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“Es denkt in mir” - F. Nietzsche. 
 “We are a way for the cosmos to know itself” – C. Sagan. 

 

1. Introduction 

 
How do humans make (good) decisions? Although we might attribute our 
decisions to conscious control, research has shown that large parts of our 
decision making machinery operates outside of conscious awareness (D’Ostilio 
& Garraux, 2012; Lau & Passingham, 2007; van Gaal & Lamme, 2012; Van 
Opstal et al., 2011). This thesis has two main goals: 1) to further unravel the 
role of conscious awareness in human decision making and cognition, and 2) to 
further understand why we sometimes become aware of information in our 
environment and why sometimes not. Before explicitly addressing these issues 
let me first consider what is broadly known about how (visual) information is 
processed in the human brain and the neural mechanisms involved in both 
conscious and unconscious information processing. 

Unconscious information processing is powerful 
A large body of literature has shown that in the initial processing stages the 
brain responds to visual information as in a reflex: fast, automatically and 
unconsciously (Lamme & Roelfsema, 2000). Information is first processed in 
low-level regions (e.g. V1, A1) and is then sent to higher-level regions in the 
cortical hierarchy (e.g. information flows unidirectionally from primary to 
associative cortices). This initial reflex-like process is referred to as the fast 
feedforward sweep (FFS) of information processing and it is responsible for the 
detection and categorization of objects (Fahrenfort, Scholte, & Lamme, 2008; 
Kafaligonul, Breitmeyer, & Öğmen, 2015; VanRullen, 2007). It has been 
observed that the FFS is entirely unconscious and can activate a broad set of 
cortical areas, including areas in the ventral and dorsal visual pathways 
(Dehaene et al., 2001; Fang & He, 2005; Naccache & Dehaene, 2001). Besides 
visual information processing, several recent studies have shown that even 
high-level cognitive processes may unfold fully unconsciously through the FFS, 
as depicted schematically in Figure 1.1. Some examples are the unconscious 
extraction of quantities (e.g. numbers) (Naccache, 2001; Van Opstal, de Lange, 
& Dehaene, 2011), semantic relations (Devlin et al., 2004; Luck, Vogel, & 
Shapiro, 1996; Yeh, He, & Cavanagh, 2012), the emotional valence of words and 
pictures (Gaillard et al., 2006; Naccache et al., 2005), the value of rewarding 
stimuli (Pessiglione et al., 2007, 2008; Schmidt et al., 2010) and even schematic 
chess configurations (Kiesel et al., 2009). Interestingly, unconscious stimuli 
have also been shown to modulate activity in prefrontal regions, typically 
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recruited in “cognitive control tasks” in which participants have to flexibly 
organize their thoughts and actions to optimize goal-directed behavior (Jiang et 
al., 2013; Ridderinkhof et al., 2004). For example, response inhibitory processes 
(Hughes, Velmans, & De Fockert, 2009; van Gaal et al., 2008; van Gaal et al,. 
2010; van Gaal et al., 2011) and task-switching (Lau & Passingham, 2007; Reuss 
et al., 2011) have been observed to be influenced by unconscious stimuli. 
 
In sum, many perceptual, emotional and higher-order cognitive functions can 
be influenced by unconscious stimuli. This observation raises questions about 
the extent to which conscious awareness may actually be relevant or beneficial 
for certain perceptual or cognitive processes (Dehaene & Naccache, 2001). For 
example, are there any specific cognitive functions that require conscious 
stimulus processing to unfold, and if so, why? To address this issue scientists 
have carefully compared behavioral and neural measures in situations in which 
individuals were aware of certain information versus situations in which they 
were not, also referred to as the “minimal contrast approach” (Dehaene & 
Changeux, 2011). This revealed several neural mechanisms that were uniquely 
observed when subjects could consciously access information. 
  

 
Figure 1.1. Illustration of several brain areas and some of their corresponding 
(perceptual/emotional/cognitive) functions that are influenced by unconscious information.  

Conscious information processing    
Recurrent processing (RP) is the stream of processing by which primary (e.g. 
visual) areas are reactivated by higher-order (e.g. visual) brain areas. Thus, after 
information has been sent forward to higher-level areas, information is 
subsequently fed back to lower-level brain regions (see Fig. 1.2). Over the 
years, several authors have argued that this feedback process is crucial for 



 9 

stimulus awareness (Boehler et al., 2008; Dehaene et al., 2006; Lamme, 2006; 
Lamme, Super, & Spekreijse, 1998; Pascual-Leone & Walsh, 2001). Hence, 
several influential theories of consciousness focus on the distinction between 
FFS and RP processing, for example, the global neuronal workspace theory 
(Dehaene & Changeux, 2011; Fisch et al., 2009; Gaillard et al., 2009), the 
information integration theory (Tononi, 2004; Tononi, 2008) and local 
recurrency models (Block, 2005; Lamme, 2003, 2006; Pascual-Leone & Walsh, 
2001). Accordingly, one may argue that whether a certain type of cognitive 
process requires conscious awareness may depend on the necessity of RP for 
that cognitive process to unfold.  
 

 
Figure 1.2. Illustration of the feedforward and feedback processing pathways in the human 
brain. Feedforward processing refers to information flow (green dotted arrows) from lower-level 
to higher-level (visual) areas, while feedback processing (blue solid arrows) refers to subsequent 
reactivation of lower-level brain areas (e.g. V1) by higher-level brain areas (e.g. IT: 
inferotemporal cortex).  
 

Consciousness might be required for durable information maintenance and 
performance monitoring 
Which cognitive processes may depend on recurrent processing to unfold? Due 
to the involvement of RP, conscious access of information is associated with a 
massive cortico-cortical exchange of information, which may allow for the 
widespread and flexible routing of information between different brain regions 
(Dehaene et al., 2006; Dehaene & Naccache, 2001). This may allow for the 
durable maintenance of information and may trigger an increase in the 
flexibility of information processing. Therefore, it has been argued that 
consciousness may be associated with high-level cognitive functions that 
require long distance recurrent connectivity and the use of information over an 
extended period of time. Examples of these functions are working memory (but 
see Dutta et al., 2014; Pan et al., 2013; Soto, Mäntylä, & Silvanto, 2011), which 
is probably dependent on the integrity of the dorsolateral prefrontal cortex 
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(Damasio, Everitt, & Bishop, 1996; Dehaene et al., 2014; Kane & Engle, 2002; 
Mazoyer et al., 2001), which may be crucial to hold information online for 
longer periods of time (Curtis & D’Esposito, 2003; Fuster, 2008). Another 
potential example is the ability to perform multi-step calculations (2+2-3) 
(Sackur & Dehaene, 2009), which has been suggested to require conscious 
control in order to exchange information in a slow and serial manner (Dehaene 
& Cohen, 2007; Dehaene & Sigman, 2012; van Gaal et al., 2014). Others have 
suggested that certain types of learning may also require conscious experience 
of the to be learned information (not to be confused with implicit learning, 
which relates to situations in which participants can learn important features of 
or relations between consciously perceived stimuli without being aware of 
what has been learned, e.g. Cleeremans, Destrebecqz, & Boyer, 1998; Reber, 
2013).  
 
In the scientific search for cognitive and perceptual operations that might 
necessarily need consciousness to unfold, cognitive control has for a long time 
been one of the other favorite candidates. Cognitive control is an umbrella 
term for many cognitive functions that allow an organism to flexibly adapt to 
(unexpected) changes in the environment (Ridderinkhof et al., 2004) and it 
includes cognitive functions such as response inhibition, conflict resolution, 
performance monitoring and task-switching (van Gaal, de Lange, & Cohen, 
2012). Performance monitoring is essential for the accurate updating of 
decision parameters in order to avoid errors in the (near) future (Fuster, 2016; 
Ridderinkhof et al., 2014; Ullsperger, Danielmeier, & Jocham, 2014; Ullsperger 
et al., 2014). Overall, when deviations from the expected outcome of a decision 
are detected these have to be communicated to brain structures that can 
implement counteractive mechanisms, thereby correcting and optimizing 
ongoing or future actions (Ullsperger et al., 2014). Generally it is thought that 
the medial frontal cortex is mainly involved in the evaluation of outcomes and 
the detection of performance errors and conflicting response tendencies, 
whereas it is the lateral and orbitofrontal prefrontal cortex that are involved in 
the subsequent implementation of appropriate adjustments (Ridderinkhof et 
al., 2004). Because cognitive control therefore is thought to require flexible 
routing mechanism of information from e.g. medial to lateral prefrontal regions 
(Jiang et al., 2018), these processes might need consciousness (and recurrent 
processing), as they can probably not unfold on feedforward activity only.  
 
In the first two experimental chapters of this thesis we aim to tackle the 
question to what extent performance monitoring mechanisms, and especially 
the evaluation of decision outcomes and the potential to learn from these, are 
related to conscious awareness.  
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Sources of variability in (conscious) perception 
The second part of the thesis focuses more on why a stimulus that is difficult to 
perceive sometimes becomes aware and sometimes not. For example, imagine 
that one performs a difficult perceptual decision making task in which you have 
to decide on the orientation of a noisy Gabor stimulus. In order to process the 
identity of the stimulus and to decide between the two response options (left 
vs. right), people aim to take into account all the available sensory evidence: 
the observer has to absorb all the sensory evidence for both the “left” and 
“right” decision (Deco et al, 2013; Shadlen & Kiani, 2013). If performance on 
such a task is calculated across trials a d-prime (d’) can be calculated (based on 
the number of hits an false alarms) in the Signal Detection Theoretical (STD) 
framework. D’ equals zero when there is no sensory evidence available to 
distinguish between the two stimulus classes, forcing the observer to guess 
(Green & Swets, 1966). In case the two stimuli are distinguishable, for example 
by increasing the contrast of the Gabor stimulus, d’ will become higher, and 
above zero (d’>0). In this case, d’ is a measure of discriminatory performance 
between the two stimuli (left vs right-oriented Gabors) but d’ can also be 
calculated in a (yes-no) detection task (stimulus present vs absent) and then 
reflects stimulus detectability.  

Importantly, the observer’s performance is not a perfect representation of the 
true stimulus evidence but it is corrupted by both external noise and internal 
noise in the system, which eventually leads to decision variation across multiple 
trials. Interestingly, even when a stimulus is repeatedly presented in the same 
way (e.g. with the same contrast), participants often make different decisions 
about them (Glimcher, 2005; Wyart & Koechlin, 2016). To better understand 
the reasons behind this variability in decision making and stimulus reportability, 
we aim to increase our understanding of the sources of this intrinsic variability 
in our perception. One prime candidate that may partly explain these 
perceptual fluctuations are ongoing and intrinsic variations in the brain’s 
arousal state, due to the release of neuromodulatory neurotransmitters, such 
as noradrenaline, dopamine and acetylcholine (Aston-Jones & Cohen, 2005). 
These neuromodulators are diffusely released in the cortex during perceptual 
decision-making and, based on recent studies, seem to reflect remarkably 
specific cognitive and behavioral processes associated with our decisions (de 
Gee et al., 2017; de Gee, Knapen, & Donner, 2014; Kloosterman et al., 2015; 
Murphy et al., 2014; Nieuwenhuis, Aston-Jones, & Cohen, 2005). 
Neuromodulation is therefore a potential contributor to choice and perceptual 
variability in perceptual decision-making tasks. This topic is specifically 
addressed in Chapter 3 of this thesis. 
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Perceptual awareness versus metacognitive evaluation 
Perceptual awareness reflects the subjective perceptual experience of a person 
(the “content” of the experience), whereas metacognition, on the other hand, 
relates to the knowledge about that subjective experience (or more generally 
about task performance): the “knowing” about our perception or performance 
(Lau & Rosenthal, 2011). Therefore, metacognition is also referred to as 
“second-order” or “type 2” performance. Metacognitive accuracy can vary 
across individuals and across trials. For instance, when there is a large degree 
of overlap between one’s first-order decision accuracy (e.g. discrimination d’ on 
the orientation of a Gabor) and confidence about the correctness of those 
decisions, so when someone is highly confident about the decision when being 
correct and not confident when being incorrect, metacognitive accuracy is high 
(Fleming & Lau, 2014). Recent developments have made it possible to calculate 
meta-d’ in the SDT framework (Fleming & Lau, 2014). Meta-d’ directly reflects a 
person’s metacognitive accuracy, or in other words, the accuracy of one’s 
insight in “first-order” or “type 1” task performance. This recently introduced 
measure allows us to study the association between metacognition (second 
order performance) and cognition in similar ways as has been done previously 
when studying the association between perceptual awareness (first-order 
performance) and cognition (see e.g. van Gaal et al., 2012). 
 
In the final chapters of this thesis we therefore further explore the relationship 
between internal variations in the brain’s arousal state and metacognitive 
accuracy (Chapter 4) and the role of metacognition in the monitoring and 
updating of our decisions (Chapter 5-6).  

 

Main  research questions   
To summarize, in this thesis we are interested in unraveling what is the role of 
awareness, neuromodulation and metacognition in human decision making. 
For that, the work presented in this thesis is built around three main questions: 
 

• How does the level of awareness of decision outcomes modulate the way 
people learn, decide and monitor their own behavior? (Chapters 2-3).  

• How do stimulus-evoked fluctuations of brain’s arousal state affect 
perceptual awareness and metacognitive evaluation of decision 
accuracy? (Chapter 4).  

• What is the role of metacognition in monitoring and updating our 
decisions? (Chapters 5-6). 
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Methodological approaches 
To address the above outlined research questions, in the studies reported in 
this thesis, we manipulated perceptual awareness in two ways, either by using 
the masking technique or by presenting stimuli at the threshold of perception. 
Masking is a common method to manipulate stimulus awareness (Fig. 1.3A). In 
a typical backward masking experiment participants have to quickly respond to 
a target, for example a large arrow pointing to a specific direction. This target is 
then rapidly preceded (<100 ms) by another stimulus, e.g., a smaller arrow, 
called a prime, pointing in a specific direction as well. In the meta-contrast 
masking paradigm illustrated in Figure 1.3A, the prime is presented very briefly 
(e.g. 14 ms) and fits within the contour of the target (i.e., the ‘mask’), which 
strongly reduces its visibility (e.g. Kunde, 2003; Vorberg et al., 2003). Without 
the masking procedure, primes are perfectly visible when presented in 
isolation. Interestingly, even when masked stimuli are not perceived 
consciously they can still influence behavioral responses. For example, faster 
response times and fewer errors are typically observed when the prime and the 
target are pointing into the same direction (congruent trials) than when they 
are pointing into different directions (incongruent trials). Thus, the direction of 
an arrow can activate a corresponding response tendency in the absence of 
conscious awareness of the arrow itself. Crucially, (meta-contrast) masking is a 
paradigm in which we externally manipulate consciousness by increasing or 
decreasing the masking strength.  
 
Another way of manipulating consciousness is by presenting stimuli at the 
threshold of perception. For instance, in a perceptual discrimination task (Fig. 
1.3B) people are required to make a judgement about the orientation of a 
Gabor patch embedded in noise. The level of difficulty can be individually 
staircased (by varying the amount of noise in the stimulus) in such a way that 
every participant is correct in, for instance, 70% of the occasions. This paradigm 
is interesting, because even when the stimulus is presented the same way on 
each trial (e.g. with the same contrast or the same noise level), participants 
may sometimes perceive the stimulus and respond correctly, and sometimes 
may not perceive the stimulus and respond incorrectly (Charles et al., 2013; 
Wyart & Tallon-Baudry, 2008). This variation in perception is thought to rely on 
intrinsic fluctuations in neuromodulation of the brain, i.e. the brain’s arousal 
state (Aston-Jones & Cohen, 2005). Crucially, in contrast to the masking 
paradigm, threshold stimulation paradigms do not manipulate consciousness 
externally, but because the stimulus strength/contrast remains constant across 
trials, conscious awareness is likely determined by internal fluctuations in 
neural activity (Dehaene & Changeux, 2005).   
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Figure 1.3. Examples of task designs in which consciousness was manipulated throughout this 
thesis. (A) Masked priming experiment. Primes can be congruent or incongruent with the 
direction of the target and participants respond to the direction of the target while attempting to 
ignore the prime. The figure depicts a congruent trial. (B) Perceptual discrimination experiment. 
Participants report the direction of a Gabor patch (clockwise or counterclockwise), after which 
veridical feedback is presented, which is either masked or unmasked. The figure depicts 
unmasked feedback due to the absence of backward masks. (C) Binary choice experiment. Two 
response options are shown until the participant choses one of them. The probability of left/right 
responses can be manipulated by manipulating the reward probability of each response option 
(e.g. 70/30 %). Feedback visibility can be manipulated by varying the presentation duration of the 
word (correct/error) and the backward mask. The figure depicts masked feedback, due to the 
short duration of feedback presentation and the inclusion of backward masks.  
 

Overview of this thesis 
In chapter two we tested the possibility to learn from reinforcements (reward 
vs no reward) at different levels of stimulus visibility and we examined the 
underlying neural mechanisms related to learning from these decision 
outcomes (external feedback), while measuring electroencephalographic 
recordings (EEG). Participants performed a binary choice task (Fig. 1.3C), a 
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modified version of a probabilistic reversal learning task (Cohen, Elger, & 
Ranganath, 2007), in which we manipulated the visibility of rewards using a 
standard masking technique (Ogmen, Breitmeyer, & Melvin, 2003). Response-
reward contingencies reversed several times over the course of the experiment 
and participants were instructed to select the response option that was most 
often rewarded. Furthermore, we used computational modeling to evaluate 
the existence of learning from outcomes at different levels of visibility, and to 
characterize the computational signature of such learning. We combined EEG 
measurements with a computational modeling approach to investigate, at the 
time of reward processing and on a trial-by-trial basis, the neural correlates of 
the different processes influencing participants’ future choices and how those 
were affected by reward visibility.  
 
In chapter two we were able to track participants’ expectations of being 
rewarded on each single trial due to reinforcement learning modelling, but 
unfortunately we could not evaluate subjects’ confidence in being rewarded 
with the same level of scrutiny. Therefore, in chapter tree we followed up on 
this initial study and tested the extent to which subjective awareness is 
necessary to process feedback and how our confidence in previous decisions 
modulates the impact of this feedback. Specifically, we asked how the 
metacognitive evaluation of decision accuracy affects subsequent feedback 
processing using two dependent measures thought to reflect phasic, feedback-
related, arousal: pupil size and the P3, an event-related potential (ERP) 
component from the EEG (Jepma et al., 2016; Nieuwenhuis, Aston-Jones, & 
Cohen, 2005). An additional manipulation of feedback awareness by means of 
masking allowed us to track how feedback modulated pupil size and the P3 
depending on the level of feedback awareness and confidence in the previous 
decision.  
 
In chapter four, we focused on the relationship between stimulus triggered 
arousal (as measured by stimulus evoked pupil size fluctuations) and perceptual 
performance and metacognitive evaluation during a Gabor discrimination task 
(see Fig. 1.3B). Because stimulus parameters were kept constant, differences in 
performance and metacognition could be attributed to internal changes in the 
brain arousal state (Aston-Jones & Cohen, 2005; Eldar, Cohen, & Niv, 2013). We 
investigated how pupil dilation relates to both participants’ task performance 
(type 1 measures, e.g. d’ and criterion) and introspection of their performance 
(type 2 measures, e.g. meta-d’ and meta-criterion) in a signal detection theory 
(SDT) framework (Fleming & Lau, 2014; Maniscalco & Lau, 2012).  
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In chapter five we addressed the question whether metacognition is necessary 
for a specific case of performance monitoring, namely conflict adaptation 
(Desender, Van Lierde, & Van den Bussche, 2013; van Gaal, Lamme, & 
Ridderinkhof, 2010). Conflict adaptation refers to the phenomenon that the 
effect of a prime on the speed of response to a target (e.g. Fig. 1.3A) is smaller 
when the trial is preceded by an incongruent prime-target pair compared to a 
congruent prime-target pair. We report two behavioral experiments in which 
we explored the role of objective conflict (whether prime and target where the 
same or different) and subjective conflict experience (whether participants 
indicated they have experienced conflict on the previous trial, irrespective of 
the objective conflict) on conflict adaptation.  
 
In chapter six we explored whether people can use their metacognition to 
detect subtle unconscious biases in their decisions when they supposedly 
decide ‘freely’ (Kiesel et al., 2006; Schlaghecken & Eimer, 2004). We explore 
this issue using a probabilistic reinforcement learning task in which participants 
were free to choose between two response options, of which one was 
unconsciously primed (being the prime congruent or incongruent to the most 
rewarded response option). This experimental setup allowed us to test whether 
“internal conflict” leads to impairments in choosing the best of two alternative 
actions and if so, whether this leads to corresponding changes in metacognitive 
evaluations of task performance (Fleming & Dolan, 2014). The latter would 
reflect that internal conflict between unconscious drives and learned optimal 
responses can potentially explain changes in decision-making performance 
(Desender et al., 2014). 
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Abstract 
The extent to which subjective awareness influences reward processing, and 
thereby affects future decisions is currently largely unknown. In the present 
report, we investigated this question in a reinforcement-learning framework, 
combining perceptual masking, computational modeling and 
electroencephalographic recordings. Our results indicate that degrading the 
visibility of the reward decreased -without completely obliterating- the ability 
of participants to learn from outcomes, but concurrently increased their 
tendency to repeat previous choices. We dissociated electrophysiological 
signatures evoked by the reward-based learning processes from those elicited 
by the reward-independent repetition of previous choices and showed that 
these neural activities were significantly modulated by reward visibility. Overall, 
this report sheds new light on the neural computations underlying reward-
based learning and decision-making and highlights that awareness is beneficial 
for the trial-by-trial adjustment of decision-making strategies. 
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Introduction 
How we make decisions on a day-to-day basis depends strongly on the 
outcomes that have been associated in the past with the presently available 
courses of action. Actions that have been often linked with rewards (such as 
food or money) are more likely to be repeated than actions that have not been 
rewarded (or punished even) (Berridge & Robinson, 2003; Dayan & Balleine, 
2002; Rangel, Camerer, & Montague, 2008). Generally, the notion of reward is 
strongly associated with subjective evaluation, related to conscious processes 
such as “pleasure”, “liking” and “wanting” (Berridge & Robinson, 2003). 
However, how human decision making changes depending on reward 
awareness is unclear. Assessing how the level of awareness of information 
changes or may bias value-based learning and decision-making may prove 
critical to understanding apparent irrationality observed in human behavior 
(Evans, 2008; Evans & Stanovich, 2013; Kahneman, 2003; Newell & Shanks, 
2014; Weber & Johnson, 2009).  
 
Rewards are crucial to two fundamental steps in the decision-making process. 
First, in decision situations, expected rewards act as incentives, which 
determine choices and increase the amount of motor or cognitive effort one is 
willing to expend to reach a goal (Berridge, 2004; Schmidt et al.,2012). Second, 
after a decision has been enacted and the action effectuated, the obtained 
reward -or absence of reward- drives important learning processes: successful 
actions are reinforced, while unsuccessful ones are discouraged (Sutton & 
Barto, 1998). Despite rewards being strongly associated with subjective 
feelings, notably to emotions and to the notion of expected pleasure (Berridge 
& Robinson, 2003), recent studies have reported that reward cues that are 
masked from awareness can still directly influence task performance (Aarts et 
al., 2008; Bijleveld, Custers, & Aarts, 2012; Capa et al., 2013; Pessiglione et al., 
2007). These results suggest that the incentive properties of reward 
information may be processed outside the scope of awareness in the human 
brain to facilitate human performance (but see Bijleveld et al., 2014 for results 
challenging this view). 
 
On the other hand, little is known about the propensity of reward to reinforce 
successful actions and how reward awareness modulates these mechanisms. 
To address this question, thirty-two participants performed a modified version 
of a probabilistic reversal learning task (similar to Cohen, Elger, & Ranganath, 
2007) in which we manipulated the visibility of reward using a standard 
masking technique (Ogmen et al., 2003). Participants were instructed to choose 
one of two response options, which led probabilistically either to a significant 
reward (50 cent coin) or a negligible one (1 cent coin), from now on referred to 
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as the “reward” and “no-reward” conditions for simplicity. Response-reward 
contingencies reversed several times over the course of the experiment and 
participants were instructed to select the response option that was most often 
rewarded (Fig. 2.1A). Masked and unmasked feedback were mixed within 
blocks to explore the relative weighting of both types of feedback in a context 
in which easy and difficult to perceive feedback were available. We used a 
computational modeling approach to evaluate the existence of learning from 
rewards at different levels of visibility, and to characterize the computational 
signature of such learning. We combined EEG measurements with this 
computational modeling approach to investigate, at the time of reward 
processing and on a trial-by-trial basis, the neural correlate of the different 
processes influencing participants’ future choices and how those were affected 
by reward visibility.  
 
