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LOGLINEAR MODEL SELECTION AND HUMAN MOBILITY

ADRIAN DOBRA AND ABDOLREZA MOHAMMADI

ABSTRACT. Methods for selecting loglinear models were among Steve Fienberg’s research in-
terests since the start of his long and fruitful career. After we dwell upon the string of papers
focusing on loglinear models that can be partly attributed to Steve’s contributions and influen-
tial ideas, we develop a new algorithm for selecting graphical loglinear models that is suitable
for analyzing hyper-sparse contingency tables. We show how multi-way contingency tables can
be used to represent patterns of human mobility. We analyze a dataset of geolocated tweets
from South Africa that comprises 46 million latitude/longitude locations of 476,601 Twitter
users that is summarized as a contingency table with 214 variables.

KEYWORDS: contingency tables, model selection, human mobility, graphical models, Bayesian
structural learning, birth-death processes, pseudo-likelihood
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1. INTRODUCTION

Steve Fienberg was one of the founders of modern multivariate categorical data analysis.
In two of the books he wrote early in his career [9, B1] he laid out key notation, definitions,
modeling techniques, and also open research directions for building approaches for analyzing
contingency tables. More than forty years ago, he argued that interactions of various orders
among categorical variables are of great interest — a fact that is now recognized in the liter-
ature from several fields (e.g., biology, social sciences, public health, transportation research).
Hierarchical loglinear models that represent log expected cell counts as sums of main effects of
variables cross-classified in a table, and interactions of two, three or more of these variables are
well suited to capture complex multivariate patterns of dependencies. The selection of the inter-
action structure in hierarchical loglinear models was a problem Steve discussed in considerable
length in [9, Chapter 9], [31, Chapter 4], and also in several papers he subsequently published
later on in his career.
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[30] laid out one of the first strategies for hierarchical loglinear model determination which is
based on partitioning the Pearson or the likelihood-ratio goodness-of-fit statistics into several
additive parts. Steve’s approach starts with a hierarchy of models, and a significance level.
Interactions are sequentially added or deleted based on a series of tests that correspond with
the partitioned components of the most complex models. The model search stops when the
difference between consecutive models is significant. Steve properly recognized that a good
model building strategy must walk the fine line between goodness-of-fit and parsimony, that is,
including more interactions to obtain a better fit of the data, and leaving fewer interactions in
the model to create simpler representations of the association structure. However, this early
method for loglinear model selection can compare only models that are nested (i.e., a simpler
model is obtained from a more complex one by deleting interactions), and can be successfully
used for datasets that involve no more than 5 variables.

Due in part to Steve’s early contributions and ideas, several approaches to selection of log-
linear models have started to emerge [28] 1, 88], but these methods turned out to be quite
ineffective even for contingency tables with 7 variables. One bottleneck is due to the expo-
nential increase in the number of possible hierarchical loglinear models: while there are 7580
models with 5 variables, there are about 5.6 x 10?2 models with 8 variables [I6]. Moreover,
contingency tables that involve a large number of variables are sparse and their non-zero counts
are imbalanced. That is, almost all the counts in large tables are zero; most of their positive
counts are small (1, 2 or 3), and there are always a few counts that are quite large. Sparsity and
imbalance give rise to severe difficulties when performing model selection due to the invalidation
of the asymptotic approximations to the null distribution of the generalized likelihood-ratio test
statistic, or the non-existence of the maximum likelihood estimates [32] [33].

The Bayesian paradigm avoids some of these issues through the specification of prior dis-
tributions for model parameters [I5]. [16] represents a key contribution that proposed a
Markov chain Monte Carlo (MCMC) algorithm to identify loglinear models with high posterior
probability. Other notable papers develop various stochastic search schemes for discrete data
[49, 50, 5T, [78), 17, 22]. These methods are known to work well for datasets with no more than 8
variables. Another approach for Bayesian model selection in contingency tables is called copula
Gaussian graphical models [20], and it has successfully been used to analyze a 16-dimensional
table. More recently, ultra-sparse high-dimensional contingency tables have been analyzed using
probabilistic tensor factorizations induced through a Dirichlet process (DP) mixture model of
product multinomial distributions [26], 12, [8 45]. These papers present simulation studies and
real-world data examples that involve up to 50 categorical variables.

Penalized likelihood methods for categorical data have focused on Markov random fields for
binary variables [40, [69]. [86] show that higher-order interactions and variables with three or
more categories can be modeled by introducing additional binary variables in the model specifi-
cation. Such claims have never been tested on known examples; from a theoretical perspective,
there is no proof that the extension of the work of [40] or [69] to general multi-way tables
preserves the hierarchical structure of loglinear parameters, or yields consistent parameter and
model estimates. The group lasso estimator for loglinear models [63], despite having desirable
theoretical properties, does not provide guarantees that the hierarchical structure of interaction
terms is preserved.

In this paper we introduce a Bayesian framework for loglinear model determination that is
suitable for the analysis of a contingency table with 214 variables. Our method determines
graphical loglinear models that are a special type of hierarchical loglinear models. Our key
application comes from human mobility. In this context, multivariate categorical data capture
the movement of individuals across multiple geographical areas. In Section [2] we discuss the
relevance of massive unsolicited geolocated data for human mobility research, and in Section
we explain the role of loglinear models in modeling human movement. In Section [ we
describe our collection process of a geolocated Twitter dataset from South Africa; these data
are subsequently transformed in the 214 dimensional contingency table we analyze in Section
[l Our modeling framework is presented in Section 5} In Section [6] we provide information
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about the efficiency of our proposed method in a simulation study. In Section [§] we give some
concluding comments.

