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ABSTRACT
Slums, characterized by sub-standard housing conditions, are a common in fast growing
Asian cities. However, reliable and up-to-date information on their locations and develop-
ment dynamics is scarce. Despite numerous studies, the task of delineating slum areas
remains a challenge and no general agreement exists about the most suitable method for
detecting or assessing detection performance. In this paper, standard computer vision
methods – Bag of Visual Words framework and Speeded-Up Robust Features have been
applied for image-based classification of slum and non-slum areas in Kalyan and Bangalore,
India, using very high resolution RGB images. To delineate slum areas, image segmentation is
performed as pixel-level classification for three classes: Slums, Built-up and Non-Built-up. For
each of the three classes, image tiles were randomly selected using ground truth observa-
tions. A multi-class support vector machine classifier has been trained on 80% of the tiles and
the remaining 20% were used for testing. The final image segmentation has been obtained
by classification of every 10th pixel followed by a majority filtering assigning classes to all
remaining pixels. The results demonstrate the ability of the method to map slums with very
different visual characteristics in two very different Indian cities.
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Introduction

Currently, about one-third of the urban population in
Asia, home to half of the world’s urban population,
resides in deprived habitats – also referred to as
informal settlements or slums (UN Habitat, 2016).
With continued high urbanization rates in Asia (UN
Habitat, 2016) and the low capacity of formal afford-
able housing, much of this growth will happen in
slum areas. The Sustainable Development Goals of
the United Nations Development Program monitors
the proportion of urban population living in slums
(or informal settlements) as a key indicator in asses-
sing the outcome of goal 11 which relates to safe,
resilient and sustainable cities. Global statistics on
this indicator show a relative decrease, but in absolute
terms an increase of slum inhabitants. The globally
recognized definition of slums by UN-Habitat (UN
Habitat, 2016) defines slums as being deprived from
access to improved water, sanitation, lacking suffi-
cient living area, durable housing and security of
tenure. India adapted this slum definition and defines
slums similarly, as areas lacking basic services, sub-
standard, illegal or inadequate housing, overcrowding
and high density, unhealthy living conditions and

hazardous locations, tenure insecurity, poverty and
social exclusion. However, India also uses a mini-
mum size criterion of at least 300 inhabitants or 60
households.1 Therefore, small and scattered slum
pockets (often found at the outskirts of cities but
also at central location) are often not included into
official slum statistics. Such areas can be also of very
temporary nature and transform quickly, for exam-
ple, settlements of migrants working for the booming
Indian construction industry. Further, in India, slum
definitions vary across cities and depend on subjec-
tive parameters such as narrowness, decay, overpo-
pulation, faulty design, lack of ventilation, lack of
sanitation facilities and so on. In such a scenario,
the separating line between these subjective para-
meters, such as “narrow” and “non-narrow” will be
drawn differently by different agencies leading to
different estimates.

In India, according to UN-Habitat statistics, the
total slum population declined from 55% in 1990 to
24% in 2014.2 Official slum maps often cover only the
notified and recognized slums, while excluding a
large amount of slum areas (Government of India,
2011). In general, the local policy of slum declarations

CONTACT Elena Ranguelova E.Ranguelova@esciencecenter.nl Netherlands eScience Center, Science park 140, 1098 XG Amsterdam, The
Netherlands
1http://nbo.nic.in/Images/PDF/SLUMS_IN_INDIA_Slum_Compendium_2015_English.pdf.
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impacts the gap between notified and recognized
slums and areas/pockets with slum-like conditions
(areas that are not officially defined as slum but lack
basic services as defined by UN-Habitat3) that exist
on the ground. Therefore, the variations within data
collection methods and political and operational deci-
sions of including slum areas into these official sta-
tistics result in consistency problems. These problems
exist within a city, country and even on a global scale.
A possible alternative to address such consistency
problems is offered by the increasing availability of
very high resolution (VHR) remote sensing imagery
that allows for a global coverage, and Earth
Observation (EO)-based methods (Kuffer, Pfeffer, &
Sliuzas, 2016) that can provide a consistent mapping
approach of land cover/use. As these methods offer
high frequency updates, they can potentially support
the production of up-to-date urban base maps and
provide possibilities to acquire information on the
location, morphology and dynamics of slums
(Kuffer et al., 2016) and to model and predict the
emergence of slums (Roy, Lees, Palavalli, Pfeffer, &
Sloot, 2014), (Roy, Lees, Pfeffer, & Sloot, 2017).

Recent studies have employed texture and object-
based image analysis (Graesser et al., 2012; Kohli,
Sliuzas, Kerle, & Stein, 2012) coupled with machine
learning techniques to classify slums (Duque, Patino, &
Betancourt, 2017a; Wurm, Taubenböck, Weigand, &
Schmitt, 2018; Kit, Ldeke, & Reckien, 2012; Kuffer,
Pfeffer, Sliuzas, Baud, & van Maarseveen, 2017;
Engstrom, Newhouse, Haldavanekar, Copenhaver, &
Hersh, 2017). Kuffer et al. examined and compared var-
ious spectral, textural and spatial feature sets to obtain
insight into the most significant slum indicators. Despite
numerous studies proposing image-based methods for
mapping general urban structure types and specifically
slums (Wurm, Taubenböck, Weigand, & Schmitt, 2017),
the task of delineating slum areas remains challenging
and currently there is no general agreement about the
most suitable method (Kuffer et al., 2016). The main
uncertainties and challenges inherent in EO-based slum
mapping approaches refer to (a) the diversity of spatial,
spectral and textural characteristics of slums within and
across cities (Kuffer et al., 2017); (b) the required varia-
tions in feature sets and methods to cover this diversity
(Duque et al., 2017a); (c) transferability problems arising
from variations in feature sets andmethods (Kohli, Stein,
& Sliuzas, 2016); (d) access to commercial and often
expensive VHR imagery (Duque et al., 2017a; Wurm,
Weigand, Schmitt, Gei, & Taubenböck, 2017); (e) sensor
differences particularly in the context of change detection
(Ranguelova, Kuffer, Pfeffer, Roy, & Lees, 2017), (f) scal-
ability and computational issues when aiming at a city,
urban region, national or global coverage (Kuffer, van
Maarseveen, Sliuzas, & Pfeffer, 2017; Ranguelova et al.,

2017) and (g) uncertainties in generation and usage of
reference ground truth data to assess the quality of slum
mapping outputs (Pratomo, Kuffer, Martinez, & Kohli,
2016; Kohli et al., 2016). Furthermore, employing the
globally recognized definition of UN-Habitat for slum
mapping with EO-based methods has to solve the
dilemma that many of the indicators cannot be directly
observed in an image (e.g. access to improved water or
tenure security). Thus EO-based methods build on the
knowledge that slums share specific morphological fea-
tures that can be recognized in an image, that is, high
built-updensities, irregularity of settlement patterns, rela-
tively small building footprint areas and often specific
location characteristics (e.g. hazardous areas). Therefore,
Wurm et al. (Wurm & Taubenböck, 2018) refer to mor-
phological slums that allow their mapping in images
employing morphological characteristics (e.g. building
density and size, patterns, and building materials).
Though satellite imagery has been available for many
years, its application has been limited due to costs and
quality issues, specifically for analysing urban land use in
developing countries. The advent of new and open source
mapping technologies, such as Google Earth (GE), which
offers free satellite imagery of most of the Earth’s land
surface, has led to increased acceptance of such technol-
ogy for urban land use (Chang et al., 2009; Gunter, 2009;
Taylor & Lovell, 2012). The quality and resolution of the
maps offered on the mapping platforms by researcher
vary greatly. A recent study (Duque et al., 2017a) demon-
strated the scope and limitations of applying standard
machine learning methods on GE imagery in the context
of several South American cities. The approach faced
consistency problems due to sensor variations that
resulted in different illumination conditions and colour
intensity of the GE imageries.

