integrable Hamiltonian

HF = −
N∑

j=1

∂2

∂x2
j
+

N∑
j<k

(
c0 − ic1

∂

∂xj

)(
c0 − ic1

∂

∂xk

)

× δ(xj − xk),

 (14)

encompassing and extending both the LL and SC models.
It is known that the LL model corresponds to the nonlinear Schrödinger equation in the 

field theoretic formulation [36]. Inspired by this we propose that our Hamiltonian can be 
interpreted as a model which (a) incorporates a density–density interaction c2

0ρ(x)ρ(x), a 
density-current interaction c0c1ρ(x) j(x) and a current–current interaction c2

1j(x) j(x), where 
ρ = Ψ†(x)Ψ(x) and j(x) = Ψ†(x)∂xΨ(x). In these terms, our duality collects the densities 
and currents into a unified object which transforms under the SL(2) group described above.

Bethe ansatz equations and roots

Bethe equations and non-interacting modes

While the SL(2) symmetry is preserved on the level of the scattering matrix and the YBE, 
it acts nontrivially on a system with fixed external boundary conditions, in that sense relat-
ing different physical models. Let us demonstrate this explicitly by constructing Bethe equa-
tions for our new solution (6) following the standard procedure. Namely, we impose periodic 
boundary conditions and move the particle j around a ring of size L. Every time this particle 
experiences a collision with another particle (say i) a scattering phase shift Šij(ki, kj) is col-
lected. Moving the particle completely around the ring of N particles, the periodic boundary 
conditions impose a single-valued condition on the wave function which results in the consis-
tency equations

7 Some preliminary steps where taken to show that the Hamiltonian (14) indeed results in the desired Bethe equa-
tions (15) with (3) and (6) in a similar spirit as [30]. This process for the potential (13) however has proven to 
be more subtle as in [30]. Because of the highly singular nature of the potential one has to deal with generalized 
functions (distributions) with great care, and therefore define a corresponding Hilbert space and matrix elements 
which could depend on the regularization procedure. In order not to overload the current paper this analysis will be 
continued in future work, in this sense the Hamiltonian is conjecture.

E Stouten et alJ. Phys. A: Math. Theor. 51 (2018) 485204
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eikjL
N∏

i�=j

ŠF(kj, ki) = 1, (15)

where ŠF(ki, kj) is defined as in equation (3) with F given by equation (6). It is important to 
note that here we assume that there is a basis in which the permutation operator which enters 
equation (3) can be chosen to be proportional to identity operator: Πij =

8. In this case equa-
tion (15) serve as generalized Bethe ansatz equations (BAE) which define the allowed values 
of the momenta kj.

Remarkably, it follows directly from equations  (3) and (6) that there are special points 
in the space of rapidities when the scattering matrix trivializes, ŠF(ki, kj) ≡ . This happens 
when either one of the rapidities satisfies

kj = −c0

c1
. (16)

In this case equation (15) implies exp(ikjL) = 1, which means that at these points there are 
free, non-interacting modes in a system with kj = −c0/c1 = 2πnj/L for integer nj ∈ N. This 
quantization of couplings (in units of L) combined with the SL(2,R) duality implies that a 
subgroup of the latter, the modular group SL(2,Z) connects, in a sense of duality transforma-
tions, all free, noninteracting modes of the model. In the Yang model, the scattering function 
Fij could vanish only if one of the momenta ki or kj becomes infinite. However, due to the 
symmetry in the new solution, this can happen at finite momenta as long as c1 �= 0. (Mapping 
Yang’s solution for ki,j → ∞ and c1  =  0 to finite k̃i,j  always results in c̃1 �= 0.) This vanishing 
has major consequences in both the Lieb–Liniger and the related Richardson–Gaudin class of 
models as introduced in [27]. Given an eigenstate in the Lieb–Liniger model, any particle with 
trivial scattering (k = −c0/c1) can be added and the resulting state will still satisfy the Bethe 
ansatz equations provided the quantization condition k = ±2πn/L, n ∈ N is simultaneously 
satisfied. While this restricts the values of c0/c1 for which such particles can be added for 
finite systems, this will always be possible in the thermodynamic limit. Here, the Bethe ansatz 
equations can be recast as a single integral equation, which will exhibit a singularity following 
from this non-interacting mode (see appendix).

Ground state root distribution

In the following sections the numerical solutions to the BAE (15) will be discussed. These 
solutions were obtained from the familiar logarithmic form of the BAE for real, fixed c0 and 
varying c1. In figure 1 the ground state solution of the BAE for different c1 is given using 
as initial values c1 � c0 and c1 � c0, where the ground state is known, following from the 
correspondence to the LL and CS models. By ground state solution we mean the state follow-
ing from the solution with (half) integer quantum numbers distributed around zero in these 
limiting cases. While the ground states are explicitly known in both limits, it can immedi-
ately be observed that the resulting solutions do not match. This implies a crossing between 
both ground states at some value of c1 �= 0, where the original solution will correspond to 
an excited state. This can be interpreted as a direct consequence of the non-interacting mode 

8 The statement that Πij = 1 is a different way of saying that one is dealing with indistinguishable particles. In 
contrast, if one would consider ‘colored’ particles a more general representation of the permutation group is needed 
which would lead to a so-called nested Bethe ansatz. Therefore to be on the safe side we assume that our particles 
are indistinguishable, so that Πij = 1 and proceed with that. Our assumption is supported by the two limiting cases, 
c1  =  0 (a Lieb–Liniger model of interacting bosons) and c0  =  0 (a Cheon–Shigehara model) which do respect this 
property.