Materials and methods 
Participants 
Thirty-two students from the University of Amsterdam (8 men; aged 22.25±3.1) 
participated in the experiment for course credits or financial compensation. All 
participants gave their written informed consent prior to participation, had 
normal or corrected-to-normal vision and were naive to the purpose of the 
experiments. All procedures were executed in compliance with relevant laws 
and institutional guidelines and were approved by the local ethical committee 
of the University of Amsterdam.  
 
Task 
Stimuli were presented using Presentation software (Neurobehavioral Systems, 
Inc) against a black background at the center of a 20-inch VGA monitor 
(frequency 60 Hz), which was viewed by the participants from a distance of 
approximately 80 cm. Participants should fixate at the center of the screen and 
choose between a left or a right box distant 15 cm from each other by pressing 
a correspondent left or right chair button (parallel button). The chosen square 
was illuminated in blue for 600 ms, indicating the participants’ response 
followed by a reward (50 cent coin) or a punishment (1 cent coin) that could be 
shown on a visible (100 ms) or masked (17 ms) way. Stimuli were used similarly 
to those by (Zedelius, Veling, & Aarts, 2012). A variable time, 1500 to 2500 ms 
inter-trial-interval separated each trial. If participants did not select a target 
after 1500 ms, a “too late!” message was displayed. 
 
Sides were rewarded in a 70/30% fashion. This probability condition was 
reversed several times along the 1200 trials so that, in order to decide 
advantageously, participants had to keep track of eventual “rule changes”. We 
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refer to the choices made on the 30% probability side as “incorrect” choices, 
and those made according to the 70% rewarded side as “correct” ones. 
Probabilities were fixed across trials within blocks, which lasted 75–125 trials. 
The block length had a minimum value, but it was dependent on how fast 
participants could learn the rule at stake. In order to assure that everyone 
could learn the probabilities, for at least 10 trials in a row they should have 
been able to choose the “correct side” option for more than 60% of the last 25 
trials, otherwise additional trials could be added until this condition was 
completed. Self-paced rest breaks were given every 70 trials, presenting 
participants the percentage of correct sides they have chosen according to the 
rule at stake. This break never coincided with changing probabilities conditions 
and participants were told about that.   
 
In 10% of the trials a forced choice discrimination question asked “Which coin 
did you just see?” while displaying a 1 cent or a 50 cent coin. This question was 
randomly asked for the same amount of times for visible and masked coins. 
Participants were instructed that the probability of the correct response being 
a 1 cent or 50 cent coin was 50%. Participants were explained that they would 
get paid according to their performance at the end of the experiment. Finally, 
all participants received a bonus of €5 on top of what they had already 
received. Participants were instructed to choose one of the two targets on each 
trial, to pay attention to the reward, and to try to win as much money as 
possible.  
 
Models Building Blocks 
We designed 18 different models, all adapted from a Q-learning model. Our Q-
learning included 3 basic modules: learning, choice and perseveration. 
 
Learning. The basic idea is that participants learn by trial and error to compute 
a value Q for each option (choosing the left or the right cue). At each trial 𝑡, 
after a choice is made and the outcome of the choice 𝑅# is revealed, the Q-
value of the chosen option (𝑄%,#'() is updated by integrating a so-called 
prediction-error 𝛿# , which compares what was expected (𝑄%,#) to the actual 
outcome: 
 𝛿# = 𝑅# − 𝑄%,#.  
This update is typically scaled by a learning rate 𝛼, such that: 
𝑄%,#'( = 𝑄%,# + 𝛼 × 𝛿#. 
 
Choice. To account for the fact that people try to maximize their expected 
outcome, but can make errors or explore locally sub-optimal options, the 
choice (𝐶#) is typically implemented as a softmax function: 
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𝑃(𝐶# = 𝑎) = 41 + 𝑒𝑥𝑝 9𝛽 × ;𝑄#(𝑎) − 𝑄#(𝑏)=>?
@(

,  

where 𝛽 is the slope of the logistic choice function –the inverse temperature 
parameter- which we refer to as the value weight. 
 
Perseveration. In order to capture the tendency of participants to stick to their 
previous choices independently of the received reward, we also included a 
perseveration bias 𝜋# in the choice function. This function becomes: 

𝑃(𝐶# = 𝑎) = 91 + 𝑒𝑥𝑝;𝛽 × ;𝑄#(𝑎) − 𝑄#(𝑏)= + 𝜋 × 𝑃#=>
@(

, 
where 

𝑃#'( = B 1𝑖𝑓𝐶# = 𝑎
−1𝑖𝑓𝐶# = 𝑏; 

and 𝜋 governs the weight of the past choice on the present decision –referred 
to as the perseveration weight. 
 
When both learning and perseveration are present, the relative importance of 
𝛽 and 𝜋 allows the model capture participants tendency to trade-off between 
sampling from learned value (𝛽) vs simply repeating previous choices (𝜋). 
 
Model Space 
Given that our task incorporates two types of reward - masked vs. unmasked - 
several scenarios are possible for learning and perseveration, which can be 
accounted for by different models. We first assumed that all models share a 
common basic block, that is, people learn from unmasked reward. Additionally, 
people can learn from masked reward, either at the same pace or at a different 
pace than after unmasked reward. Likewise, the value weight parameter can be 
identical or different after unmasked vs masked reward. As for the 
perseveration, it can be absent after both masked and unmasked reward, 
present and of identical strength, or present with different strengths. Those 3 
learning, 2 choice-temperature and 3 perseveration scenarios were therefore 
combined, generating 18 possible models in our model space (Fig. 2.2A/B).  
 
Parameter optimization 
We optimized the models free-parameters (α’s and β’s)  by minimizing the 
negative log likelihood (LLmax) of the participant observed choices under the 
model using Matlab’s fmincon function, initialized at multiple starting points of 
the parameter space. 
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Model Comparison 
Negative log-likelihoods (LLmax) were used to compute the Bayesian 
information criterion (BIC), for each model, at the individual level (𝐵𝐼𝐶 =
2 × (𝐿𝐿𝑚𝑎𝑥) + 𝑑𝑓 × 𝑙𝑜𝑔	(𝑛#PQRS)), and used to approximate the model 
evidence (𝑒 = −𝐵𝐼𝐶 2⁄ ). Individual model evidences were then fed to the 
mbb-vb-toolbox (https://code.google.com/p/mbb-vb-toolbox/) to run a 
Bayesian Model Comparison (Daunizeau, Adam, & Rigoux, 2014). This Bayesian 
procedure estimates, among other criteria, the exceedance probability 
(denoted XP) for each model within a set of models, given the data gathered 
from all participants. Exceedance probability quantifies the belief that the 
model is more likely than all the other models of the set. An exceedance 
probability greater than 95% for one model within a set is therefore typically 
considered as significant evidence in favor of this model being the most likely. 
 
Model identifiability and parameter recovery 
Using random permutations of individual parameters estimated from fitting the 
complete model (i.e. model 18) to the choices of our 32 participants, we 
simulated the behavior of cohorts of 32 synthetic subjects with the 18 different 
models in our model set. Then, we ran our Bayesian model-comparison (BMC) 
analysis on those 18 different simulations, and checked that all models are 
identifiable, i.e. can be correctly estimated as the most probable model in the 
set of 18 models by the BMC approach when they were actually used to 
generate the data. This first analysis intends to verify that nothing in the design 
of the model set, the parameter estimation or the model comparison approach, 
unduly advantages model 18 (e.g. that it is the most complex model), leading to 
mistakenly over-estimate the probability that model 18 explains our 
participants’ choices in lieu of other models. Next, because our models are 
nested, we assessed the parameter recovery in the full-model case (model 18): 
we computed the Pearson correlation between the parameters used to 
generate the data, and the parameters estimated by the maximum-likelihood 
fitting procedure. Additionally, we estimated the correlation between 
estimated parameters. 
 
Parameters and model recovery 
Simulations demonstrated excellent model and parameter recovery properties 
of our model space (Palminteri, Wyart, & Koechlin, 2017).  
 
EEG measurements  
EEG data was recorded and sampled at 512 Hz using a BioSemi ActiveTwo 
system. Sixty four scalp electrodes were measured, as well as 4 electrodes for 
horizontal and vertical eye-movements (each referenced to their counterpart) 
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and 2 reference electrodes on the ear lobes. After acquisition, standard pre-
processing steps were performed in EEGLAB toolbox in Matlab. Data were 
bandpass filtered from 0.5 to 40 Hz off-line for ERP analyses. Epochs ranging 
from 1.8 s before to 2 s after reward presentation were extracted. Linear 
baseline correction was applied to these epochs using a -200 to 0 ms window. 
The resulting trials were visually inspected and those containing artifacts were 
removed manually. Moreover, electrodes that consistently contained artifacts 
were interpolated. Finally, using independent component analysis, artifacts 
caused by blinks and other events not related to brain activity were removed 
from the EEG data. 
 
ERP analyses 
We focused on ERP components related to reward outcome processing with 
different latencies and topographical distributions. To zoom in on these specific 
components a central region of interest (ROI) was defined comprising of 15 
midline electrodes (Fz, F1, F2, FC1, FCz, FC2, Cz, C1, C2, CPz, CP1, CP2, Pz, P1, 
P2), where both the relevant components can be observed (fronto-central FRN 
and ventro-parietal P3) (Chase et al., 2011; Cohen et al., 2007; Cohen, Wilmes, 
& van de Vijver, 2011; Ullsperger et al., 2014). Selecting a predefined ROI limits 
the number of comparisons that need to be performed, but we note that the 
results were robust and were not dependent on the specific sets of electrodes 
used as a ROI (Fig. 2.4). We investigated the effect of reward outcome 
separately for masked and unmasked trials. To correct for multiple 
comparisons due to the number of time-points tested, p values were FDR-
corrected at an alpha-level of 0.05. All statistical analyses were performed in 
Matlab (Mathworks). Based on this ERP analysis three time-windows of interest 
were selected for follow-up analyses in which we related model parameters to 
single trial EEG responses. 
 
Single trial regression analyses 
Multiple regressions of ERP amplitude on three model parameters were 
conducted. For each subject, each electrode, and each time point, the three 
parameters (PE, |PE|, switch/repeat on the next trial) were entered as 
predictor variables, and the ERP amplitudes as observations in the regression 
model. We checked that the correlations between the time-series of the 3 
predictors were low (absolute value of pearson’s R averaged over subjects <.2), 
resulting in low multi-collinearity indices (variance inflation factors: VIFPE= 
1.0596±0.0099; VIF|PE|= 1.0524±0.0147; VIFswitch/repeat= 1.0712±0.0145). Beta-
coefficients assigned to each predictor column, which reflect the regression 
weights between each of the three parameters and ERP amplitude, were 
estimated at the individual level, separately for each electrode and time point. 
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The significance of the predictors was assessed at the population-level using 
random-effects (t-tests) on the regression coefficients averaged across the 
predefined time windows (100-300 ms, 300-500 ms, 500-800 ms) and the 
predefined ROI.  
 
Code availability 
The codes used to analyze data from the current study are available from the 
authors on reasonable request. 
 
Data availability 
The datasets generated during and/or analyzed during the current study are 
available from the authors on reasonable request. 
 
Results 
Model-free behavior 
Participants were able to perform the task well and they accurately tracked 
probability reversals (mean correct response = 71.3±1.51%). In order to assess 
the reward discriminability in the masked (M) and unmasked conditions (UM), 
we computed participants’ d-prime, an unbiased measure of stimulus visibility, 
from the forced-choice discrimination trials that were presented throughout 
the task (10% of all trials, hence 120 trials in total). Although the overall 
discriminability was low in the masked condition, both masked and unmasked 
conditions exhibited above-chance accuracy in this discrimination test (UM: 
96±1.15% correct, d’=3.97±0.14; t31=28.38, p<0.001; M: 55.7±1.13% correct, 
d’=0.35±0.07; t31=4.91, p<0.001). Given that chance-level performance on such 
a forced-choice discrimination task is a typical criterion used to show that 
participants are unable to perceive a stimulus consciously (Overgaard & 
Sandberg, 2012; Sandberg et al., 2010), this result implies that we cannot 
consider that the masked reward was nonconscious in all participants and for 
all trials.  
 
Having established that participants performed the task correctly, we turned to 
a typical behavioral analysis of learning. Following previous studies (Chase et 
al., 2011; den Ouden et al., 2013), we computed participants switch rates after 
positive and negative outcomes, in both unmasked and masked conditions. 
Critically, participants switched their response more often after no-reward than 
after reward, and did so in both the unmasked and in the masked condition 
(unmasked: difference 36.06±0.59%, t31=10.76, p<0.001; masked: difference 
4.90±0.15%, t31=5.65, p<0.001). The fact that participants tended to switch 
their choices significantly more after no-reward (1 cent) versus reward (50 
cent) is generally interpreted as evidence for learning. It would therefore be 
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tempting to conclude that our participants significantly learned from both 
unmasked and masked reward. However, this interpretation of switch patterns 
may not be devoid of statistical confounds, especially in designs where 
conditions (in this case masked and unmasked) are intermixed. Indeed, this 
pattern of results could easily be produced by participants learning the value of 
options from unmasked rewards and deriving all choices from those values - i.e. 
in the total absence of learning from masked reward. This is why we turned to 
model-based behavioral analyses that are devoid of this statistical confound, 
aiming at showing that learning from masked reward outcomes is still present 
when these issues are taken into account. 
 
 

 
Figure 2.1. Experimental setup and behavior. (A) Two response options (white boxes on the 
left/right of fixation) were shown on the screen until a response was given. A correct response 
was rewarded with a 70% probability (50 cent coin) and not rewarded with a 30% probability (1 
cent coin). Reward visibility was manipulated by masking. Unmasked (long coin presentation, 
short backward mask presentation) and masked (short coin presentation, long backward mask 
presentation) reward trials were mixed within blocks and randomly chosen across trials (each 
with a 50% probability). Which response option was most rewarded changed every 75-125 trials. 
(B) The percentage of switches after specific trials. M: masked; UM: unmasked; +: reward; -: no-
reward; error bars represent ±s.e.m.  
 
Computational modeling 
A simple delta-rule was used to capture how individuals updated the value of 
the chosen options after receiving reward. Following classical associative 
learning algorithms, the extent to which previous reward is integrated in the 
future option value was controlled by a learning rate α. Choices were derived 
from a logistic (soft-max) choice function, on the difference between option 
values. The slope of this choice function – typically referred to as choice 



 30 

temperature - was defined as the value weight β. Although very popular and 
accounting for a wide range of behavior, this learning mechanism might not 
account for the full choice pattern of participants in our task: indeed, within 
blocks, our participants might identify the best option and therefore start 
disregarding the feedback, putting more weights on their priors. To account for 
this behavior, we added a perseveration module to our computational model. 
Perseveration – defined as the tendency to repeat a choice regardless of the 
previous outcome - was integrated as an additional “bias” in the choice 
function, which regulated the probability of choosing the same option as that in 
the previous trial (den Ouden et al., 2013; Rutledge et al., 2009; Seymour et al., 
2012; Voon et al., 2015). The extent to which perseveration contributed to the 
final choice was determined by a perseveration weight π (see Fig. 2.2A, 
Materials and Methods). We then systematically explored how masked versus 
unmasked reward impacted those different modules, by creating sets of 
models allowing – or not allowing - parameters to differ between those two 
conditions (see Materials and Methods and Fig. 2.2B). We thereby built 18 
different models, which were subsequently fit to the behavior, using a 
maximum likelihood procedure. A model recovery (Fig. 2.2C) and a parameter 
recovery (Fig. 2.2D) analysis confirmed that our modelling approach is suitable 
to address our questions of interests (Palminteri et al., 2017) (see also 
Materials and Methods). Regarding our participants’ data, a Bayesian model 
comparison approach identified model 18 as the best among our designs to 
explain the behavior (exceedance probability>80%, see Fig. 2.2C). The best 
fitting model differentiates learning rate, value weight, and perseveration 
weight parameters after unmasked and masked reward. Importantly, because 
our model space included models explicitly omitting learning from masked 
reward (Fig. 2.2B), this model comparison result demonstrates the existence of 
learning from masked reward, even when perseveration effects are taken into 
account.  
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Figure 2.2. Modeling approach. (A) The computational architecture used to build the model 
space. (B) Model space. Eighteen models were built by systematically combining the different 
options available for the different computational modules. (C) Model identifiability analysis. Data 
from 32 synthetic participants were simulated with each of our 18 models. Bayesian model 
selection was used to identify the most probable model generating the data, using model 
exceedance probability. Results show that, in each case, the good model was identified, with 
exceedance probability≥80%. (D) Parameter recovery analysis. Data from 32 synthetic 
participants were simulated with the full model (model 18). The 6 estimated parameters per 
participants were then correlated with the true parameters used for simulating the data, using 
Pearson correlation across participants (diagonal). Results show very good identifiability (all 
diagonal R2>.75). The correlation between estimated parameters is shown off-diagonal. Results 
show very little correlation between parameters (all off-diagonal R2<.17). (E) Model comparison. 
Results of a Bayesian model comparison analysis on our participants’ data. Bar height indicates 
the exceedance probability of each model. M: masked; UM: unmasked; β: value weight; α: 
learning rate; π: perseveration weight. 
 
Participant-level data reveals that the best fitting model gives a very good 
account of participant’s learning and switch behavior (average likelihood per 
trial=78.70±2.11%; Fig. 2.3A for three representative participants (s10, s20, 
s30)). We then turned to the analysis of the best fitting model parameters (Fig. 
2.3B). Learning rates appeared to be higher after unmasked than masked 
reward (αUM=0.67±0.03; αM=0.19±0.02, t31=17.01, p<.001), and so did value 
weights (βUM=1.94±0.18; βM=0.93±0.12, t31=7.24, p<0.001). However, the 
opposite was found for the weight put on previous choices (πUM=0.67±0.15; 
πM=1.67±0.21, t31=-4.72, p<0.001) (Fig. 2.3B).  
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These results lead to several crucial insights concerning reward learning. First, 
they demonstrate the existence of robust learning from masked rewards. 
Second, they clearly illustrate changes, due to reward visibility, in the trade-off 
between the tendency to base choices on the learned options’ values, and the 
tendency to repeat previous choices regardless of previous outcome. This thus 
suggests that the reliance on the longer term priors, based on the accumulation 
of recent choices, is increased when the outcome on the current trial is masked 
and therefore unreliable.  
 
 

  
Figure 2.3. (A) Time course of the learning task by three representative participants (participant 
numbers 10, 20 and 30). The x-axis represents blocks of trials during the experiment and the y-
axis represents the local fraction of left-hand responses selected by the participant. Thick black 
and gray lines represent the reward probability in the different blocks (75-125 trials). Gray-dotted 
lines represent the local fraction of left-hand responses. Green thick line represents the local 
probability of left-hand responses predicted by the computational model. Both behavioral choices 
and model predictions averaged over 12 trials bins, and aligned on block transitions). (B) Model 
parameters for masked and unmasked conditions. Left: value weight. Middle: learning rate. 
Right: perseveration weight. M: masked reward, UM: unmasked reward. Error bars represent ± 
s.e.m. 
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ERPs and model-based EEG results 
Having established, thanks to the manipulation of reward visibility, a clear 
computational dissociation between the contributions of learning versus choice 
perseveration to the behavior of our participants, we next aimed at dissociating 
the neural signatures of those components by leveraging electrophysiological 
recordings. In order to first identify the electrophysiological time-windows of 
interest, we performed an ERP analysis of reward-related activity, contrasting 
reward versus no-reward outcomes, at our central region of interest, which 
was based on previous studies (Cavanagh et al., 2010; Cohen et al., 2011; 
Ullsperger et al., 2014) (see Materials and Methods).  
 
Our analysis of event-related potentials revealed three significant events in the 
neural signal evoked by fully conscious (unmasked) outcomes: an early 
Feedback-Related Negativity (FRN) at fronto-central electrodes (“early” event), 
which was followed by a second, more centrally distributed negative 
component (“middle” event), and a final parietal P3 component (“late” event) 
(Fig. 2.4A, FDR corrected across time, p<0.05). Crucially, while masked 
outcomes also elicited an early fronto-central FRN, neither the second negative 
ERP component nor the P3 component could be observed in the masked 
condition (FDR corrected across time, p<0.05, Fig. 2.4B).  
 

 
Figure 2.4. Model free ERP results. ERPs for no-reward (red lines) and reward (green lines) for 
unmasked (A) and masked conditions (B). Time=0 ms is reward presentation. The lower dotted 
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black lines indicate significant time-windows, FDR corrected across the entire ERP time-window 
(p<0.05). Topographical distribution maps of the reward valence effect (no-reward minus reward, 
- vs +) were taken from the three broad time-windows (100-300 ms, 300-500 ms and 500-800 ms; 
scaling maps unmasked reward from left to right: [-2:2], [-5:5], [-2:2]; scaling maps masked 
reward: [-2:2]). Error bars represent ± s.e.m.  
 
In order to relate the contributions of the different computational modules 
identified in our best fitting model (model 18, Fig. 2.2) to electrophysiological 
signatures of outcome-guided decision-making, we then turned to a model-
based analysis of the EEG signal. In each participant, at each electrode and at 
each time point, we estimated a multiple regression with the trial-wise time-
series of electrophysiological activity as the dependent variable, and trial-wise 
time-series of latent variables as independent variables (see Experimental 
Procedures). Three such independent variables, derived from our best fitting 
model, were included in this multiple regression: the signed prediction error, 
the unsigned prediction-error (typically interpreted as a measure of surprise 
(Cavanagh & Frank, 2014; Pearce & Hall, 1980)), and a variable indexing 
whether participants switched or repeated their choice from the previous to 
the next trial, which is directly related to the perseveration process 
(switch/stay behavior). Previous research has shown the existence of 
temporally overlapping but spatially separate contributions of the signed 
prediction error, reflecting the valence of the prediction error (positive or 
negative) and the unsigned prediction error (the absolute degree of 
expectation violation also referred to as surprise) to reward learning 
(Fouragnan et al., 2017).   
 
In our model-based analyses, we focus on the three contiguous time-windows 
in which the model-free effects were most pronounced (early: 100-300 ms, 
middle: 300-500 ms and late: 500-800 ms). The signed PE regression results 
showed two clear peaks strongly overlapping in time with the early two ERP 
components that were revealed in the model-free ERP analysis (Fig. 2.5A). For 
both masking conditions, the signed prediction error was encoded in the early 
FRN (unmasked: t31=6.8, p<0.001; masked t31=4.2, p<0.001, difference: t31=3.0, 
p=0.005, early time-window). Similar results were obtained for the mid-latency 
negativity (unmasked: t31=11.2, p<0.001; masked: t31=3.0, p=0.005; difference: 
t31=8.1, p<0.001, middle time-window). In contrast, the later P3 component 
appeared only reached significance in the masked outcome conditions, 
although both conditions did not differ significantly (unmasked: t31=0.85, 
p=0.40; masked: t31=4.1, p<0.001, late time-window, Fig. 2.5A).  
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Figure 2.5. Model-based EEG analysis of the signed PE. (A) The time courses of regression 
weights of the signed PE regressed on the reward-locked EEG signal derived from a central ROI. 
Effects are plotted separately for unmasked (green) and masked (black) reward outcomes. 
Shaded areas indicate the s.e.m. Topographical maps show the regression weights during the 
relevant time windows. Both unmasked and masked reward showed early and mid-latency EEG-
PE covariations which are shown in b. Note that the polarities of these components are reversed 
compared to the ERP results, which in accordance with our expectations, because these ERP 
modulations are all associated with negative PE values, leading to a reversal of the polarities 
(maps: 100-300 ms and 300-500 ms; scaling: early masked = [-0.5:0.5], mid-latency masked = [-
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0.5:0.5], early unmasked = [-1:1], middle unmasked = [-3:3]). Bar plots of the signed PE effect for 
the three time-windows of interest. (B) The time courses of regression weights of the unsigned 
PE, or the level of surprise, regressed on reward-locked EEG signal derived from a central ROI. 
Both unmasked and masked rewards showed late EEG-surprise covariations (maps: 300-800 ms; 
scaling: masked=[-0.5:0.5], unmasked=[-2:2]). Bar plots of the surprise effect. (C) The time 
courses of regression weights of switch/stay behavior regressed on the reward-locked EEG signal 
derived from a central ROI. Both unmasked and masked reward showed late EEG-switch/stay 
behavior covariations (maps: 300-800 ms; scaling: masked=[-3:3], unmasked=[-3:3]). Bar plots of 
the switch/stay behavior effect. Error bars represent ± s.e.m. M: masked reward, UM: unmasked 
reward.  
 