Nevertheless, in our study, the aim is to contribute
another methodological approach using such remote
sensing images. Specifically, in this article, the aim is to
explore whether generic methods developed in computer
vision have the ability to detect slum areas when applied
on GE RGB images of different resolutions from cities
with different morphologies. In particular, we analyse
whether these methods offer a robust and computation-
ally feasible approach for mapping slums at a city scale.
Themethods in question are a multi-class support vector
machine (SVM) trained on histograms of visual words
(VW) to classify small image windows (tiles). VW repre-
sent characteristic parts of an image and are used to
compactly represent and index an image or collection of
images. Usually the VW are used in the bag of visual
words (BoVW) framework (Li & Perona, 2005). First,
low-level Speeded-Up Robust Features (SURF) (Bay, Ess,
Tuytelaars, & van Gool, 2008) are obtained from the
imagery, then they are clustered and the centroids of
these clusters are used as VW. Histograms of these

3https://data.worldbank.org/indicator/EN.POP.SLUM.UR.ZS.
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words per class are then generated for each image (tile),
serving as final classification features. These high-level
features are used as input to an SVM to classify images
into Slum, Built-up and Non-Built-up classes. This clas-
sification performed on pixel level results in the delinea-
tion of Slums, Built-up and Non-Built-up areas. While
many publications on slum detection from satellite ima-
gery have used SVM as a classifier (Kuffer et al., 2016),
and BoVW have been used for land use classification
(Chen and Tian (2015)) and for scene change detection
(Du, Zhang, & Zhang, 2016) and classification (Jun, Y.,
Jiang, Y.-G., Hauptmann, A.G., & Ngo, C.-W.(2007).), to
the best of our knowledge there are no other studies
applying the combination for slum detection on easily
obtainable RGB GE images (Mahabir, Croitoru, Crooks,
Agouris, & Stefanidis, 2018).

In the research conducted for this paper, the focus
was on three main questions:

(1) How well does the SURF + BoVW + SVM
method work for delineating Slums, Built-up
and Non-Built-up areas by classifying image
pixels?

(2) How applicable is this method for images of
different resolution?

(3) How well does this method perform for different
cities?

To answer these questions, the methodology was applied
to delineate boundaries of Slums, Built-up andNon-Built-
up areas in two cities in India: Bangalore and Kalyan.
These cities have rather different urban morphologies in
particular with regards to slums. The use cases are dis-
cussed in detail in the Section Case studies and the
methodology and experimental set-up are explained in
the Section Methodology. The obtained results are pre-
sented in the Section Results and discussed in the Section
Discussion. Our main conclusions and future plans are
stated in the Section Conclusions and future work.

Case studies

In this section, the context of the two cases for testing the
developed methodology, the data and the quantitative
methods employed to detect the slums and non-slum
areas in Kalyan in 2008 and in Bangalore in 2017 are
presented.

Case 1 – Kalyan

Kalyan Dombivli (KD) is a fast-growing twin city in the
Mumbai metropolitan region in the state Maharashtra,
whose growth can be attributed to both being close to the
megacity of Mumbai located on a peninsula, as well as to

the transport connectivity through rail and road. It has a
population of around 1.2million according to the Census
20114 and occupies an area of 67 km2. Since the 1970s, it
received poorer migrants from Uttar Pradesh and Bihar
and entrepreneurs from the neighbouring state Gujarat.
Themajority of its residents areHindi (80.75%), followed
byBuddhists andMuslimswith 7.28% and 6.76%, respec-
tively. It has a relatively high literacy rate of 91.37%.
About 8% of the population reside in slums, while nearly
43% live in slum-like conditions (Kalyan-Dombivli
Municipal Corporation (KDMC), 2007). Several anti-
poverty schemes have been implemented in KD, such as
the Jawaharlal Nehru National Urban Renewal Mission
(JNNURM)5 sub-programBasic Service Provision for the
urban poor. Themore recent Rajiv Awas Yojana housing
program focuses on GIS-based mapping of slum settle-
ments, where at least two areas were identified for a pilot
study (Baud et al., 2013).

Case 2 – Bangalore

Bangalore is the capital of the state of Karnataka, and
one of the fastest growing cities in India. Bangalore is
the fifth largest city and third most populous city in
India, located on the Deccan plateau in the south-east
part of Karnataka. It is a multi-cultural city permeat-
ing class, religion and language. The city of Bangalore
has 21.5% of the total slum population in the state of
Karnataka, and every fourth person within the city
limits lives in a slum (Roy et al., 2018). The popula-
tion living in the slums of Bangalore has doubled in a
decade (2001–2011) and this poses a serious chal-
lenge to urban planners and policy makers. This
rapid increase in slum population in Bangalore has
been attributed to the high rate of rural-urban migra-
tion in the past three decades coupled with a high
fertility rate (Krishna, 2013; Krishna, Sriram, &
Prakash, 2014; Roy, Lees, Pfeffer, and Sloot (2018);
Schenk, 2001). According to the Karnataka Slum
Development Board, the city has around 597 slums.
However, the Association for Promoting Social
Action estimates that the city has over 1500 slums,
which are not counted by the government, illustrating
the importance of the issue. Therefore, an automated
method of delineating slums from satellite images can
help in addressing such issues providing a basis for
policy intervention based on more accurate data.

Data acquisition

The datasets for Kalyan and Bangalore consist of two
types. First, a GE RGB image was downloaded from
GE using maximum zoom level with sub-meter pixel
resolution and second, a GIS layer representing

4www.census2011.co.in/census/city/369-kalyan-and-dombivali.html.
5https://www.niua.org/projects/appraisal-urban-reforms-agenda-under-jnnurm.
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boundaries of slums. The slum locations were marked
using GPS devices followed by on-screen digitizing to
collect the geographic coordinates of slum bound-
aries. These coordinates were then compiled in the
Map Puzzle software6 and saved as a layer of points
in DXF format, which was finally converted into a
shapefile in ArcGIS (ESRI 2011) that could be over-
laid over the satellite RGB image. The final base maps
are geo-referenced raster maps with borders outlining
the different slums in Kalyan and Bangalore. These
maps were used as ground truth for the slum class.

Kalyan
The 2008 RGB image of KD was acquired within the
NWO Integrated Program funded project “The role
of spatial information infrastructures for tackling
urban poverty in Indian cities”. The image has
dimensions 8193 × 8194 pixels and a spatial resolu-
tion of 0.6m per pixel, for example, it covers an area
of 4.9 km2. The GIS layer representing boundaries of
39 slums was created by a private sector consultant to
the municipality of KD within the context of the
national urban renewal program JNNURM, and
modified based on ground truth collected in 2008.