E Stouten et alJ. Phys. A: Math. Theor. 51 (2018) 485204
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k = −c0/c1, since it is impossible for rapidities to cross this line as c1 is changed. Indeed, if at 
some point k = −c0/c1, the resulting rapidity decouples from the system and remains a non-
interacting mode as c1 is varied (this can be easily seen in the thermodynamic limit). In the 
c1 � c0 limit the LL model is obtained, for which all rapidities at small values of c1 lie at one 
side of the diverging line −c0/c1. This can be contrasted with the CS limit, where the rapidi-
ties are symmetrically distributed around 0 for c1 → ∞, and hence half the rapidities remain 
above and half below the non-interacting line k = −c0/c1 as c1 is varied. As such, it is impos-
sible to continuously deform these solutions into each other, and a level crossing (or multiple 
level crossings) needs to occur when changing c1 between the two known limits.

As further illustration, the root density

ρ

(
kj + kj+1

2

)
=

1
L(kj+1 − kj)

, (17)

is displayed in figure 2, where the solution starting from the LL limit exhibits the characteris-
tic semicircular root density distribution around zero for c1  =  0 [1]. Small positive and nega-
tive values of c1 are also shown for comparison to the anyonic behavior at c1 � c0 [30, 31].

Due to decoupling of the roots at kj = −c0/c1 the distributions of kj convergence asymp-
totically to −c0/c1. This is confirmed by the study of the weakly-interacting Gaudin limit 
c0 � 1 (see below). Starting from c1 � c0 (LL initial conditions, main plot figure 1), c1 → ∞ 
also results in a condensate around kj  =  0, which is surprising because in this limit the model 
should exhibit fermionic behavior as noted by CS [28]. Nevertheless, for large c1 all roots have 
decoupled because they approach kj = −c0/c1, which does happen in fermionic models and is 
not contradictory to the findings of CS.

The second initial value c1 � c0 can be considered a second Tonks–Girardeau limit 
in c1, giving the same results as the single parameter case (c0 � 1 and c1  =  0), leading to 

0 10 20 30 40 50
−1

−0.5

0

0.5

1

c1

k

0 10 20 30 40 50
−2

−1

0

1

2

Figure 1. Ground state rapidity distribution for different values of 0 � c1 � 50 for 
c0  =  1, number of particles N  =  50 and system size L  =  100. The main plot corresponds 
to the rapidities obtained starting from the limit c1 � c0 while the evolution of rapidities 
starting from the opposite limit c1 � c0 is plotted in the inset. The line k = −c0/c1 is 
plotted in dashed red.
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kj = 2πn/L where n ∈ Z (see figure 1). However, when approaching c1 ∼ 0 this limit does 
not retrieve the same state as obtained from the first initial value. Instead the upper roots tend 
to infinity and the lower roots approach the line k = −c0/c1. At this point the roots decouple 
and numerical analysis becomes unstable, leaving this region an open problem. This unstable 
behavior is only present in states that contain roots the that hit the line kj = −c0/c1. For highly 
exited states which have kj > −c0/c1, ∀j = 1 . . .N  and ∀c1 � 0 the two initial states do con-
nect, since then all rapidities lie at the same side of the non-interacting line.

The overall connection of the CS and LL initial states thus remains an open problem. We 
conjecture that the solution seems to be related to states other than the ground state through 
the ‘non-interacting modes’ due to the asymptotic decoupling and the excitation spectrum as 
discussed in a later section.

We note that there is no definite property of the scattering phase with respect to kj → −kj 
transformation. This is also manifested in both figures  1 and 2 that for c1 �= 0 the parity  
symmetry of the model is broken. We conjecture the following picture: Physically, the ground 
state perhaps can be interpreted in terms of two counter-propagating liquids with different 
densities and velocities. The overall momentum of all the above discussed states for any c1 
however vanishes (as confirmed by numerics). Furthermore the domain for c1  <  0 shows 
exactly the same behavior as the previously discussed cases for c1  >  0 except for an inversion 
of the root spectrum in k due to the line −c0/c1 now coming from above.

Gaudin limit

In order to better understand the asymptotic behaviour as the rapidities approach the line 
−c0/c1 for large c1, the limit c0 � 1 can be investigated, where the rapidities can be con-
nected to the roots of orthogonal polynomials. In the LL model, it is known that for c0 � 1 
the rapidities can be obtained as roots of Hermite polynomials [37], and this can be extended 
to the current model for arbitrary c1.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0.15

0.2

0.25

0.3

0.35

0.4

k

ρ
(k

)

c1=0.
c1=0.25
c1=0.5
c1=1.
c1=50.

c1 = −0.25

Figure 2. Ground state density for different values of −0.25 � c1 � 50, starting at 
c1 � c0. Here c0  =  1, the number of particles is N  =  50, and the system size is L  =  100.
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As shown in the appendix, a series expansion for the rapidities can be obtained as

kj = −c0

c1
+

c0

c3
1

L
zj
+O(c2

0), (18)

with zj the jth root of the associated Laguerre polynomial Lα
N(z) with 1 + α = L/c2

1 [38]. 
These roots can be obtained for arbitrary values of α by solving the recursion relation satisfied 
by the associated Laguerre polynomials (A.31) and are illustrated in figure 3. These results 
are in good agreement with the direct solution of the Bethe equations, as verified with the 
algorithm that generated figure 1.