Analyses of the unsigned prediction error signals (i.e. the level of surprise) 
revealed a rather different pattern of results. For both masked and unmasked 
reward, and in line with previous findings (Fischer & Ullsperger, 2013; 
Fouragnan et al., 2017; Mars et al., 2008), this variable was represented in the 
later P3-like component (time-window 300-500 ms: unmasked: t31=5.5, 
p<0.001; masked: t31=1.8, p=0.08; time-window 500-800 ms: unmasked: 
t31=8.4, p<0.001; masked: t31=2.2, p=0.03, see Fig. 2.5B, note that headmaps 
are shown for the middle and late windows combined: 300-800 ms). In both 
time-windows the effects were stronger for unmasked than masked rewards 
(all ps<0.001). No significant effects were observed in the early time-window 
(all ps>0.3). 
 
Finally, we observed a strong relation between switch/stay behavior on the 
next trial, closely related to the perseveration parameter in the modeling 
approach, and a broad central positivity (Fig. 2.5C). This effect was already 
present from the early time-window onwards and was always present 
irrespective of reward visibility (time-window 100-300 ms: unmasked t31=2.9, 
p=0.006; masked t31=2.9, p=0.006; difference t31=-0.8, p=0.4; time-window 300-
500 ms: unmasked t31=5.1, p<0.001; masked t31=5.6, p<0.001; difference 
t31=0.5, p=0.6; time-window 500-800 ms: unmasked t31=7.1, p<0.001; masked 
t31=3.8, p<0.001; difference t31=2.2, p=0.034; Fig. 2.5C, note that headmaps are 
shown for the middle and late windows combined: 300-800 ms). Interestingly, 
these effects were very similar for masked and unmasked rewards until ~500 
ms after stimulus presentation and significant visibility-related differences only 
started to emerge in the late time-window. Thus, a larger parietal positive 
component was associated with an increased likelihood of switching the 
response option on the next trial. This last analysis not only replicates previous 
findings about the electrophysiological signature of model-free switching 
behavior after fully conscious reward (Chase et al., 2011; Fischer & Ullsperger, 
2013), but also extends them to the case where reward visibility is very low.  
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Discussion  
In the present report, we combined a reinforcement learning task, a masking 
procedure, computational modeling and EEG recordings to investigate the 
impact of reward visibility on different cognitive processes involved in 
probabilistic reward-guided learning. In behavioral analyses, we observed that 
participants switched their responses after unmasked and masked unfavorable 
outcomes (no-reward) more often than after favorable outcomes (reward), 
which is typically interpreted as evidence for learning in both conditions. 
However, we demonstrated that this approach can largely overestimate or 
even erroneously validate the existence of learning from masked rewards, in 
tasks where trials are inter-mixed. To overcome this potential confound, we 
combined computational modeling with a model-comparison approach. First, 
we designed a set of 18 models, built on mixtures of unmasked and masked 
modules, accounting for reward-based learning and choice perseveration. 
Reward-based learning was simply operationalized as prediction-error based 
learning, in line with popular model-free reinforcement-learning algorithms 
(Berridge, 2004; Dayan & Balleine, 2002; den Ouden et al., 2013; Sutton & 
Barto, 1998). We then systematically compared the ability of these models to 
explain our behavior with a rigorous Bayesian model-comparison approach 
(Daunizeau et al., 2014). In our model set, which comprised models with and 
without learning modules from masked feedback, a model including both the 
masked and unmasked learning modules was identified as the best model. This 
approach operationalized a clear testing of learning from masked outcomes 
and provided clear evidence toward the existence of such learning. Our best 
fitting model also included modules for perseveration after masked and 
unmasked reward.  
 
An analysis of the best fitting model parameters revealed that learning rates 
were significantly positive for both visibility modules, although smaller for the 
masked feedback module. This confirms that participants indeed used both 
unmasked and masked (although to a lesser extend) reward outcome to inform 
further decisions. Our results show that the perseveration parameter was also 
significantly positive for both the visibility modules, although perseveration was 
smaller for the fully conscious module. This indicates that participants were 
biased toward repeating previous choices, independently of the outcome of 
their decisions, an actually frequent observation in human and non-human 
reinforcement learning tasks (den Ouden et al., 2013; Lau & Glimcher, 2005; 
Rutledge et al., 2009; Schönberg et al., 2007; Seymour et al., 2012). Although 
often given a low-level interpretation and a connotation of sub-optimality 
(Voon et al., 2015), perseveration can also constitute the implementation of 
higher-level –behavior: in our task, it is likely that, within a block, participants 
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identified the “good” option based on the integration of information over a 
long sequence of trials, and therefore decided to ignore irrelevant negative 
reward basing their choices only on their prior. After masked reward, 
participants persevered more than after fully conscious reward, revealing that 
participants stuck to their decision strategy, based on the integration of 
information over a longer sequence of trials, when full conscious awareness of 
the outcome was (often) lacking.  
 
Regarding electrophysiological signatures of reinforcement-learning, we 
observed three neural events evolving over time that were modulated by 
unmasked outcomes (reward vs no-reward): an early fronto-central FRN, a mid-
latency central negativity, and a late centro-parietal P3 component. Crucially, 
only the fronto-central FRN, which peaked ~200 ms after outcome 
presentation, was also modulated by masked outcomes. Many studies have 
reported that this signal, closely related to the response-locked error related 
negativity (ERN) and originating from the medial frontal cortex (MFC) (Debener 
et al., 2005), distinguishes positive from negative outcomes (Pfabigan et al. 
2011; Cavanagh et al. 2010; Hajcak et al. 2006; Chase et al. 2011; Cohen et al. 
2007; Holroyd et al., 2003; Fouragnan et al. 2017) in reinforcement-learning 
tasks (Holroyd & Coles, 2002). This response may reflect a “fast alarm” signal 
(or alertness response (Fouragnan et al., 2017)) that indicates the value of the 
incoming evidence, which is then accumulated in later stages of the decision 
making process (Chase et al., 2011; Fouragnan et al., 2017; Ullsperger et al., 
2014). Oppositely, the late parietal P3 ERP component was only observed after 
fully conscious reward. This signal, building on accumulating incoming evidence 
(Chase et al., 2011; Ullsperger et al., 2014), has been reported to predict 
behavioral adaptation and the associated update of new stimulus-response 
associations in memory (Chase et al., 2011; Ullsperger et al., 2014). Our ERP 
results fit nicely in current theoretical models of conscious and unconscious 
processes (Dehaene et al., 2014; Lamme, 2006; van Gaal & Lamme, 2012). 
Within these frameworks, the FRN may reflect a fast feedforward and 
nonconscious high-level response, whereas the P3 may reflect more conscious, 
and longer lasting neural responses, potentially dependent on recurrent 
interactions.  
 
Although those first EEG analyses outlined important dissociations between 
learning from reward at different levels of awareness, it is rather difficult to 
connect these neural signals to precise cognitive processes, using cross trial 
averaging and traditional contrast-based ERP methods (Cohen & Cavanagh, 
2011; Debener et al., 2005; Pernet, Sajda, & Rousselet, 2011; Pfabigan et al., 
2011). We therefore ran additional regression analyses in combination with 
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computational modeling to investigate whether single-trial measures of 
reinforcement learning were influenced by the visibility of probabilistic rewards 
(Cavanagh et al., 2011; Cohen & Cavanagh, 2011; Pernet et al., 2011). We 
focused our investigations on the EEG-correlates of three main computational 
variables: the prediction-error (signed PE), the level of surprise (unsigned PE) 
and switch/stay behavior on the next trial. This analysis revealed a striking 
similarity of neural PE correlates after both unmasked and masked reward 
outcomes. Both the early and the mid-latency negative ERP components were 
associated with PE computation (see also Fouragnan et al. 2017), whereas the 
parietal P3 was not. These findings support previous results showing that the 
FRN reflects signed PE signals (Holroyd & Coles, 2002; Overbeek, Nieuwenhuis, 
& Ridderinkhof, 2005), likely emerging from dopaminergic projections to the 
MFC (Park et al., 2012; Schultz, 2007; Walsh & Anderson, 2012), although 
especially the early response has also been linked to noradrenergic and 
serotonergic modulations (discussed in Fouragnan et al. 2015). Interestingly, 
whereas the two early neural events coded for a signed PE signal, the later P3 
component was particularly modulated by the unsigned PE, reflecting the level 
of surprise. Although this corroborates similar results obtained with different 
techniques and methods (Fouragnan et al., 2017; Mars et al., 2008), we 
crucially show here that the level of surprise is also encoded in parietal EEG 
fluctuations elicited by masked reward outcomes. Finally, the EEG-
switch/repeat correlations that we report here are in line with previous studies 
showing that trial-by-trial switch behavior can be observed at parietal channels 
as a late positive P3 component (Chase et al., 2011; Fischer & Ullsperger, 2013). 
In a previous study in which the authors combined computational modeling 
and RL it has been shown that this neural event did not differ when participants 
received actual reward about their choice or merely fictive reward. Here we 
show that this effect likely represents decision strategies that are formed over 
longer timescales. Overall, these results show that several cognitive processes 
important for reward-based learning, namely PE (valence) computation, 
surprise and switch/stay implementation are processed in the human brain and 
these cognitive processes are temporally and spatially dissociated in time (see 
also Fouragnan et al. 2017). 
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Abstract 
The extent to which subjective awareness is necessary to process performance 
outcome and how decision confidence modulates the impact of this outcome is 
largely unknown. To test this issue, human participants (N=32) performed a 
challenging perceptual decision task in which they had to judge the direction of 
a noisy Gabor stimulus (clockwise vs counterclockwise) while performance was 
staircased at 70% correct. On each trial, participants had to indicate the 
confidence in their decision, after which veridical outcome was presented 
(error vs correct). Outcome visibility was manipulated using the masking 
technique, leading to easily perceived (unmasked) and poorly perceived 
(masked) outcome. Electroencephalography (EEG) and pupil size measures 
revealed that unmasked outcome triggered a prediction error response in both 
pupil size measures as well as the P3 ERP component. However, interestingly, 
after masked outcome this was not the case. Instead, the pupil dilated more for 
error outcome than for correct outcome, while the P3 separated sure versus 
unsure trials. These results suggest that confidence modulations on outcome-
evoked processing depend on outcome awareness, which may reflect the 
necessity of awareness for integrating performance outcomes with confidence 
estimates to update and optimize future decisions.  
 
Introduction  
Our decisions are often accompanied by a sense of confidence in their 
accuracy. We have metacognitive awareness of how good our decisions are, 
even when there is no explicit outcome provided (de Gee et al., 2017; de Gee, 
Knapen, & Donner, 2014; Urai, Braun, & Donner, 2017). Clearly, there is 
considerable variation in people’s ability to construct metacognitive estimates 
of task performance, especially evident in the lack of accurate metacognitive 
evaluations in several psychiatric conditions, such as obsessive compulsive 
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disorder and anxiety (Grupe & Nitschke, 2013; Hermans et al., 2008; Stern et 
al., 2013). However, there is also considerable variation in metacognitive 
performance within individuals when multiple decisions are compared, for 
example due to attentional differences (Rahnev et al., 2011). 
 
The intrinsic variability in decisions and its associated confidence is often 
attributed to spontaneous fluctuations of neural activity in the brain regions 
computing decisions (Beck et al., 2012; Faisal et al., 2008; Fox et al., 2006; 
Glimcher, 2005; Lin et al., 2015; Shadlen & Newsome, 1998; Shadlen et al., 
1996). A major source of these internal fluctuations are variations in the 
cortical arousal state that are mediated by catecholaminergic (norepinephrine 
and dopamine) neurotransmitter systems, broadly projecting to large parts of 
the cerebral cortex (Aston-Jones & Cohen, 2005; Harris & Thiele, 2011; Lee & 
Dan, 2012; McGinley et al., 2015; McGinley, David, & McCormick, 2015; 
Murphy et al., 2014; Polack et al., 2013; Safaai et al., 2015; Steriade, 2000). 
These phasic (fast) modulations in the release of neuromodulation may be 
captured in the size of the P3 ERP component, as measured with 
electroencephalographic (EEG) recordings over centro-parietal electrode sites 
(Brown et al., 2015; Jepma et al., 2016; McCormick, 1989; Nieuwenhuis, Aston-
Jones, & Cohen, 2005; Pineda, Foote, & Neville, 1989; Polich, 2007). 
Interestingly, non-luminance mediated change in the diameter of the eye’s 
pupil has also been shown to reflect a peripheral marker of neuromodulatory 
activity and cortical arousal state (Beatty, 1982; de Gee et al., 2014; Eldar, 
Cohen, & Niv, 2013; Gilzenrat et al., 2010; Joshi et al., 2016; Lempert, Chen, & 
Fleming, 2015; McGinley et al., 2015; Nassar et al., 2012; Varazzani et al., 
2015). Recent animal studies have revealed a tight coupling between pupil 
diameter and neural responses in the locus coeruleus and inferior and superior 
colliculus (Joshi et al., 2016; Varazzani et al., 2015; Wang et al., 2012), which is 
supported by recent human fMRI studies (de Gee et al., 2017; Murphy et al., 
2014). Further, dopaminergic neurons respond to novel and unexpected stimuli 
and DA is critical for cognitive flexibility (Cools & Robbins, 2004; Wise, 
2004). Moreover, the P3 has also been used as an electrophysiological correlate 
of outcome-evoked phasic catecholamine release in the cortex (Nieuwenhuis et 
al., 2005; Polich, 2007; Rangel-Gomez et al., 2013). Yet, how the metacognitive 
assessment of the accuracy of our decisions affects subsequent outcome-
evoked information processing, as reflected in the P3 and pupil diameter, 
remains unknown. 
 
To test this, we used pupillometry and EEG to systematically quantify the 
interplay between decision confidence and outcome processing. Human 
participants (N=32) performed a challenging perceptual decision-making task in 
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which they had to judge the direction of a noisy Gabor stimulus while their 
performance was staircased at 70% correct. On each trial, participants had to 
indicate the direction of the Gabor stimulus and their confidence in this 
decision in a single response. Thereafter, the outcome of the decision was 
signaled using the Dutch words for “error” and “correct” (“goed” and “fout” 
respectively, see Fig 3.1A). On half of the trials, the outcome word was masked 
from awareness to reveal to what extent awareness of the outcome of a 
decision is crucial for interactions between decision confidence and outcome 
evaluation. We focused our analysis on the P3 ERP component, an 
electrophysiological index of phasic catecholamine release in the cortex, and 
pupil diameter, a peripheral marker of catecholamine release.  
 
Materials and Methods 
Participants 
Thirty-two students from the University of Amsterdam (23 women; aged 18-24) 
participated in the study for course credits or financial compensation. All 
participants gave their written informed consent prior to participation, had 
normal or corrected-to-normal vision and were naive to the purpose of the 
experiments. All procedures were executed in compliance with relevant laws 
and institutional guidelines and were approved by the local ethical committee 
of the University of Amsterdam.  
 
Tasks 
Participants participated in three experimental sessions, separated by less than 
one week from each other. We will first explain the main task, performed in 
session two and three, and thereafter the tasks performed in the first session.  
 
Main task: orientation discrimination task (sessions 2 and 3) 
Stimuli were presented on a screen with a spatial resolution of 1280×720 
pixels, run at a vertical refresh rate of 100 Hz. Each trial consisted of seven 
consecutive intervals (Fig. 3.1A): (i) the baseline interval (0.6 s); (ii) the stimulus 
interval (500 ms; interrogation protocol), the start of which was signaled by a 
tone (200 ms duration); (iii) the response period (terminated by the 
participant’s response); (iv) a delay (uniformly distributed between 1.5 and 2 s); 
(v) the outcome interval (0.5 s), the start of which was signaled by the 
occurrence of a tone (200 ms duration); (vi) a delay (uniformly distributed 
between 1.5 and 2 s); the outcome identity response period (terminated by the 
participant’s response); (vii) an inter-trial interval (ITI; uniformly distributed 
between 1 and 1.5 s). 
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During Gabor presentation the luminance across all pixels was kept constant. A 
sinusoidal grating (1.47 cycles per degree) was presented for the entire 
stimulus interval. The grating was either tilted 45° (clockwise, CW) or 135° 
(counter-clockwise, CCW). Grating orientation was randomly selected on each 
trial, under the constraint that it would occur on 50% of the trials within each 
block of 60 trials. The grating was presented in a Gaussian annulus of 11.4 cm, 
with a 10.85 degrees visual angle (1.47 cycles per degree). Outcome was 
signaled by the Dutch word “goed” (correct outcome) or the word “fout” 
(incorrect outcome), from now on referred to as “correct” and “error” 
outcome. The words were presented for three frames just below fixation. 
Outcome was either masked, by presenting both forward as well as backward 
masks (masks1-masks2-outcome-masks3-masks4) or unmasked, by presenting 
only forward masks (masks1-masks2-outcome). Each mask consisted of 6 
randomly scrambled letters (without the letters making up the words “goed” or 
“fout”). Masks’ types were presented two frames each. Outcome type (masked 
vs. unmasked) was randomly selected on each trial, under the constraint that it 
would occur on 50% of the trials within each block of 60 trials (Fig. 3.1A). 
 
Participants were instructed to report the orientation of the Gabor, and 
simultaneously their decision confidence in this decision, by pressing one of 
four response buttons with their left or right index or middle finger: left middle 
finger: CCW, sure; left index finger: CCW, unsure; right index finger: CW, 
unsure; right middle finger: CW, sure. Participants were also instructed to 
report the identity and visibility of the outcome by pressing one of four 
response buttons with their left or right index or middle finger: left middle 
finger – “error”, seen; left index finger – “error”, unseen; right index finger – 
“correct”, unseen; right middle finger – “correct”, seen. We defined unmasked 
outcome trials as trials on which the outcome was unmasked and participants 
reported it as “seen”. We defined masked outcome trials as trials on which 
outcome was masked and participants reported it as “unseen”.  
 
Throughout the main experiment, the contrast of the Gabor was fixed at the 
individual threshold level that yielded about 70% correct choices. Each 
participant’s threshold contrast was determined before the main experiment, 
using an adaptive staircase procedure, and was adapted during the experiment 
after each block. Participants performed between 12 and 17 blocks (distributed 
over two measurement sessions), yielding a total of 720–1020 trials per 
participant.  
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Tasks performed in the first session 
 
Passive viewing task 
In this control task, participants fixated their gaze at the center of the screen 
and passively viewed the words “goed” (correct) and “fout” (error), randomly 
presented for 100 times. Words were presented for three frames (100 Hz 
refresh rate) and were not masked.  
 
Forced-choice visibility task 
In this control task, the words “goed” (correct) or “fout” (error) were presented 
in the same way as in the main experiment (see above), that is, in a masked or 
unmasked manner (same timings and presence or absence of masks as 
described above). Participants were instructed to report the identity of the 
presented words, by pressing one of two response buttons with their left or 
right index finger: left – “error”; right – “correct” (the stimulus-response 
mapping was counter-balanced across trials, and was indicated on the screen 
after each trial). Participants performed two blocks, yielding a total of 200 trials 
per participant. In total we tested 49 participants in the first behavioral and 
eye-tracking session. Six subjects did not enter the main experiment due to 
various reasons (e.g. drop-out, extensive blinking). Of the remaining 43 
subjects, the 32 subjects with the lowest discrimination performance score 
were invited for the second and third session. Discrimination performance for 
the 32 included subjects varied between 49% and 73% correct. Included 
subjects were on average 98.87% (SEM=0.02) correct in the unmasked 
condition and 61.9% (SEM=0.02) correct in the masked condition. The average 
percentage of correct responses for masked words exceeded chance-level 
performance (t31=11.26, p<0.001).  
 
Priming task 
In this control task, participants were instructed to respond as fast and 
accurately as possible to eight Dutch words, five of positive (laugh, happiness, 
peace, love, fun) and 5 (death, murder, angry, hate, war) of negative in valence, 
by pressing one of two response buttons with their left or right index finger: 
left – negative; right – positive. Unknown to our participants, these words were 
preceded by the masked words “goed” and “fout”, respectively “correct” and 
“incorrect”, three frames each before the positive or negative word targets (12 
frames each) in 100 Hz refresh rate. This yielded congruent and incongruent 
trials. Participants performed six blocks, yielding a total of 480 trials per 
participant.  
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Procedures 
Participants were seated in a silent and dark room (dimmed light), with their 
head positioned on a chin rest, 60 cm in front of the computer screen. The 
main task was performed while measuring Pupil and EEG responses. 
 
Eye data acquisition and preprocessing 
The diameter of the left eye’s pupil was tracked at 1000 Hz with an average 
spatial resolution of 15–30 min arc, using an EyeLink 1000 system (SR Research, 
Osgoode, Ontario, Canada). Periods of blinks and saccades were detected using 
the manufacturer’s standard algorithms with default settings. The subsequent 
data analyses were performed using custom-made Python software. The 
following steps were applied to each pupil recording: (i) linear interpolation of 
values measured just before and after each identified blink (interpolation time 
window, from 150 ms before until 150 ms after blink), (ii) temporal filtering 
(third-order Butterworth, low-pass: 10 Hz), (iii) removal of pupil responses to 
blinks and to saccades, by first estimating these responses by means of 
deconvolution, and then removing them from the pupil time series by means of 
multiple linear regression (Knapen et al., 2016), and (iv) conversion to units of 
modulation (percent signal change) around the mean of the pupil time series 
from each block. 
 
Quantification of outcome-evoked pupillary responses 
We computed outcome-evoked pupillary response amplitude measures for 
each trial as the mean of the pupil diameter modulation values in the window 
0.4 s to 1.9 s from outcome, minus the mean baseline pupil value during the 0.5 
s before the outcome. This time window was determined by testing the grand 
mean (across all trials) outcome-evoked pupillary response against 0 (see Fig. 
3.2A). 
 
EEG data acquisition and analysis 
EEG data was recorded and sampled at 512 Hz using a BioSemi Active Two 
system. Sixty-four scalp electrodes were distributed across the scalp according 
to the 10–20 International system and applied using an elastic electrode cap 
(Electro-cap International Inc.) Additional electrodes were two electrodes to 
control for eye-movements (left eye, aligned with the pupil, vertically 
positioned, each referenced to their counterpart), two reference electrodes at 
the ear lobes to be used as reference and two electrodes for heartbeat 
(positioned at the left of the sternum and in the right last intercostal space).  
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Preprocessing 
Standard pre-processing steps were performed in EEGLAB toolbox in Matlab. 
Data were bandpass filtered from 0.1 to 40 Hz off-line for ERP analyses. Epochs 
ranging from -1 to 2 seconds around outcome presentation were extracted. 
Linear baseline correction was applied to these epochs using a -200 to 0 ms 
window. The resulting trials were visually inspected and those containing 
artifacts were removed manually. Moreover, electrodes that consistently 
contained artifacts were interpolated, entirely or per bad epoch. Finally, using 
independent component analysis, artifacts caused by blinks and other events 
not related to brain activity were manually removed from the EEG data. 
 
Quantification of outcome-related ERP components 
We focused on ERP components related to outcome processing with different 
latencies and topographical distributions. To zoom in on these specific 
components, a central region of interest (ROI) was defined (including the 
averaged signal of electrodes F1, Fz, F2, FCz, FC1, FC2, Cz, C1, C2, CPz, CP1, CP2, 
Pz, P1, P2). 
 
Task performance 
To assess how participants used the available response options we plotted the 
frequency of choosing each of the 4 response buttons (Fig. 3.1B). Also, to check 
participants metacognition about their own performance we used a d-prime 
measure of their accuracy when discriminating between sure and unsure 
responses (Fig. 3.1C). To assess whether masked words produced an effect in 
behavior in our priming control task, isolated from the task context, we 
analyzed differences in reaction times and accuracy between congruent and 
incongruent conditions (Fig. 3.1D). We further investigated the effect of 
outcome awareness (unmasked/masked); correctness (correct/incorrect) and 
confidence on being correct (sure/unsure) on both the pupil percentage of 
signal change and event-related potentials (ERPs) following the presentation of 
the outcome. Repeated-measures ANOVAs were performed considering 8 trial 
types, namely 2 (awareness) * 2 (correctness) * 2 (confidence) in post-outcome 
time windows. Statistical analyses were performed in Matlab (Mathworks). 
 