Bangalore
Satellite imagery of the city of Bangalore, India, cap-
tured from GE was used to create a base-map of
slums in ArcGIS 10.3. A base-map was created
using the downloaded geo-referenced GE images as
described in the following steps. First, a shapefile of
Bangalore city was obtained from Bruhat Bengaluru
Mahanagara Palike (BBMP). The total area of
Bangalore covered by the shapefile is around
740 km2. Second, the shapefile is converted into
KML through the ArcGIS software and then loaded
into GE. The entire Bangalore area is then divided
into 455 grids of equal size, each grid covering an
area of approximately 1.6 km2. Each image is geo-
referenced using the grids in the GE. Finally, every
single image is downloaded from GE (June 2017)
with maximum zoom level corresponding to 0.15m
resolution. All images are then merged into a single
large base-map using global mapper software.
Around 1500 slums were identified over the entire
Bangalore city for the year 2017 using the list pro-
vided by Karnataka Slum Development Board and
Association for Promoting Social Action.

Regions of interest (ROIs)

For the purposes of the current study, representative
ROIs have been selected from the image data. The
main reasons for working on subregions from the
data are computational considerations (on a

commodity laptop) for this pilot study and mitigating
the diversity of image sensors when using GE
imagery.

Kalyan
From the original image, an ROI is chosen to be the
bounding box of the intersection of the image with
the ground truth shapefile. The resulting ROI has a
size of 4992 × 6024 pixels or 2995 × 3614 m as shown
in Figure 1. Since, there was one image of Kalyan
available, only one relevant ROI had been used,
which had a computationally permissible size for
our experiments.

Bangalore
For Bangalore, there were data covering a much larger
region, allowing us to use more ROIs. From the original
data, five ROIs have been selected of each of different
size covering an area similar to the GE grid size. Since
the GE images are a mosaic of images obtained by
different satellites, the ROIs have been selected with
similar visual appearance indicating that they are prob-
ably from the same satellite. The deprived areas in
Bangalore consist of many scattered pockets; hence
the study areas were chosen to cover as many pockets
as possible. The GE images mosaic (some part of the

Figure 1. Image data for Kalyan – selected region of interest
(ROI). The ROI is the bounding box of the intersection of the
original image data with the ground truth multi-polygon (in red).

6http://www.mappuzzle.se/.
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city wasmissing), the slum boundaries and overviews of
the chosen ROIs are shown in Figure 2.

The selected regions are shown in Figure 3 and
their sizes in image pixels and meters are summarized
in Table 1.

Methodology

In this study, we have defined three land-use types
(classes) for delineating slum boundaries. The three
classes are Slum (for the slum areas), Built-up (for-
mal built-up areas called Built-up for simplicity)
and Non-Built-up (usually vegetation and areas
without buildings), where the last two represent
the non-slum areas. Characteristic generic image
features are extracted from image tiles of a certain
size. An SVM classifier is then trained to assign
each tile to one of the three classes. The trained
classifier is used for final pixel-level segmentation
of the satellite image ROIs.

The process can be summarized by few key steps.
Firstly, the ground truth for the Non-Built-up
(mostly vegetation) and Built-up classes is generated.
The term “ground truth” is used to coin what is
known to be the truth in a semantic classification
sense. Secondly, datasets of image tiles are created
from the satellite imagery using the ground truth
for each class. Thirdly, the datasets are made balanced
and partitioned into training and test subsets. Next, a
visual vocabulary, or BoVW is created from extracted

image feature descriptors from representative tiles of
each class. Finally, a multi-class SVM is trained using
the BoVW features to classify whether tiles belong to
the Slums, Built-up and Non-Built-up class. The per-
formance of our method is measured in terms of
classification accuracy and F1 score (Olson & Delen,
2008). To obtain the final segmentation, we use the
trained SVM model to classify each pixel of the satel-
lite image: the trained model is used to classify a
window (of size equivalent to the tile sizes for train-
ing) around every pth of regularly spaced pixels of the
satellite image, which results in initial sparse classifi-
cation. The classes for the remaining unprocessed
pixels are determined using majority filtering fol-
lowed by a final smoothing via majority voting,
used often as post-processing regularization steps
(Lu & Weng, 2007), of the segmentation result (see
Figure 9). The need for initial sparse classification
stems from computational considerations, the value
of p is determined by optimizing the trade-off
between the times needed for the initial classification
and the processing of the remaining pixels.

Step 1: ground truth masks

The ground truth for training the classifier was
obtained through field surveys (see Section Data
acquisition) for the slum regions and computer
vision-based annotation for the Built-up and Non-
built-up regions.

Figure 2. Google Earth images of Bangalore – selected five regions of interest (ROIs). They are numbered from East to West and
from North to South. The slum ground truth is depicted by red polygons.
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To annotate the non-slum area, we took the ROI
and used standard vegetation indices to detect the
Non-Built-up (indicating mostly vegetation) areas.
Since the data are purely RGB and do not contain
the near infrared spectral bands, a vegetation index
that uses only the red, green and blue channels was
needed. After comparison of several such indices,
including TGI (Hunt et al., 2013), VARI (Gitelson,
Kaufman, Stark, & Rundquist, 2002), rgNDVI
(Motohka, Nasahara, Oguma, & Tsuchida, 2010),
rbNDVI (Tanaka et al., 2007), VDVI (Xue & Su,
2017) and Visible Vegetation Index (VVI)
(Laboratory, n.d.), the VVI was chosen to detect
vegetation. The VVI has produced the most compact
and connected vegetation segments. For the lack of
actual ground truth, visually inspecting the result of
this index showed that the high values of the index
correlate with the vegetation areas in the images, as
can be seen in Figure 4. A threshold value of 25
followed by mathematical morphological processing7

was determined in order to obtain good delineation
of vegetation areas (see also Figure 6.).

The remaining pixels of the ROI, for example, those
that were not labelled as Slums nor as Non-Built-up (by
delineating vegetation as its approximation) were
labelled as built-up. This results in an image segmenta-
tion, as illustrated in Figure 5 for Kalyan and in Figure 6
and A1 (in Appendix 2) for the two of the Bangalore
ROIs. These segmentations serve as the ground truth
(reference) for the Built-up and Non-Built-up classes.8

As can be seen in Figures 5 and 6, the ground
truth for slums is the most precise compared to the
other classes because the slum classes were collected
using field surveys while the Built-up and Non-Built-
up classes were generated using computer algorithms.

Step 2: tile dataset generation

From all ROIs, image tiles for each of the three classes
have been generated using the ground truth masks.
Each ROI is scanned from left to right and from top
to bottom with a square sliding window of size N × N
pixels and stride (overlap) of n = N/2 pixels for only
the pixels labelled as belonging to each ground truth
class. A tile is selected to represent that class if its
central pixel belongs to the class and at least 80% of
the pixels of the tile have the desired class label. We

Figure 3. The five selected regions of interest for Bangalore with overlaid slum ground truth in red polygon.