This limit is termed the Gaudin limit because of the similarity of the approximate BAE 
with the previously-presented Gaudin equations [27]. For α positive, it immediately follows 
from the properties of the associated Laguerre polynomials that all zj are strictly positive and 
the rapidities lie above the line −c0/c1 for all finite values of c1, as previously observed in 
figure 1. This expansion can also be related to the known expansion for the LL model in the 
limit of small c1. In this case, α becomes large, and the roots of the associated Laguerre poly-
nomials Lα

N  can be related to the roots yj of the Hermite polynomials HN as

zαj ≈ α+
√

2αyj, for |α| → ∞. (19)

Plugging this into the series expansion for kj, we obtain that for small c1

kj ≈ −c0

√
2
L

yj +O(c2
0), (20)

returning the known behaviour of the rapidities in the weakly-interacting Lieb–Liniger gas. 
For very large c1, the eigenvalues become independent of c1 and result in the zeros of L−1

N . 
This polynomial has a single root which goes to zero as (1 + α)/N  for α → −1, and all other 
roots are non-zero for α = −1. The exact values of these do not matter, since we see that in 
the limit of large c1, the dominant term is given by

0 10 20 30 40 50
c1

−0.004

−0.002

0.000

0.002

0.004

0.006

0.008

k

Figure 3. Approximate rapidities from the Gaudin limit for c0  =  0.01, N  =  10 and 
L  =  100 from the roots of associated Laguerre polynomials, with the dashed red 
line denoting k = −c0/c1 and the dashed blue line denoting k = (N − 1)c0/c1. The 
qualitative behavior of the rapidities is the same as for larger values of c0 starting from 
the LL limit.
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kj ≈ −c0

c1
+O(c2

0), (21)

with a single rapidity behaving as

kj ≈
c0

c1
(N − 1) +O(c2

0). (22)

The existence of these two limits shows that in both cases, the series expansion was justified. 
Non-analytic behaviour for c2

0 → 0 is obtained, similar to the LL model, since the interac-
tion strength is determined by c2

0 and the rapidities scale as the square root of the interaction 
strength. From the recursion relations satisfied by the associated Laguerre polynomials, the 
total momentum and energy follow as

p({kj}) =
N∑

j=1

kj = 0 +O(c2
0), (23)

E({kj}) =
N∑

j=1

k2
j = c2

0
N(N − 1)

L + c2
1

+O(c2
0). (24)

Bound states

The standard derivation of the structure of the spectrum for bound states spectrum (solutions 
corresponding to the complex values of rapidities) for both spin chains and continuum sys-
tems relies on the existence of a string hypothesis. This hypothesis states that in the L → ∞ 
limit the Bethe roots are arranged into sets of self conjugate complex numbers with equal 
real part known as the string centre. This configuration is not conserved for finite L where 
these strings are free to deviate from this configuration by some complex number δ. For more 
information see [39–41] and the references therein. The limiting case L → ∞ imposes certain 
constraints on the roots of the Bethe equations which are also present at large finite L. Here 
we consider the simplest case of N  =  2 for our model and show that the string hypothesis does 
not hold in its original form. We conjecture a structure of bound states spectrum for general N.

Our derivation closely follows the one for the LL model. Namely, we start with the two-
parametric Bethe equations (15)

eikjL =
∏
i�=j

kj − ki + i(c2
0 + c0c1(kj + ki) + c2

1kjki)

kj − ki − i(c2
0 + c0c1(kj + ki) + c2

1kjki)
, (25)

specified to N  =  2,

eik1L =
k1 − k2 + i(c2

0 + c0c1(k1 + k2) + c2
1k1k2)

k1 − k2 − i(c2
0 + c0c1(k1 + k2) + c2

1k1k2)

eik2L =
k2 − k1 + i(c2

0 + c0c1(k1 + k2) + c2
1k1k2)

k2 − k1 − i(c2
0 + c0c1(k1 + k2) + c2

1k1k2)
.

 

(26)

Introducing real and imaginary parts of k,

kj = uj + ivj, j = 1, 2 (27)

we compare the squared modulus of both sides of the first equation in (26)
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e−2v1L =
A2
− + B2

+

A2
+ + B2

−
 (28)

where

A± = u1 − u2 ± c1[c0(v1 + v2) + c1(u1v2 + v1u2)]

B± = v1 − v2 ± [(c0 + c1u1)(c0 + c1u2)− c2
1v1v2].

 (29)

In the limit of L → ∞ the left hand side vanishes (we postulate that v1 > 0), which implies 
that the two conditions should be satisfied simultaneously

A− = 0 and B+ = 0. (30)

Multiplying the two equations in (26) implies that exp[i(k1 + k2)L] = 1 which translates into

v1 + v2 = 0. (31)

Substituting this into (29) gives

(u1 − u2)(1 + c2
1v) = 0, (32)

(c0 + c1u1)(c0 + c1u2) + c2
1v2 + 2v = 0 (33)

where v ≡ v1 > 0 and so v2 = −v. The above conditions must be satisfied simultaneously. 
Now, equation (32) implies that either

u1 = u2 or v = − 1
c2

1
. (34)

In the first case of (34) equation (33) can be written as an equation for a circle

X2 + Y2 = R2 (35)

where

X = c0 + c1u, Y =
1
c1

+ c1v, R =
1
c1

. (36)

This implies that the real and imaginary parts of the ‘string’ are correlated in a special manner.
For the second case in (34) equation (33) implies that u1, u2 and v are mutually correlated,

U1U2 =
1
c2

1
, where U1,2 = c0 + c1u1,2. (37)

We note that since according to our convention v > 0, it follows that c1 is purely imaginary.
Interestingly, one can arrive to the same conclusion by first applying the SL(2) transforma-

tion of kj to (25),

kj,l → yj,l =
kj,l

1 + c1
c0

kj,l
 (38)

which transforms the right hand side of (25) to the LL form, and then follow the same analysis 
as above. This is nothing but a manifestation of the geometrical property of the Möbius trans-
formation: circles and lines (thought as circles of infinite radius) are transformed into circles 
and lines respectively.

By looking into the case of N � 3 one can convince oneself that the requirement for numer-
ator or denominator to vanish (which is coming from the vanishing or divergence condition 
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respectively of the left-hand side of the Bethe equation) occurs only for a single factor in (25) 
for a given kj. This implies certain correlation between real and imaginary parts of the roots. 
While we cannot advance analytically anymore, we formulate a
Conjecture: Real and imaginary parts of the roots of Bethe equations are correlated and live 
on domains which have proper transformation properties with respect to the action of the 
SL(2) (like e.g. circles and lines).