Results 
Behavior: Gabor discrimination and confidence 
The adaptive staircase procedure performed before the main experiment was 
successful, as evidenced by an accuracy level for Gabor orientation of 70.9% 
(SEM=0.44) in the main experiment, averaged across the two experimental 
sessions. Further, participants chose each of the four response options 
approximately equally often, enabling similar trial numbers in each cell for our 
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follow-up analyses (CCW-sure: 0.248; CCW-unsure: 0.240; CW-unsure: 0.252; 
CW-sure: 0.260, see Fig. 3.1B). Participants were significantly better for Gabor 
decisions classified as sure compared to unsure, indicating that, at the group 
level, participants were able to accurately introspect their performance on the 
Gabor orientation task (Fig. 3.1C; Gabor d’ sure=1.71, SEM=0.069; Gabor d’ 
unsure=0.61, SEM=0.039; t1,31=12.34, p<0.001). As one would expect, 
participants responded faster when they were correct compared to when they 
were incorrect (1.28 seconds, SEM=0.039 vs. 1.41 seconds, SEM=0.041; 
t1,31=8.49, p<0.001) and they were faster when they indicated to be sure 
compared to unsure about their Gabor orientation response (1.19 seconds, 
SEM=0.038 vs. 1.46 seconds, SEM=0.044; t1,31=12.89, p<0.001).  
 
Behavior: outcome visibility  
In the main task, outcome sensitivity (d’) was high for unmasked trials (d’=7.97, 
SEM=0.29) and low on masked trials on which participants reported not to have 
seen the outcome (d’=0.62, SEM=0.07). Although masked and subjectively 
indicated as unseen (see Fig. 3.1A), participants still had above chance 
performance for masked trials (t1,31=9.2, p<0.001). We are aware of issues 
regarding post-hoc trial selection, for example when sorting trials based on 
single trial unseen vs seen scores, as discussed in Shanks (2017), therefore we 
refer to masked and unmasked trials throughout this manuscript and do not 
claim unconsciousness of the stimulus material in any condition.  
 
Behavior: masked priming 
Before we explore the impact of masked and unmasked outcomes on pupil size 
and P3 amplitudes we wanted to make sure that masked stimuli were able to 
induce typical behavioral priming effects. Therefore subjects have also 
performed a priming task with the same stimuli as used in the main task, now 
used as primes (see Methods). Although strongly masked, positive and 
negative words did impact behavior as indicated by this priming task (Fig 3.1D). 
Reaction times were slower to incongruent trials (e.g. the word “correct” 
paired with a negative target word), compared to congruent trials (e.g. 
“correct” paired with a positive target word) (incongruent: 0.484 seconds, 
SEM=0.010, congruent: 0.477 seconds, SEM=0.010; t1,31=4.529, p<0.001). 
Overall accuracy was high, but still accuracy was worse on incongruent trials 
than on congruent trials (incongruent: 95.0, SEM=0.8; congruent: 96.3, 
SEM=0.4; t1,31=2.083, p=0.046).  
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Figure 3.1. Task description and behavioral results. (A) Sequence of events during a single trial. 
Participants had to report the direction and level of confidence in the decision about a Gabor 
patch by pressing one of four buttons (CCW sure; CCW unsure, CW unsure, CW sure). After the 
decision interval veridical outcome was presented, which could be either masked or not masked. 
Outcome was followed by a forced-choice visibility question asking for both the outcome identity 
(correct/error) and its visibility (seen/unseen). Participants indicated their response by pressing 
one of four buttons (error seen; error unseen, correct unseen, correct seen). (B) Fraction of trials 
per Gabor response option among the four possible response categories. (C) Signal detection 
theoretic d’, separately for sure and unsure trials. Data points, individual subjects. Stats, paired 
samples t-test. (D) Reaction time (left panel) and accuracy (right panel) in the priming task. Error 
bars, SEM.; stats, permutation test. CCW = counter-clock-wise, CW = clock-wise. 
 
Outcome-related pupil modulations 
Next we focused on outcome-evoked pupil modulations. Across all trials, pupil 
diameter was strongly modulated during the outcome interval and differed 
significantly from baseline between 400 and 1900 ms (Fig. 3.2A). From now on 
we refer to this as the outcome-modulated interval. We extracted the pupil 
response during this entire interval (400-1900 ms time-window) to test how 
pupil dilation was modulated by decision correctness, decision confidence and 
outcome visibility.  
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First, we observed a 3-way interaction between decision confidence, 
correctness and visibility (F1,31=9.28, p=0.0047). To further unpack this 
interaction we performed two 2-way ANOVAs on masked and unmasked 
outcome separately. After unmasked outcomes, the pupil dilated more after a 
negative outcome (indicating that the response was incorrect) compared to a 
positive outcome (main effect of correctness: F1,31=45.75, p<0.001). Crucially, 
this correctness effect was modulated by participants confidence in their 
previous Gabor decision (F1,31=23.38, p<0.001), in such a way that the 
difference between error and correct outcome processing was larger for sure 
responses than unsure responses (Fig. 3.2B). In contrast, in the masked 
condition, negative outcomes yielded larger pupil dilation than positive 
outcomes (F1,31=4.96, p=0.033), but this effect was not modulated by decision 
confidence (Fig. 3.2C).  
 
We wondered whether the outcome-related pupil dilation may have been 
driven by low-level stimulus characteristics, such as luminance, or potentially 
by the intrinsic valence of the words used as outcome (e.g. being of 
positive/negative valence). To test this we performed a control task, performed 
before the main task, in which we displayed the two words fully visible and the 
words were only passively viewed (see Methods for details). Control analyses 
demonstrate that our pupil dilation effects cannot be explained by an intrinsic 
pupil response to positive/negative valence of the words or their luminance (or 
other low-level characteristics), because during passive viewing participants 
pupil responses showed the exact opposite pattern of correctness as observed 
during the main task (compare the results of Fig. 3.2D to Fig 3.2E).  
 

 
 
Figure 3.2. Pupil dilation results. (A) Group average outcome-elicited pupil response time course. 
Grey box: time window for computing scalar response amplitudes. Black bar: time course 
significantly different from 0 (p<0.05, paired-samples t-tests). (B) Pupil dilation after unmasked 
outcome sorted by correctness and confidence. (C) Pupil dilation after masked outcome sorted by 
correctness and confidence. (D) Group average pupil response during the passive viewing task 
with unmasked “correct” and “incorrect” words presented. Shadows indicate the SEM. Black bar: 
time courses for significant differences. (E) Group average outcome-elicited pupil response time 
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course after correct and incorrect unmasked outcome. Black bar, time courses significantly 
different. All panels: Shading or error bars, SEM. Labels: = reflects a main effect between the two 
separate lines in the plot. \ reflects a main effect of the factor plotted on the x-axis. X reflects and 
interaction effect between the factors plotted. 
 
Outcome-related P3 ERP modulations 
We focused on ERP components related to outcome processing to determine 
whether outcome-related brain responses were impacted by correctness, 
decision confidence and the level of outcome awareness (Fig. 3.3). We focused 
our hypothesis-driven analyses on the P3 ERP component, which has been 
strongly linked to pupil-linked neuromodulation (Correa et al., 2017a; Jepma et 
al., 2016; Nieuwenhuis, 2011) and outcome processing (Nieuwenhuis et al., 
2005). A 3-way repeated measures ANOVA on the amplitude of the P3 
component revealed that there was a triple interaction between the factors 
correctness, confidence and awareness (F1,31=4.73, p=0.037, based on a central 
ROI, 500-800 ms, see Methods). Further, in general P3 amplitude was larger for 
unmasked outcomes than masked outcomes (main effect of awareness: 
F1,31=62.84, p<0.001) and awareness interacted with correctness (F1,31=42.05, 
p<0.001) and confidence (F1,31=6.66, p=0.015).  
 
To further understand the relationship between the factors we performed two 
2-way ANOVAs with the factors correctness and confidence, separately for 
masked and unmasked outcome, similarly as for our pupil dilation results. In 
the unmasked condition the P3 component was larger for negative compared 
to positive outcomes (F1,31=67.07, p<0.001, Fig. 3.3A/B) and this effect 
interacted with decision confidence (F1,31=7.8, p=0.01, Fig. 3.3A/B), mimicking 
our pupil dilation results (the difference between error and correct outcome 
was larger for sure responses than unsure responses). On the other hand, when 
outcomes were masked, the pattern of results was very different. The 
amplitude of the P3 was larger for unsure compared to sure decisions (main 
effect of confidence: F1,31=0.25, p=0.01, Fig. 3.3C/D) but the correctness effect 
was absent (F1,31=67.07, p=0.15) and correctness did not interact with 
confidence (F1,31=7.8, p=0.98).  
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Figure 3.3. P3 ERP results. (A) Time courses of the ERP time-locked to the unmasked outcome 
presentation, based on centrally located electrodes (see inset). The ERP curves show the response 
(mV) according to accuracy and confidence in the previous decision. (B) ERP amplitude from 500-
800 ms from unmasked outcome onset according to accuracy and confidence in the decision. 
Error bars, SEM. (C) Time courses of ERP, time-locked to the masked outcome presentation, based 
on centrally located electrodes (see inset). The ERP curves show the response (mV) according to 
accuracy and confidence in the decision. (D) ERP amplitude from 500-800 ms from masked 
outcome onset according to accuracy and confidence in the decision. Error bars, SEM. Labels: = 
reflects a main effect between the two separate lines in the plot. \ reflects a main effect of the 
factor plotted on the x-axis. X reflects and interaction effect between the factors plotted. 
 
Discussion 
We investigated how decision correctness, decision confidence and outcome 
awareness affects outcome processing during a simple perceptual decision-
making task. We focused our analyses on two measures, pupil diameter and 
the P3 ERP component, both arising after outcome presentation and both 
considered proxies of the brain’s central arousal state, which is modulated by 
the catecholaminergic neurotransmitter system (NE and DA) (Jepma et al., 
2016; Nieuwenhuis, 2011; Nieuwenhuis et al., 2005). In the following, we will 
first summarize and interpret the results obtained for fully visible outcomes, 
after which we will discuss the results related to masked outcomes.    
 
In our task, visible (unmasked) error feedback generated a larger P3 ERP 
amplitude and stronger pupil dilation compared with correct outcomes, which 
might indicate a surprise for receiving “error” as feedback in a staircased 70% 
correct task (Braem et al.,  2015). Further, we observed a clear prediction error 
pattern for both measures for fully visible outcomes (Fig. 3.2 and Fig. 3.3): the 
correctness effect (error vs correct outcome) was modulated by participant’s 
confidence in the previous decision. We observed the largest P3/pupil 
responses on confident decisions (“sure” trials) that nonetheless led to error 
feedback, therefore likely signaling surprise about receiving an incorrect 
outcome (and the need of behavioral adaptation). Similarly, on unsure trials on 
which subjects nonetheless received positive feedback, larger ERP/pupil 
amplitude signaled surprise about the correctness of the previous decision, as 
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compared with sure trials on which subjects turned out to be correct in the end 
(on these trials there was no surprise about the outcome that was received). 
Therefore, these findings mimic a typical temporal reward prediction error 
response, reflecting the difference in value between a received reward and a 
predicted reward (Schultz, 1998). The observation that both pupil dilation and 
the P3 component signal a prediction error signal is in line with observations 
that DA activity is linked to prediction errors (Bayer & Glimcher, 2005; Lak, 
Stauffer, & Schultz, 2014; Schultz, Dayan, & Montague, 1997; Schultz, 1998). 
They are also in line with the locus coeruleus LC-P3 theory (Levy et al., 2010), 
which suggests that the P3 may reflect the response of the LC-NE system to the 
outcome of internal decision processes and the consequent effects of NE 
potentiation (tuning) required for behavioral adaptation. Likewise, pupil 
dilation has been associated with tracking uncertainty (de Gee et al., 2014; 
Lempert et al., 2015; Urai et al., 2017), predicting both confidence and 
metacognitive accuracy for auditory decisions (Lempert, Chen, & Fleming, 
2015). In our study, higher than predicted rewards (generating positive PE) 
would elicit brief catecholamine activations (DA, NE), while lower-than-
predicted rewards (generating negative PE) would induce decreases in activity. 
Our interpretation for our findings in unmasked condition is that accurately 
predicted rewards do not change the overall arousal because it configures a 
condition in which no behavioral updating is necessary. However, the 
increment of arousal, as measured with both the P3 amplitude and pupil 
dilation, may be required for behavioral updating.  
 
In contrast to the results obtained based on fully visible outcomes, the results 
for masked outcomes were rather different. Data revealed that the pupil 
tracked only the difference between correct and incorrect decisions (larger 
pupil for error feedback), whereas the P3 tracked participants’ decision 
confidence (outcome processing on unsure trials generated larger P3 
amplitudes than on sure trials). While not claiming unawareness of the masked 
outcomes, it is striking that the incorporation of decision confidence and 
outcome value seemed to require full awareness, because none of the masked 
effects mimicked the response observed for fully visible feedback. 
Speculatively, the contradictory results obtained for pupil diameter (tracking 
correctness) and P3 amplitude (tracking confidence) may be explained by a 
potential two-component structure of phasic dopamine responses proposed 
recently, namely an initial fast stimulus detection process followed by a 
response valuation mechanism, accounting for subjective reward value 
(Schultz, 2016). Although speculatively, it may be that pupil size fluctuations 
reflect the first component of this response and the P3, the latter. We suggest 
this hypothesis because the initial component of the phasic dopamine reward 
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PE is a brief response that occurs in response to a variety of unpredicted events 
(Schultz, 2016). In our study, pupil dilation separated correct (frequent) from 
incorrect (rare) trials, these ones associated with a larger pupil amplitude. 
Through stimulus-driven salience, the early dopamine activation component 
might serve to transiently enhance the ability of rewards to induce learning and 
action. Higher salience would induce faster learning (Pearce & Hall, 1980). The 
initial dopamine response component might boost and sharpen subsequent 
reward value processing and ultimately increase action accuracy. Also, signals 
from the anterior cingulate cortex (ACC) to locus coeruleus (LC), indicating an 
adverse outcome during decision tasks (Botvinick, 2001), are possibly 
complemented by signals from the orbitofrontal cortex (OFC) to LC, indicating 
absence of an expected reward, leading to augment the LC phasic mode. This, 
in turn, would improve performance on subsequent trials by enhancing the LC 
phasic response to subsequent stimuli and thereby augmenting the gain of 
units responsible for task execution. In our study, even in the presence of 
masked outcome, such correctness effect could be detectable by pupil dilation. 
 
Overall from our study we observed that cortical and pupil signals were 
sensitive enough to reflect differences in reward valence and in people’s 
ongoing expectations even when outcomes were not reportable. However, it 
was only during full outcome awareness that both the P3 ERP and the pupil 
dilation measures mirrored a prediction error signal, reflecting an integration of 
outcome correctness modulated by the confidence in the decision. This offers 
further support for the utility of P3 and pupil dilation as proxies for 
neuromodulations accounting for outcome processing. 
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4. Pupil dilation oppositely predicts perceptual sensitivity and metacognitive 
insight during human perceptual decision-making 

 
Correa, C.M.C.1,2*, de Gee, J.W.1,2,3*, Weaver, M.D.1,2,4, 

Donner, T.H.3, van Gaal, S.1,2 
 

1Department of Psychology, University of Amsterdam, Nieuwe Achtergracht 
129-B, 1018 WT, Amsterdam, The Netherlands 
2Amsterdam Brain & Cognition, University of Amsterdam, Nieuwe Achtergracht 
129-B, 1018 WT Amsterdam, The Netherlands 
3Department of Neurophysiology and Pathophysiology, University Medical 
Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany 
4Department of Experimental and Applied Psychology, Vrije Universiteit 
Amsterdam, 1081BT Amsterdam, The Netherlands  
*Shared first authors, equal contribution 
 
Abstract  
People often make different decisions, and experience varying degrees of 
decision confidence, when faced with the same external evidence from 
moment-to-moment. Such variability of performance and metacognitive insight 
may be attributed to fluctuating noise levels in the brain’s decision-making 
circuits. Non-luminance related variations in pupil size are considered a proxy 
for these sources of noise and are driven by neuromodulatory fluctuations in 
arousal state. Here we investigate how pupil-linked arousal predicts sensory 
decision-making performance and the reliability of metacognitive 
introspection. Thirty-two participants performed a challenging perceptual 
decision-making task that allowed us to compute signal detection theoretic 
(SDT) measures of perceptual sensitivity and metacognitive insight. We 
observed that pupil responses scale linearly with decision accuracy (SDT d’): 
large pupil dilation was associated with better discrimination performance. In 
sharp contrast, larger pupils were predictive of worse metacognitive insight 
(SDT meta-d’ efficiency). These results show that bottom-up stimulus encoding 
and top-down metacognitive evaluation are differentially affected by 
fluctuations in the brain’s arousal system. 
 
Introduction 
When people are repeatedly presented with the same sensory input they often 
make different decisions (Glimcher, 2005; Gold & Shadlen, 2007; Shadlen et al., 
1996; Sugrue, Corrado, & Newsome, 2005; Wyart & Koechlin, 2016). Here we 
address how such variability in decision-making occurs when confronted with 
the same objective evidence. In the absence of external stimulation the state of 
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neural networks fluctuates on slow and rapid time-scales. These moment-to-
moment fluctuations are associated with varying levels of alertness, arousal 
and attention, which may contribute to variability in decision-making 
(Glimcher, 2005; Shadlen et al., 1996). These state fluctuations (also called 
cortical state) are controlled by neuromodulatory systems of the brainstem, 
which have widespread projections to the cortex, and strongly shape stimulus 
driven neuronal responses (Aston-Jones & Cohen, 2005). For example, it has 
been shown that fluctuations in network state activity influences the latency, 
magnitude and variability of the sensory evoked neural signal (Lima, Singer, & 
Neuenschwander, 2011; McGinley et al., 2015; Zagha et al., 2013). This 
interaction between internal fluctuations in cortical state and sensory evoked 
neural responses may explain variations in task performance and behavior, that 
were previously marginalized as noise (de Gee et al., 2014; Kahneman & Beatty, 
1966; Nassar et al., 2012; Urai et al., 2017). 
 
Recent studies have shown non-luminance driven fluctuations in pupil size may 
reflect a proxy for neuromodulatory activity and the level of the cortical arousal 
state (Aston-Jones & Cohen, 2005; de Gee et al., 2014; Gilzenrat et al., 2010; 
Harris & Thiele, 2011; Lee & Dan, 2012; Schwalm & Jubal, 2017). Both network 
state fluctuations and variations in pupil size are driven by the release of 
noradrenaline (NA) and acetylcholine (ACh) (Aston-Jones & Cohen, 2005; Goard 
& Dan, 2009; Reimer et al., 2016). Although the pupil may act as a physiological 
index of the arousal system, ranging from aroused (wide pupils) to unaroused 
(constricted pupils) levels (McGinley et al., 2015; Reimer et al., 2014), it is 
challenging to identify which specific elements of decision processes are 
associated with phasic (fast) moment-to-moment changes in arousal. Here we 
investigate how phasic stimulus-related arousal changes, as measured by pupil 
size, associate with the accuracy of perceptual decisions and the ability to 
evaluate the reliability of such decisions, referred to as metacognitive insight. 
 
Participants performed a challenging perceptual decision-making task in which 
they discriminated the orientation of a low-contrast Gabor stimulus while 
simultaneously indicating their confidence in this decision (Figure 4.1A). 
Discrimination performance was individually titrated using an adaptive 
staircase procedure to ensure that differences in behavior could only be 
attributed to internal noise fluctuations in the brain’s decision-making circuits. 
This set-up allowed us to link stimulus-elicited pupil responses to participants’ 
perceptual sensitivity (type-1 measures: e.g. d’ and criterion) and 
metacognitive insight (type-2 measures, e.g. meta-d’ and meta-criterion) in a 
signal detection theoretic (SDT) framework (Fleming & Lau, 2014; Green & 
Swets, 1966; Maniscalco & Lau, 2012). 
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Materials and methods 
Participants 
Thirty-two students from the University of Amsterdam (23 women; aged 18-24) 
participated in the study for course credits or financial compensation. All 
participants gave their written informed consent prior to participation, had 
normal or corrected-to-normal vision and were naive to the purpose of the 
experiment. All procedures were executed in compliance with relevant laws 
and institutional guidelines and were approved by the local ethical committee 
of the University of Amsterdam. 
 
Behavioral task 
Participants participated in three experimental sessions, each separated by less 
than one week. Participant inclusion criteria are explained in detail elsewhere 
(Correa et al., 2017a). Here we focus on the main perceptual task that is 
relevant for addressing the questions in this paper. In the orientation 
discrimination task, participants had to decide on the direction of a Gabor 
stimulus and had to indicate their confidence in this decision. Each trial 
consisted of eight consecutive intervals (Figure 4.1A): (i) the baseline interval 
(0.6 s); (ii) the stimulus interval (500 ms; interrogation protocol), the start of 
which was signaled by a tone (200 ms duration); (iii) the response period 
(terminated by the participant’s response); (iv) a delay (uniformly distributed 
between 1.5 and 2 s); (v) the feedback interval (0.5 s), the start of which was 
signaled by the occurrence of a tone (200 ms duration); (vi) a delay (uniformly 
distributed between 1.5 and 2 s); (vii) the feedback identity response period 
(terminated by the participant’s response); (viii) an inter-trial interval (ITI; 
uniformly distributed between 1 and 1.5 s). 
 
The luminance across all pixels was kept constant. A sinusoidal grating (5 cycles 
per degree) was presented for the entire stimulus interval. The grating was 
either tilted 45° (clockwise, CW) or 135° (counter-clockwise, CCW). Grating 
orientation was randomly selected on each trial, under the constraint that it 
would occur on 50% of the trials within each block of 60 trials. The grating was 
presented in a Gaussian annulus, with an average distance (± SD) to fixation of 
1.47 degrees. Participants were instructed to report the orientation of the 
grating, and simultaneously their decision confidence, by pressing one of four 
response buttons with their left or right index or middle finger: left middle 
finger: CCW, sure; left index finger: CCW, unsure; right index finger: CW, 
unsure; right middle finger: CW, sure. Participants were encouraged to use the 
confidence buttons equally often. Further, participants received veridical 
feedback about their decision, which was signaled by the Dutch word “goed” 
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(correct feedback) or the Dutch word “fout” (incorrect feedback). The words 
were presented for 30 ms. Feedback was either masked or unmasked (50/50). 
Further, participants were instructed to report the identity and visibility of the 
feedback by pressing one of four response buttons with their left or right index 
or middle finger: left middle finger – “error”, seen; left index finger – “error”, 
unseen; right index finger – “correct”, unseen; right middle finger – “correct”, 
seen. In the present study we will focus on the Gabor response only. Feedback-
related data is presented in Correa et al., (2017a).  
 
Throughout the main experiment, contrast of the grating was fixed at the 
individual threshold level that yielded about 70% correct choices. Each 
participant’s threshold contrast was determined before the main experiment, 
using a staircase procedure that could be adapted at the end of each block of 
the main experiment, to yield 70% correct choices. Participants performed 
between 12 and 17 blocks (distributed over two measurement sessions), 
yielding a total of 720–1020 trials per participant. Stimuli were presented on a 
screen with a spatial resolution of 1280×720 pixels, run at a vertical refresh rate 
of 100 Hz.  
 
Eye data acquisition 
Participants were seated in a silent and dimmed light room, with their head 
positioned on a chin rest, 60 cm in front of the computer screen. The diameter 
of the left eye’s pupil was tracked at 1000 Hz with an average spatial resolution 
of 15–30 min arc, using an EyeLink 1000 system (SR Research, Osgoode, 
Ontario, Canada). We also acquired EEG data, but these were not analyzed for 
the present study. 
 
Analysis of task-evoked pupil responses 
Periods of blinks and saccades were detected using the manufacturer’s 
standard algorithms with default settings. Subsequent data analyses were 
performed using custom-made Python software. The following steps were 
applied to each pupil recording: (i) linear interpolation of values measured just 
before and after each identified blink (interpolation time window, from 150 ms 
before until 150 ms after blink), (ii) temporal filtering (third-order Butterworth, 
low-pass: 10 Hz), (iii) removal of pupil responses to blinks and to saccades, by 
first estimating these responses by means of deconvolution, and then removing 
them from the pupil time series by means of multiple linear regression (Knapen 
et al., 2016), and (iv) conversion to units of modulation (percent signal change) 
around the mean of the pupil time series from each block. 
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Quantification of stimulus-evoked pupillary responses (SPR) 
We computed stimulus-evoked pupillary response (SPR) amplitude measures 
for each trial as the mean of the pupil diameter modulation values in the 
window −0.5 s to 3.0 s from stimulus onset, minus the mean baseline pupil 
value during the 0.5 s before the stimulus. SPR was negatively correlated to 
pretrial baseline pupil size. To isolate the task-evoked component, we removed 
effects of pretrial baseline pupil size from SPR (via linear regression). In all 
analyses, we used eight equally populated bins of single-trial SPR amplitudes, 
sorted by amplitude. As a control analysis, trial-to-trial variations in RT had 
been removed (via linear regression) from the pupil response (see figure 4.4).  
 