2. RESEARCH ON HUMAN MOBILITY

Human mobility, or movement over short or long distances for short or long periods of time, is
an important yet under-studied phenomenon in the social and demographic sciences. Migration
processes represent a special case of human mobility that involve movements over longer periods
of time and over longer distances. The impact of migration on human well-being, macro-social,
political, and economic organization is a hot topic in the current literature [24) 27, [39) 54,
o, Bl B7, [75, 76, 80, 81, [82), 85, 89]. Similar advances in understanding human mobility
have been hindered by difficulties in recording and measuring how humans move on a minute
and detailed scale. A notable exception is the relatively rich literature focusing on urban
mobility and transportation studies. But much of this literature relies on travel surveys which
are expensive to collect, have small sample sizes and limited spatial and temporal scales, are
updated infrequently, and suffer from recall bias [11, [77, OT]. Until recently, studies of mobility
could not benefit from large scale data to widely address how differentials in mobility influence
other outcomes. This is quite problematic given that mobility is likely a fundamental factor
in behavior and macro-level social change, with potential associations with key issues that face
human societies today, including spread of infectious diseases, responses to armed conflict and
natural disasters, health behaviors and outcomes, economic, social, and political well-being, and
migration.

Massive unsolicited geolocated data from mobile phones have recently become available for
the study of human mobility. Such data are continuously collected by social media websites,
search engines and wireless-service providers [5]. Every time a person makes a voice call, sends
a text message, goes online or makes posts through a social media service from their mobile
phone, a record is generated with information about the time and day, duration and type
of communication, as well as positional information. This could be the exact latitude and
longitude of the mobile phone, or an identifier of the cellular tower that handled the request.
The approximate spatiotemporal trajectory of a mobile phone and its user can be reconstructed
by linking the records associated with that phone. This exciting new type of data holds immense
promise for studying human behavior with precision and accuracy on a vast scale never before
possible with surveys or other data collection techniques [79] 23, [90].

User communications and check-ins through social media platforms such as Twitter generate
publicly-available world-wide databases of human activity that can be readily accessed online
free of charge. Recent evidence suggests that Twitter is a reliable source for examining human
mobility patterns whose quality is comparable at the ecological level with mobile phone call
records [44]. The cultural role of Twitter which serves a dual role as both a microblog and a social
network, is evidenced by the Library of Congress’ decision to store a permanent, daily updated
archive of the site from its first tweet. Social media offers location sharing services whose
growing popularity generate digital traces that can be located in space and time. Each day,
Twitter records 7 million tweets with explicit geolocation (latitude and longitude) information
from mobile devices with GPS sensors [64] that represent about 1.6% of the total number of
tweets [47]. The geographic information from geolocated tweets (geotweets) reveals the locations
of human settlements and transportation networks [47]. As the number of smartphone users
continues to rise around the world, especially in low income countries, the potential of geolocated
social media data to improve our knowledge of human geography will constantly grow. These
are the data we collect and analyze in this paper — see Sections [4] and

3. MODELING HUMAN MOBILITY

The majority of the literature on human mobility is concerned with Levy flights models and
with Markov process models. Let us assume that traveling patterns are observed with respect
to p distinct areas or locations {1,2,...,p}. Denote by N;; the number of individuals that
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traveled from location 7 to location j in a given time interval, and by P;; the probability that a
random individual will travel to location j given that they are currently at location 7. A class
of stochastic process models called Levy flights [10] is one of the most popular way of modeling
human mobility, or to model its limits [36]. This model represents the probability of traveling a
distance d as a power law: P(d)ocd=(1+#) where 8 < 2 is a diffusion parameter. The Levy flight
model says that traveling a shorter distance is more likely than traveling longer distances, but
long-distance travel can still occur even if it is rare. While this assumption is reasonable, the
model implies that P;; depends exclusively on d;; — the distance between locations ¢ and j. This
represents a serious limitation since it implies that traveling to destinations that are located at
the same distance from an origin is equally likely. A more recent contribution [38] builds on
multiplicative factor models from social network analysis [41] to improve the Levy flights model
which lacks the ability to quantify the desirability of certain travel locations. They propose a
model in which P;; depends of a function f(d;j, 7) of distance d;; and of location-specific latent
factors u; € R? and v; € R?%: P;jocexp (f(dij, T) + uZ-ij), where uiij represent the affinity of
locations ¢ and j. Inference for this latent factor model is performed based on its log-likelihood
that is proportional to — Z” Nijlog P;;.

Both the Levy flights models [10] and the multiplicative latent factor models [38] are based
on the crude assumption that human travel can be seen as a Markov process in which the
probability of traveling to a location depends only on the origin of the trip’s segment, and does
not depend on previous locations visited. However, individuals are likely to travel repeatedly
across multiple locations in a given period of time. Markov process models break mobility
trajectories that involve multiple locations into pairs of consecutive locations, and, by doing
so, loose key dependencies that are induced by multiple locations being visited by the same
individuals in the reference time frame.