This conjecture can further be supported by the Gaudin limit (see appendix), where the 
BAE roots occupy a spectral curve of the Heine–Stieltjes type differential equation. Moreover 
it was noticed in [42, 43] that the bound state solutions in the model with δ and δ′ interactions 
(which can be regarded as a special limit of small c1 of the present model, such that c2

1 term is 
neglected while the c0c1 term is kept) are situated on circles with angular positions which fol-
low a pattern of Farey sequences in the L = ∞ limit. We note that the modular group SL(2,Z) 
is an automorphism group of the Farey sequence. It would be very interesting to study these 
connections further.

Excitations

In order to discuss the excitation spectrum we distinguish between Type-I (particle) and 
Type-II (hole) excitations, following Lieb [2]. We restrict ourselves to the c0 � c1 � 0 initial 
condition, in this case the negative momenta states give rise to new behavior because they 
approach the decoupled regime around kj = −c0/c1. All excitations with positive momenta 
give similar results to the ground state because the roots never reach the line −c0/c1. For 
negative c1 and c0 � −c1 � 0 the root spectrum inverts around k (as mentioned above) and 
similar behavior is observed for excitations with positive momenta whereas negative momen-
tum excitations remain similar to the ground state.

In figure 4, the spectrum for N  =  10 is given with unit filling N/L  =  1, where again

E({kj}) =
N∑

j=1

k2
j , p({kj}) =

N∑
j=1

kj. (39)

Note that the choice of low N is for illustrative purposes only, since large N exhibits the same 
qualitative behavior. While the excitation spectrum remains similar for Type-I excitations for 
different values of c1 (figure 4 top right). The Type-II excitations lose their characteristic 
quadratic behavior and tend to E ∼ p instead of E ∼ |p| as expected for fermions. Comparing 
the bottom panels of figure 4 the energies of the Type-II excitations for larger c1 becomes 
strictly increasing with respect to the momenta, the linear behavior becomes more obvious for 
increasing c1. This behavior is confirmed by the evaluation of the energy of negative momenta 
Type-II excitations as a function of c1 in figure 5. A full inversion of the spectrum occurs at 
c1 ∼ 3.5, which means that the spectrum reorders and becomes strictly increasing as expected.

Unfortunately, we were unable to continue our analysis of the negative momenta states to 
increasingly negative momenta or higher c1 because these have the same numerical instabili-
ties as the c1 � c0 initial condition states near c1 → 0, where some of the rapidities hit the 
line k = −c0/c1.

Conclusion

Based on a previously-presented general solution of the rational Yang–Baxter equation [27], 
we initiated the studies of a generalized model of an interacting one-dimensional gas. Our 

E Stouten et alJ. Phys. A: Math. Theor. 51 (2018) 485204



13

first guess was that these particles can, presumably, be interpreted as anyons in the spirit of  
[30–32], since the different limits of this model return either interacting bosons with δ interac-
tion or CS model with δ′′ interaction. However if our conjectured form of the Hamiltonian 
(14) is correct, our model may be seen as the one containing density-current (mixed c0c1 
term) and current–current interactions (c2

1 term), in addition to the density–density coupling 

0 2 4 6
5

15

25

c1

E
(c

1)

Figure 5. Type-II excitation spectrum for negative-momentum excited states using 
c0  =  5, L  =  10, N  =  10, starting from c1  =  0. In blue the ground state and in red 
Umklapp excitation are given, crossing the ground state at c1 ∼ 2, where the dotted 
lines represent the excitations with −2π < p < −π.

0 π 2π
0

40

80

E
/ρ

2

c1 = 0
c1 = 5
c1 = 10
c1 = 30

0 π 2π 3π 4π
0

100

200
c1 = 0 c1 = 5
c1 = 10 c1 = 30

0 π 2π 3π 4π
0

25

50

p/ρ

c1 = 0 c1 = 5
c1 = 10 c1 = 30

−2π −π 0
0

40

80

p/ρ

E
/ρ

2

c1 = 0
c1 = 2
c1 = 5

Figure 4. Excitation spectrum for the ground state at c0  =  5 and different values of c1 
starting from c1  =  0. Plots with the same value of c1 are plotted with the same marker 
and color. Top left: Type-I (filled markers) and Type-II (open markers) excitation 
spectrum above the ground state with positive momenta. Bottom left: Type-I and Type-
II excitations with negative momenta. At c1  =  5 all negative momentum excited states 
have energies lower than those of the ground state at p  =  0 indicating that these states 
crossed the ground state (compare figure 5). Top right: Type-I excitations with large 
positive momenta. Bottom right: Type-II excitations with large positive momenta.
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(traditional c2
0 term). The SL(2) acts then as a duality between density and current. This inter-

pretation partially explains the title of this paper.
The interaction structures follow from study of the contact interactions [33–36] which can 

be related to different subgroups of SL(2). The standard (δ) interaction corresponds to the 
upper parabolic block of the transformation matrix (Borel subalgebra) while the lower para-
bolic group, related by the S-duality with the former, is given by the lower parabolic block and 
corresponds to the δ′′ interaction. The diagonal subalgebra corresponds to either the elliptic or 
hyperbolic block and is connected with δ interaction.

The Bethe ansatz equations are obtained assuming that there exists a basis where the per-
mutation operator acts as an identity, and are solved both numerically and by connecting the 
rapidities to roots of orthogonal polynomials in the weakly interacting limit. Also the excita-
tion spectrum is presented. A particular feature of the presented model is the presence of non-
interacting modes at specific values of the interaction constants, which prevents the ground 
states of the corresponding fermionic and bosonic limiting models from being smoothly con-
nected. These modes are connected by the modular SL(2,Z) subgroup of SL(2).