Analysis and modeling of choice behavior  
Reaction time (RT) was defined as the time from stimulus offset until the 
button press. In a model-free analysis, we computed the proportion of “CW”- 
choices separately for the eight SPR bins. We then modeled the effects of 
phasic arousal (as indexed by SPR) on choice behavior using two approaches. 
 
SDT modeling of perceptual sensitivity 
We computed the SDT-metrics d’ and criterion (Green & Swets, 1966) 
separately for the eight bins of SPR. We estimated d’ as the difference between 
z-scores of hit- and false-alarm rates. We estimated criterion by averaging the 
z-scores of hit- and false-alarm rates and multiplying the result by −1.  
 
SDT modeling of metacognitive efficiency   
We computed the SDT-metrics meta-d’ efficiency and meta-criterion separately 
for the eight bins of pupil size. Type-2 meta-d’ efficiency (here often referred to 
as metacognitive insight) is a relative measure of metacognitive sensitivity and 
reflects the extent to which confidence estimates accurately reflect the 
correctness of the decision (meta-d’/d’) (Fleming, 2017; Fleming & Lau, 2014; 
Maniscalco & Lau, 2012). If meta-d’ is equal to d’ then a subject is 
metacognitive “ideal”, translating all the available information from the type-1 
task into performance in the type-2 task (Fleming & Daw, 2017). Meta-
criterion, on the other hand, measures the overall level of confidence 
expressed, independent of whether the trial is correct or incorrect (Fleming & 
Lau, 2014).  
 
Linking SDT measures to pupil measures 
Next, we used sequential polynomial regression analysis (Draper & Smith, 
1998) to quantify the dependence of all behavioral measures on SPR. This 
procedure allowed us to systematically test whether SPR predominantly 
exhibited no (zero-order polynomial), a monotonic (first-order polynomial), or a 
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non-monotonic (second-order polynomial) effect on behavior. The behavioral 
metric y was modeled as a linear combination of polynomial basis functions of 
eight SPR bins: 
 
   y	~	𝛽W + 𝛽(𝑇𝑃𝑅( + 𝛽Y𝑇𝑃𝑅Y     (1) 
 
with β as polynomial coefficients. The corresponding regressors were 
orthogonalized, and each model was sequentially tested in a serial hierarchical 
analysis, based on F-statistics. This analysis was performed at the group level, 
and it tested whether adding the next higher order model yielded a significantly 
better description of the response than the respective lower order model. We 
tested models from the zero-order (constant, no effect of SPR) up to the 
second-order (quadratic, non-monotonic). If the first-order model was 
significantly better than the zero-order model at the group level, we fitted a 
linear model and tested the corresponding linear correlation coefficients across 
the group. If the second-order model was significantly better than the first-
order model at the group level, we fitted a quadratic model between SPR and 
behavior for each subject and tested the second-order coefficients across the 
group. 
 
Having established robust first-order (monotonic) relationships between SPR 
and behavior, we then characterized the timing of these effects by means of a 
sliding window (linear) correlation analysis over the interval from 1 s before the 
Gabor to 3 s after response (window length: 250 ms, step size: 25 ms). We 
computed separate, baseline-corrected SPR values (see section Quantification 
of stimulus-evoked pupillary responses) for each position of the window. Per 
time window, we then sorted trials by the SPR-values into eight bins, and 
correlated these values with behavioral metrics for the corresponding bins. This 
yielded time courses of the correlation between SPR and behavior. 
 
Statistical comparisons  
We used nonparametric paired permutation tests to test for significant 
relationships between behavioral estimates and stimulus-evoked pupil 
responses. Statistical tests were performed at the group level, using the 
individual participants’ mean parameters as observations. For each 
comparison, we randomly permuted the labels of the observations (e.g., the 
regressor label of the beta estimates), and recalculated the difference between 
the two group means (10,000 permutations). The p-value was the fraction of 
permutations that exceeded the observed difference between the means. 
Trials were pooled into eight bins of stimulus-evoked pupil responses (pupil 
size) amplitudes.  
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Results 
The individual staircase procedure was successful, as indicated by an average 
Gabor orientation accuracy of 70.9% (SEM=0.44). Participants distributed their 
responses equally across the four possible response categories (Figure 4.1B). 
Figure 4.1C shows that participants were able to introspect their perceptual 
performance well since d’ was considerably higher for sure than unsure 
responses.  
 

 
 
 
Figure 4.1. Task, response distribution and sensitivity dependent on decision confidence. (A) 
Sequence of events during a single trial. Participants reported the direction and level of 
confidence in the decision about a Gabor patch by pressing one of four buttons (CCW sure; CCW 
unsure, CW unsure, CW sure). After the decision interval veridical feedback was presented (see 
Methods for details). (B) The proportion of trials per Gabor response option. CCW=counter-clock-
wise, CW=clock-wise. (C) Signal detection theoretic d’, separately for sure and unsure trials. Data 
points, individual subjects. All panels: group average (N=32); error bars, s.e.m.; stats, 
permutation test. 
 
In order to quantify the association between trial-to-trial fluctuations in 
stimulus-evoked pupil-linked arousal and participants’ perceptual accuracy we 
binned pupil size per subject in eight bins (SPR bins) and regressed it to 
predefined type-1 and type-2 measures of performance (within-subject 
analysis). Figure 4.2A shows the average time course of the pupil from stimulus 
(Gabor) onset, plotted as the percentage signal change from baseline (see 
Methods for details). Across all trials, pupil diameter was strongly modulated 
during the stimulus presentation interval. For our main analyses, we extracted 
the pupil response during the post-stimulus interval to regress it to behavioral 
measures (time-window used: 0.5-3 seconds, highlighted in a transparent box 
in Fig. 4.2A, see Methods for details). We will show in Fig. 4.3 that our results 
do not depend on the time-window that is selected for these analyses.  
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Figure 4.2. The relation between phasic stimulus-evoked pupil responses and type-1 and type-2 
performance. (A) Task-evoked pupil response time course locked to stimulus onset. Figures (B) 
until (G) depict the relationship between pupil size and various behavioral measures (8 pupil bins; 
linear fits were plotted wherever the first-order fit was superior to the constant fit (see Materials 
and Methods). (B) Reaction time, (C) d’, (D) criterion, (E) confidence, (F) meta-d’, (G) meta-
criterion. All panels: group average (N=32); shading or error bars, shaded areas, s.e.m.; stats, 
Wilcoxon signed-rank test. 
 
Stimulus-evoked pupil responses are associated with type-1 performance 
Figure 4.2B shows that RT, reflecting a global measure of task demands and 
participants' effort, is longer when the pupil is larger (r=0.172, p=0.047). More 
importantly, large SPRs were consistently accompanied by an improvement in 
participants’ d’ (Fig. 4.2C). The relationship between pupil and d’ was positive 
and linear: larger pupils were associated with better perceptual discrimination 
(r=0.212, p=0.002). Although we observed a relationship between pupil size 
and d’, such a relationship was absent between pupil dilation and criterion 
(r=0.12, p=0.122, Fig. 4.2D).  
 
Stimulus-evoked pupil responses are associated with type-2 performance 
Next, we investigated the relationship between pupil size and participant’s 
metacognitive efficiency of their performance. First, as expected based on the 
generally observed positive relationship between d’ and confidence (when 
performance is higher, confidence is higher, see also Fig. 4.1C), pupil dilation 
also showed a positive and linear relation with participants’ overall confidence 
expressed in their decision (Fig. 4.2E). Confidence was higher when pupil size 
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was larger (r=0.342, p<0.01). However, although pupil size increases linearly 
and positively with d’ and confidence, the opposite pattern was observed for 
meta-d’ efficiency: the reliability of metacognitive evaluation. Meta-d’ 
efficiency (meta-d’/d’) reflects the ability to introspect the reliability of 
perceptual performance, corrected for individual differences in direct task 
performance (d’) (Fleming, 2017; Fleming & Lau, 2014; Maniscalco & Lau, 
2012). Fig. 4.2F shows that larger stimulus-evoked pupil responses are 
associated with a lower meta-d’ efficiency (r=-0.147, p=0.035). Finally, Fig. 4.2G 
shows that meta-criterion, the overall tendency to report being sure versus 
unsure (being conservative or liberal in the expression of confidence) is not 
related to pupil size (r=0.039, p=0.646).  
 
To rule out that none of these results were biased by differences in RT between 
pupil bins we ran all of the above analyses while regressing out RT. In Figure 4.3 
we show that these results were very similar while regressing out RT.  
 

 
 
Figure 4.3. The relationship between phasic decision-related pupil responses and type-1 and type-
2 performance measures while regressing out reaction times (see Materials and Methods for 
details). 
 
Finally, to better understand the temporal profile of the association between 
pupil size and type-1 (d’ and criterion) and type-2 (confidence, meta-d’ and 
meta-criterion) measures of performance, we plotted the correlation 
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coefficient between pupil size and the relevant performance measures, either 
time-locked to the Gabor (top panels) or time-locked to the response (bottom 
panels) for comparison (Fig. 4.4). The Gabor-locked analysis shows that pupil 
dilation correlates positively with d’ and confidence, but interestingly, it shows 
that this relationship is already observed before the response (Fig. 4.4A and 
4.4B). Notice that criterion shows a positive correlation with pupil size, but only 
after the response has been given (Fig. 4.4C). On the other hand, participants’ 
meta-d’ correlated negatively with pupil size both before and after Gabor 
presentation (Fig. 4.4B).  
 

 
 
Figure 4.4. Time course of the correlation between pupil size and type-1 and type-2 measures 
of performance, both Gabor-locked (top, A, B) and response-locked (bottom, C, D). (A and C) 
Sliding window linear correlation between pupil response, d’ and criterion. (B and D) Sliding 
window linear correlation between pupil size, confidence, meta-d’ and criterion. Pupil size is 
included as a reference in all figures. All panels: group average (N=32), dotted vertical line, 
median RT; horizontal colored lines, significant time windows (compared to zero; p<0.05 
uncorrected); shading, s.e.m.; stats, permutation test. 
 
Discussion 
In the present study we showed, for the first time, that pupil dilation predicts 
participants’ perceptual sensitivity and metacognitive insight in opposite ways. 
Under high stimulus-evoked pupil dilation (i.e., higher arousal), participants 
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were better at discriminating the orientation of low-contrast Gabor patches (as 
reflected in a higher d’), but at the same time had more difficulty judging the 
accuracy of this decision, as reflected by a lower meta-d’ efficiency. 
 
These findings are in line with an influential theory of catecholamine function, 
which proposes that norepinephrine and dopamine activity are related to gain 
regulation in sensory brain regions, tuning neural network dynamics to 
optimize information processing, possibly enabling stimuli to be better encoded 
under high stimulus-elicited phasic arousal (Aston-Jones & Cohen, 
2005). Arguably, glutamate and norepinephrine release mutually enhance and 
amplify activation of prioritized representations, increasing perceptual and 
memory selectivity under arousal (Mather et al., 2016). Although most of the 
studies have been performed in animals, recently, Warren and collaborators 
(2016) reported that the effect of baseline catecholamine levels, either indexed 
by pupil diameter or actively manipulated by pharmacological interventions 
(norepinephrine transporter blocker atomoxetine), affects the precision of 
object representations in the human ventral temporal cortex. It has also 
recently been shown that elevated arousal levels, measured by pupil size, 
enhance contrast perception (Kim, Lokey, & Ling, 2017).  Note that an increase 
in pupil diameter does not increase perceptual sensitivity per se (Bullock et al., 
2017; Campbell & Green, 1965). 
 
Pupil dilation has been linked to behavioral measures at different stages during 
the decision process. For example, when pupil dilation is inspected after a 
decision has been made, stronger pupil dilation has been associated with lower 
confidence in the previous decision, especially for participants with good 
metacognitive insight (Lempert et al., 2015). The authors argued that increased 
pupil dilation may have served as a proxy of uncertainty, predicting both 
confidence and metacognitive accuracy in their study. Several other studies 
have also addressed the association between pupil dilation and feedback 
anticipation and feedback processing. For example, Urai and collaborators 
(2017) investigated post-response pupil size modulations before performance 
feedback and observed that larger pupil responses were accompanied by lower 
choice accuracy in the previous decision, in line with the Lempert et al., study. 
Generally, differences in the timing of the pupil measures may account for this 
different pattern of results. In the present study, pupil analyses were time-
locked to stimulus presentation and response execution, and response-
feedback intervals were relatively short (~2 seconds). Therefore, pupil size was 
not related to signaling confidence in the preceding response, but was related 
to processes evolving during decision formation. Also, the finding of 
impoverished metacognitive insight under high arousal levels reported here is 
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in line with a recent study in which noradrenergic blockade by propranolol 
increased metacognitive performance, but had no significant impact on d’ 
(although the results also hinted towards better discrimination performance, 
Hauser et al., 2017). 
 
How can we explain the differential association of phasic arousal, indexed by 
pupil size fluctuations, with direct perceptual sensitivity and metacognitive 
insight? A possible mechanism may be that phasic neuromodulation suppresses 
‘top-down’ signals more than ‘bottom-up’ signals (Friston, 2010; Gil, Connors, & 
Amitai, 1997; Hsieh, Cruikshank, & Metherate, 2000; Kimura, 1999; Kobayashi 
et al., 2000). During perceptual decisions, bottom-up signals encode the 
available sensory evidence, while top-down signals might encode prior beliefs 
about the upcoming stimulus (Friston, 2010; Pouget et al., 2013). This 
interpretation is in line with recent studies by De Gee and collaborators (2014, 
2017), who investigated how phasic task-related arousal modulations associate 
with decision bias in a yes-no detection task. They observed that pupil size was 
larger before “yes” than before “no” choices, especially for conservative 
participants indicating “yes” (signal present) against their overall decision bias. 
Pupil size correlated with activity in the locus coeruleus (LC) and other 
brainstem nuclei in its vicinity, and these brainstem signals in turn predicted 
the observed changes in choice bias (de Gee et al., 2017). The authors interpret 
these findings by suggesting that through a relative suppression of ‘top-down’ 
signals, phasic arousal might reduce the weight of the prior (reflecting subjects’ 
intrinsic bias) relative to the sensory evidence (the likelihood). If the prior 
reflects a conservative bias, reducing its weight would reduce this bias. In our 
task, however, participants were asked to judge CW or CCW orientations, 
instead of presence and absence of a signal. Note that in our study pupil 
dilation varied with the perceptual sensitivity d’ but was not predicted of 
participants’ choice bias. 
 
Metacognition can be thought of as a higher-order process that evolves during 
decision formation and depends on the integration of perceptual information 
with other sources of information, such as interoceptive states and general 
arousal (Allen et al., 2016; Hauser et al., 2017). Thus, it may be that through a 
suppression of “top-down” signal flow, phasic arousal might reduce the weight 
of top-down metacognitive signals compared to bottom-up stimulus-related 
signals, in line with the neural gain hypothesis (Aston-Jones & Cohen, 2005; 
Eldar, Cohen, & Niv, 2013). 
 
Finally, we would like to note that it is unlikely that spontaneous changes in 
pupil size provided higher contrast sensitivity, driving discrimination 
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performance and potentially confidence. It has been shown previously that 
elevated arousal level induced by reward increases contrast perception, but 
mainly for stimuli presented at relatively high contrast (Kim et al., 2017) (note 
that we used low contrast stimuli here). Further, the pupil-d’ correlations that 
we have observed here occurred after the presentation of the Gabor stimulus 
(see Figure 4.4), and not before (data not shown here). Having said that, future 
studies should focus on the influence of arousal on low level visual stimulus 
characteristics to increase our understanding of how arousal may specifically 
modulate different (low-level) aspects of perception (see (Azevedo, Badoud, & 
Tsakiris, 2017; Lojowska et al, 2015) for examples).  
 
In conclusion, we found that pupil size during stimulus encoding predicts 
perceptual sensitivity (d’) and metacognitive insight (meta-d’ efficiency) in 
opposing directions: larger pupils were associated with enhanced d’, but a 
reduced meta-d’ efficiency. Therefore, phasic arousal indexed by pupil dilation 
accounts for a significant portion of the variability of perceptual performance 
and metacognitive evaluation during repeated perceptual decisions on the 
same external input. 
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Abstract 
Cognitive control over conflict is an important skill for successful decision-
making. Research in this field employs typical “conflict tasks” in which task-
irrelevant information either helps (congruent trials) or hinders (incongruent 
trials) task performance. The conflict effect is the impact of incongruent 
information, generating slower reaction times and more errors after 
incongruent trials as compared to congruent ones. On the other hand, conflict 
adaptation is the reduction of the impact of conflict information in the 
subsequent trial when conflict is detected on the current trial. It has been 
shown previously that conflict detection and subsequent cognitive control 
operations may operate unconsciously, for example when conflict-inducing 
stimuli are masked from awareness. However, it has been proposed recently 
that, although people may be unaware of the conflict-inducing stimulus itself, 
such “unconsciously triggered control operations” may be driven by 
metacognitive awareness of conflict, which may arise from the feeling of task 
difficulty or response slowing on incongruent compared to congruent trials. 
Here we present data from two experiments in which we explored the role of 
objective conflict and subjective conflict experience in conflict adaptation after 
masked primes. Participants were required to always respond to the target 
direction (an arrow), but also had to indicate their subjective experience of 
conflict induced by the masked prime (a smaller arrow), either every four trials 
(experiment 1) or on every trial (experiment 2). Behaviorally, current trial 
conflict effects were always present. Subjective conflict was associated with 
current trial conflict detection, meaning that participants were able to 
introspect about the presence of conflict in the current trial. However, conflict 
adaptation was only present when there was no conflict question in between 
the trials (“uninterrupted trials”). Crucially, objective conflict adaptation was 
absent in trials following a subjective question, which indicates that when 
assessing the capacity of participants to feel the conflict after masked primes, 
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metacognitive questions might disrupt unconscious conflict adaptation. Also, 
we found no modulation or direct effects of subjective conflict on conflict 
adaptation. In summary, in this study we did not find evidence for a role of 
subjective conflict experience in trial-by-trial cognitive control operations after 
masked conflict primes.  
 
Introduction 
There has been considerable debate about the potential for unconscious 
information to affect cognitive and neural processes. Overall, there seems to be 
consensus that some cognitive processes can be influenced and (partly) unfold 
unconsciously, including motor preparation (Boy et al.,  2010; Eimer & 
Schlaghecken, 1998; Sumner et al., 2007), task switching  (Lau & Passingham, 
2007; Reuss et al., 2011), response inhibition (van Gaal et al., 2008; van Gaal et 
al., 2010) and conflict detection (D’Ostilio & Garraux, 2012b; Xiang, Wang, & 
Zhang, 2013). Other, possibly more complex cognitive processes (e.g. flexible 
adjustments of behavior, working memory, serial step algorithms), however, 
might require awareness of the relevant stimulus material to be fully 
operational (Ansorge et al., 2011; Dehaene et al., 2003; Kunde, 2003). It has 
been hypothesized that consciousness might become beneficial when 
information has to be held online for longer periods of time to guide future 
decision making (Dehaene & Naccache, 2001; Horga & Maia, 2012; van Gaal, 
Lamme, & Ridderinkhof, 2010). For example, debates in the field focus on the 
possibility of unconscious working memory (Soto & Silvanto, 2014) and the 
cognitive adaptation after the presence of unconscious conflict (Desender & 
Van den Bussche, 2012; Jiang, Zhang, & van Gaal, 2015; van Gaal, Ridderinkhof, 
et al., 2010). This paper focuses on the latter debate.  
 
Conflict adaptation has been observed in several “conflict tasks” such as the 
Stroop (Egner & Hirsch, 2005;  Kerns et al., 2004; Larson, Kaufman, & Perlstein, 
2009), the Simon (Kerns, 2006; Stürmer et al., 2002; Wühr & Ansorge, 2005) or 
the Flanker task (Gratton, Coles, & Donchin, 1992; Ullsperger, Bylsma, & 
Botvinick, 2005; Verbruggen et al., 2006). These tasks can be performed to 
study conflict monitoring/detection mechanisms on the current trial as well as 
sustained conflict-induced control adaptations on the next trial, also referred to 
as the “Gratton” effect (Gratton et al., 1992) or the conflict adaptation effect. 
To explore the role of conflict awareness in conflict adaptation several masked 
priming studies have been designed in which participants are required to 
perform a speeded two-choice response to a target arrow that can be preceded 
by masked prime arrow. These studies have revealed that, although the prime 
arrows cannot be perceived, they are still processed, as evidenced by faster 
response times (RTs) and fewer errors when the prime and target are 
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congruent than when they are incongruent, referred to as the conflict effect 
(D’Ostilio & Garraux, 2012; Desender, Van Lierde, & Van den Bussche, 2013; 
Jiang, Zhang, & van Gaal, 2015; Kunde, 2003; van Gaal, Lamme, & Ridderinkhof, 
2010; Xiang et al., 2013). Crucially, the presence of conscious response conflict 
during trial n–1 (previous trial) influences cognitive control mechanisms on trial 
n (current trial) in such a way that the correspondent conflict effect on trial n is 
smaller when trials are preceded by an incongruent trial compared to a 
congruent trial, referred to as conflict adaptation. Interestingly, in some 
studies, behavioral adaptation after unconscious conflict has been observed 
(Atas et al., 2015; Desender et al., 2013; Jiang et al., 2015; Reuss et al., 2014), 
whereas in other studies it was not (Ansorge et al., 2011; Kunde, 2003). How 
come this discrepancy? 
 
There might be several reasons for these inconsistent findings, including an 
insufficient intensity of the conflict in masked priming studies (Hommel, 2015) 
due to heavy masking and therefore a strong decrease in stimulus strength. 
Other accounts have focused on the temporal aspects of the tasks that are 
used. Van Gaal and colleagues (2010) have argued that unconscious conflict 
adaptation might be undetectable when the time between trials is relatively 
long, or task performance is interrupted, because of the fleeting nature of 
unconscious cognitive process (Greenwald, Draine, & Abrams, 1996). Another 
limit of unconscious processes may be related to the (absence of) flexible 
routing of information from one brain region to another. It has also been 
shown recently that the routing of information from the “conflict detector”, the 
anterior cingulate cortex (ACC), to the “control implementer”, the dorsolateral 
prefrontal cortex (DLPFC), is absent after unconscious conflict, but clearly 
present after conscious conflict (Jiang et al., 2015). 
 
However, even if we assume that conflict adaptation can be triggered, in some 
circumstances, by unconscious conflicting primes, it does not necessarily mean 
that the cognitive adaptation mechanism itself do not require awareness of the 
conflict. In fact, it has been argued that some of the observed conflict 
adaptation effects might be driven by metacognitive awareness of the conflict 
(Desender et al., 2016; Desender, Van Opstal, & Van den Bussche, 2014; 
Questienne, Opstal, & Dijck, 2016). So, although the prime stimulus itself might 
be fully masked and hence imperceptible to the subject, people might become 
aware of its influences on (the fluency of) behavior or task performance, for 
example by the recognition of a slowing of the response or a feeling of trial 
difficulty. Subsequently, this conscious subjective experience, triggered by the 
unconscious stimulus of the conflict, might trigger cognitive adaptation 
mechanisms. In a recent study Desender and colleagues (2014) have asked 
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whether participants thought there was conflict on each trial in a masked 
priming task and have shown that conflict adaptation was only present in trials 
with a correct conflict experience (meaning that there was conflict on the trial 
and that participants “felt the conflict”, or that there was no conflict and the 
participants did not feel it). This study revealed that the combination of 
objective conflict and subjective experience of this conflict triggered behavioral 
adaptation.  
 
Here, we follow up on this work to explore the role of objective conflict 
(whether prime and target where the same or different) and subjective conflict 
experience (whether participants indicated they have experienced conflict on 
the previous trial, irrespective of the objective conflict) on the current trial 
processing of conflict and on conflict adaptation. In other words, we are 
interested in isolating behavioral indices of both current trial control 
(congruency effects) as well as trial-by-trial control (conflict adaptation effects). 
If conflict experience indeed drives (unconsciously triggered) conflict 
adaptation one would expect to find conflict adaptation only in trials in which 
conflict was experienced on the previous trial, but not when conflict was not 
experienced on the previous trial. 
 