Table 1. Bangalore ROIs resolutions in pixels and meters.
ROI Resolution [pixels] Resolution [m]

1 5476 × 5103 821 × 765
2 4983 × 4212 747 × 632
3 8947 × 5939 1342 × 891
4 10,041 × 9960 1506 × 1494
5 8143 × 5174 1221 × 776

7https://en.wikipedia.org/wiki/Mathematical_morphology.
8All through the paper we use the following colour-coding for the class labels: red for slums, blue for built-up and
green for non built-up.
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Figure 5. The Kalyan ROI. Left: original image and Right: overlaid ground truth for slums, non built-up (mostly vegetation) and
the remaining areas (built-up).

Figure 6. The second of the selected Bangalore ROIs. Left: original image and Right: overlaid ground truth for slums, non built-
up (vegetation) and the remaining areas (built-up).

Figure 4. The result of applying VVI to ROI 2 of Bangalore. Left: RGB image and Right: the output of the Visible Vegetation
Index, VVI . The “hotter” the colour, the higher the value-probability of vegetation pixel.
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have considered several different tile sizes to study
the best tile resolution for our task. For Kalyan,
N = 50, 100, 150, 200 and 250 m, while for
Bangalore, the tile sizes are N = 10, 20, 30, 40, 50
and 60 m. This difference is due to the different
image resolutions for the two cities and a difference
in slum area sizes explained before; slums in
Bangalore (average size 1.48 × 10−3 km2) are in gen-
eral smaller compared to slums in Kalyan (average
size 33.11 × 10−3 km2).

Figures 7 and 8 illustrate some of the generated
tiles with different sizes and from the three different
classes for Kalyan and Bangalore.

The generated tiles are combined into tile datasets
containing representative image tiles for each class
along with their labels. The parameters for the tile
generation and the number of generated tiles are
presented in the Experimental setup section.

Step 3: balancing, training and test sets

Since the slum areas are the smallest (in terms of area)
in comparison to the other two classes, there is less data
on which to train a classification model, which makes
the task more challenging. To overcome these limita-
tions and to make the best use of the available data, two
approaches were used: (1) dataset balancing and (2)
dataset combination. To balance the dataset, the same
number of image tiles are selected from each class. The
smallest number of tiles in all cases come from the Slum
class, hence all slum tiles are used, while the same
number of tiles are selected randomly from the other
two classes generating a balanced dataset. For Kalyan,
we do have only one ROI, but for Bangalore all gener-
ated tiles from all ROIs are combined to create six image
datasets corresponding to the six tile sizes. After the
construction of the datasets, each dataset was divided

Figure 7. Random selection of 4 tiles from the Kalyan ROI per class. Each column corresponds to a different class, from left to
right: Built-Up, Non Built-Up and Slum. The rows from top to bottom correspond to tiles of sizes 50, 100 and 200 m, respectively.
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into a training (80%) and a test set for validation (20%)
based on the Pareto principle.9 For the exact sizes of the
datasets (in numbers of generated tiles) refer to Tables 2
and 3 in the Experimental setup section.

Step 4: bag of visual words

The concept of a visual vocabulary or BoVW (Li &
Perona, 2005) is a classic computer vision method
which has been inspired by the text retrieval commu-
nity. The analogy is that the distribution of words in a
text document can be used to compactly summarize
and represent the document by its word counts (known
as a bag-of-words) and index the document for efficient
retrieval. Similarly, an image can be represented by the
most characteristic image patches generalized from
several images representing the same semantic class.

The standard procedure to create the visual voca-
bulary or BoVW consists of (1) collecting a large
sample of low-level features from a representative
dataset of images, and (2) quantizing the feature
space according to their statistics.

To obtain the low-level features (e.g. histogram-of-
gradients) standard low-level image feature detector
and descriptor are used. Often Scale Invariant Feature
Transform (SIFT) (Lowe, 1999) and SURF (Bay et al.,
2008) are used for these tasks. Although SIFT is
usually the best performing technique, often SURF
is chosen because of its equally high discriminating
ability, but smaller computational cost in comparison
to SIFT (Panchal, Panchal, & Shah, 2013).

To generate the VW from the low-level features,
often simple k-means clustering is used for the quanti-
zation of the features space; the size of the vocabulary
V ¼ k is a user-supplied parameter. The VW are then

Figure 8. Random selection of 4 tiles from Bangalore ROIs per class. Each column corresponds to a different class, from left to
right: Built-Up, Non Built-Up and Slum. The rows from top to bottom correspond to tiles of sizes 20, 40 and 60 m, respectively.

9https://en.wikipedia.org/wiki/Pareto_principle.
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the cluster centres. Features from a new image can be
translated into words by determining which visual
word they are nearest to in the feature space.
Therefore, in general, the image patches assigned to
the same visual word should have similar low-level
appearance.

Using this technique, the empirical distribution of
VW for an image is captured with a histogram count-
ing how many times each word in the visual vocabu-
lary occurs within it. This representation is very
convenient as it transforms a set of high-dimensional
local image descriptors into a single sparse vector of
fixed dimensionality across all images.

Step 5: multi-class SVM training

After the BoVW representation, a model can be
trained to classify an image tile into one of the three
classes. We have chosen multi-class SVM for both
theoretical and empirical reasons.

Previous studies have shown that SVM, originally
designed for binary classification, can be effectively
extended for multi-class classification tasks (Hsu &
Lin, 2002). Currently there are two approaches for
implementing multi-class SVM. One is by construct-
ing and combining several binary classifiers, while the
other is by directly considering all data in one opti-
mization formulation (Hsu & Lin, 2002). Further,
recent studies have shown that linear SVM (com-
pared to non-linear SVM) obtained a better classifi-
cation score and did not show any signals of over
fitting (Duque, Patino, & Betancourt, 2017b). We
have tested 22 different classifiers (e.g. Random for-
est, KNN, PCA, SVM with several different kernels,
etc.) on our tile datasets. The best-performing classi-
fier from this experiment was the multi-class SVM,
which achieved 16.6% more accuracy than the least
performing classifier (coarse KNN) and 0.6% more

than the second-best classifier (Fine KNN).
Therefore, in this paper, we have used a linear
multi-class SVM to delineate Slums, Built-up and
Non-Built-up areas from satellite images of
Bangalore and Kalyan.

To measure the performance of the proposed clas-
sification method, following standard measures were
calculated: accuracy (defined as the ratio of number
of correct predictions over the total number of pre-
dictions) per class and F1 score (Olson & Delen,
2008) were used. Accuracy measures how often the
method correctly classifies a tile. The F1 score com-
bines precision and recall and gives a more balanced
view of the method’s capabilities.

Step 6: image pixel segmentation

After the multi-class SVM classifiers with all combina-
tions of different parameters (such as tile size, N and
SURF vocabulary size, V) have been trained on the
BoVW from SURF features extracted from all “pure”
tiles from the selected ROIs, the best performing model
with corresponding parameters was chosen for the pixel-
level classification. To classify each pixel, it takes on
average 0.03s on a laptop (Inter Core i7-6560 CPU @
2.21 GHz, 19 GB RAM, Windows 10 Pro) and given the
ROI sizes in pixels (see Table 1), the computational time
is a challenge. Therefore, each p-th pixel in both dimen-
sions was assigned an initial label via direct classification
of the tile cantered around the pixel. Each of the remain-
ing unprocessed pixels are given the most frequent initial
class label from a window of size P � P; P � 2pþ 1,
cantered around the pixel. Determining the value of an
unprocessed pixel takes 3 orders of magnitude less time
compared to assigning initial label, but there are usually
many more unprocessed pixels. Therefore, for the selec-
tion of p this trade-off should be considered. Please, note
that if the implementation is parallelized and run on
multiple compute nodes, it is possible to skip this step
and directly process each pixel. The final segmentation is
obtained by assigning final class labels to all pixels using
majority filtering via a sliding window of sizeM �M for
each pixel leading to a less noisy and smoother result.
Figure 9 illustrates the pixel segmentation steps with
example parameter values.