Loglinear models also have a long tradition in the human mobility literature, specifically, to
estimate flows of migration by origin, destination, age, sex and other categorical sociodemo-
graphic variables such as economic activity group [70} [74] [71]. Migration flows are represented
as origin-destination migration flow tables. These are square tables in which the rows and
columns correspond with places, regions, aggregation of places or countries of interest. The
(1,7) cell contains a count of the number of individuals that left from region i and moved to re-
gion j over the course of a specified time frame. The inclusion of other categorical variables lead
to higher-dimensional migration flow tables. Modeling these tables involves spatial interaction
loglinear models of the form [70]:

log(Aiji) = log(a) + log(;) + log(miji),

where \;j;, is the expected migration flow from origin ¢ to destination j for a combination of
levels k of one, two or more additional categorical variables, and m;;j is auxiliary information
on the migration flow. The characteristics of the origin ¢ and the destination j are represented
through the parameters o; and ;. However, migration flow tables cannot capture the movement
of those individuals that live in more than three regions during the time frame of observation.
An example individual that left from region 1 to move to region 2, then moved again to region
3, would contribute with a count of 1 in the (1,2) and (2, 3) cells of the resulting migration flow
table. But, the link between these two counts will be lost. For this reason, loglinear models
that estimate migration flows suffer from the same shortcoming as Markov process models.

4. DESCRIPTION OF THE GEOLOCATED TWITTER DATA

In this article we analyze a large-scale database of geolocated tweets from South Africa. This
sub-Saharan country has been selected due to its high rates of internal and external migration
caused by violent internal conflicts, war, political and economical instability, poverty, racial
discrimination. Statistics South Africa reports that, in October 2016, 3.5 million travelers
passed through South Africa’s ports of entry. They were made up of 925,796 South African
residents and 2.6 million foreign travelers. In this country, human mobility is known to be one of
the major contributors to the spread of infectious diseases (HIV, tuberculosis, malaria) [79} [19].
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Our geotweets database was put together in a two step process. First, geolocated tweets
posted in South Africa between September 2011 and September 2016 have been obtained directly
from Twitter through GNIP, a reseller of social data owned by Twitter, as part of a no-cost
collaborative research agreement between the University of Washington and Twitter. A geotweet
is classified to have been posted inside a country based on a country code field derived by GNIP
from the latitude and longitude of the tweet. Second, we used the Twitter REST APIs [84]
to obtain geolocated tweets of the 476,601 users whose geotweets have been captured in the
first step. The REST APIs allow access to up to 3,200 most recent geotweets in each user’s
timeline irrespective of the time when they have been posted, or the location they have been
posted from. For this purpose, we used a customized version of the smappR R package [73].
The second data collection step took place continuously between January and December 2016.
During this period, the most recent geotweets of each of the 476,601 users have been retrieved
at least twice per month.

The total number of unique geotweets acquired in both steps is 46, 210, 370. The actual tweets
have been discarded after we extracted tuples of the form <user key, time of the posting,
latitude, longitude, ...> from the rich content of each tweet. To assure privacy protec-
tion, each Twitter user is identified by a randomly generated key which replaces their Twitter
identifier. Additional filtering steps were performed to eliminate any non-human activity (e.g.,
Twitter robots) or any geotweets with coding errors. We emphasize that this database comprises
only public information which can be viewed online, and replicated using the APIs provided by
Twitter or downloaded directly from a third party provider of social media data such as GNIP.

For each of the 476,601 users, we determined their country of residence. We estimated the
amount of time a user spent in a country they visited as the cumulative periods of time between
consecutive geotweets posted in that country. A user’s country of residence was defined as the
country with the largest amount of time spent among all the countries this user tweeted from.
Our method for identifying the users’ country of residence has certain limitations. First, it is
possible that a user could choose to post geotweets only when they are away from their country
of residence. Second, it is also possible that our two step process of collecting geotweets might
have missed relevant time intervals in which a user tweeted from their country of residence.
However, after carefully examining the spatial patterns of geotweets with respect to the esti-
mated countries of residence, we are confident that our method of determination worked fine
for a large percentage of users. Based on this information, we classified 41,049 (8.62%) of the
476,601 users as visitors of South Africa, and the rest as locals, that is, individuals that most
likely see South Africa as their home country.

We subsequently mapped the geotweets into the 213 district municipalities of South Africa —
see Figure [1| This allowed us to determine, for each user, the municipalities they were present
and absent during the five years data collection time frame. Here we assume that absence from
a municipality is implied by the user not posting any geotweets within its boundaries. These
presence/absence patterns together with the Local (yes/no) variable define a 214 dimensional
binary contingency table. This table is hyper-sparse: only 55015 cells contain positive counts
(the logarithm of the percentage of non-zero counts is —132.813). Among the 55015 non-zero
counts, there are 46175 (83.93%) counts of 1, 3439 (6.25%) counts of 2, 1411 (2.56%) counts
of 3, 747 (1.36%) counts of 4, and 476 (0.87%) counts of 5. The top five largest counts are
58929, 42781, 28731, 28197 and 22313, and represent the number of users that were locals to
South Africa and posted geotweets only from one of following five metropolitan municipalities:
Johannesburg (JHB, Gauteng), Cape Town (CPT, Western Cape), Tshwane (TSH, Gauteng),
eThekwini (ETH, KwaZulu-Natal), and Ekurhuleni (EKU, Gauteng), respectively. The sixth
largest count is 9568, and represents the number of users that were locals to South Africa, and
posted geotweets from two metropolitan municipalities, Johannesburg (JHB) and Ekurhuleni
(EKU). The seventh largest count count is 8464, and represents the number of users that were
visitors (non-locals) to South Africa, and posted geotweets only from Johannesburg (JHB).
In the next section we present our framework for determining the multivariate patterns of
interactions among these 214 binary variables.
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FIGURE 1. Administrative divisions of South Africa: nine provinces divided
into 52 metropolitan and district municipalities (dashed lines) that are further
divided into 213 local municipalities (dashed lines). The motorways, trunk, and
primary roads (source: [66]) of the country are also shown.

