
UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

Sequential composition in the presence of intermediate termination
extended abstract
Baeten, J.; Luttik, B.; Yang, F.
DOI
10.4204/EPTCS.255.1
Publication date
2017
Document Version
Final published version
Published in
Electronic Proceedings in Theoretical Computer Science
License
CC BY

Link to publication

Citation for published version (APA):
Baeten, J., Luttik, B., & Yang, F. (2017). Sequential composition in the presence of
intermediate termination: extended abstract. Electronic Proceedings in Theoretical Computer
Science, 255, 1-17. https://doi.org/10.4204/EPTCS.255.1

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

Download date:26 Jul 2022

https://doi.org/10.4204/EPTCS.255.1
https://dare.uva.nl/personal/pure/en/publications/sequential-composition-in-the-presence-of-intermediate-termination(184cd7b3-9292-4726-87db-e781938bfe41).html
https://doi.org/10.4204/EPTCS.255.1


K. Peters and S. Tini (Eds.): Combined Workshop on Expressiveness in

Concurrency and Structural Operational Semantics (EXPRESS/SOS 2017).

EPTCS 255, 2017, pp. 1–17, doi:10.4204/EPTCS.255.1

c© Jos Baeten, Bas Luttik & Fei Yang

This work is licensed under the

Creative Commons Attribution License.

Sequential Composition in the Presence of Intermediate

Termination (Extended Abstract)

Jos Baeten
CWI

Amsterdam, the Netherlands

University of Amsterdam,
Amsterdam, the Netherlands

Jos.Baeten@cwi.nl

Bas Luttik
Eindhoven University of Technology

Eindhoven, the Netherlands

s.p.luttik@tue.nl

Fei Yang
Eindhoven University of Technology

Eindhoven, the Netherlands

f.yang@tue.nl

The standard operational semantics of the sequential composition operator gives rise to unbounded

branching and forgetfulness when transparent process expressions are put in sequence. Due to trans-

parency, the correspondence between context-free and pushdown processes fails modulo bisimilarity,

and it is not clear how to specify an always terminating half counter. We propose a revised opera-

tional semantics for the sequential composition operator in the context of intermediate termination.

With the revised operational semantics, we eliminate transparency, allowing us to establish a close

correspondence between context-free processes and pushdown processes. Moreover, we prove the re-

active Turing powerfulness of TCP with iteration and nesting with the revised operational semantics

for sequential composition.

1 Introduction

Sequential composition is a standard operator in many process calculi. The functionality of the sequen-

tial composition operator is to concatenate the behaviours of two systems. It has been widely used in

many process calculi with the notation “·”. We illustrate its operational semantics by a process P ·Q in

TCP [2]. If the process P has a transition P
a
−→ P′ for some action label a, then the composition P ·Q

has the transition P ·Q
a
−→ P′ ·Q. Termination is an important behaviour for models of computation [2].

A semantic distinction between successful and unsuccessful termination in concurrency theory (CT) is

especially important for a smooth incorporation of the classical theory of automata and formal languages

(AFT): the distinction is used to express whether a state in an automaton is accepting or not. Automata

may even have states that are accepting and may still perform transitions; this phenomenon we call inter-

mediate termination. From a concurrency-theoretic point of view, such behaviour is perhaps somewhat

unnatural. To be able to express it nevertheless, we let an alternative composition inherit the option to

terminate from just one of its components. The expression a.(b+1) then denotes the process that does an

a-transition and subsequently enters a state that is successfully terminated but can also do a b-transition.

To specify the operational semantics of sequential composition in a setting with a explicit successful

termination, usually the following three rules are added: the first one states that the sequential com-

position P ·Q terminates if both P and Q terminate; the second one states that if P admits a transition

P
a
−→ P′, then P ·Q admits a transition P ·Q

a
−→ P′ ·Q; and the third one states that if P terminates, and

there is a transition Q
a
−→ Q′, then we have the transition P ·Q

a
−→ Q′.