To study this we designed a task in which conflict was difficult to detect 
because prime arrows were masked. Crucially, we also introduced questions 
after some of the trials in which participants had to indicate to what extent 
they experienced conflict on the just preceding trial. In experiment 1, we 
always presented three trials that were uninterrupted, so not followed by this 
conflict question, and could therefore be used to accurately tap into conflict 
detection and adaptation mechanisms. However, on each fourth trial in a row a 
conflict question was presented. The design from experiment 1 allows us to 
isolate trials that are not interrupted by a conflict question from the ones that 
are interrupted by a conflict question. In experiment 2 we used the same 
stimuli and task design but in this task participants were asked about the 
subjective feeling of conflict after each trial. This design led to a more 
continuous assessment of conflict experience and had the advantage that we 
could collect more trials per “subjective conflict condition”, as compared with 
experiment 1.  
 
This design allowed us to test two main questions. First, to what extend can 
participants introspect their conflict experience and what are the behavioral 
precursors of that (e.g. do participants experience conflict more often when 
they are slow on that trial?). Second, we were able to test to what extent the 
subjective experience of conflict on the previous trial modulates conflict 
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adaptation on the next trial. Doing so, we can isolate two measures of conflict 
adaptation. Objective conflict adaptation is the expected reduction in the 
conflict effect (the difference in the error rate/reaction time between a current 
incongruent minus congruent trial) when the previous trial was objectively 
incongruent (prime and target were in opposite directions). On the other hand, 
subjective conflict adaptation is the expected reduction in the conflict effect 
when the previous trial was subjectively experienced as conflict, regardless its 
actual (objective) congruency. 
 
Methods 
Participants 
For experiment 1, 33 participants (21 females) and for experiment 2, 32 
participants (24 females), graduate students of the University of Amsterdam, 
participated for course credit or financial compensation. All experimental 
procedures were in line with the relevant laws and regulations and have been 
approved by the ethical committee of the department of Psychology of the 
University of Amsterdam. Participants provided written informed consent 
before experimentation.  
 
Apparatus and stimuli 
For both experiments, stimulus presentation was controlled by Presentation 
software (Neurobehavioral Systems, Inc.). Stimuli were presented against a 
grey background at the center of a 20-inch VGA monitor (frequency 60 Hz), 
which was viewed by the participants from a distance of approximately 80 cm. 
Similar to our previous studies (Jiang et al., 2013; van Gaal et al., 2010), an 
arrow version of the meta-contrast masked priming task was used, in which 
two small black arrows were used as primes, and two larger arrows served as 
targets (Figure 5.1A). The primes fitted exactly within the inner contour of the 
target. 
 
Experimental design and procedures 
Experiment 1  
On each trial, a fixation appeared for 500 ms, then a prime arrow was 
presented for 17 ms, followed by a blank interval of 33 ms and a target stimulus 
(presented for 100 ms). Trials were categorized as being congruent or 
incongruent based on the correspondence of the direction of both the prime 
and the target. All primes were strongly masked and therefore visibility of the 
primes was reduced. Crucially, after every fourth trial, the subjective conflict 
experience on the previous trial was assessed by presenting participants with 
the following forced-choice question: “Do you think there was a conflict 
between the two arrows on this trial?”. Participants could answer this by 
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pressing the left or right buttons on their chair. In contrast to the target 
responses, there was not time pressure for participants to answer the conflict 
question. In this trial, there was a variable ISI between the target and conflict 
question (900, 1000, 1100 and 1200 ms). 
 
In order to establish that the participants had a sense of what was meant by 
‘conflict’, participants first performed two short practice blocks, the first of 
which contained only weakly masked primes. Then, they performed the actual 
experiment comprising two different kinds of tasks and eleven blocks in total. 
The ratio of congruent and incongruent trials was 1:1 during every block. Eight 
blocks of 160 trials each were devoted to the main task, which contained the 
subjective conflict discrimination trials as described above. The responses on 
the conflict question were used to compute d’ (Wickens, 2002) as an index of 
how well participants were able to discriminate the conflict that was induced 
by the masked primes, henceforth called conflict-d’ (Desender et al., 2014).  
 
During two other blocks of 160 trials each, participants completed a prime 
discrimination task. The timing and event sequence was the same as during the 
main task with the exception that participants were instructed not to respond 
to the target, and instead focus on the prime during that trial in every fourth 
trial. Then, 750 ms after the target presentation, a question regarding the 
direction of the prime was presented. Participants could answer by pressing 
either the left or right button to indicate prime direction, without any speed 
pressure. The responses to the prime question were also used to compute d’ 
(Wickens, 2002), henceforth called perceptual d’. 
 
We also collected EEG and EMG data while human participants performed the 
task. In the present paper we report only the behavioral data derived from it. 
Neural data was not collected for experiment 2. 
 
Experiment 2 
Experiment 2 was very similar to experiment 1, except that in this experiment a 
subjective conflict question was presented after each trial. Thirty two 
participants performed eight blocks of 80 trials each. Feedback of the 
percentage of correctly detected targets was shown after each block.  
 
Exclusion criteria for participants  
Depending on the specific analysis that was performed, some participants’ had 
too low numbers of trials in one or more of the relevant conditions. This is 
mainly due to the subjective experience questions, for example some 
participants are rather conservative in indicating there was conflict. Therefore, 



 77 

similar as Desender et al. (2014), for each specific analysis only participants 
with 10 or more trials per cell were retained in the specific analyses.  
 
Behavioral data analysis 
Analysis were performed in MATLAB (R2012b, the MathWorks, Inc.). Incorrect 
trials, trials following errors and correct trials with RT <100 or >1000ms were 
excluded from all RT analyses. Trials were split into four categories: objectively 
incongruent and conflict experienced (hit); objectively incongruent but no 
conflict experienced (miss); objectively congruent but conflict experienced 
(false alarm); and objectively congruent and no conflict experienced (correct 
rejection). We classified the hit and false alarm categories as “conflict 
experienced”, and the other two categories as “conflict not experienced”. 
Subsequently, repeated measures ANOVAs were performed on the mean 
reaction times (RTs) and error rates (ERs). To analyze general congruency 
effects as well as conflict adaptation effects for uninterrupted trials the factors 
were Previous trials congruency (congruent/incongruent) and Current trial 
congruency (congruent/incongruent). To analyze the role of subjective conflict 
experience in the current trial conflict effect (for trials following a subjective 
question) the factors were Conflict experience (yes/no conflict), and Current 
trial congruent (congruent/incongruent). Finally, for the analysis of conflict 
experience on conflict adaptation the factors were Conflict Experience in 
previous trial (yes/no conflict), Previous trial congruency 
(congruent/incongruent) and Current trial congruency (congruent/incongruent) 
as within-subject variables. A one sample t-test on d’ (Desender et al., 2014; 
Jiang et al., 2013; van Gaal et al., 2010) was used to compute the conflict d’ 
(conflict experience) and perceptual d’ (prime visibility). For the prime visibility 
analysis a two-tailed significance level of 0.05 was used for all statistical tests.  
 
Results 
Discrimination results 
To assess the ability of participants to “feel the conflict” we computed d’ for 
conflict detection (Wickens, 2002), henceforth called conflict-d’ (Desender et 
al., 2014). For this analysis, trials with an incorrect target response were 
omitted. Incongruent trials were treated as signal, and congruent trials as 
noise. The extreme proportions (hits and false alarms) of 0 and 1 were adjusted 
to 0.01 and 0.99 (similar to Desender et al., 2014). This analysis revealed that 
conflict-d’ was significantly larger than zero for experiment 1 (d’=0.81, 
t32=6.27, p<0.001), and for experiment 2 (d’= 0.45, t15=4, p<0.001) indicating 
that participants were able to discriminate the presence of conflict with above 
chance accuracy. Perceptual d’, exclusively done at the end of experiment 1, 
and in a separate experimental block in which trials did not require a target 
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response (see Methods), also differed significantly from chance level (M=0.62, 
t32=5.71, p<0.001, corresponding to 61.17%). This perceptual d’ was close to 
the d’ of 0.55 observed in Desender et al. (2014). Note that in this study we did 
not aim for a d’ of 0 because the main goal of this study was to explore 
potential modulatory influences of conflict experience (present vs absent) on 
conflict processing and conflict adaptation. Crucially, conflict-d’ was higher than 
perceptual d’ (t32=2.23, p=0.016; see Figure 5.1B), indicating that participants 
were better at conflict detection when they could use both visual information 
as well as motoric information, compared to when they could only use visual 
information. 
 
Conflict effects in behavior 
 
Experiment 1 
We first tested the presence of conflict processing on trials that were not 
preceded by a subjective conflict question (uninterrupted trials). A two-way 
repeated measures ANOVA on reaction times (RTs) and error rates (ERs) with 
the factors Previous trial congruency and Current trial congruency revealed 
that there was a clear current trial conflict effect, as reflected in slower 
reaction times and more errors to incongruent than congruent trials (RT: 
F1,32=565.19, p<0.001; ER: F1,32=62.61, p<0.001). Further, the conflict effect 
was smaller when the prior trial was incongruent compared to when it was 
congruent, an index of conflict adaptation (Figure 5.2A, RT: F1,32=9.53, 
p=0.004; Figure 5.2B ,ER: F1,32=18.04, p<0.001).  

 
Figure 5.1. Task and Conflict effects (A) Schematic representation of the experimental task and 
the stimuli. Primes could be congruent or incongruent with the direction of the target (50/50 
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congruent/incongruent trials). After every fourth trial a conflict question was presented to 
evaluate the subjective experience of conflict on the just preceding trial. (B) Definitions of the 
relevant behavioral measures. Objective conflict adaptation is defined as the size of the conflict 
effect on trial N (current trial), when the previous trial (N-1) was objectively incongruent (prime 
and target were in opposite directions) or objectively congruent (prime and target were in the 
same directions). Subjective conflict adaptation is defined as the size of the conflict effect on trial 
N (current trial) when the previous trial (N-1) was subjectively experienced as having conflict or 
not (irrespective of the actual prime-target correspondence in the previous trial). Current trial 
effect relates to the performance in the current trial (N) dependent on whether conflict was 
subjectively experienced or not on that trial. 
 
Next, we tested the role of subjective conflict experience in the current trial 
conflict effect. For that, we selected only the trials that were followed by a 
subjective question (one in every four trials). Besides a typical slowing for 
incongruent trials (RT: F1,32=117.28, p<0.001), participants were also slower 
when they reported to have experienced conflict compared to when they 
reported not to have experienced it (Figure 5.2C, RT: F1,32=21.64, p<0.001). 
However, for reaction times, we found no interaction between subjective and 
objective conflict (F1,32=0.02, p=0.9). For the error rates, as expected, 
participants made more errors on incongruent compared to congruent trials 
(Figure 5.2D, ER: F1,32=26.76, p<0.001) and when reporting to have 
experienced conflict rather than no-conflict (F1,32=22.28, p<0.001). 
Interestingly, for error rates, there was an interaction between objective and 
subjective conflict, since participants made most errors on incongruent trials 
that were also experienced as conflicting ones (interaction between Conflict 
experience and Congruency F1,32=6.16, p=0.02). 
 
By investigating the influence of subjective conflict experience on objective 
conflict adaptation, a 3-way ANOVA showed no interactions (Conflict 
experience in previous trial x Previous trial congruency x Current trial 
congruency, RT: F1,18 ,p=0.001, p=0.97; ER: F1,18=0.82, p=0.37). Also, we did not 
find conflict adaptation based on objective conflict for reaction time or error 
rates (Current trial congruency x Previous trial congruency RT: F1,18=0.66, 
p=0.43; ER: F1,18=0.51, p=0.49). This interaction was also absent when 
considering conflict adaptation based on subjective conflict (Current trial 
congruency x Previous trial conflict experience Figure 5.2E, RT: F1,18=0.02, 
p=0.89; Figure 5.2F, ER: F1,18=0.98, p=0.33) However, there was a main effect of 
the Previous trial conflict experience on error rate (F1,18=5.93, p=0.02) meaning 
that participants made more errors on the current trial when the previous trial 
was experienced as conflict (Figure 5.2F).  
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Overall, these results indicate the absence of the objective conflict adaptation 
effect (Figure 5.1B). It might be that the subjective question interfered the flow 
of the trials in such a way that it could have abolished the typical objective 
conflict adaptation effect and therefore also the other possible interactions 
related to it. We elaborate on this issue further in the Discussion section of this 
chapter.  
 

 
 

Figure 5.2. Behavioral results from Experiment 1. (A) Conflict effects in trial N for reaction times 
(mean reaction time on incongruent trials – mean reaction time on congruent trials (B) and error 
rates (mean percentage of errors on incongruent trials – mean percentage of errors on congruent 
trials), as a function of prime-target correspondence in trial N − 1 (congruent vs. incongruent). (C) 
Mean reaction times for congruent and incongruent trials before the conflict question as a 
function of conflict experience (conflict experienced vs. conflict not experienced). (D) The mean 
error rates for congruent and incongruent trials before the conflict question as a function of 
conflict experience. (E) Conflict effects on reaction times of the trials that followed the conflict 
question as a function of conflict experience on the preceding trial. (F) Conflict adaptation effects 
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on error rates of the trials that followed the conflict question as a function of conflict experience. 
In all panels, error bars reflect SEM.  
 
Experiment 2 
We investigated the presence of objective conflict processing from experiment 
2, in which all trials were preceded and followed by a subjective question. 
Participants were slower and had a trend to commit more errors for 
incongruent as compared to congruent trials (RT: F1,30=220.12, p<0.001; ER: 
F1,30=3.43, p=0.074). They were also slower and made more errors when 
subjectively reporting conflict as compared with no-conflict (Figure 5.3A, RT: 
F1,30=17.89, p<0.001; Figure 5.3B, ER: F1,30=10.96, p=0.002). Here, the 
interaction between objective and subjective conflict was present for both 
reaction times and error rates. Interestingly, for reaction times, this effect 
means that the difference between incongruent minus congruent, i.e., the 
conflict effect on the current trial, was bigger when participants experienced 
no-conflict (RT: F1,30=4.5, p=0.04). On the other hand, for the error rates, we 
found an interaction between objective and subjective conflict that was on 
the opposite direction from the one we observed in experiment 1. For 
experiment 2, participants made more errors for incongruent relative to 
congruent trials, but only in trials experienced as no conflict (interaction 
between Conflict experience and Congruency F1,30=10.1, p=0.0003, Figure 
5.3B).  
 
By investigating the influence of subjective conflict experience on objective 
conflict adaptation a 3-way ANOVA showed no interactions (Conflict experience 
in previous trial x Previous trial congruency x Current trial congruency, RT: 
F1,15=0.76, p=0.4; ER: F1,15=1.18, p=0.29). When we tested the conflict 
adaptation effect based on objective conflict we found no effect (Current trial 
congruency x Previous trial congruency RT: F1,15=0.28, p=0.6; ER: F1,15=2.72, 
p=0.12), in accordance with the results from experiment 1. By testing the 
conflict adaptation effect based on subjective conflict, there was conflict 
adaptation for reaction times, but not for error rates (Figure 5.3C, RT: F1,15=4.7, 
p=0.047; Figure 5.3D, ER: F1,15=0.13, p=0.72). This could have suggested the 
presence of subjective conflict adaption, however this effect is in the opposite 
direction as one would expect. The conflict effect is reduced for incongruent 
trials, but only if it was reported as no conflict (Figure 5.3D). This reversed 
pattern suggests that conflict adaptation could not be generated exclusively on 
subjectively perceived conflict. 
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Figure 5.3. Behavioral results from Experiment 2. (A) The mean reaction times for congruent and 
incongruent trials before the conflict question as a function of conflict experience (conflict 
experienced vs. conflict not experienced). (B) The mean error rates for congruent and incongruent 
trials before the conflict question as a function of conflict experience. (C) Conflict adaptation 
effects on reaction times of the trials that followed the conflict question as a function of conflict 
experience on the preceding trial. (D) Conflict adaptation effects on error rates of the trials that 
followed the conflict question as a function of conflict experience. In all panels, error bars reflect 
SEM.  
 
Aggregate analysis 
Below we report the results of the aggregated data of experiment 1 and 2, 
which contains the data (subjective trials) from both datasets combined, in 
order to increase power. 
 
Overall, participants were slower and committed more errors for incongruent 
as compared to congruent trials (RT: F1,63=304.55, p<0.001; ER: F1,63=23.98, 
p<0.001) and they were slower and made more errors when subjectively 
reporting conflict as compared with no-conflict (Figure 5.4A, RT: F1,63=40.04, 
p<0.001; Figure 5.4B, ER: F1,63=32.24, p<0.001). Here, the interaction between 
objective and subjective conflict was not present for neither reaction times nor 
error rates (RT: F1,63=2.73, p=0.10; ER: F1,63=0.84, p=0.36). Note that 
previously, in experiments 1 and 2, there was an interaction for error rates that 
was cancelled out in this aggregate analysis, because the direction of this effect 
was opposite for experiments 1 and 2.   
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Next, we investigated the influence of subjective conflict experience on 
objective conflict adaptation and a 3-way ANOVA showed no interactions 
(Conflict experience in previous trial x Previous trial congruency x Current trial 
congruency, RT: F1,34=0.1, p=0.75; ER: F1,34=0.003, p=0.96). Also in this analysis 
we did not find conflict adaptation based on objective conflict (Current trial 
congruency x Previous trial congruency RT: F1,34=0.96, p=0.33; ER: F1,34=0.07, 
p=0.79). Moreover, when testing the conflict adaptation effect based on 
subjective conflict (interaction Previous trial conflict experience and Current 
trial conflict), there was no conflict adaptation for error rates, but a trend for 
interference in reaction time (Figure 5.4C, RT: F1,34=3.44, p=0.072; Figure 5.4D, 
ER: F1,34=0.24, p=0.63). If anything, this trend reflects that the conflict effect 
was larger when the previous trial was experienced as conflict compared to no 
conflict.   
 
Overall the aggregate analysis means that also with a bigger sample we did 
not obtain evidence for a role of conflict experience in conflict adaptation, nor 
did we observe it based on objective conflict. In the discussion section we 
elaborate further on these absence of effects. 
 

 
 

Figure 5.4. Behavioral results from the aggregate analysis. (A) The mean reaction times for 
congruent and incongruent trials before the conflict question as a function of conflict experience 
(conflict experienced vs. conflict not experienced). (B) The mean error rates for congruent and 
incongruent trials before the conflict question as a function of conflict experience. (C) Conflict 
adaptation effects on reaction times of the trials that followed the conflict question as a function 
of conflict experience on the preceding trial. (D) Conflict adaptation effects on error rates of the 



 84 

trials that followed the conflict question as a function of conflict experience. In all panels, error 
bars reflect SEM.  
 
Discussion 
In conflict tasks, participants are typically slower and make more errors to 
incongruent trials (e.g. prime and target arrow are pointing in different 
directions) as compared to congruent trials (e.g. prime and target arrow are 
pointing in the same direction). However, this conflict effect tends to reduce if 
the previous trial also contained an incongruent prime-target pair, which is 
called the conflict adaptation effect. In two experiments we have explored the 
role of subjective conflict experience, the metacognitive judgment of the 
presence or absence of conflict, on behavioral performance during a conflict 
task. In a conflict priming paradigm in which the visibility of the conflict-
inducing prime stimulus was manipulated by masking, participants were 
required to always respond to the target direction, but also had to indicate 
their subjective experience of conflict, either once every four trials (experiment 
1) or on every trial (experiment 2).  
 
Our experimental setup allowed us to differentiate between objective and 
subjective conflict adaptation. Objective conflict adaptation is defined here as a 
reduced conflict effect after an incongruent trial, compared to a congruent 
trial, based on the actual (in)congruency of primes and targets on the previous 
trial. On the other hand, an influence of subjective conflict experience on 
conflict adaptation could be observed in two different ways: first, by a 
modulation of the objective conflict adaptation effect by the subjective 
experience of conflict in the previous trial; and second, by a direct influence of 
subjective conflict experience on the previous trial on the conflict effect of the 
current trial, regardless of the actual presence of conflict in the previous trial 
(these different measures are illustrated in Figure 5.1B). 
 
First of all, we tested to what extent subjects are able to introspect whether 
conflict has occurred, over and above their visual experience of the presented 
prime-target pairs. Interestingly, based on metacognitive introspection, 
participants were able to dissociate conflict (incongruent) from no conflict trials 
(congruent), although primes were difficult to perceive and were heavily 
masked. In experiment 1, participants had a higher conflict d’, the 
discrimination of the presence/absence of conflict after actively responding to 
the direction of the target, than perceptual d’, which was derived from a 
separate task in which participants only had to perceive the direction of the 
primes. This suggests that when conflict is induced after actively performing 
the task, participants are able to introspect this internal conflict and this 



 85 

information boosts their performance as compared to their performance on a 
visual discrimination task only.  
 
Further, in both experiments, we observed current trial conflict effects: 
participants were slower and committed more errors when primes and targets 
were in opposite directions. This conflict effect is thought to reflect 
competition between response options (Eriksen & Eriksen, 1974). Participants 
also tend to categorize these trials in accordance with their experience of 
conflict. They were slower and made more errors on trials that they labeled as 
having conflict compared to trials that they labeled as having no conflict. This is 
in line with influential theoretical models of conflict monitoring (Botvinick et 
al., 2001; Weissman & Carp, 2013), indicating that participants are indeed able 
to introspect their “internal conflict”. Also, Marti and colleagues have observed 
that participants are capable of assessing their reaction times, and that their 
introspections were highly correlated with objective time measures (Marti et 
al., 2010). Likewise, in our experiment, it is possible that participants are able to 
introspect about the conflict, not necessarily because of its objective presence, 
but as a consequence of accessing their ‘internal conflict’, as reflected by 
slower response times. 
 
Because participants are able to introspect their conflict, independent of 
actually seeing a mismatch between primes and targets, this subjective 
experience may even drive conflict adaptation after masked (in)congruent 
primes (see Figure 5.1B). First we tested whether there was objective conflict 
adaptation after masked primes by only selecting the uninterrupted trials of 
experiment 1. Indeed, for the uninterrupted trials we found objective conflict 
adaptation, replicating previous studies that have shown that conflicting 
information at low levels of stimulus awareness can still trigger conflict 
adaptation mechanisms  (Atas et al., 2015; Bodner & Dypvik, 2005; Desender et 
al., 2013, 2014a; Jiang, Zhang, & van Gaal, 2015; Reuss et al., 2014; van Gaal et 
al, 2010). Moreover, if the experienced conflict is responsible for conflict 
adaptation effects for the masked primes (Desender et al., 2014), this effect 
should be modulated by the subjective experience of conflict on trial N-1. 
However, we did not observe this modulation, but we also did not find 
objective conflict adaptation on trials that were interrupted by subjective 
conflict questions. Therefore, we also looked at whether subjective conflict 
directly modulated conflict adaptation on trial N (see Figure 5.1B), but again we 
did not see that effect.  
 
Although the role of experience in adaptation effects has been largely 
overlooked in prior research, (Kunde, Reuss, & Kiesel, 2012) the role of 
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metacognition in unconscious conflict adaptation is still controversial. A recent 
study (Desender, Van Opstal, & Van den Bussche, 2014), showed that the 
experience of conflict, and not response conflict per se, was the crucial factor 
for adaptation effects. The authors reported that conflict adaptation was 
present only after trials on which participants experienced response conflict 
and conflict was also objectively present (which the authors labeled as “correct 
experience”). Here, however, we did not find that subjective experience 
influenced conflict adaptation in any way. If anything, a subjective conflict 
adaptation effect went in an opposite direction as expected, since the conflict 
effect was larger (and not smaller) when the previous trial was experienced as 
conflict compared to no conflict (Figs 5.3C and 5.4C). 
 
However, we do not argue that conflict experience does not play a role in 
conflict adaptation. The weak conflict effect triggered by primes (masked from 
awareness) may have accounted for the absence of this effect. Studies show 
that conflict adaptation may be subject to a relatively rapid decay (Duthoo et 
al., 2014; Egner, Ely, & Grinband, 2010; Haynes, Driver, & Rees, 2005). 
Moreover, conflict adaptation is stronger when conflict is triggered more 
strongly (van Gaal et al., 2010), suggesting that if a prime is masked, its 
unconscious neural trace may decay rapidly and can be easily interfered when 
the trials are interrupted.  
 