5. BAYESIAN STRUCTURAL LEARNING IN GRAPHICAL LOGLINEAR MODELS

An undirected interaction graph G = (V, E) (V = {1,...,p} are vertices, and E < V x V
are edges) is defined for a hierarchical loglinear model H that involves p categorical variables
X = (X1, Xo,...,X)) as follows. A vertex i € V of G corresponds with variable X;. An edge
e = (i,7) appears in G if and only if the variables X; and X; appear together in an interaction
term of H. Model H is graphical if the subsets of V that are the vertices of the complete
subgraphs of G that are maximal with respect to inclusion, are also maximal interaction terms
in H [46]. In this case, the absence of an edge between vertices ¢ and j in G means that X;
and X are conditional independent given the remaining variables Xy ; ;1. For this reason, the
interaction graph G of a graphical loglinear model is called a conditional independence graph.
This graph also has a predictive interpretation. Denote by nbdg(i) = {j € V : (i,j) € E}
the neighbors of vertex ¢ in . Then X; is conditionally independent of Xy (nbdg(i)ufi}) glven
Xnbdg(s) Which implies that, given G, a mean squared optimal prediction of X; can be made
from the neighboring variables Xppq, (i)

We focus on the structural learning problem [43] [25] which aims to estimate the structure of
G (i.e., which edges are present or absent in F) from the available data x = (z™1),...,z("). In a
Bayesian framework, we explore the posterior distribution of G conditional on the data x, i.e.

P(G)P(x|G)
(1) P(G | x) = ;
ZGEQP P(G)P(x | G)
where P(G) is a prior distribution on the space G, of undirected graphs with p vertices, and

P(x | G) is the marginal likelihood of the data conditional on G [43]. Identifying the graphs with
the largest posterior probability is a complex problem because the number of undirected

graphs 2(3) in Gp becomes large very fast as p increases. For example, for p = 20, the number
of undirected graphs in G, exceeds 1070, In this paper we introduce a computationally efficient
search algorithm that takes advantage of parallelizable local computations at the vertex level
that moves fast towards regions with high posterior probabilities .

5.1. Bayesian structural learning via birth-death processes. To efficiently explore the

graph space G, [61] developed the birth-death Markov chain Monte Carlo (BDMCMC) algo-

rithm. This is a trans-dimensional MCMC algorithm, and represents an alternative to the well
6



known reversible jump MCMC algorithm [37]. The version of BDMCMC presented in [61]
was developed specifically for Gaussian graphical models. In this section we give a general
formulation for sampling from any distributions on a space of graphs G,.

The BDMCMC algorithm is based on a continuous time birth-death Markov process [68]. Its
underlying sampling scheme traverses G, by adding and removing edges corresponding to the
birth and death events. Given that the process is at state G = (V, E), we define the birth and
death events as independent Poisson processes as follows:

Birth event — each edge e € E where E = {e € V x V : e ¢ E}, is born independently of
other edges that do not belong to G as a Poisson process with rate B.(G). If the birth of edge
e occurs, the process jumps to GT¢ = (V, E U {e}) which is a graph with one edge more than G.

Death event — each edge e € E dies independently of other edges that belong to G as a Poisson
process with rate D.(G). If the death of edge e occurs, the process jumps to G~¢ = (V, E\{e})
which is a graph with one edge less than G.

This birth-death Markov process is a jump process with intensity a(G) = > 5 Be(G) +
Deer De(G). Its waiting time to the next jump follows an exponential distribution with expec-
tation 1/a(G). The birth and death probabilities are

(2) P(birth of edge ) o« B.(G), foreeE,
(3) P(death of edge ¢) o D.(G), foreeE.

The following theorem provides sufficient conditions on the birth and death rates to guarantee
that the corresponding process on G, has stationary distribution .

Theorem 5.1. The birth-death process defined by the birth and death probabilities (@ and (@
has the stationary distribution P(G | x) given in , if the following detailed balance condition
18 satisfied:

(4) Be(G)P(G | x) = De(GT9)P(GT | x),
where e € E, G = (V,E), and G¢ = (V,E U {e}).

Proof. We take advantage of the theory on general classes of Markov birth-death processes from
[68] Section 7 and 8]. This class of Markov jump processes evolve in jumps which occur a finite
number of times in any finite time interval. These jumps are of two types: (i) birth in which
a single point is added, and the process jumps to a state that contains the additional point;
and (ii) death in which one of the points in the current state is deleted, and the process jumps
to a state with one less point. [68] shows that the process converges to a unique stationary
distribution provided that the detailed balance conditions hold.