Figure A3 in Appendix 2 illustrates the result of each
segmentation step for a zoomed area of Bangalore ROI1
with parameters p = 10, P = 22 and M = 30. These
parameters were selected for computational considera-
tions, as well as to ensure enough data for smooth inter-
polation from the sparse to the final full segmentation.

Experimental set-up

To test our method, we have performed several
experiments. Here we describe the set-up and the
chosen parameters.

Table 2. Number of selected image tiles from the Kalyan ROI
per class and in total for different tile sizes.

ROI

Tile size, N

50 m
84 px

100 m
167 px

150 m
250 px

200 m
334 px

250 m
417 px

1 (per class) 707 115 33 10 2
All (for all classes) 2121 345 99 30 6

Table 3. Number of selected image tiles per Bangalore ROI
and in total for different tile sizes.

ROI

Tile size, N

10 m
67 px

20 m
134 px

30 m
200 px

40 m
268 px

50 m
334 px

60 m
400 px

1 (per class) 761 147 50 19 11 2
2 (per class) 729 132 45 19 10 6
3 (per class) 387 58 20 6 3 2
4 (per class) 614 88 21 6 2 0
5 (per class) 539 100 28 10 4 1
All (per class) 3030 525 164 60 30 11
All (for all classes) 9090 1575 492 180 90 33

EUROPEAN JOURNAL OF REMOTE SENSING 49



Tile generation
To get a good estimate of the best spatial scale for feature
extraction we have generated and tested on image tiles of
different sizes. We have chosen these tile sizes guided by
the spatial image pixel resolution and mostly by the size
of the slums for both cities. As discussed in Section Step
2: Tile dataset generation, the slum class is the smallest
class and for some ROIs there are very few slum tiles that
are more than 80% pure. We created a balanced dataset
by first selecting as many slum tiles with 80% purity or
higher. We then selected an equal number of tiles from
the other classes. The exact tile sizes in meters for Kalyan
areN: 50.4, 100, 150, 200 and 250m, but for convenience
they are rounded to the nearest lower integer number.
All the different tile sizes and the resulting number of
tiles per ROI for Kalyan are summarized in Table A1 in
Appendix 1. The number of images per class for the
balanced datasets is summarized in Table 2.

There are only six tiles for the resolution of 250 m,
which is too few for training, hence, we do not con-
sider this resolution further. The exact tile sizes for
Bangalore in meters are N: 10.05, 20.1, 30, 40.2, 50.1
and 60 m, for convenience they also rounded to the
nearest lower integer number. All the different tile
sizes and the resulting number of tiles per ROI for
Bangalore are summarized in Table A4 in Appendix
2. The number of images per class for the balanced
datasets are summarized in Table 3.

Tile classification
After the construction of the tile datasets, each data-
set has been divided into training data using 80% of
the tiles and testing data using the remaining 20%.
The BoVW model was implemented using different
vocabulary sizes (V = 10, 20 and 50) and the strongest
80% SURF features were used for classification. In
this experiment, a three-class SVM classifier was
trained on the training subsets and the performance
evaluated on the test subsets, hence the level of gran-
ularity for classification is the image tiles. This experi-
ment was performed for each of the different tile sizes
datasets in order to determine the optimal tile size.

Pixel-level segmentation
After determining the best performing tile resolution
from the tile classification experiments, the following
parameter values for obtaining the pixel-level seg-
mentation were used, Table 4.

Results

This section presents the results of our experiments.
They are examined in two ways: based on the tile
classification of both cities and using the pixel level
classification to make a segmentation. The segmented
results are compared qualitatively with the ground
truth (reference) segmentation.

Tile classification

It is important to avoid over-fitting while performing
classifier training. A set of five performance indica-
tors were measured both during the training and
during testing phases: accuracy, precision, sensitivity
(recall), specificity and F1 score. In this paper, only
accuracy and F1 score (as a composite measure) are
reported, but it is very important to consider which
statistical measures need to be optimized for a given
application. The results for the chosen performance
measures during training are given in Appendices 1
and 2, while the results on the test sets of tiles are
given below.

While we aremostly interested in the performance of
Slum classification, we give the results for the other two
classes (Built-up and Non-Built-up) for completeness
and to illustrate the suitability of the method to tackle
semantic classification of different semantic classes.

Figure 9. Pixel-level segmentation. Left: Every p = 4th pixel gets initial class label via classification of a tile with size N centred
around the pixel; Middle: Assignment of labels to all unprocessed pixels using sliding windows of size P = 7 (this value is only
for illustration purposes. For this example, P should be bigger than 9.). The centre of the dashed window gets the majority red
label (4 red, 1 blue and 1 green initial labels within the window); Right: Final segmentation – all pixels within each window of
size M = 3 get the majority pixel label. For the displayed window the majority label is red (8 red and 1 green removed as noise).
Note the smooth boundaries between the red and blue areas and that some initial labels change.

Table 4. Parameters used for the pixel-level segmentation.

City

Parameters

Best tile
size, N

Vocabulary
size, V

Initial
pixel

labelling,
p

De-
noising
filter
size, P

Majority
filter
size, M

Kalyan 150 m | 250 px 50 10 22 30
Bangalore 40 m | 268 px 50 10 22 50
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Kalyan
The performance metrics have been computed for all
tile datasets, but due to the small number of tiles with
size greater than 150 m (see Table 2), the metrics are
noisy and unreliable. Here, we present the results for
the datasets with tile sizes up to 150 m. The perfor-
mance measures for Kalyan during training are given
in Appendix 1, while Tables 5 and 6 below summar-
ize the performance on the test sets.

Bangalore
The performance indicators were measured for all tile
datasets, but due to the small number of tiles with size
greater than 40 m (see Table 3), they are noisy and
unreliable. Here, the results for the datasets with tile
sizes up to 40 m are presented. The performance
metrics during training are given in Appendix 2, while
those on the test set of tiles are given below. Tables 7
and 8 summarize the tile classification performance on
the test set: accuracy and F1 score, respectively.

The performance evaluation for both Kalyan and
Bangalore indicate that the larger the tile size (while
still ensuring the semantic class “purity”) and the
larger the BoVW vocabulary, the higher the perfor-
mance. This trend is illustrated, for example, for the
F1 score values from Table 8 in respect to the tile size
and vocabulary size on Figure A2 in Appendix 2.

Therefore, for the pixel-level segmentation of the
ROIs, the optimal parameter values were selected: tile
sizes N = 150 m (250 px) for Kaylan, N = 40 m (268 px)
for Bangalore and the best visual vocabulary size for
both cities V = 50. We observed also that the Slum class
has usually the highest performance due to the most
accurate ground truth used for generating the tiles.