Indeed, Duthoo and colleagues (2014) showed that the conflict adaptation 
effect decreases with increasing inter-trial-intervals. We suggest that this may 
be especially the case in our study, in which the conflict-inducing stimulus is 
masked and located in trials followed by a time consuming subjective question. 
Therefore, because conflict effects are rather subtle when the conflicting 
information is presented at lower levels of visibility  (Greenwald, Draine, & 
Abrams, 1996; van Gaal et al., 2010), the temporal decay of conflict information 
plus the interference with a conflict question may be a crucial reason why we 
did not observe conflict adaptation effects on trials that followed a conflict 
question, nor any possible modulations from subjective experiences. 
 
In conclusion, the present study examined the role of subjective experience of 
conflict on direct conflict processing and trial-by-trial conflict adaptation 
mechanisms. Our findings show that although conflict is observable after 
masked primes, the conflict adaptation (depended on the previous trial 
congruency) is present only for uninterrupted trials. So, when assessing the 
capacity of participants to feel the conflict, metacognitive questions might 
disrupt unconscious conflict adaptation. Second, we did not find evidence that 
conflict adaptation was influenced by the subjective experience of the conflict, 
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and therefore cannot conclude that subjective conflict experience plays a role 
in conflict adaptation with masked primes.  
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Abstract 
Can we detect subtle unconscious biases in our decisions? Clearly, subliminal 
information has been shown to affect our behavior, however, to what extent 
people are able to detect these biases metacognitively is not well known. Here 
we explore this question using a probabilistic reinforcement learning task in 
which participants were free to choose between two response options. In each 
block however, one response was rewarded more often that the other (e.g. 
80|20) and participants were instructed to optimize the amount of reward they 
received in every block. Subjects made responses either to a “cued target 
arrow”, the direction of which participants were instructed which button to 
press, or a bidirectional “free target”, to which participants could choose the 
response that they believed yielded most likely a reward. Targets were always 
preceded by prime arrows that could be congruent or incongruent with the 
most rewarded response option in a block. After each free trial, participants 
rated their confidence in receiving a reward. We show that prime congruency 
affects immediate decisions. When participants were free to decide, they chose 
more often congruently with the direction of the prime. However, prime and 
response congruency did not influence participants’ confidence in receiving a 
reward. In sum, participants’ decisions were directly affected by unconscious 
information, whereas on the other hand, metacognitive processes related to 
the confidence in their decisions were not, suggesting that participants were 
unaware that their decisions were biased. We discuss the dissociation between 
performance and metacognitive assessment in this task in relation to other 
recent findings observed in different contexts. 
 
Introduction 
How accurate are we in detecting subtle unconscious biases in our supposedly 
conscious choices? A wealth of recent studies has shown that unconscious 
information can bias our decisions, from very simple decisions to more complex 
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processes (Lau & Passingham, 2007; Reuss et al., 2011; van Gaal et al., 2010; 
Wang, Xiang, & Li, 2013, but see Newell & Shanks, 2014 for a critical review). In 
the lab, we and others have studied the influence of unconscious information 
on cognition and behavior using masked priming tasks (Desender et al., 2014; 
Jiang et al., 2015; Wenke, Fleming, & Haggard, 2010). To illustrate, in a typical 
task, participants respond to a target arrow that follows a briefly presented 
prime stimulus, which is a smaller version of the target. This prime is presented 
so briefly that it is masked from consciousness. Participants are instructed to 
ignore the primes and respond only to the targets. In these tasks, depending on 
the prime–target relationship, trials can be either congruent (both stimuli 
mapped to the same response, e.g. prime left, target left) or incongruent (each 
mapped to a different response, e.g. prime left, target right). Participants' 
performance (error rates, reaction times) is facilitated on congruent trials as 
compared to incongruent trials, which is called the congruency effect (D’Ostilio 
& Garraux, 2012; Desender, Van Lierde, & Van den Bussche, 2013; Jiang, Zhang, 
& van Gaal, 2015; Kunde, 2003; van Gaal, Lamme, & Ridderinkhof, 2010; Xiang 
et al., 2013). 

Beyond this congruency effect, other interesting phenomena has also been 
reported, for example Schlaghecken & Eimer (2004) showed that unconscious 
primes are capable of biasing “free decisions”. Although masked primes could 
not be consciously discriminated, they systematically affected free choices 
between response alternatives. This demonstrates that deliberate responses 
are not immune to unconsciously triggered biases, suggesting that free choices 
are not that “free” at all (Kiesel et al., 2006; Schlaghecken & Eimer, 2004). 

Although the idea is intriguing that both instructed as well as free choices are 
biased by unconscious information (Kiesel et al., 2006; Schlaghecken & Eimer, 
2004) it is largely unknown whether people are truly unaware that their 
decisions are biased by unconscious information, or whether people have some 
form of metacognitive awareness of these biases. For instance, imagine that a 
person is not aware of the existence of the conflicting stimuli themselves, but 
that he/she is aware of the effect that they indirectly generate. It has for 
example been argued that people may experience a sense of reduced fluency 
of responding or that people may experience a form of internal conflict 
(Desender et al., 2014) that is triggered by unconscious stimuli.  

This issue relates to the relationship between unconsciously driven decisions 
and a process called metacognition. Metacognition is the ability to recognize 
one's own successful cognitive processing (Fleming & Lau, 2014). Often, people 
are relative good in tracking their performance and they report higher 
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confidence for correct decisions than incorrect decisions. Further, people can 
be aware of their mistakes even without explicit feedback, reporting levels of 
confidence in their decisions that correlate with objective performance (Charles 
et al., 2013; Fleming et al., 2010). Metacognition also helps people to avoid 
making mistakes or spending time and resources on decisions that are based on 
unreliable evidence (Yeung & Summerfield, 2012). However, dissociations 
between performance and metacognitive measures have also been found 
(Fleming & Dolan, 2014). For example, in the famous case of blindsight, 
patients have a very low confidence in their subjective experience but can still 
show relatively high objective task performance (Cowey, 2010; Cowey & 
Stoerig, 1995, but see also Lau & Passingham, 2006). 

The relationship between unconsciously driven responses and metacognition 
has recently been addressed in the context of conflict adaptation. In masked 
priming tasks it has been shown that the presence of conscious response 
conflict on trial n–1 (previous trial) influences cognitive control mechanisms on 
trial n (current trial) in such a way that the congruency effect on trial n is 
smaller when trials are preceded by an incongruent trial compared to a 
congruent trial, referred to as conflict adaptation. Interestingly, in some 
studies, behavioral adaptation after unconscious conflict has been observed 
(Desender & Van den Bussche, 2012; Desender et al., 2013; van Gaal, Lamme, 
& Ridderinkhof, 2010). However, does this really mean that people can indeed 
adapt their behavior over time unconsciously? Some people have argued it may 
not (Desender & Van den Bussche, 2012; Desender et al., 2014). Although the 
stimulus itself may be processed unconsciously, this does not mean that people 
are also fully unaware of the consequence that these unconscious stimuli have 
on behavior or cognition (for example RT slowing or the experience of internal 
conflict on trial n).  
 
If metacognitive processes could drive adjustments in behavior, it could be 
considered a crucial factor for the changes that are observed over trials in 
performance, even when primes are masked. An exemplary study showed 
recently that conflict adaptation was only present in situations in which a 
correct conflict experience was felt, when participants reported the feeling of 
incongruency between prime and target, indicating that an intuition of 
correctly feeling the presence of a conflict might be necessary for triggering 
behavioral adaptation (Desender et al., 2014). Although intriguing, however, 
we have recently attempted to replicate these results and we failed to do so 
(Correa et al., (2017c)). In a very similar experiment and by assessing 
participants metacognition on a trial by trial basis, objective conflict adaptation 
was absent in trials following a subjective question, indicating that 
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metacognitive questions might disrupt unconscious conflict adaptation. In sum, 
considering that unconscious information can bias our decisions to some 
extent, it remains unclear whether these stimuli also affect the metacognition 
of decision-makers and whether metacognition is necessary for the 
performance changes in tasks using unconscious information.  
 
Here we follow up on that work and test whether and how differences in the 
ease of action selection (or internal conflict) affects the sense of confidence 
about our decisions. More specifically, this study aims to investigate how 
subliminal cues influence behavioral performance during reward learning and 
how such cues influence our (metacognitive) confidence about these decisions. 
To test this, we designed a novel task in which participants performed a reward 
learning task in which the probability that a left/right hand response was most 
often rewarded was manipulated. Participants could initiate their response by 
the presentation of a target. The target could either be a unidirectional arrow, 
which we call the forced cued trial, or a bidirectional arrow, which we call the 
free cued trial. These targets were always preceded by a briefly presented 
(subliminal) prime, which could point either to the left or to the right. In the 
forced cued condition targets pointed to a single direction and therefore the 
prime-target pair could be incongruent or congruent. On these trials 
participants had to respond as fast as possible to the cued direction of the 
target arrow. In the free cued condition participants were free to choose the 
response that they believed would most likely provide a reward (e.g. 80% left 
response is rewarded and 20% right hand response is rewarded). So, one 
response would yield reward more often than the other, which creates internal 
conflict between the unconsciously primed response direction and the learned 
reward contingency. For instance, on a congruent trial a prime points to the 
same direction as the most rewarded direction. After these free choice trials 
participants gave their metacognitive evaluation of how confident they were 
about receiving a reward on the current trial.  
 
This experimental setup allowed us to test whether internal conflict leads to 
impairments in choosing the best of two alternative actions and if so, whether 
this will lead to corresponding changes in metacognition. If so, we expect to 
observe a higher frequency of choices for the most rewarded side when the 
prime points in the same direction as compared to when the prime points into 
the opposite direction. The question is then whether participants will also 
experience higher confidence in receiving reward after congruent choices (no 
internal conflict) compared to incongruent choices (with internal conflict). If so, 
this would reflect that internal conflict between unconscious drives and learned 
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optimal responses has a potential causal role in explaining changes in decision-
making performance (Desender et al., 2014). 
 
Methods 
Participants  
Thirty five participants, graduate students of the University of Amsterdam, 
participated for course credits or financial compensation. All experimental 
procedures were in line with the relevant laws and regulations and have been 
approved by the ethical committee of the department of Psychology of the 
University of Amsterdam. Participants provided written informed consent 
before experimentation. From the initial sample, one participant was excluded 
due to the absence of data in a specific trial condition, which generated empty 
data cells in the analysis phase. Overall, 34 participants had their data further 
analyzed  (26 females, 8 males; mean age = 21.09 +-2.47 SD).  
 
Procedures 
Participants were seated in a silent room with dimmed light. The experiment 
was programmed with Cogent 2000 (www.vislab.ucl.ac.uk/cogent.php) in 
MATLAB (Mathworks). Stimuli were presented against a grey background at the 
center of 60 Hz monitor which was viewed by the participants from a distance 
of approximately 80 cm. Overall, the study consisted of two parts: the reward 
learning task and the prime recognition task. 
 
Reward Learning Task 
In the reward learning task participants were asked to follow (cued trials) or 
deliberately decide (free trials) while paying attention to the reward 
probabilities from both key options (left or right), as questions regarding 
probabilities of reward would be asked. They were instructed that the key 
associated probabilities were set randomly at the start of each block. The task 
consisted of 6 blocks, each with 70 trials: 50 free trials and 20 cued trials. 
During cued trials, a primed cue (one direction arrow) was briefly presented for 
16.7 ms, followed by a blank (33 ms) and by an one direction arrow (250 ms). 
Participants were instructed to ignore the prime and to press the key (left D key 
or right K key), according to the target direction within 500 ms. They would not 
win anything from these trials but, if they were too slow, they would lose a 
virtual “1 euro”. The purpose of these cued choice trials was to keep 
participants actively processing both primes and targets. 
 
During free trials, a primed cue (one direction arrow) was also briefly presented 
for 16.7 ms, but now following a blank (33 ms), followed by the target 
bidirectional arrow (250 ms). In this condition, participants were free to press 
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either the left or the right key to learn which one had a higher chance of 
winning. The six blocks contained three probability pairs for obtaining a reward 
(0.8/0.2, 0.5/0.2, 0.2/0.5, left/right, respectively, in random order). To 
illustrate, 0.2/0.5 means that a left hand response is rewarded in 20% of the 
occasions and a right hand response in 50%. Note that the probability values 
therefore are independent and do not need to add up to 100%. Within each 
probability set, response hand (left/right) was not counterbalanced across 
participants. This means that the left option was rewarded more frequently as 
compared to the right option. After the subject’s key press (1500 ms), they 
were asked about their confidence in receiving a reward on that trial. They 
were asked to respond by pressing one of four keys (S, D, K, L), their 
estimations respectively meaning, from left to right, the least confident to the 
most confident. After this judgment, participants were informed whether they 
had won “1 euro” or “nothing” for that trial (Figure 6.1). At the end of each 
block, participants were asked to first estimate the reward probability from the 
left key on a scale from 0 to 100, then to rate their confidence in the previous 
estimation on a scale from 0 (the lowest confident) to 100 (the highest 
confident). The same questions applied for the right response key. Finally, 
participants were questioned about their overall satisfaction with their 
decisions in the block, also using the scale from 0 to 100. For each question 
participants could move an arrow (using the arrow keys on the keyboard) along 
a scale to a position corresponding to their answer.  
 
Prime recognition task 
After completing the reward learning task, participants were informed of the 
presence of primes and then asked to complete a forced-choice prime 
recognition task to determine whether they were conscious of the primes 
during the experiment. During the task, participants had to identify the 
direction of the prime arrow using the same (left/right) key presses used during 
the previous experiment. To ensure the validity of the prime recognition task, 
the task was matched with the reward learning task such that the prime arrows 
were followed by target arrows. Also, to prevent any unconscious action bias 
from influencing the conscious judgment of the prime arrow, participants had 
to wait 600 ms after the prime was presented to make their response (Vorberg 
et al., 2003). Participants were informed they could make their choice by a tone 
that was played for 150 ms.  
 
The prime recognition task consisted of two blocks of 72 trials each with the 
same ratio of cued and free target arrows as the reward learning task as to 
maintain consistency. A measure of prime discriminability (d’) was then 
calculated for participants (Green & Swets, 1966). 
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Figure 6.1. Reward learning task and trial conditions. (A) Cued choice trial. Briefly flashed 
primes precede an unidirectional target to which participants should respond. When responding 
later than 500 ms, participants received a “too late” message followed by a “lose 1 euro’’ 
message. (B) Free choice trial. Briefly flashed primes precede a bidirectional target to which 
participants were free to choose the key direction that they judged would give a reward. Primes 
could be congruent or incongruent with the more rewarding key press. The reward probability on 
free choice trials was manipulated across blocks. On some blocks the left was rewarded more 
often and on some blocks the right (see Methods for details).  (C) Prime visibility trial. Primes and 
targets are displayed the same way as in the reward learning task. Participants should try to 
identify the prime direction by pressing the left/right buttons while ignoring the target direction. 
 
Results 
Prime Discriminability 
A measure of d’ was calculated from the prime recognition data for each 
participant to determine whether prime arrows were indeed masked from 
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consciousness. The mean d’ for the entire sample was larger than zero (d’= 0.4 
±SD: 0.47, t33= 5.15, p<0.001). Given that chance-level performance on such a 
forced-choice discrimination task is a typical criterion used to show that 
participants are unable to perceive a stimulus consciously (Morten Overgaard & 
Sandberg, 2014; Sandberg et al., 2010) this result implies that we cannot 
consider that the masked prime was nonconscious in our entire participant 
sample. Therefore, for further behavioral analyses, we also report results in 
median-splits samples, where we separated seventeen good discriminators 
(GD) from seventeen bad discriminators (BD) (GD: mean d’=0.76; T16=7.47, 
p<0.001; BD: mean d’=0.06; T16=2.37, p=0.03). We will show throughout this 
paper that the reported results in performance and metacognition do not scale 
with prime visibility. However, we would like to note that we are aware of 
issues regarding post-hoc trial selection, for example when sorting trials based 
on d’, as discussed in Shanks (2017). Therefore we report these median split 
results without drawing strong conclusions about the existence of unconscious 
information processing in the present study.    
 
Free choice decisions 
In order to measure the impact of primes on free choices we performed a 
three-way ANOVA on participants’ free choices (n=34) with the factors prime 
direction, response direction and reward probability. Figure 6.2A shows the 
probability of choosing each key according to the prime-choice pair, plotted for 
each reward probability. Note that the values add up to 1 within a probability 
condition and therefore reflect the occurrence of each of the four response 
options in a specific block of trials. Participants chose more frequently the 
options congruent with the prime direction (F1,33=22.5, p<0.001). Also, 
participants’ choices were influenced by the probability of the reward, as 
indicated by the fact that participants chose the most rewarded response 
option more frequently than the less rewarded option in every block 
(F2,66=74.9, p<0.001). For example in the 0.8/0.2 block left hand responses were 
most likely, whereas in the 0.2/0.5 block right hand responses dominated 
(Fig.6.2A). A mixed ANOVA including group as a factor revealed no differences 
between BD and GD groups in any of the relevant comparisons indicated above 
(all ps>0.68). Figure 6.2B depicts the evolvement over time of participants’ 
choices, showing that people quickly learn the difference between the reward 
conditions, in an unbiased way.  
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Figure 6.2. Choice frequencies according to prime-response congruence and reward probability. 
(A) Mean probability of each decision for each prime-response condition (the four different 
colored lines), for each underlying left/right reward probability (plotted on the x-axis). (B) 
Probability of choices across trials in a block. Error bars and shaded area around each line 
represent SEM. 
 
Next we tested whether the prime-target congruency also affects reaction 
times. We performed a three-way ANOVA on participants’ reaction times on 
their free choices with the factors prime direction, response direction and 
reward probability. Figure 6.3 depicts the reaction times associated with 
participants’ choices. As expected, participants were faster (more fluent) when 
pressing the same direction as the one indicated by the prime (F1,33=36.46, 
p<0.001) and this effect was modulated by the reward condition, since the 
choices were even faster when pressed in accordance to the most probable 
reward condition (F2,66=21.98, p<0.001). A mixed ANOVA including group as a 
factor revealed no difference between the BD and GD group in the comparisons 
indicated before (all ps>0.07). 

 
Figure 6.3. Reaction times for free choices. Mean reaction times for each of the prime-response 
combinations, plotted as a function of probability condition. Error bars indicate SEM. 
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Metacognitive confidence 
Next we analyzed the impact of primes on participants’ confidence in free 
choice trials. A three-way ANOVA was performed with the factors prime 
direction, response direction and reward probability. Figure 6.4A shows that, 
overall, participants were not equally confident in each block. They were the 
least confident in the 0.2/0.5 blocks and were more confident for the first two 
probability conditions (F2,66=28, p<0.001). Moreover, there was an interaction 
between probability condition and response direction (F2,66=66.96, p<0.001), 
indicating that participants were more confident when their choices were in 
accordance with the most probable reward option. Interestingly, prime 
direction did not impact participants’ confidence in receiving a reward 
(F1,33=1.9, p=0.18), nor did it interact with any of the other factors (all ps>0.05). 
A mixed ANOVA including group as a factor revealed no difference between the 
BD and GD group in the comparisons indicated before (all ps>0.39). Figure 6.4B 
shows that participants rated confidence according to the probability 
conditions at stake and that there was no bias towards a response option over 
trials.  
 

 
 
Figure 6.4. Confidence rating. (A) Mean confidence as a function of prime direction, response 
direction and reward probability. (B) Mean confidence as a function of prime direction, response 
direction and reward probability condition evolving across all trials in each block. Error bars and 
shaded area around each line indicate SEM. 
 
Finally, we analyzed participants’ performance on questions presented at the 
end of a block in which they estimated the probability that the left/right side 
was rewarded. A two-way ANOVA with the factors side and probability 
condition was performed. Figure 6.5 shows that, overall, participants keep 
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track of the estimated probabilities along the blocks (interaction between side 
and probability condition: F2,66=95.7, p<0.001) meaning that, in general, left 
side estimations are higher than right side estimations when left rewards more 
often, but that this patterns reverse when the right side is most often rewarded 
(this interaction was absent for the confidence estimations: F2,66=2.2, p=0.13). 
 

 
 

Figure 6.5. Estimated probability of reward for the left and right response. Error bars indicate 
SEM. 
 
Discussion 
In the present study we investigated the effects of masked cues on both 
performance and metacognition in a reward learning task. Participants aimed 
to attain as much reward as possible by freely deciding between which of two 
(left or right) responses was most often rewarded. Specifically, the masked cues 
(pointed arrows) either pointed in the same or opposite direction of the more 
rewarding response, creating, on some trials, internal conflict, depending on 
the congruency between the prime direction and the most probable reward 
direction. Questions aimed at evaluating metacognitive insight were presented 
on trials in which participants were free to choose. We found that primes 
influenced behavioral performance, but did not influence metacognitive 
confidence. First we discuss the results relating to performance in more detail. 
 
Overall we observed a raise in the frequency of choosing the option that was in 
accordance with the direction of the masked prime. Also, these choices were 
faster compared to choices incongruent to the prime direction. This work is in 
line with previous evidence showing that human decisions are influenced by 
subliminal cues in a free choice decision task. For example, in one study, 
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participants’ free choices between a left or right response were consistently 
biased by a left or right pointing arrow such that participants’ choices were 
more likely to be congruent with the direction of the prime arrow 
(Schlaghecken & Eimer, 2004). In masked priming tasks as used here, 
performance effects seem to rely on the fact that masked primes can be 
processed efficiently enough to directly affect the motor system (e.g. Dehaene 
et al., 1998; Leuthold & Kopp, 1998; Neumann & Klotz, 1994). If responses on 
congruent trials are already primed, participants would have a benefit in 
performance. On the other hand, when responses on incongruent trials conflict 
with the primed response direction, an “internal conflict” would be generated, 
impacting performance. 
 
In contrast to performance measures, it is possible that confidence measures 
rely less on the strength of the stimuli, but more so on the ability to detect the 
secondary effects that these stimuli may generate. For instance, people may 
show a slowing of their response as a consequence of the incongruency 
between the subliminal prime and the target response, which may trigger 
internal conflict and hence some metacognitive awareness of this 
incongruency. In line with this, Marti and colleagues have observed that 
participants are indeed capable of accurately introspecting their speed of 
responding (Marti et al., 2010). A recent study directly tested this hypothesis by 
disrupting post response confidence without altering visual discrimination 
performance. Participants were asked to make a difficult perceptual decision by 
reporting the direction of a grating superimposed on noise. Next, they had to 
provide a confidence rating in their discrimination. By stimulating the premotor 
cortex associated with the unchosen response (using transcranial magnetic 
stimulation), participants’ confidence in their decision was reduced, suggesting 
that action-specific activity contributes to perceptual confidence (Fleming et 
al., 2015). In our experiment, however, although participants were faster when 
pressing the same response as the direction indicated by the prime, these 
subtle motor related-factors seemed not to be sufficient to influence 
participants’ confidence in receiving a reward. So, we observed a clear 
dissociation between the impact of masked cues on performance and on 
metacognition.    
 
Dissociations between performance and metacognition 
There are many studies that indicate important dissociations between 
performance and metacognition. Blindsight is considered a classical example of 
a dissociation between performance and visual awareness. Patients with brain 
damage to the occipital lobe manage to discriminate stimuli when forced-
choice procedures are used, while claiming not knowing why they score so high 
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on these tests (Morten Overgaard, 2011). Clearly, in this situation, conscious 
awareness, or metacognition, and performance are dissociated. In healthy 
participants, a similar question regarding dissociations between action 
selection and sense of control was addressed by Wenke and collaborators 
(2010). In their study, participants rated their sense of control when responding 
to cued or free targets that were primed by a briefly presented congruent or 
incongruent arrow. Depending on participants’ selected action, their choices 
were compatible or incompatible with the preceding masked prime and 
different colors were displayed as a consequence of this congruency. 
Participants then rated how much control they experienced over the 
occurrence of the different colors presented after each decision. The results 
indicated that participants felt more control over colors that followed prime 
compatible actions than over colors that followed prime-incompatible actions. 
It seemed that, although subjects could not see the primes, some 
metacognitive information was accessible from participant’s rates of control 
(Wenke et al., 2010). Again, this illustrates that awareness of stimuli can be 
dissociated from the metacognitive effects these stimuli have. 
 