To define the balance conditions for our process, assume that at a given time, the process is in
a graph state G = (V, E) with 6 € O¢ as a vector of parameters. The process is characterized
by the birth rates B.(G,0¢) for each e € E, the death rates D.(G,0g) for each e € E, and the

birth and death transition kernels ng) (0c;-) and Kl(i) (0c;-). Birth and death events occur
as independent Poisson processes with rates Be(G,0c) and D¢(G,0c) respectively. Given the
birth of e € E occurs, the probability that the following jump leads to a point in F € © g+ is

Be(Gv HG) f
A be(0c; 0c) do.,
B(G’ OG) Oc:0cUb.€F ( G)

in which B(G,0g) = ..z Be(G,0q). Similarly, given the death of e € E occurs, the probability
that the following jump leads to a point in F € O is
De (G7 96’)

(5) K5 0ciF) = gy Ca-e € P

K (0c:F) =

in which D(G,0q) = > .cp De(G, 0c).



For this birth-death process, P(G,0¢ | x) satisfies detailed balance conditions if

(6) f B(G,00)P(G, 0 | x) dfe —
F
3 f D(G*, 06+ ) K ) (Bgres FIP(GHE, 0+ | %) dfgie,
eeE Og+e
and
(7) | P(G.06)P(G 8 | %) a0 =
F

ZJ B(G™%,0q-)KS 7 (0g-;F)P(G, 06 | x) g,
ecFE

where F  Og.
We check the first part of the detailed balance conditions @ as follows

LHS - f B(G, 00)P(G, 0 | x) dde:
F
_ f (06 € F)B(G.06)P(C, 0c: | x) 0
O¢

_ J (0 € F) Y Bo(G,06)P(G, b | x) b
Oc eeE

B 2 J 9G € F (Ga GG)P(G,HG | X) dGG
ecE
= Z f I(0c € F)Be(G, 0a)P(G, bc | x) U@ be(0e; 0cz) d@e} dbg

[be must integrate to 1]

= Z f@c J ) I(GG € F)Be(G,QG)P(G, 9G | X)be(ge; GG) dee dgG

RHS =Y D(G, 06+ ) K5 (Bgre; F)P(GT4, Og+e | ) dOgse
— JO
eeE Y Gte

[equation (5 |

=) f 1 € F)Do(GT¢, 0+e )P(GTE, Brve | X) dbgrve.
ecE Og+e

Therefore we have LHS=RHS provided that
Be(G,06)P(G, 0G| x)be(0e;0c) = De(GT¢,061e)P(GTE, 0cre | ).

Now, by integrating over fg+. = g U6, and knowing that the function b (6,; ) must integrate
to 1 over O, we have

B(G)P(G | x) = De(GT)P(GT | x),

which is the expression in Theorem In a similar way, it can be shown that the remaining
part of the detailed balance conditions (|7)) also hold. O

Based on Theorem we define the birth and death rates of the BDMCMC algorithm as
a function of the ratio of the corresponding posterior probabilities to optimize the convergence
8



speed:

P +e o
B.(G) =min{F()(GG||)§),l}, for each ee F,
P —€e
D.(G) zmin{m,l}, for each e€ FE.
We show the birth and death rates as follows
P(G* —
(8) R.(G) =min{F)((%||;)),1}, for each e € {E U E},

where for the birth of edge e we take G* = (V, E u {e}), and for the death of edge e we take
G — (V, B\{e}).

Algorithm [I] provides the pseudo-code for the BDMCMC algorithm which samples from the
posterior distribution on G, by using the above birth-death mechanism. In Section m we
explain how to efficiently compute the ratio of posterior probabilities in the birth and death
rates for multivariate discrete data by using the marginal pseudo-likelihood approach [67].

Algorithm 1 . BDMCMC algorithm for undirected graphical models

Input: A graph G = (V, E) with p nodes and data x
for N iterations do
for all the possible edges in parallel do
Calculate the birth and death rates in ,
end for

Calculate the waiting time for G by W(G) = T fBe(G)iZ —D(C)

Update G based on birth/death probabilities in (2) and
end for
Output: Samples from the posterior distribution .

Graph distribution BDMCMC Sampling Mechanism Estimated Graph
D"kstribution

[
>

-« l | 1 l l l 1 L
T T >

t, Lo t, time P(Glx)
FiGURE 2. The left and right panels show the true and estimated posterior
distribution on the space the graphs. The middle panel shows an example
output from an application of Algorithm [1| where {7, Wa, ...} denote waiting

times, and {t1,t2,...} denote jumping times.



5.2. Posterior estimation via sampling in continuous time. Figure [1] illustrates how
the output of Algorithm [I] can be used to estimate posterior quantities of interest. The output
consists of a set of sampled graphs, a set of waiting times {7, Ws, ...}, and a set of jumping times
{t1,t9,...}. Based on the Rao-Blackwellized estimator [13], the estimated posterior probability
of each sampled graph is proportional to the expectation of length of the holding time in that
graph which is estimated as the sum of the waiting times in that graph. The posterior inclusion
probability of an edge e € V' x V is estimated by

Zt 1 (eeG(t))W(G())
YL, W(GW)

where N denotes the number of iterations, I(e € G®)) denotes an indicator function: I(e €
GW) =1if ee G®, and 0 otherwise.