In this paper, we discuss a complication stemming from these operational semantics of the sequential

composition operator. The complication is that a process expression P with the option to terminate

is transparent in a sequential context P ·Q: if P may still perform observable behaviour other than

termination, then this may be skipped by doing a transition from Q. There are two disadvantages of

http://dx.doi.org/10.4204/EPTCS.255.1
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/


2 Sequential Composition in the Presence of Intermediate Termination

transparency in our attempts to achieve a smooth integration of process theory and the classical theory

of automata and formal languages [7]:

The relationship between context-free processes (i.e., processes that can be specified with a guarded

recursive specification over a language with action constants, constants for deadlock (0) and successful

termination (1), and binary operations for sequential and alternative composition) and pushdown au-

tomata has been extensively discussed in the literature [4]. It has been shown that every context-free

process is equivalent to the behaviour of some pushdown automaton (i.e., a pushdown process) mod-

ulo contra simulation, but not modulo rooted branching bisimulation. By stacking unboundedly many

transparent terms with sequential composition, we would get an unboundedly branching transition sys-

tem. It was shown that unboundedly branching behaviour cannot be specified by any pushdown process

modulo rooted branching bisimulation [4]. In order to improve the result to a finer notion of behaviour

equivalence, we need to eliminate the problem of unbounded branching.

Transparency also complicates matters if one wants to specify some form of memory (e.g., a counter,

a stack, or a tape) that always has the option to terminate, but at the same time does not lose data. If

the standard process algebraic specifications of such memory processes are generalised to a setting with

intermediate termination, then either they are not always terminating, or they are ‘forgetful’ and may

non-deterministically lose data. This is a concern when one tries to specify the behaviour of a pushdown

automaton or a Reactive Turing machine in a process calculus [5, 19, 20]. The process calculus TCP

with iteration and nesting is Turing complete [11, 12]. Moreover, it follows from the result in [12] that

it is reactively Turing powerful if intermediate termination is not considered. However, it is not clear

to us how to reconstruct the proof of reactive Turing powerfulness if termination is considered. Due to

the forgetfulness on the stacking of transparent process expressions, it is not clear to us how to define a

counter that is always terminating, which is crucial for establishing the reactive Turing powerfulness.

In order to avoid the (in some cases) undesirable feature of unbounded branching and forgetfulness,

we propose a revised operational semantics for the sequential composition operator. The modification

consists of disallowing a transition from the second component of a sequential composition if the first

component is able to perform a transition. Thus, we avoid the problems mentioned above with the revised

operator. We shall prove that every context-free process is bisimilar to a pushdown process, and that

TCP with iteration and nesting is reactively Turing powerful modulo divergence-preserving branching

bisimilarity (without resorting to recursion) in the revised semantics.

The research presented in this article is part of an attempt to achieve a smoother integration of the

classical theory of automata and formal languages (AFT) within concurrency theory (CT). The idea is to

recognise that a finite automaton is just a special type of labelled transition system, that more complicate

automata (pushdown automata, Turing machines) naturally generate transition systems, and that there is

a natural correspondence between regular expressions and grammars on the one hand and certain process

calculi on the other hand. In [7, 9, 10] we have studied the various notions of automata from AFT modulo

branching bisimilarity. In [8] we have explored the correspondence between finite automata and regular

expressions extended with parallel composition modulo strong bisimilarity. In [5] we have proposed

reactive Turing machines as an extension of Turing machines with concurrency-style interaction.

The paper is structured as follows. We first introduce TCP with the standard version of sequential

composition in Section 2. Next, we discuss the complications caused by transparency in Section 3. Then,

in Section 4, we propose the revised operational semantics of the sequential composition operator, and

show that rooted divergence-preserving branching bisimulation is a congruence. In Section 5, we revisit

the relationship between context-free processes and pushdown automata, and show that every context-

free process is bisimilar to a pushdown process in our revised semantics. In Section 6, we prove that TCP

with iteration and nesting is reactively Turing powerful in the revised semantics. In Section 7, we draw



Jos Baeten, Bas Luttik & Fei Yang 3

some conclusions and propose some future work. The full version of this extended abstract, including

proofs of the results, is available as [6].