More recently, Charles and colleagues (2014) investigated participants' ability 
to detect their own errors on consciously and subliminally primed decisions 
(Charles, King, & Dehaene, 2014; Charles et al., 2013). They hypothesized that 
some monitoring processes could be sufficiently automatized to unfold 
nonconsciously. To test this, participants were shown briefly displayed 
numbers followed by masks with different Stimulus Onset Asynchronies (SOAs), 
generating strongly/weakly masked numbers. Participants were instructed to 
make a fast forced-choice number comparison, reporting whether the target 
number was smaller or larger than 5, and whether they saw it or not. 
Participants were then asked to report whether they thought they had 
committed an error or not in the previous trial. Participants managed to detect 
their errors at above-chance levels, a measure of metacognitive insight, on 
trials on which they reported not having seen the number and could not 
discriminate whether it was larger/smaller than 5. This study again shows that 
there is information potentially retrieved from metacognitive estimations, even 
in the absence of perception.  
 
Dissociations between performance and metacognition might be due to 
variations in task design. In our task, the reason why primes influenced 
performance, but not metacognition, could be related to the short life-time of 
unconscious information processing, typically thought to be around 500 ms 
(Kiefer, 2002; Sergent, Baillet, & Dehaene, 2005; van Gaal et al., 2014). 
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Therefore, potential interference caused by the primes might have died out 
while participants had to respond to the confidence question.  
 
In our study, action fluency, the better performance when prime and target 
were congruent, was not translated into higher confidence rates in receiving a 
reward. There could be several reasons for the fact that participants were not 
aware of their performance bias. For instance, in our experiment, the prime 
was not informative about the direction of the reward and therefore could be 
fully ignored. It may be that manipulating the task relevance would leverage 
the impact of primes on metacognition (see van Gaal, de Lange, & Cohen, 
2012). It might be that unconscious primes could influence confidence 
estimations if participants were offered real incentives, therefore boosting 
participants’ motivation. Another way to boost action fluency relevance would 
be to ask participants to bet on their choices, instead of merely asking for 
confidence in receiving reward, before the feedback is given. Future studies are 
necessary to address which conditions are necessary and sufficient to promote 
metacognitive assessment of a person’s decision bias. 
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7. Summary and discussion 
 
In this thesis we explored the role of stimulus awareness, neuromodulation and 
metacognition in perceptual and cognitive decision making in human 
participants. In doing so, we manipulated external variables that may 
contribute to people’s decisions, such as stimulus strength (e.g. by masking 
stimuli), and we monitored (internal) fluctuations in the brain’s arousal state 
and the accuracy of metacognitive decision evaluation in the lab. Moreover, we 
employed EEG recordings, pupil responses, behavioral measures and 
computational modeling in our studies to unravel the mechanisms underlying 
perceptual and cognitive decision making (for a graphical summary of all the 
experiments see Figure 7.1).  
 
Specifically, using the combination of experimental approaches we aimed to 
answer three specific research questions in this thesis:  
 

1. How does the level of awareness of decision outcomes modulate the way 
people learn, decide and monitor their own behavior? (Chapters 2-3).  

2. How do stimulus evoked fluctuations of the brain’s arousal state affect 
perceptual awareness and metacognitive evaluation of decision 
accuracy? (Chapter 4).  

3. What is the role of metacognition in monitoring and updating our 
decisions? (Chapters 5-6). 

 

 
Figure 7.1. Overview of the main questions addressed in the different chapters of this thesis. 
The role of awareness, neuromodulation and metacognition for perceptual and cognitive decision 
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making were studied. Behavioral, physiological, electrophysiological and computational analyses 
were performed. 
 
Summary of the main findings  
In the following sections I will briefly summarize and interpret the obtained 
results regarding each of these three questions. For an elaborate discussion 
and interpretation of the results of each of the questions we refer to the 
specific chapters.  
 
Q1. How does the level of awareness of decision outcomes modulate the way 
people learn, decide and monitor their own behavior? 
 
Recent studies have reported that reward cues that are masked from 
awareness can still influence performance on tasks in the lab (Aarts et al., 2008; 
Bijleveld, Custers, & Aarts, 2012; Capa at al., 2013; Pessiglione et al., 2007). The 
neural mechanisms allowing for this kind of decision adjustments based on 
rewards at different levels of awareness were examined in our first 
experimental chapter. Specifically, we aimed to unravel whether, and if so how, 
people can learn from and integrate reward information at different levels of 
feedback awareness during decision formation.  
 
We observed that participants switched their responses after both unmasked 
and masked unfavorable outcomes more often than after favorable outcomes , 
suggesting that humans can learn to update the value of the available options 
from probabilistic rewards, even when the decision outcomes were not fully 
consciously perceived. However, degrading the visibility of the reward 
increased participants’ tendency to repeat previous choices (perseveration), 
suggesting that awareness of decision outcomes is necessary for optimal 
decision making strategies. Our best fitting model parameters included 
perseveration and indicated that this parameter was significantly positive for 
both the visibility modules, although perseveration was smaller for the fully 
conscious module. Such a finding is relevant for our mixed design task (various 
levels of feedback awareness along the task). Here, repeating previous choices 
can constitute the implementation of a higher-level strategy, by ignoring 
irrelevant negative rewards, sticking to their decision strategy. This could be 
done based on the integration of information over a longer sequence of trials, 
when full conscious awareness of the outcome was (often) lacking. 
Additionally, by analyzing electroencephalographic (EEG) recording in 
combination with computational modeling we dissociated electrophysiological 
signatures evoked by the reward-based learning processes from those elicited 
by the reward-independent repetition of previous choices and showed that 
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these neural activities were significantly modulated by reward visibility. 
Speculatively, the presence of feedback-related-negativity (FRN) component for 
both masked and unmasked feedback may reflect a fast feedforward and 
nonconscious high-level “fast-alarm” response (as suggested recently by 
Ullsperger et al (2014), whereas the P3 component may reflect more conscious, 
and longer lasting neural responses, potentially dependent on recurrent 
interactions and necessary for behavioral adaptations (Del Cul, Baillet, & 
Dehaene, 2007; Sergent & Dehaene, 2004). It remains an open question 
however how subtle differences in early error detecting (as reflected in the 
FRN), are not fully “used” for adapting future decisions when decision 
outcomes are masked. This is matter of future experimentation. 
 
Overall, in this chapter we shed new light on the neural computations 
underlying reward-based learning and decision-making and we highlighted 
that, although clearly beneficial, reward awareness is not strictly necessary for 
the trial-by-trial adjustment of decision-making strategies, though highlighting 
a beneficial role of reward awareness in adjusting decision-making strategies. 
 
After having demonstrated how awareness played a role in feedback 
processing in Chapter 2, we further investigated the role of participants’ 
expectation on being correct or not in their decision (Fleming & Lau, 2014) on a 
trial-by-trial basis (based on single trial confidence reports). For that, we used a 
challenging perceptual decision-making task in which half of the veridical 
feedback was masked and the other half was not. We observed that EEG and 
pupil signals were sensitive enough to reflect differences in reward valence and 
in people’s ongoing expectations, even when outcomes were subjectively 
reported as not seen. However, there seemed to be more complex cognitive 
functions that required conscious awareness of the feedback to unfold. When 
we analyzed pupil and brain signals after fully conscious feedback we observed 
that only in this condition, both the P3 ERP component and pupil dilation 
measures mirrored a prediction error signal, reflecting an integration of 
feedback correctness, which was modulated by the confidence in the previous 
decision (Nieuwenhuis, Aston-Jones, & Cohen, 2005). Feedback at lower levels 
of awareness did not show this pattern of results, but showed effects 
separately for feedback correctness (pupil) and confidence (P3 ERP). Therefore, 
the results of chapter 3 suggest that confidence modulations of outcome-
evoked stimulus processing depend on feedback awareness. We tentatively 
suggest that this may reflect the involvement of the catecholamine system (e.g. 
dopamine, noradrenaline) promoting belief updating (Colizoli et al., 2018; 
Jepma et al., 2016). It is therefore possible that awareness is needed for the 
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integration of performance outcomes with confidence estimates to update and 
optimize future decisions. 
 
Overall we showed in chapter 2 and 3 that the evaluation of decision outcomes 
can be tracked using EEG and pupil measures, regardless of (full-blown) 
feedback visibility. Overall visual awareness seems crucial for the emergence of 
fully integrated performance monitoring mechanisms, which are associated 
with flexible value updating and trial-by-trial decision adjustments.  
 
Q2. How do stimulus-evoked fluctuations of the brain’s arousal state affect 
perceptual awareness and metacognitive evaluation of decision accuracy? 
 
Next we addressed the question how the brain’s arousal state may account for 
variation in our perceptual decisions even in the presence of the same external 
stimulation (Glimcher, 2005; Gold & Shadlen, 2007; Shadlen et al., 1996; 
Sugrue, Corrado, & Newsome, 2005; Wyart & Koechlin, 2016). 
Neuromodulation is a source of internal variation in the brain’s arousal state 
that may partly explain differences in decision making performance and it has 
been shown previously that these internal fluctuations can be tracked by 
proxies, such as pupil dilation and the P3 event-related component (Aston-
Jones & Cohen, 2005; de Gee et al., 2017; de Gee, Knapen, & Donner, 2014; 
Nieuwenhuis, Aston-Jones, & Cohen, 2005). 
  
In chapter 4, we showed that stimulus-evoked pupil dilation (preceding 
participants’ response) could, on average, differentiate between correct and 
incorrect perceptual decisions. This result, that under larger pupil dilation 
participants have a better discrimination sensitivity (d’) may indicate that 
stimuli that are difficult to perceive are better encoded under high phasic 
arousal, possibly related to increased fine tuning of attentional mechanisms 
(Aston-Jones & Cohen, 2005). This interpretation is in line with a recent 
pharmacological study that showed that modulation of the level of 
noradrenaline induced by Reboxetine/Clonidine leads to altered Gabor 
discrimination (Gelbard-Sagiv, Sharon, & Nir, 2018). However, interestingly, in 
our study, stimulus-induced higher arousal states (as reflected by larger pupils) 
were associated with worse metacognitive performance (reduced 
metacognitive sensitivity: meta-d’ efficiency). In chapter 4 we have argued that 
this may reveal that an increased brain arousal state facilitates bottom-up 
stimulus processing, but at the same time may detriment top-down processes, 
as has been suggested previously (Aston-Jones & Cohen, 2005; de Gee et al., 
2017; Eldar et al., 2013). Such an inverse modulatory effect of neuromodulation 
on bottom-up and top-down information processing is in line with a recent 
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study which showed that lower arousal levels, induced by noradrenergic 
blocking by propranolol, were associated with improved metacognitive 
performance, but had no significant impact on first-order task performance (d’) 
(Hauser et al., 2017).  
 
Overall, and more generally, the results of Chapter 4 show how stimulus-
evoked neuromodulatory changes may affect perception and metacognition in 
opposite ways. This is in line with the neural gain hypothesis, which claims that 
noradrenaline (gain in arousal) may amplify strong evidence, i.e. bottom up 
signals, and may diminish weaker signals, as top down metacognitive 
evaluations of performance (Aston-Jones & Cohen, 2005; Donner & 
Nieuwenhuis, 2013). 
 
As for the role of neuromodulation in stimulus detection and the metacognitive 
evaluation of the accuracy of perceptual decisions, we showed that the pupil is 
a good proxy for explaining variance in people´s decision accuracy. However, 
and despite finding similar results with other studies (Hauser et al., 2017; Urai 
et al., 2017), it remains a topic for further research to understand why 
improvements in perception accompanied by stimulus driven (phasic) arousal 
responses (see also Gelbard-Sagiv et al., 2018) are accompanied by worse 
metacognitive assessment of such sharpened perceptions. Finally, because we 
focused here on stimulus induced pupil measures, future studies should also 
focus on pre-stimulus fluctuations in pupil size and how these relate to stimulus 
processing, sensitivity and metacognitive accuracy, as phasic responses of 
brainstem arousal systems can account for a significant source of responses’ 
variability (Lima et al., 2011; Zagha et al., 2013), as has been observed mainly in 
mice (McGinley et al., 2015).  
 
Q3. Are conscious awareness and/or metacognition necessary for monitoring 
our decision biases or updating our behavior? 
 
It has repeatedly been established that subliminal primes have a clear impact 
on people’s decisions (Dehaene et al., 1998; Klotz & Neumann, 1999; 
Pessiglione et al., 2008; Pessiglione et al., 2007; Vorberg et al., 2003). A robust 
example of this is the conflict effect, which refers to worse performance and 
slower reaction times to an incongruent prime-target pair compared to a 
congruent prime-target pair in a masked priming experiment (Jiang et al., 2013; 
Jiang, Zhang, & van Gaal, 2015; van Gaal, Lamme, & Ridderinkhof, 2010). 
Besides this direct influence of incongruency on behavior, conflict adaptation 
over trials can also be observed. Conflict adaptation reflects the phenomenon 
that previously experienced conflict diminishes the conflict effect on the 
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current trial, probably related to increased cognitive control triggered by the 
conflicting information on the previous trial (Gratton, Coles, & Donchin, 1992; 
Ullsperger, Bylsma, & Botvinick, 2005; van Gaal, Lamme, & Ridderinkhof, 2010). 
Interestingly, it has been observed that even this high-level cognitive process 
can be triggered by incongruent subliminal prime-target pairs (Desender, Van 
Lierde, & Van den Bussche, 2013; Huber-Huber & Ansorge, 2017; Jiang, Zhang, 
& van Gaal, 2015b; Reuss et al., 2014; van Gaal, Lamme, & Ridderinkhof, 2010), 
although evidence is mixed (Frings & Wentura, 2008; Greenwald, Draine, & 
Abrams, 1996; Jiménez & Méndez, 2013). 
 
What is challenging about the possible existence of “unconsciously triggered 
conflict adaptation” is the hypothesis that some of the observed conflict 
adaptation effects might in fact be driven by metacognitive awareness of the 
conflict, and therefore are related to conscious conflict experience after all 
(Desender et al., 2016; Desender, Van Opstal, & Van den Bussche, 2014; 
Questienne, Opstal, & Dijck, 2016). It could be that, even without being aware 
of the primes due to heavy masking, participants could experience a “feeling of 
conflict” (Desender et al., 2014), due for example to reduced fluency of their 
responses  (e.g. slower reaction times). We followed this reasoning and, in 
chapter 5 of this thesis, we described a series of experiments in which we 
studied whether conflict adaptation, triggered by masked primes, could be due 
to metacognitive access to conflict information (“feeling the conflict”). We 
found that current trial conflict effects were always present, irrespective of 
conflict experience on that trial, whereas conflict adaptation was only present 
on trials that were not previously interrupted by metacognitive questions 
about conflict experience. We argued that these intervening questions may 
have disrupted ongoing, but fragile, conflict processing. It has been argued that 
unconscious stimuli decay rapidly while progressing up in the cortical hierarchy 
(Greenwald et al., 1996; Mattler, 2005) and recently Duthoo and colleagues 
(2014) showed that the conflict adaptation effect decreases with increasing 
inter-trial-intervals. Although we did not find evidence for subjective conflict 
experience in cognitive control after masked conflict primes, in a more 
extensive study that followed up on the present results with 64 participants 
performing a similar task (Jiang et al., 2018), we found that the subjective 
experience of conflict elicited behavioral adaptation, but, crucially, this was also 
the case when conflict was present, but not experienced. This demonstrated 
that conflict adaptation probably does not depend on conflict experience (see 
also Huber-Huber et al 2017), but that conflict experience may be associated 
with increased cognitive control, because trials on which conflict is strongly 
triggered are also the trials on which participants often experience conflict (see 
Abrahamse & Braem, 2015).  
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Finally, in the sixth chapter of this thesis, we explored whether people could 
metacognitively detect unconscious biases of their decisions, following 
previous findings showing that unconscious primes can affect “free” decisions 
(Kiesel et al., 2006; Schlaghecken & Eimer, 2004). We measured the behavioral 
and metacognitive impact of subliminal primes that were presented just before 
a target stimulus. Targets were always preceded by prime arrows that could 
either be congruent or incongruent with the most rewarded response option in 
a block (some responses were more often rewarded than others). Participants 
were sometimes cued to make a specific response and sometimes they were 
“free” to decide which response they preferred (the latter were the trials of 
interest). On each trial, subjects were asked about the confidence in receiving a 
reward based on their previous response. We showed that prime direction 
affected participants immediate decisions, so when participants were free to 
decide, they chose more often congruently with the direction of the prime. 
However, prime and response congruency did not influence participants’ 
confidence in receiving a reward, suggesting that participants were unaware 
that their decisions were biased. We therefore observed a dissociation 
between performance and metacognitive assessment.  
 
Overall, in chapters 5 and 6, we found that masked stimuli affected ongoing 
behavior and simple decisions, but these effects were not necessarily 
translated into metacognitive awareness, or metacognitive evaluation did not 
have a clear impact on evolving control processes. We will discuss possibilities 
for future research aimed at addressing our main question 3 below.  
 
It has recently been observed that confidence estimates can be disrupted 
without altering visual discrimination performance (Fleming et al., 2015). 
Fleming and colleagues stimulated the premotor cortex associated with the 
unchosen response (using transcranial magnetic stimulation) in a perceptual 
decision-making task and showed that participants’ confidence in their decision 
was reduced under these conditions. This suggests that action-specific motor 
activity contributes to perceptual confidence estimations. Further, Wenke and 
collaborators (2010) showed that subjects experienced increased control over 
decision outcomes that were associated with responses that were congruently 
primed with masked prime arrows, suggesting that subjects experience more 
control over “fluent actions”. Finally, Charles and collaborators (Charles et al., 
2014) found that metacognitive monitoring processes could be sufficiently 
automatized to unfold based on unconsciously presented stimuli. In our study, 
however, although participants were faster when pressing the same response 
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as the direction indicated by the prime, these subtle motor related-factors 
seemed not to be sufficient to influence participants’ confidence in receiving a 
reward. Dissociations between performance and metacognition might be due 
to variations in task design. In our task, the reason why primes influenced 
performance, but not metacognition, could be related to the short life-time of 
unconscious information processing (Kiefer, 2002; Sergent, Baillet, & Dehaene, 
2005; van Gaal et al., 2014). Therefore, potential interference caused by the 
primes might have died out while participants had to respond to the 
confidence question. In sum, in this experiment, people seemed 
metacognitively unaware of the choice bias that was induced by subliminal 
primes (Fleming & Dolan, 2014).  
 
Why did we not observe confidence modulations by masked primes? We found 
that masked primes affected free choices, but note that primes were not 
predictive of the reward probability on that trial per se. Therefore, it is possible 
that the bias the primes introduced was not relevant for the task type and, 
therefore, could not be metacognitively accessed, since it was not informative 
of the reward probability at stake. This is not unfamiliar in the literature: a 
previous study showed that subliminal primes could not activate prefrontal 
control networks when they were task irrelevant (van Gaal et al., 2008) but did 
so when they were meaningful. Also, Ansorge & Neumann (2005) showed that 
task-relevant prime features (shape) affected responses to the target only 
when the shape dimension was response relevant, but not when this feature 
was task-irrelevant (when the color of the target was the required response). 
Such selectivity in activations was corroborated by Lau & Passingham (2007) 
who showed unconscious modulations of cortical networks specifically 
associated with the task type. They found increased or decreased activity of 
cortical networks specifically associated with their phonological or semantic 
tasks. Therefore, task-relevance is a non-negligible factor for detecting the 
impact of unconscious manipulations in behavioral performance and 
metacognition. Future studies should address task-relevance carefully in order 
to do so.  
 
General remarks and overall conclusions  
Throughout this thesis we often use the terms “conscious” and “unconscious” 
to refer to processing of visible (or reportable, aware) and invisible (or non-
reportable, unaware) stimuli, respectively. This terminology was used for 
convenience with the nomenclature in the literature. However, in this thesis we 
often did not (manage to) manipulate awareness in an “all-or-none” manner, 
creating conscious and unconscious stimuli, but more so we manipulated 
awareness in a graded manner, leading to partial or “minimal awareness” and 
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“full awareness”. Although the graded nature of the manipulation of perceptual 
awareness in our studies, we have often observed qualitative differences in the 
effects these stimuli had on behavioral and cognitive variables. For example in 
chapter 3 we observed that the integration of confidence and correctness 
(leading to a prediction error response) was only observed when decision 
feedback was presented fully consciously, and not when it was heavily masked 
and therefore only partly conscious. Qualitative differences may suggest a clear 
computational difference between conscious and unconscious processes, 
however, we would like to acknowledge here that we do not claim that the 
processes that we have studied in this thesis can also unfold fully unconsciously 
(e.g. RL-learning from unconscious feedback), mainly because we have not 
tested that specifically (d’ was not 0 in those studies). Therefore, future studies 
should be performed to test to what extent the obtained results in this thesis, 
regarding the masked stimuli, are similar for stimuli that can truly not be 
detected/discriminated above chance-level and are hence fully unconscious.  
 
In this thesis we have described and elaborated on the role of stimulus 
awareness, neuromodulation and metacognitive evaluation in perceptual and 
cognitive decision making. In doing so, we have pointed out some potential 
benefits of conscious awareness for specific cognitive (control) and monitoring 
processes. For further progress, future research should more mechanistically 
address this issue because there are still many open questions. For instance, 
which underlying neural mechanisms are reflected in the various neural 
signatures that we have measured, such as the P3 ERP component (Cohen, 
Elger, & Ranganath, 2007; Nieuwenhuis et al., 2005). How does 
neuromodulation, tracked by pupil dilation, mechanistically change the way 
information is processed and how is that translated into changes in 
performance and metacognition (Hauser et al., 2017; Lempert et al., 2015)? Is 
there an evolutionary reason why metacognition and performance may start to 
dissociate under high levels of arousal? In general, Cognitive (Neuroscience) 
has brought us many new tools to investigate the various processes relevant 
for explaining our decisions. However, at present, we are only just beginning to 
understand how decision making is implemented in the human brain. It is my 
hope we have contributed to this endeavor by increasing our understanding of 
the role of stimulus awareness, neuromodulation and metacognition in 
perceptual and cognitive decision making.   
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Summary in Dutch 
 
In dit proefschrift onderzoek ik de rol van bewustzijn in menselijke 
besluitvorming en cognitie en probeer ik beter te begrijpen waarom we soms 
bewust worden van informatie in onze omgeving en waarom soms niet. Om dat 
te onderzoeken, manipuleerde ik externe variabelen die het beslisproces 
beïnvloeden, zoals de zichtbaarheid van een visuele stimulus op basis waarvan 
mensen een simpele beslissing moeten maken. Ook onderzocht ik (interne) 
schommelingen in de staat van alertheid van de hersenen (gemeten door te 
kijken naar de pupilgrootte) en de nauwkeurigheid van onze beslissing en de 
metacognitieve evaluatie van onze beslissingen (inzicht in de accuraatheid van 
onze beslissingen). In onze studies hebben we metingen van gedrag, 
pupilgrootte en EEG (elektrische hersensignalen) gecombineerd met 
computationele modellen om de mechanismen te ontrafelen die ten grondslag 
liggen aan perceptuele en cognitieve beslissingen. 
  
Het werk gepresenteerd in dit proefschrift richt zich op drie hoofdvragen: 
1. Hoe beïnvloedt bewustzijn van de uitkomst van een beslissing de manier 
waarop mensen leren, keuzes maken en hun gedrag bijsturen? (Experimenten 
1-2). 
2. Hoe beïnvloedt de alertheidsstaat van de hersenen ons perceptueel 
bewustzijn en metacognitieve evaluatie over de nauwkeurigheid van ons 
keuzegedrag? (Experiment 3). 
3. Zijn bewustzijn en metacognitie noodzakelijk voor het monitoren van onze 
beslisvoorkeuren, of voor het bijstellen van ons toekomstige gedrag? 
(Experimenten 4-5). 
  
Samenvattend laat het werk in dit proefschrift zien dat de uitkomst van een 
beslissing kan worden gemeten met behulp van hersen- en pupilmetingen, 
ongeacht de (volledige) zichtbaarheid van prestatiefeedback (positieve of 
negatieve feedback). Echter lijkt het er op dat visueel bewustzijn cruciaal is 
voor optimale controle van onze prestatie en is het belangrijk om flexibel te 
leren van onze fouten en aanpassingen door te voeren van onze toekomstige 
keuzepatronen. Verder laten we zien dat een verhoogde alertheid van de 
hersenen tijdens de presentatie van informatie die relevant is voor de 
beslissing, onze perceptie en metacognitieve evaluatie van onze prestatie op 
tegenovergestelde manieren beïnvloedt. Dit heeft waarschijnlijk te maken met 
het vrijgeven van de neurotransmitter noradrenaline, die de verwerking van 
externe prikkels (stimuli) kan versterken en de verwerking van zwakkere 
signalen kan reduceren. 
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