) P(edge e | x) =

)

5.3. Birth and death rates with the marginal pseudo-likelihood. We assume that the
observed random variables X = (X1, X»,..., X)) are categorical, with each variable X; taking
values in a discrete set X; = {1,2,...,7;}. The determination of the birth and death rates
involves the marginal likelihood conditional on a graph G € G:

(10) P(x | G) = j@ P(x | 0, G)P(0c | G) dde,

where 0 € ©¢ are the parameters of a multivariate model associated with G, P(0g | G) is
prior for O, and P(x | 6, G) is the full likelihood function. However, the exact calculation of
the marginal likelihood P(x | G) is possible only for decomposable graphs G which represent a
small fraction of the graphs in G, [53]. Numerical approximations for the marginal likelihood for
arbitrary undirected graphs have been developed [22], but their application is computationally
expensive even for datasets that involve p < 20 variables. This high computational effort renders
them inapplicable for the T'witter mobility data described in Section |4 with p = 214 observed
variables.

A computationally cheaper alternative comes from approximating the full likelihood P(x |
0¢,G) with the pseudo-likelihood [6] [7] which is the product of the full conditionals of the
random variables X given their neighbors in G:

! d !
(11) Ppl X | ¢, G G H H P z( ) ’ andg(i) = E\b)dg( )aefG)
d=11i=1
We denote Xopag (i) = X jenbdg (i) Xis Oirt = {Oip - k € Xi}, and 92%; ={0i,41: 1 € Xypay()}- In
(11)), 9%1 = xP 95 ZG € @Zél are the set of parameters of the full conditionals

P(X’L =k | andg(i) = l) = ei,kla fori=1,..,p,
where k € X;, | € Xpq,(;)- Thus, the pseudo-likelihood can be written as:

(12) Pu(x | 04, G) HH [T 6

1= 1k€/\/ lEandG(z)

where n; j; represents the number of samples 2@, d = 1,2,...,n, such that xl(d) = k and
2@ _
Tobdg (i) — g

For computational convenience, we assume that the set of parameters o PG and 0 e associated
with the full conditionals of X; and Xy, ¢ # i’ are independent. This assumption is certainly
not consistent with the assumption that the full conditionals are derived from the same full
joint distribution of X. Nevertheless, the approximation of the full likelihood with the pseudo-
likelihood is based on the same premise [0, [7]. We also assume that, within the same full
conditional associated with the variable X;, the parameters 6; .; and 0; 1 associated with the
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different levels [ and I’ of the variables X, pq (i) are independent [67]. We impose a prior for Hgl
that factorizes according to these two assumptions:

P
(13) P(0%) = HP wa) =11 [ P+
i=1 leandGm
Furthermore, we impose a Dirichlet prior on the conditional probabilities of X; at level [ of
Xobde (i)}
(14) (91‘74_1 ~ Dir(aLu, N aai,ml)-
From (12), (13), and (14), it follows that the marginal pseudo-likelihood is [67]:

(15) pl X | G H P X | Xnbdg (i )
with
(i 41) (o kl + nz )
(16) P(Xi | Xnbdg (i) = ,
i nbdg () le?};[G(i) I (Ozz 41ty +l 1:! OéZ kl

where @ 41 = X ey, Qi and n 41 = Xy M k-
A prior on the space of graphs G, that encourages sparsity by penalizing for the inclusion of
additional edges in the graph G = (V, E) is [43]:

an oG (1_55)E|=<1j (1_%>nbdc<i>|>1/2,

where 3 € (0,1) is set to a small value, e.g. § =1/ (g) While other priors on G, are available [21],
the prior can be decomposed as the product of independent priors for the p full conditionals
given G such that the probability of inclusion of a vertex in each of these conditionals is equal
with 8 as shown in .

The marginal posterior distribution on G, based on the marginal pseudo-likelihood and
the prior on G, is

Inbd (9)]
2

(18) P (G | x)ocPy(x | G)P HPXZ]xnbdG )( fﬁ

The birth and death rates in (8)) based on the marginal pseudo-likelihood for an edge e =
(1,7) € V x V are calculated from

]’%e(G) = min { P | X"bdc*(i)) P(Xj ‘ Xnbd s (j)) ( B IB>6 ’ 1} ’

P(xi | Xnbde(i)) P(Xj [ Xnbde() \1—

where for the birth of edge e we take G* = (V, E U {e}), 6 = 1, and for the death of edge e we
take G* = (V, E\{e}), 6 = —1.

5.4. Speeding up the BDMCMUC algorithm. The key bottleneck of the BDMCMC algo-
rithm is the computation at every iteration of the birth and death rates (8)) for all the p(p—1)/2
possible edges. Fortunately, the rates associated with one edge can be calculated independently
of the rates associated with the other edges, and can be performed in parallel which represents
a first key computational improvement. We implemented parallel computations of the birth
and death rates in the current version of the R package BDgraph [62] using OpenMP [65]. Most
code in this package is written in C++ and interfaced in R.