Pixel-level segmentation

The purpose of the segmentation is to delineate the
spatial areas occupied by Slums, Built-up and Non-
Built-up areas. After successful training of the 3-class
SVM classifier (Section Tile classification) and experi-
ments with all combinations of parameters, the para-
meter values corresponding to the highest classification
accuracy were chosen for the segmentation (see
Table 4). With these settings the three steps of the
segmentation algorithm as described in Section Step 6:
Image pixel segmentation was performed.

Kalyan
The final pixel segmentation result for Kalyan in com-
parison to the ground truth is shown on Figure 10.

Bangalore
The final pixel segmentation result in comparison to the
ground truth is shown in Figures 11 and 12 (A4-A6 in
Appendix 2). Figure 11 illustrates a relatively good seg-
mentation result, while Figure 12 shows a poorer
segmentation.

Discussion

Tile classification

The accuracy of our classification is presented in
Tables 5 and 7 for Kalyan and Bangalore, respec-

Table 5. Accuracy for Kalyan tile classification during testing, [%].

Vocabulary size Class

Tile size, N

50 m
87 px

100 m
167 px

150 m
250 px

10 Slum 73.0 75.4 66.7
Built-up 75.2 86.9 85.7
Non-built-up 72.3 68.1 80.9

20 Slum 74.2 86.9 80.9
Built-up 76.4 88.4 85.7
Non-built-up 72.8 78.3 76.2

50 Slum 78.9 82.6 90.5
Built-up 78.7 82.6 95.2
Non-built-up 74.7 76.8 95.2

Table 7. Accuracy for Bangalore tile classification during test-
ing, [%].

Vocabulary size Class

Tile size, N

10 m
67 px

20 m
134 px

30 m
200 px

40 m
268 px

10 Slum 70.4 78.7 90.9 83.33
Built-up 67.8 75.6 83.8 80.6
Non-built-up 68.4 80.9 84.9 80.6

20 Slum 70.9 81.3 87.9 91.7
Built-up 67.2 73.7 78.8 88.9
Non-built-up 69.1 81.6 84.8 91.7

50 Slum 70.1 80.9 86.9 97.2
Built-up 67.8 76.5 82.8 91.7
Non-built-up 68.5 80.3 83.8 94.4

Table 6. F1 score for Kalyan tile classification during testing.

Vocabulary size Class

Tile size, N

50 m
87 px

100 m
167 px

150 m
250 px

10 Slum 0.62 0.45 0.36
Built-up 0.61 0.80 0.82
Non-built-up 0.57 0.63 0.71

20 Slum 0.65 0.82 0.75
Built-up 0.64 0.80 0.82
Non-built-up 0.56 0.67 0.44

50 Slum 0.69 0.77 0.86
Built-up 0.67 0.70 0.93
Non-built-up 0.63 0.65 0.92

Table 8. F1 score for Bangalore tile classification during
testing.

Vocabulary size Class

Tile size, N

10 m
67 px

20 m
134 px

30 m
200 px

40 m
268 px

10 Slum 0.59 0.70 0.86 0.75
Built-up 0.27 0.60 0.75 0.77
Non-built-up 0.62 0.71 0.76 0.58

20 Slum 0.61 0.72 0.83 0.87
Built-up 0.30 0.57 0.67 0.87
Non-built-up 0.60 0.73 0.76 0.85

50 Slum 0.59 0.72 0.81 0.96
Built-up 0.27 0.60 0.70 0.89
Non-built-up 0.61 0.72 0.76 0.90
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tively. For slums, the performance is quite good with
a minimum of 73.0% for Kalyan and 70.4% for
Bangalore using a vocabulary size of 10 and a tile
size of 50 and 10 m, respectively. The best accuracy
for both cities, 90.5% for Kalyan and 97.2% for
Bangalore, is achieved using the largest tile size (150
and 40 m, respectively) and with the largest vocabu-
lary of size 50.

The accuracy for the other classes is a little lower
than the accuracy for slums; however, it is still quite
high. It also follows the same pattern as for slums, the
best accuracy is achieved with the largest tile size and
the largest vocabulary. We also calculated the F1
scores for our method which are presented in
Tables 6 and 8. These results show that the combina-
tion of largest tile and the largest vocabulary per-
forms best. The highest F1 values (around 0.9 or

higher) demonstrate that the classification is not
only accurate, but also has high precision and recall.

The correlation between performance and visual
vocabulary size can be explained by the ability of a
larger vocabulary to better capture the characteristics
and variance of the various classes. To train a larger
vocabulary well, more SURF features are required,
which corresponds to larger tiles. As we mention in
Section Tile generation, tiles larger than 150 m for
Kalyan and 40 m for Bangalore result in tile sets,
which are not of sufficient size to train a good classi-
fier. In other words, a large vocabulary trained on
tiles that are as large as possible, given the data and
physical extent of the slums, seems to give the best
results. In addition, to classify slum areas, a relatively
large neighbourhood (context) is essential as slum
and formal built-up areas often have similar spectral,

Figure 10. Kalyan ROI: Left: ground truth and Right: the result from pixel-level classification (segmentation) for all classes.

Figure 11. Bangalore ROI 2: Left: ground truth and Right: result from pixel-level classification (segmentation) for all classes.

Figure 12. Bangalore ROI 5: Left: ground truth (and Right: result from pixel-level classification (segmentation).
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but different contextual characteristics (e.g. different
object sizes, layout patterns). However, as slums vary
in size, the definition of an optimal tile size needs a
thorough investigation and also depends on the
urban morphology (e.g. Bangalore having much
smaller slum areas compared to Kalyan). The use of
larger tile sizes, which leads to better performance,
has limitations due to the availability of training data.
Reliable training data are limited both due to their
nature (e.g. small area slum pockets) and the com-
plexity of performing ground checks.

Comparing the results on the test sets with those
on the training sets, presented in Appendices 1 and 2,
we can observe that the accuracy and F1 scores are
similar. Therefore, the classifier has not been over-
fitted during training and can generalize well.

The classification of slums using this technique
achieved comparable accuracy levels as reported in
other recent studies on slum mapping (Kuffer,
Pfeffer, Sliuzas, & Baud, 2016). Furthermore, the
method uses only one type of low-level feature
(SURF) on RGB images compared to the usually
large sets of low-level features or multispectral images
to achieve such performance. For example, a recent
paper used a set of 30 (9 Spectral, 11 Texture and 10
Structure) features (Duque et al., 2017a). Also, our
results show that this generic method from computer
vision works well independently of the semantics of
the classes, the tiles for non-slum areas have been
classifier equally well.

Pixel-level segmentation

The results for the pixel level segmentation are shown
on Figures 10–12. In most cases where the ground
truth indicates slum, there is also a blob for a slum in
the segmented image. In general, we notice that there
are more slums in the segmentation than in the
ground truth and the segmentation for Non-Built-up
and Built-up areas roughly corresponds to the ground

truth. The segmentation results indicate that the
majority of false-negatives (missed slums) were tiny
pockets of slums. This can be explained by the fact
that the classifier has been trained on large tiles,
compared to the size of these slums. An important
observation is that for Bangalore, we have trained our
classifier from tiles from all five ROIs; therefore, for
segmenting each ROI training data of other parts of
the city were used. This indicates robustness in
respect to the available training data.