We further conjecture that the string hypothesis should perhaps be generalized to more 
general domains of the rapidities complex plane. We believe that future studies of the pre-
sented model will encounter new surprises and mathematical richness.

Acknowledgments

This work is part of the Delta-ITP consortium, a program of the Netherlands Organization for 
Scientific Research (NWO) that is funded by the Dutch Ministry of Education, Culture and 
Science (OCW). PWC acknowledges support from a PhD fellowship and a travel grant for 
a long stay abroad at the University of Amsterdam from the Research Foundation Flanders 
(FWO Vlaanderen). J-SC acknowledges support from the European Research Council under 
ERC Advanced grant 743032 DYNAMINT.

Appendix

Derivation of the integral equation

Here we outline a derivation of the integral equation in the continuum limit L → ∞, N → ∞, 
N/L = ρ0 = const, though we believe that it has limited application because of singularities 
contained in the kernel. These singularities can be extracted to the driving term by use of the 
transformation (38) which cleans up the kernel but results in the same singular behavior.
We start with the equation (15) in its explicit form

eikjL =

N∏
l �=j

kj − kl + i(c0 + c1kj)(c0 + c1kl)

kj − kl − i(c0 + c1kj)(c0 + c1kl)
. (A.1)

The usual strategy of analyzing these coupled transcendental equations is to consider a loga-
rithm of its both sides

Lkj +

N∑
l=1

θ(kj, kl) = 2π
(

nj −
N + 1

2

)
 (A.2)

where {nj}, j = 1, . . . , N is a set of integers, and
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θ(kj, kl) = i ln
(

if (kj, kl) + (kj − kl)

if (kj, kl)− (kj − kl)

)
 (A.3)

is a scattering phase shift. Here

f (kj, kl) = c2
0 + c1c0(kj + kl) + c2

1kjkl. (A.4)

The kernel (A.3) is an antisymmetric function and therefore

N∑
j,l=1

θ(kj, kl) = 0, (A.5)

which implies that

L
N∑

j=1

kj = 2π
N∑

j=1

(
nj −

N + 1
2

)
 (A.6)

and we can interpret 
∑N

j=1 kj as a total momentum.
One can bring the phase shift to the Lieb–Liniger form by applying a particular SL(2) 

transformation

kj,l → yj,l =
kj,l

1 + c1
c0

kj,l
. (A.7)

By considering the extended complex plane of kj,l augmented by the point at infinity, we can 
formally allow singularities in the kernel θ(kj, kl). In terms of the yj-variables the Bethe Ansatz 
equation gets the following form

L

(
yj

1 − c1
c0

yj

)
+

N∑
k=1

θLL(yj − yl) = 2π
(

j − N + 1
2

)
 (A.8)

where

θLL(k) = i ln
(

ic2
0 + k

ic2
0 − k

)
. (A.9)

Introducing the root density as

ρ(yj) =
1

L(yj+1 − yj)
, (A.10)

N∑
j=1

= L
N∑

j=1

ρ(yj)(yj+1 − yj) (A.11)

N∑
j=1

f (yj) → L
∫ B

A
dyρ(y) f (y) (A.12)

for arbitrary function f (y), we subtract equation (A.8) for yj+1 from the same equation for yj 
and obtain

L
c0

c1

(
1

1 − c1
c0

yj+1
− 1

1 − c1
c0

yj

)
 (A.13)
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+(yj+1 − yj)

N∑
l=1

θ′(yj − yl) = 2π (A.14)

as N, L → ∞. Here θ′LL(yj − ym)(yj+1 − yj) = θLL(yj+1 − ym)− θLL(yj − ym) and we also 
assume that the boundaries of integration A = −B = −Λ. Finally, expanding around small 

δy = (yj+1 − yj) =
1

ρ(yj)L and assuming that terms of O(δy2) can be neglected
(

1
1 − c1

c0
yj+1

− 1
1 − c1

c0
yj

)
≈ c1

c0L
1

ρ(y)(1 − c1
c0

y)2 (A.15)

we obtain

ρ(y)− 1
2π

∫ Λ

−Λ

dxρ(x)K(x, y) =
1

2π
1

(1 − c1
c0

y)2 (A.16)

where

K(x, y) =
2c2

0

c4
0 + (x − y)2 (A.17)

and we have to supplement (A.16) by the normalization condition
∫ Λ

−Λ

ρ(y)dy = D =
N
L

. (A.18)

The final step, which is very convenient for the numerical implementation is to perform the 
following change of variables,

c0 = Λ
1
2 α, c0c1 ≡ β2, y = Λk, ρ(Λy) = g(k) (A.19)

in terms of which we have the following system

g(k)− α2

π

∫ 1

−1

g( p)dp
α4 + (k − p)2 =

1
2π

1

(1 − β2

α2 k)2
 (A.20)

γ

∫ 1

−1
dkg(k) = α2 (A.21)

where γ = c2
0/D.

Alternatively, one can perform the same analysis without making use of the SL(2) trans-
form while dealing directly with the modified kernel (with respect to the LL kernel)

K̃(k, q) =
(α2 + β2k)(α2 + β2q)− β2(k − q)(α2 + β2q)

(α2 + β2k)2(α2 + β2q)2 + α4(k − q)2 . (A.22)

We end up with the following equation then

g(k)− α2

π

∫ 1

−1
dqg(q)K̃(k, q) =

1
2π

 (A.23)

supplemented by γ
∫ 1
−1 dkg(k) = α2

The assumption that we can perform a Taylor expansion for arriving to the integral equa-
tion is crucial here. This assumption is however only justified if the c0

c1
> |Λ| or βα < 1 which 
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in general is not true for all parameters c0,1. At these same points the modified kernel becomes 
singular which is also reflected in a singular behavior of the finite density, figure 2. An attempt 
was made to solve these equations numerically, for the case where c0

c1
> |Λ| the numerics cor-

respond to the finite density behavior, however we were unable to continue our studies outside 
this regime.