2 Preliminaries

We start with introducing the notion of labelled transition system, which is used as the standard math-

ematical representation of behaviour. We consider transition systems with a subset of states marked as

terminating states. We let A be a set of action symbols, and we extend A with a special symbol τ <A,

which intuitively denotes unobservable internal activity of the system. We shall abbreviate A∪{τ} by

Aτ.

Definition 1. AnAτ-labelled transition system is a tuple (S,−→,↑,↓), where

1. S is a set of states,

2. −→ ⊆ S×Aτ×S is anAτ-labelled transition relation,

3. ↑ ∈ S is the initial state, and

4. ↓ ⊆ S is a set of terminating states.

Next, we shall introduce the process calculus Theory of Sequential Processes (TSP) that allows us to

describe transition systems.

Let N be a countably infinite set of names. The set of process expressions P is generated by the

following grammar (a ∈ Aτ, N ∈ N):

P := 0 | 1 | a.P | P ·P | P+P | N .

We briefly comment on the operators in this syntax. The constant 0 denotes deadlock, the unsuccess-

fully terminated process. The constant 1 denotes termination, the successfully terminated process. For

each action a ∈ Aτ there is a unary operator a. denoting action prefix; the process denoted by a.P can

do an a-labelled transition to the process P. The binary operator + denotes alternative composition or

choice. The binary operator · represents the sequential composition of two processes.

Let P be an arbitrary process expression; and we use an abbreviation inductively defined by: P0 = 1;

and Pn+1 = P ·Pn for all n ∈ N.

A recursive specification E is a set of equations E = {N
def
= P|N ∈ N ,P ∈ P}, satisfying:

1. for every N ∈ N it includes at most one equation with N as left-hand side, which is referred to as

the defining equation for N; and

2. if some name N′ occurs in the right-hand side P′ of some equation N′ = P′ in E, then E must

include a defining equation for N′.

An occurrence of a name N in a process expression is guarded if the occurrence is within the scope

of an action prefix a. for some a ∈ A (τ cannot be a guard). A recursive specification E is guarded if all

occurrences of names in right-hand sides of equations in E are guarded.

We use structural operational semantics to associate a transition relation with process expressions

defined in TSP. A term is closed if it does not contain any free variables. Structural operational semantics

induces a transition relation on closed terms. We let −→ be the Aτ-labelled transition relation induced

on the set of process expressions by operational rules in Figure 1. Note that we presuppose a recursive

specification E, and we omit the symmetrical rules for +.



4 Sequential Composition in the Presence of Intermediate Termination

1 ↓ a.P
a
−→ P

P1
a
−→ P′

1

P1+P2
a
−→ P′

1

P1 ↓

P1+P2 ↓

P1 ↓ P2 ↓

P1 ·P2 ↓

P1
a
−→ P′1

P1 ·P2
a
−→ P′

1
·P2

P1 ↓ P2
a
−→ P′2

P1 ·P2
a
−→ P′

2

P
a
−→ P′ (N

def
= P) ∈ E

N
a
−→ P′

P ↓ (N
def
= P) ∈ E

N ↓

Figure 1: The operational semantics of TSP

Here we use P
a
−→ P′ to denote an a-labelled transition (P,a,P′) ∈ −→. We say a process expression

P′ is reachable from P is there exist process expressions P0, . . . ,Pn and labels a1, . . . ,an such that P =

P0
a1
−→ ·· ·

an
−→ Pn = P′.

Given a TSP process expression P, the transition system T (P) = (SP,−→P,↑P,↓P) associated with P

is defined as follows:

1. the set of states SP consists of all process expressions reachable from P;

2. the transition relation −→P is the restriction to SP of the transition relation defined on all process

expressions by the structural operational semantics, i.e., −→P = −→∩ (SP×Aτ×SP);

3. ↑P = P; and

4. the set of final states ↓P consists of all process expressions Q ∈ SP such that Q ↓, i.e., ↓P = ↓ ∩SP.