To get a better understanding of the performance
of the proposed segmentation method, we focus on
areas where the result differs significantly from the
given or generated ground truth. A difference
between the segmentation result and the ground
truth, however, does not always mean that the seg-
mentation is wrong. Unfortunately, the ground truth
generation, as described in Section Step 1: Ground
truth masks, is not perfect and does not always reflect
the reality. In some cases, the segmentation method
makes mistakes (that is wrong segmentation com-
pared to the observed truth), while in others it clas-
sifies a region as belonging to the true observable
class, while the generated ground truth is erroneous.
The dilemma of generating ground-truth data on
slums was highlighted in a recent study, showing
that even slum experts do not necessarily agree on
the location of slums in a complex city (Pratomo,
Kuffer, Martinez, & Kohli, 2017). Therefore, we
focused on some of those image areas (c.f. Figures
13, 14 and 15) which illustrate the strengths and
weaknesses of the proposed segmentation method,
as well as the weaknesses of the ground truth genera-
tion. The labels given or generated by the ground
truth methods or obtained by the segmentation
method are overlaid on the image data. This allows
us to see the “observable truth” - image regions which
based only on the RGB image information could be
identified as Slums, Built-up or Non-Built-up by the
human eye.

Figure 13. A subregion of the Kalyan ROI: Left: ground truth and Right: the result from pixel-level segmentation overlaid on the
image. Some areas are delineated roughly as annotated rectangles indicating the largest errors in relation to the observable
truth (not always the same as the generated ground truth). GT stands for Ground Truth and S for Segmentation.
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Capturing slums with EO imagery faces the challenge
that densely formal and slum areas often share similar
morphological characteristics, while slum areas can be
very diverse across different cities but also within cities
different slum typologies (Kuffer et al., 2017) exist (e.g.
long established slums compared to very recent tempor-
ary shelters). This makes the generation of ground-truth
data on slums and the classification of slums extremely
challenging. For example, false positives often relate to
areas that have similar morphological characteristics as
slums (also called morphological slums (Friesen,
Taubenböck, Wurm, & Pelz, 2018; Wurm &

Taubenböck, 2018)) but are not included into the ground
truth data as they do not have slum like conditions on the
ground. This leads to the question, whether a false nega-
tive (an omission) or false positive (a commission) error
in slummapping ismore problematic. As EO-based slum
mapping only can indicate possible slum locations, where
for a final decision ground-truth checks are essential (as
only on the ground the living conditions and deprivation
levels faced by inhabitants can be assessed), the omission
of a slum location by an image classification approach
seems more problematic.

In the following images several rectangular areas
indicate some of the mistakes made by either obtaining
the ground truth or the segmentation. The colours of
the rectangles indicate the “observable truth” (e.g. the
truth as we see it in the image), but they are located
where the respective method differs from it, that is,
makes a mistake. The abbreviation “GT” stands for
Ground Truth, while “S” stands for Segmentation in
the rectangle headings. Hence, the GT regions indicate
where the ground truth is wrong, and the S regions
where the segmentation method has made an error.

Kalyan
For the Kalyan ROI segmentation (see Section Step 6:
Image pixel segmentation and Figure 10), we
observed that most of the slum areas are detected
successfully, along with many false positives.
Figure 13 focuses on such an area in Kalyan.

What we can see is that both the ground truth and
the segmentation have made mistakes with regards to
Non-Built-up areas, GT1 shows an area where our
method correctly identifies it as Non-Built-up (while
it is missed by the ground truth generation

Figure 15. A subregion of Bangalore ROI 5. Left: ground truth and Right: the result from pixel-level segmentation overlaid on
the image. Some areas are delineated roughly as annotated rectangles indicating the largest errors in relation to the observable
truth (not always the same as the generated ground truth). GT stands for Ground Truth and S for Segmentation.

Figure 14. A subregion of Bangalore ROI 2: Top: ground truth
and Bottom: the result from pixel-level segmentation overlaid
on the image. Some areas are delineated roughly as anno-
tated rectangles indicating the largest errors in relation to the
observable truth (not always the same as the generated
ground truth). GT stands for Ground Truth and S for
Segmentation.
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algorithm); however, it misses the area S3 (where
VVI performs well). The GT2 area is particularly
interesting, as our method detected this as a slum.
Visually this region has a slum-like appearance and
could be a morphological slum. Area GT3 indicates a
limitation of the way we created the ground-truth.
The vegetation detection algorithm indicated this
area as vegetation and although some trees are cer-
tainly there, there seems to be confusion with deep
shadows. Areas S1 and S2 are mistakes made by the
segmentation method due to the presence of a high-
way. In general, slums are often located near large
transportation axes using available land reserves.

Bangalore
For the Bangalore ROI segmentations (see Section Step 6:
Image pixel segmentation and Figures 11 and 12), we also
observe that usually most of the slum areas are detected
successfully, along with many false positives. Figures 14
and 15 illustrate some areas of discrepancies between the
ground truth or segmentation and the observable truth in
the ROIs of Bangalore.

Figure 14 illustrates that most mistakes in this area are
Built-up vs. Non-built-up classification. There are several
instances where our method detected Non-built-up areas
that were not labelled as such in the ground truth: GT1-5.
Figures 7 and 8 show that tiles used for the training of the
slum class often contain also moderate amounts of vege-
tation. Therefore, the BoVWhistograms of slum tiles and
Non-built-up tiles could be similar. Regions GT6 and
GT7 again show examples of areas that visually are very
slum-like but are not included in the ground truth as
such. This indicates the possibility that ourmethod could
be used to detect missing slums in the ground provided
they have a visual appearance to (some of) the slum
training data. Finally, S6 shows an example of an incor-
rect segmentation.

Very rarely, we observe missed slum areas. One
such omission of a large slum happened in ROI5 (see
Figure 12). We studied this instance more in depth by
zooming into that area as illustrated on Figure 15.

In this area, we highlight three ground truth and
two segmentation mistakes. Firstly, we can see in GT1
another instance of shadows confusing the vegetation
detection algorithm using VVI. Secondly GT2 shows
an area where the VVI has missed some vegetation.
GT3 shows a larger area that visually looks like a
morphological slum and may be an omission in the
ground truth. Areas S1 and S2 are miss-classifications
by our algorithm, S1 is a slum area with larger roofs
compared to other slum areas and a more regular
layout pattern. Because of these visual characteristics,
the area has been not classified as a slum. The pro-
blems shown in S2 could have been prevented when
using a NIR band. Many of the ground truth issues
are observed in Non-built-up areas. This does suggest

a significant limitation of images with only R, G and
B bands, where detection of vegetation is difficult.

Conclusions and future work

In this paper, we have shown a method for detecting
slums at city scale using RGB images, which are more
easily available compared to often expensive spectral
imagery, using techniques from the computer vision
domain. Our method combines the BoVW based on
SURF features with an SVM. In order to simplify the
problem of delineating slums we have converted it into a
classification problem by selecting representative tiles
from the satellite imagery for our three classes: Slums,
Built-up and Non-Built-up. The VW (generalized SURF
features) obtained from these tiles were used to create
histograms, which served as an input to the SVM. The
SVM was then trained to classify the three classes.
Afterwards the best trained SVM was used to classify
every 10th pixel of the satellite image. Finally, the remain-
ing unprocessed pixels have been interpolated using
majority filtering to create a full image segmentation.