Gaudin limit

Starting from the Bethe ansatz equations (15)

eikjL =
∏
l �=j

kj − kl + i(c0 + c1kj)(c0 + c1kl)

kj − kl − i(c0 + c1kj)(c0 + c1kl)
, (A.24)

a series expansion for the rapidities can be obtained in orders of c0 if c0 � 1. We propose an 
expansion similar to the weakly-interacting limit of the Lieb–Liniger gas with

kj = c0δj +O(c2
0), (A.25)

in which j = 1 . . .N  and δj is finite and independent of c0. Up to zeroth order in c0, the BAE 
becomes 1  =  1, which is trivially satisfied. The first-order correction on the equation (A.24) 
is then given by

δjL = 2
N∑

l �=j

(1 + c1δj)(1 + c1δl)

δj − δl
. (A.26)

In taking this series expansion, we have made the assumption that c1δj remains bounded for 
all values of c1. This is expected for small c1 and can be verified afterwards for large c1. The 
equation (A.26) can again be linked to the roots of orthogonal polynomials. Performing the 

substitution δj = − 1
c1
+ L

c3
1zj

 and multiplying the equation with  −c1/L results in

1 − L/c2
1

zj
= 2

N∑
l �=j

1
zj − zl

. (A.27)

The associated Laguerre polynomials Lα
N(z) satisfy the differential equation

zP′′(z) + (1 + α− z)P′(z) + NP(z) = 0, (A.28)

where from the Heine–Stieltjes connection [38] the roots zj are coupled through

1 − 1 + α

zj
= 2

N∑
l �=j

1
zj − zl

. (A.29)

Taking 1 + α = L/c2
1, this returns the proposed series expansion as

kj = −c0

c1
+

c0

c3
1

L
zj
+O(c2

0), (A.30)

with zj the jth root of the associated Laguerre polynomial Lα
N(z) with 1 + α = L/c2

1. This is 
known as a Laguerre function for non-integer values of α, satisfying the following recursion 
relation

NLα
N(x) = (2N − 1 + α− x)Lα

N−1(x)

− (N − 1 + α)Lα
N−2(x),

 (A.31)
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from which the roots can be determined for arbitrary values of α. These also satisfy

Lα
N(0) =

(
N + α

N

)
, (A.32)

and derivatives can be found as

dk

dxk Lα
N(x) = (−1)kLα+k

N−k(x), (A.33)

for k  <  N. The roots of the polynomial P(z) = Lα
N(z) can then be easily shown to satisfy

N∑
j=1

1
zj

= −P′(0)
P(0)

=
N

1 + α
,

N∑
j=1

1
z2

j
=

(
P′(0)
P(0)

)2

− P′′(0)
P(0)

=
N(N + 1 + α)

(1 + α)2(2 + α)
.

 

(A.34)

Using this in the expansion for the rapidities then returns the results presented in the main text.
Interesting things happen if we plot the rapidities k for both c0 and c1 purely imaginary, as 

done in figure A1. Now the rapidities start as purely imaginary for c1  =  0 as expected for the 
attractive LL case [40, 41], but obtain a real part for non-zero c1. Remarkably, the approx-
imation breaks down at values of c2

1 = −L/m, m = 1 . . . n. At these points, the Laguerre 
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Figure A1. Series approximation to the rapidities for purely imaginary parameters with 
|c0|  =  0.01, L  =  20 and n  =  10. The red dashed line denotes −c0/c1, the blue dashed 
line denotes (n − 1)c0/c1, and the vertical dashed lines denote |c1|2 = L/m, m = 1 . . . n. 
Insets show a zoom of the main plots at small values of |c1| for comparison with the 
attractive LL model.
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polynomials have zero as root, and the first-order contribution diverges. It should be checked 
numerically what happens at these points if we solve the full Bethe equations rather than the 
first-order approximation. This also allows for a crossing of the line −c0/c1 if we consider the 
large c1 limit. Again, at both small and large c1 the approximation holds, but at intermediate 
c1 the approximation breaks down at exactly c2

1 = −L/m, m = 1 . . . n, where the numerical 
error on the Bethe equations becomes large. However, if we plot the energy, these divergences 
cancel exactly except for c2

1 = −L , where the energy first dives towards minus infinity for 
|c1|2 < L and returns from plus infinity for |c1|2 > L. This is consistent with the resulting 
expression for the total energy (24).

ORCID iDs

Eyzo Stouten  https://orcid.org/0000-0001-6521-2520

References

	 [1]	 Lieb E H and Liniger W 1963 Exact analysis of an interacting Bose gas. I. The general solution and 
the ground state Phys. Rev. 130 1605

	 [2]	 Lieb E H 1963 Exact analysis of an interacting Bose gas. II. The excitation spectrum Phys. Rev. 
130 1616

	 [3]	 Lai Y and Haus H A 1989 Quantum theory of solitons in optical fibers. I. Time-dependent Hartree 
approximation Phys. Rev. A 40 844

	 [4]	 Lai Y and Haus H A 1989 Quantum theory of solitons in optical fibers. II. Exact solution Phys. Rev. 
A 40 854

	 [5]	 Yudson  V  I 1985 Dynamics of integrable quantum systems Zh. Eksp. Teor. Fiz. 88  1757  
(http://jetp.ac.ru/cgi-bin/dn/e_061_05_1043.pdf) 

  Yudson V I 1985 Dynamics of integrable quantum systems Sov. Phys.—JETP 61 1043 (http://jetp.
ac.ru/cgi-bin/dn/e_061_05_1043.pdf) 

	 [6]	 Carusotto I, Gerace D, Tureci H E, De Liberato S, Ciuti C and Imamoglu A 2009 Fermionized 
photons in an array of driven dissipative nonlinear cavities Phys. Rev. Lett. 103 033601