A second key computational improvement is possible when the marginal likelihood is re-
placed with the marginal pseudo-likelihood as detailed in Section Since at each step of the
BDMCMC algorithm one edge e = (i, ) is selected for addition or removal, only the marginal
likelihood of the full conditionals of the two vertices ¢ and j will change. Thus, we need to
recalculate the (p—1)+ (p—1) — 1 = 2p — 3 rates that correspond with these two vertices. The
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remaining rates will stay the same. As such, at each iteration we update 2p — 3 rates instead
of p(p — 1)/2 rates. This represents a huge computational saving especially for graphs with
many vertices. For example, for the Twitter mobility data we analyze in Section [7], we look at
graphs with p = 214 vertices. Instead of computing 22791 rates at each step of the BDMCMC
algorithm, we only need to determine 422 rates which means that a single edge update can be
done approximately 54 times faster.

A third key computational improvement comes from allowing multiple edge updates at each
iteration. The vast majority of the MCMC and stochastic search algorithms that have been
developed in the Bayesian graphical models literature are based on adding or removing one
edge at each iteration [43, [48], [72], 48, 87, [60] [61], 58, [14]. These single edge updates are in part
responsible for making these structural learning algorithms quite slow for datasets that comprise
a larger number of variables p. Multiple birth-death sampling approaches have been used to
address image processing problems that aim to detect a configuration of objects from a digital
image, and have been found to outperform the convergence speed of competing reversible jump
MCMC algorithms [18, 29| 35, [34].

By following this idea, it is possible to transform Algorithm [I| into a multiple birth-death
MCMC algorithm based on a multiple birth-death process. At each iteration, after computing
and ranking the birth and deaths rates , we select not one but a fixed number Ny > 2
of edges to be added or removed from the graph. By doing so, Ny edges are updated at
no computational cost compared to a single edge update. Through multiple edge updates
which we have also implemented in the R package BDgraph [62], the BDMCMC algorithm can
quickly move to regions with high posterior probability in the graph space G,. The ability to
move towards high posterior probability graphs in a small number of iterations is especially
important in applications in which the ratio between the number of samples available and the
number of variables is small. However, performing multiple edge updates at each iteration of
the BDMCMC algorithm does not have any theoretical guarantees related to sampling from
the correct target posterior distribution . Multiple edge updates in can be performed for a
reduced number of iterations to identify several graphs that have higher posterior probabilities
compared to the empty graph, the full graph or a random graph sampled from G,. These graphs
can be subsequently used as starting points for Algorithm [I] with single edge updates.

6. SIMULATION STUDY

We investigate the performance of the BDMCMC algorithm in recovering the graph structure
from categorical data by comparing it to the hill-climbing (HC) algorithm proposed by [67].
While the BDMCMUC algorithm samples from the marginal posterior distribution , the HC
algorithm solves the optimization problem max{P, (G | x) : G € G,} using a method that
involves two phases.

We consider three types of graphs (see Figure [3)):

1. Random: A graph in which edges were randomly generated from the prior with
8 =04.

2. Cluster: A graph with two clusters (connected components) each with p = 5 vertices.
The edges in both clusters were randomly generated from the prior with 8 = 0.6.

3. Scale-free: A graph sampled from a power-law degree distribution with the Barabasi-
Albert algorithm [2].

We also consider graphs with p = 20 vertices that have two connected components with 10 ver-
tices and the same edge structure of type “Random”, “Cluster”, or “Scale-free”. We simulated
binary contingency tables with p € {10, 20} variables that comprise n € {200, 500, 1000} samples
from random graphs of these three types. We repeated the simulation experiment that involves
the generation of 18 contingency tables 50 times. We performed all computations with the R
package BDgraph [62, [59]. For each contingency table we generated, we run the BDMCMC
and the HC algorithms using a uniform prior on the graph space G, (the equivalent of setting
12



B =0.5in ) starting from the empty graph. The BDMCMC algorithm was run for 100, 000
iterations. The first 60,000 iterations were discarded as burn-in.

We estimated the structure of the true graph based on model averaging [52] of the graphs
sampled by the BDMCMC algorithm. We calculate the posterior inclusion probabilities of edges
@, and determine the median graph whose edges have posterior inclusion probabilities greater
than 0.5. The structure of the true graph was estimated with the HC algorithm based on the
“and” and the “or” criteria in the first phase of the algorithm [67].

(a) Random (b) Cluster (c) Scale-free

FiGure 3. Example graphs with p = 10 vertices used in the simulation study
from Section 6]

We evaluate the performance of the two algorithms in recovering the structure of the true
graphs using the Fij-score measure [3],

2TP
2TP + FP + FN’
and the Structure Hamming distance (SHD) [83],

(20) ‘SHD = FP + FN,

(19) Fi-score =

where TP, TN, FP and FN are the number of true positives, true negatives, false positives and
false negatives, respectively. The values of the F}-score range between 0 and 1, and the values
of the SHD are positive. A better performance in recovering the true graph is associated with
larger values of the Fj-score, and with smaller values of the SHD.

The results are summarized in Table For most simulation experiments, the BDMCMC
algorithm has an advantage over the HC algorithm especially for the Fj-score. ROC curves
showing the performance of the BDMCMC algorithm are presented in Figure [

7. ANALYSIS OF THE GEOLOCATED TWITTER DATA

We come back to the p = 214 dimensional binary contingency table constructed from
geotweets that was described in Section 4} We use the BDMCMC algorithm to sample graphs
from the marginal posterior distribution on Go1g. We employ the prior with 8 =
1/ (%4) = 4.388 x 107°. Under this prior, the expected number of edges is 1, thus sparser
graphs receive larger prior probabilities compared to denser graphs. We performed all compu-
tations on a cluster with 7 compute nodes, each with 48 Intel Xeon 2.6 GHz cores with a Linux
operating system.