In our research, we have focused on three main
research questions. Firstly, we were interested in how
well our method works for detecting slums. From the
results, we presented, we can conclude that for the classi-
fication task our method achieves high accuracy and F1
scores for both case studies. The segmentation results are
also reasonable: in most cases our algorithm detects
slums where the ground truth indicates slums. We also
took an in-depth look at what kind of mistakes our
method makes. Most of them are slum false positives.
However, since the ground truth is not perfect, in many
cases our method detects slums in areas that are not
marked as slum in the ground truth, but after visual
inspection do look like morphological slums. For a final
verification of slum locations, ground checks are
required. Therefore, the low level of missed slums (false
negatives) is a desirable feature of our proposed
methodology.

The other research questions concerned the applic-
ability of our method for images of different resolutions
and the potential for generalization over different loca-
tions. We can see that our method performs similarly for
bothKalyan andBangalore, even though the difference in
morphology of slums in these two cities is rather large.
Also, the resolution of the images used for both case
studies is different - 0.6 m for Kalyan and 0.15 m for
Bangalore. These different resolutions require different
parameters for the algorithm; however, forKalyan, tiles of
150 m were used while for Bangalore, tiles of 40 m
performed best. Larger tiles sizes were tried but resulted
in too few tiles to effectively train the classifier.

This study showed that techniques used in computer
vision have the potential to map slums while being trans-
ferable across two rather different Indian cities. Given
limited access to standard VHR multi-spectral imagery,
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the developed framework would allow for a frequent
extraction of slum maps using available GE imagery
and visualization of slum dynamics across large, complex
and very dynamic cites. However, for a conclusion on
slum locations ground checks are necessary to deal with
false positives. Such EO-based information, which is vali-
dated on the ground, would allow to support planning
and policy development as well as monitoring the imple-
mentation of slum policy in large and fast-growing cities
in the global South, where information on slum locations
and dynamics is often scarce. Future research should
assess transferability of the method to different regions
and consider the correlation between spatial morphology
and concepts like segregation, polarisation, exclusion and
marginality (Roy et al., 2018).

We have used only one type of image features (SURF)
in order to delineate visually very complex and some-
times hard to distinguish class even by a human observer.
In the future, we plan to implement a library of image
features for training amuchmore complexmodel, which
will be released as open source. Also, we are planning to
usemulti-spectral satellite images, whichwill give amuch
better input data for the complex segmentation problem.
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Appendix 1. Supplementary material for Kalyan

Tile construction

Tile classification

Appendix 2. Supplementary material for Bangalore

Tile construction

Table A1. Number of all possible image tiles from the Kalyan ROI per class for different tile sizes.

ROI Class

Tile size, N

50 m
84 px

100 m
167 px

150 m
250 px

200 m
334 px

250 m
417 px

1 Slum 707 115 33 10 2
Built-up 8149 1810 723 387 222
Non-built-up 1926 281 80 32 14

Table A2. Accuracy for Kalyan tile classification during training, [%].

Vocabulary size Class

Tile size, N

50 m
87 px

100 m
167 px

150 m
250 px

10 Slum 74.9 76.8 73.0
Built-up 75.2 86.9 82.0
Non-built-up 74.2 78.9 78.2

20 Slum 74.9 84.8 85.9
Built-up 76.7 90.9 89.7
Non-built-up 73.1 89.5 98.7

50 Slum 79.7 92.8 98.7
Built-up 78.0 92.4 97.4
Non-built-up 76.6 89.5 98.7

Table A3. F1 score for Kalyan tile classification during training.

Vocabulary size Class

Tile size, N

50 m
87 px

100 m
167 px

150 m
250 px

10 Slum 0.65 0.50 0.43
Built-up 0.61 0.82 0.78
Non-built-up 0.59 0.74 0.69

20 Slum 0.66 0.78 0.79
Built-up 0.63 0.86 0.86
Non-built-up 0.56 0.71 0.80

50 Slum 0.71 0.89 0.98
Built-up 0.64 0.88 0.96
Non-built-up 0.64 0.84 0.98

Figure A1. Bangalore ROI 1. Left: original image and Right: overlaid ground truth for slums, non built-up (mostly vegetation) and
the remaining areas (built-up).
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Tile classification

Table A4. Number of all possible image tiles per Bangalore ROI and per class for different tile sizes.

ROI Class

Tile size, N

10 m
67 px

20 m
134 px

30 m
200 px

40 m
268 px

50 m
334 px

60 m
400 px

1 Slum 761 147 50 19 11 2
Built-up 14,300 3026 1251 667 405 285
Non-built-up 4311 705 237 101 57 32

2 Slum 729 132 45 19 10 6
Built-up 9349 1892 751 369 215 136
Non-built-up 3877 607 180 83 40 25

3 Slum 387 58 20 6 3 2
Built-up 17,806 3282 1200 566 319 208
Non-built-up 17,270 3200 1171 551 302 191

4 Slum 614 88 21 6 2 0
Built-up 41,938 8716 3667 1952 1187 774
Non-built-up 22,635 4313 1685 863 545 370

5 Slum 539 100 28 10 4 1
Built-up 23,134 5284 2282 1251 776 534
Non-built-up 7499 1427 584 250 144 85

Table A5. Accuracy for Bangalore tile classification during training, [%].

Vocabulary size Class

Tile size, N

10 m
67 px

20 m
134 px

30 m
200 px

40 m
268 px

10 Slum 70.86 80.08 85.24 83.33
Built-up 67.53 72.89 79.89 78.47
Non-built-up 67.44 79.6 84.98 79.86

20 Slum 71.59 83.89 89.06 90.97
Built-up 67.56 75.55 81.18 81.94
Non-built-up 69.15 79.92 87.53 90.27

50 Slum 71.91 86.9 91.35 94.44
Built-up 68.51 78.89 86.26 84.72
Non-built-up 68.55 83.57 89.82 90.27

Table A6. F1 score for Bangalore tile classification during training.

Vocabulary size Class

Tile size, N

10 m
67 px

20 m
134 px

30 m
200 px

40 m
268 px

10 Slum 0.60 0.73 0.79 0.78
Built-up 0.23 0.53 0.71 0.69
Non-built-up 0.61 0.69 0.74 0.64

20 Slum 0.61 0.77 0.79 0.78
Built-up 0.28 0.59 0.73 0.734
Non-built-up 0.62 0.71 0.80 0.75

50 Slum 0.62 0.8 0.84 0.91
Built-up 0.26 0.65 0.79 0.77
Non-built-up 0.62 0.77 0.84 0.86
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Segmentation Results

Figure A2. F1 score performance of the classifier on the Bangalore test tile datasets.

Figure A3. Pixel-level segmentation of Bangalore ROI2 (zoom). Left: Initial class label via classification of a tile with size 40m
centred around these pixels; Middle: Assignment of labels to all unprocessed pixels with window size 22; Right: Final
segmentation – all pixels within each window of size M = 30 get the majority label.

Figure A4. Bangalore ROI1: Left: ground truth and Right: result from pixel-level segmentation.

Figure A5. Bangalore ROI4: Left: ground truth and Right: result from pixel-level segmentation.
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Figure A6. Bangalore ROI3: Top: ground truth and Bottom: result from pixel-level segmentation.
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