	 [7]	 Chang D, Gritsev V, Morigi G, Lukin M and Demler E 2008 Crystallization of strongly interacting 
photons in a nonlinear optical fibre Nat. Phys. 4 884

	 [8]	 Kardar M 1987 Replica Bethe ansatz studies of two-dimensional interfaces with quenched random 
impurities Nucl. Phys. B 290 582

	 [9]	 Kardar M, Parisi G and Zhang Y-C 1986 Dynamic scaling of growing interfaces Phys. Rev. Lett. 
56 889

	[10]	 Calabrese P and Le Doussal P 2011 Exact solution for the Kardar–Parisi–Zhang equation with flat 
initial conditions Phys. Rev. Lett. 106 250603

	[11]	 Dotsenko V 2010 Bethe ansatz derivation of the Tracy–Widom distribution for one-dimensional 
directed polymers Europhys. Lett. 90 20003

	[12]	 Tracy C A and Widom H 2013 The Bose gas and asymmetric simple exclusion process on the half-
line J. Stat. Phys. 150 1

	[13]	 Olshanii  M 1998 Atomic scattering in the presence of an external confinement and a gas of 
impenetrable Bosons Phys. Rev. Lett. 81 938

	[14]	 Kinoshita T, Wenger T and Weiss D S 2004 Observation of a one-dimensional Tonks–Girardeau 
gas Science 305 1125

	[15]	 Kinoshita T, Wenger T and Weiss D S 2005 Local pair correlations in one-dimensional Bose gases 
Phys. Rev. Lett. 95 190406

	[16]	 Paredes B, Widera A, Murg V, Mandel O, Fölling S, Cirac I, Shlyapnikov G V, Hänsch T W and 
Bloch I 2004 Tonks–Girardeau gas of ultracold atoms in an optical lattice Nature 429 277

	[17]	 Laburthe Tolra B, O’Hara K M, Huckans  J H, Phillips W D, Rolston S L and Porto  J V 2004 
Observation of reduced three-body recombination in a correlated 1D degenerate Bose gas Phys. 
Rev. Lett. 92 190401

E Stouten et alJ. Phys. A: Math. Theor. 51 (2018) 485204

https://orcid.org/0000-0001-6521-2520
https://orcid.org/0000-0001-6521-2520
https://doi.org/10.1103/PhysRev.130.1605
https://doi.org/10.1103/PhysRev.130.1605
https://doi.org/10.1103/PhysRev.130.1616
https://doi.org/10.1103/PhysRev.130.1616
https://doi.org/10.1103/PhysRevA.40.844
https://doi.org/10.1103/PhysRevA.40.844
https://doi.org/10.1103/PhysRevA.40.854
https://doi.org/10.1103/PhysRevA.40.854
http://jetp.ac.ru/cgi-bin/dn/e_061_05_1043.pdf
http://jetp.ac.ru/cgi-bin/dn/e_061_05_1043.pdf
http://jetp.ac.ru/cgi-bin/dn/e_061_05_1043.pdf
https://doi.org/10.1103/PhysRevLett.103.033601
https://doi.org/10.1103/PhysRevLett.103.033601
https://doi.org/10.1038/nphys1074
https://doi.org/10.1038/nphys1074
https://doi.org/10.1016/0550-3213(87)90203-3
https://doi.org/10.1016/0550-3213(87)90203-3
https://doi.org/10.1103/PhysRevLett.56.889
https://doi.org/10.1103/PhysRevLett.56.889
https://doi.org/10.1103/PhysRevLett.106.250603
https://doi.org/10.1103/PhysRevLett.106.250603
https://doi.org/10.1209/0295-5075/90/20003
https://doi.org/10.1209/0295-5075/90/20003
https://doi.org/10.1007/s10955-012-0686-4
https://doi.org/10.1007/s10955-012-0686-4
https://doi.org/10.1103/PhysRevLett.81.938
https://doi.org/10.1103/PhysRevLett.81.938
https://doi.org/10.1126/science.1100700
https://doi.org/10.1126/science.1100700
https://doi.org/10.1103/PhysRevLett.95.190406
https://doi.org/10.1103/PhysRevLett.95.190406
https://doi.org/10.1038/nature02530
https://doi.org/10.1038/nature02530
https://doi.org/10.1103/PhysRevLett.92.190401
https://doi.org/10.1103/PhysRevLett.92.190401


20

	[18]	 Haller E, Rabie M, Mark M J, Danzl J G, Hart R, Lauber K, Pupillo G and Nägerl H-C 2011 Three-
body correlation functions and recombination rates for Bosons in three dimensions and one 
dimension Phys. Rev. Lett. 107 230404

	[19]	 Kinoshita T, Wenger T and Weiss D S 2006 A quantum Newton’s cradle Nature 440 900
	[20]	 Haller E, Gustavsson M, Mark M J, Danzl J G, Hart R, Pupillo G and Nägerl H-C 2009 Realization 

of an excited, strongly correlated quantum gas phase Science 325 1224
	[21]	 Meinert F, Knap M, Kirilov E, Jag-Lauber K, Zvonarev M B, Demler E and Nägerl H-C 2017 

Bloch oscillations in the absence of a lattice Science 356 945
	[22]	 Cazalilla M A, Citro R, Giamarchi T, Orignac E and Rigol M 2011 One dimensional bosons: from 

condensed matter systems to ultracold gases Rev. Mod. Phys. 83 1405
	[23]	 Gaudin M 1967 Un systeme a une dimension de fermions en interaction Phys. Lett. A 24 55
	[24]	 Yang C N 1967 Some exact results for the many-body problem in one dimension with repulsive 

delta-function interaction Phys. Rev. Lett. 19 1312
	[25]	 Yang  C  N 1968 S matrix for the one-dimensional N-body problem with repulsive-function 

interaction Phys. Rev. 168 1920
	[26]	 Sutherland B 1968 Further results for the many-body problem in one dimension Phys. Rev. Lett. 