First, we want to gain some understanding of the ability of the BDMCMC algorithm to move
towards graphs with large posterior probabilities in Go14. To this end, we sample 20 graphs
{G;}?°, having increasing number of edges: G; has a number of edges randomly sampled from
(200(z — 1),200¢). The resulting set of graphs ranges from most sparse (G1) to most dense
(Ggp). Starting from each graph G;, ¢ = 1,...,20, we ran the BDMCMC algorithm for 10,000
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TABLE 1. Results from the simulation study from Section @ Binary tables
with p € {10,20} variables and n € {200, 500, 1000} samples were generated from
graphical models defined by three types of graphs: “Random”, “Cluster”, and
“Scale-free”. This table reports means and standard deviations of the Fj-score
and SHD measures for the accuracy in recovering the structure of the
true graph across 50 replicate binary tables generated for every combination of
p, n and graph type. The best performing models in terms of the F}-score and
SHD are shown in boldface.

F-score SHD
p n BDMCMC HC(or) HC(and) BDMCMC HC(or) HC(and)

Random

200 0.7(0.12)  0.68(0.11) 0.57(0.11)  8.2(2.9) 8.7(2.9)  10.6(3)

10 500 0.8(0.1) 0.78(0.1) 0.7(0.1) 5.8(2.5) 6.2(2.6) 8(2.6)
1000 0.87(0.08) 0.86(0.08) 0.8(0.09) 3.9(2.2) 4(2.1) 5.6(2.2)
200  0.7(0.08) 0.69(0.07)  0.58(0.09) 17.5(4.6) 17.3(3.9) 21.5(5.7)

20 500  0.8(0.08) 0.79(0.08)  0.7(0.09) 11.9(4.2) 12.5(4.5) 16.6(4.4)
1000 0.85(0.07) 0.85(0.07) 0.78(0.08) 8.9(4) 9.3(3.8) 12.6(4)

Cluster
200 0.76(0.13) 0.75(0.13) 0.66(0.14) 4.5(2) 4.6(1.8) 5.8(2)

10 500 0.86(0.1) 0.83(0.13)  0.75(0.15) 2.7(1.7) 3.3(2.1) 4.6(2.4)

1000 0.91(0.09) 0.9(0.09) 0.87(0.09) 1.7(1) 1.8(1.1) 2.4(1.3)

200 0.69(0.13) 0.71(0.11) 0.63(0.14)  14.8(10.2) 11.7(4.2) 13.5(4.9)
20 500 0.86(0.08) 0.84(0.08) 0.76(0.11)  5.9(2.8)  6.7(3.2)  9.5(4.1)
1000 0.93(0.06) 0.92(0.06) 0.87(0.08)  3.3(2.7)  3.6(2.7)  5.9(2.9)

Scale-free

200 0.67(0.12) 0.66(0.1)  0.56(0.1) 8.5(2.6)  8.5(2.1) 10(1.9)
10 500 0.73(0.11) 0.73(0.11) 0.62(0.12)  6.9(24)  6.9(2.2) 8.8(2.2)
1000 0.8(0.07)  0.81(0.08) 0.7(0.1) 5.3(1.7) 5.2(1.9)  7.4(1.9)

200 0.63(0.13) 0.63(0.13) 0.53(0.09)  21.3(12.7) 19.1(5.6) 21.4(3.7)
20 500 0.74(0.08) 0.74(0.09) 0.63(0.08)  14(3.6) 13.8(3.8) 17.7(3.2)
1000 0.78(0.09) 0.78(0.09) 0.7(0.09) 11.8(4.3)  11.4(4.3) 14.7(3.9)

iterations. Figures [5] and [6] show the sum of the estimated posterior edge inclusion probabilities
and the number of edges included in the sampled graphs against iteration number. After
7,000 iterations in each of the 20 runs, the BDMCMC algorithm seems to have reached the
same neighborhood of graphs. Thus, although the number of graphs in Go14 is extremely large
(~ 109861) the BDMCMC algorithm seems to be very efficient in identifying graphs with high
posterior probability.

Next, we ran the BDMCMC algorithm for 400,000 iterations using parallel calculations of
the birth and death rates from a starting graph sampled from the prior on Go14. The first
200, 000 iterations were discarded as burn-in. Figures [7] and [§] show the BDMCMC algorithm
seems to have reached convergence in less than 10, 000 iterations.

We estimate the posterior inclusion probabilities @D of the (254) = 22,791 edges. We show a
heatmap of the matrix of the estimated posterior edge inclusion probabilities in Figure[9] Most of
the estimated posterior edge inclusion probabilities are zero: 21,138 (92.78%). A number of 12,
5 and 7 edges have estimated posterior inclusion probabilities in (0,0.5), [0.5,0.9) and [0.9,0.1),
respectively. The remaining 1522 (6.65%) have estimated posterior inclusion probabilities equal
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F1cUrEe 4. ROC curves showing the performance of the BDMCMC algorithm in
recovering the structure of the true graph in the simulation study from Section [6]
Binary tables with p € {10,20} variables and n € {200,500, 1000} samples were
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