20 98
	[27]	 Stouten  E, Claeys  P  W, Caux  J-S and Gritsev  V 2018 Integrability and duality in spin chains 

(arXiv:1712.09375)
	[28]	 Cheon T and Shigehara T 1999 Fermion–Boson duality of one-dimensional quantum particles with 

generalized contact interactions Phys. Rev. Lett. 82 2536
	[29]	 Cheon T and Shigehara T 1998 Realizing discontinuous wave functions with renormalized short-

range potentials Phys. Lett. A 243 111
	[30]	 Batchelor M T, Guan X-W and He J-S 2007 The Bethe ansatz for 1D interacting anyons J. Stat. 

Mech. P03007
	[31]	 Guan M X-W and Kundu A 2008 One-dimensional anyons with competing-function and derivative-

function potentials J. Phys. A: Math. Theor. 41 352002
	[32]	 Kundu A 1999 Exact solution of double δ-function Bose gas through an interacting anyon gas Phys. 

Rev. Lett. 83 1275
	[33]	 Šeba P 1986 The generalized point interaction in one dimension Czech. J. Phys. B 36 667
	[34]	 Albeverio  S, Gesztesy  F, Hoegh-Krohn  R and Holden  H 1988 Solvable Models in Quantum 

Mechanics (Heidelberg: Springer)
	[35]	 De Vincenzo S and Sánchez C 2010 Point interactions: boundary conditions or potentials with the 

Dirac delta function Can. J. Phys. 88 809
	[36]	 Šamaj  L and Bajnok  Z 2013 Introduction to the Statistical Physics of Integrable Many-body 

Systems (Cambridge: Cambridge University Press)
	[37]	 Gaudin M and Caux J-S 2014 The Bethe Wavefunction (Cambridge: Cambridge University Press)
	[38]	 Szegö G 1975 Orthogonal Polynomials 4th edn (Providence, RI: American Mathematical Society)
	[39]	 Sakmann K, Streltsov A I, Alon O E and Cederbaum L S 2005 Exact ground state of finite Bose–

Einstein condensates on a ring Phys. Rev. A 72 033613
	[40]	 Hagemans R and Caux  J-S 2007 Deformed strings in the Heisenberg model J. Phys. A: Math. 

Theor. 40 14605–47
	[41]	 Calabrese P and Caux J-S 2007 Dynamics of the attractive 1D Bose gas: analytical treatment from 

integrability J. Stat. Mech P08032
	[42]	 Basu-Mallick B, Bhattacharyya T and Sen D 2005 Multi-band structure of a coupling constant for 

quantum bound states of a generalized nonlinear Schrödinger model Phys. Lett. A 341 371
	[43]	 Basu-Mallick  B, Bhattacharyya  T and Sen  D 2014 Clusters of bound particles in a quantum 

integrable many-body system and number theory J. Phys.: Conf. Ser. 563 012003

E Stouten et alJ. Phys. A: Math. Theor. 51 (2018) 485204

https://doi.org/10.1103/PhysRevLett.107.230404
https://doi.org/10.1103/PhysRevLett.107.230404
https://doi.org/10.1038/nature04693
https://doi.org/10.1038/nature04693
https://doi.org/10.1126/science.1175850
https://doi.org/10.1126/science.1175850
https://doi.org/10.1126/science.aah6616
https://doi.org/10.1126/science.aah6616
https://doi.org/10.1103/RevModPhys.83.1405
https://doi.org/10.1103/RevModPhys.83.1405
https://doi.org/10.1016/0375-9601(67)90193-4
https://doi.org/10.1016/0375-9601(67)90193-4
https://doi.org/10.1103/PhysRevLett.19.1312
https://doi.org/10.1103/PhysRevLett.19.1312
https://doi.org/10.1103/PhysRev.168.1920
https://doi.org/10.1103/PhysRev.168.1920
https://doi.org/10.1103/PhysRevLett.20.98
https://doi.org/10.1103/PhysRevLett.20.98
http://arxiv.org/abs/1712.09375
https://doi.org/10.1103/PhysRevLett.82.2536
https://doi.org/10.1103/PhysRevLett.82.2536
https://doi.org/10.1016/S0375-9601(98)00188-1
https://doi.org/10.1016/S0375-9601(98)00188-1
https://doi.org/10.1088/1751-8113/41/35/352002
https://doi.org/10.1088/1751-8113/41/35/352002
https://doi.org/10.1103/PhysRevLett.83.1275
https://doi.org/10.1103/PhysRevLett.83.1275
https://doi.org/10.1007/BF01597402
https://doi.org/10.1007/BF01597402
https://doi.org/10.1139/P10-060
https://doi.org/10.1139/P10-060
https://doi.org/10.1103/PhysRevA.72.033613
https://doi.org/10.1103/PhysRevA.72.033613
https://doi.org/10.1088/1751-8113/40/49/001
https://doi.org/10.1088/1751-8113/40/49/001
https://doi.org/10.1088/1751-8113/40/49/001
https://doi.org/10.1016/j.physleta.2005.05.021
https://doi.org/10.1016/j.physleta.2005.05.021
https://doi.org/10.1088/1742-6596/563/1/012003
https://doi.org/10.1088/1742-6596/563/1/012003

	Something interacting and solvable in 1D
	Abstract
	Introduction
	Generalization of the model of interacting bosons
	 group structure of the model

	Bethe ansatz equations and roots
	Bethe equations and non-interacting modes
	Ground state root distribution
	Gaudin limit

	Bound states
	Excitations
	Conclusion
	Acknowledgments
	Appendix
	Derivation of the integral equation
	Gaudin limit
	ORCID iDs
	References