We also use (a restricted variant of) the process calculus TCP in later sections. It is obtained by

adding a parallel composition operator to TSP. Let C be a set of channels and D� be a set of data

symbols. For every subset C′ ⊆ C, we propose a special set of actions IC′ ⊆ Aτ defined by: IC′ =

{c?d,c!d | d ∈ D�,c ∈ C
′}.

The actions c?d and c!d denote the events that a datum d is received or sent along channel c, re-

spectively. We include binary parallel composition operators [ ‖ ]C′ (C ⊆ C). Communication along the

channels in C′ is enforced and communication results in τ.

The operational semantics of the parallel composition operators is presented in Figure 2 (We omit

the symmetrical rules).

P1
a
−→ P′

1
a < IC′

[P1 ‖ P2]C′
a
−→ [P′1 ‖ P2]C′

P1 ↓ P2 ↓

[P1 ‖ P2]C′ ↓

P1
c?d
−→ P′

1
P2

c!d
−→ P′

2
c ∈ C′

[P1 ‖ P2]C′
τ
−→ [P′1 ‖ P′2]C′

Figure 2: The operational semantics of parallel composition

The notion of behavioural equivalence has been used extensively in the theory of process calculi. We

first introduce the notion of strong bisimilarity [21, 23], which does not distinguish τ-transitions from

other labelled transitions.



Jos Baeten, Bas Luttik & Fei Yang 5

Definition 2. A binary symmetric relation R on a transition system (S,−→,↑,↓) is a strong bisimulation

if, for all states s, t ∈ S, sRt implies

1. if s
a
−→ s′, then there exist t′ ∈ S, such that t

a
−→ t′, and s′Rt′;

2. if s ↓, then t ↓.

The states s and t are strongly bisimilar (notation: s↔ t) if there exists a strong bisimulation R s.t. sRt.

The notion of strong bisimilarity does not take into account the intuition associated with τ that it

stands for unobservable internal activity. We proceed to introduce the notion of (divergence-preserving)

branching bisimilarity, which does treat τ-transitions as unobservable. Divergence-preserving branching

bisimilarity is the finest behavioural equivalence in van Glabbeek’s linear time - branching time spec-

trum [16], and, moreover, the coarsest behavioural equivalence compatible with parallel composition

that preserves validity of formulas from the well-known modal logic CTL minus the next-time modality

X [18]. Let −→ be an Aτ-labelled transition relation on a set S, and let a ∈ Aτ; we write s
(a)
−→ t for the

formula “s
a
−→ t∨ (a = τ∧ s = t)”. Furthermore, we denote the transitive closure of

τ
−→ by −→

+
and the

reflexive-transitive closure of
τ
−→ by −→

∗
.

Definition 3. Let T = (S,−→,↑,↓) be a transition system. A branching bisimulation is a symmetric

relation R ⊆ S×S such that for all states s, t ∈ S, sRt implies

1. if s
a
−→ s′, then there exist t′, t′′ ∈ S, such that t −→

∗
t′′

(a)
−→ t′, sRt′′ and s′Rt′;

2. if s ↓, then there exists t′∈ S such that t −→
∗

t′, t′ ↓ and sRt′.

The states s and t are branching bisimilar (notation: s↔b t) if there exists a branching bisimulation R

such that sRt.

A branching bisimulation R is divergence-preserving if, for all states s and t, sRt implies

3. if there exists an infinite sequence (si)i∈N such that s = s0, si

τ
−→ si+1 and siRt for all i ∈ N, then

there exists a state t′ such that t −→
+

t′ and siRt′ for some i ∈ N.

The states s and t are divergence-preserving branching bisimilar (notation: s↔∆
b

t) if there exists a

divergence-preserving branching bisimulation R such that sRt.

The relation ↔∆
b

satisfies the conditions of Definition 3, and is, in fact, the largest divergence-

preserving branching bisimulation relation. Divergence-preserving branching bisimilarity is an equiv-

alence relation [15].

Divergence-preserving branching bisimilarity is not a congruence for TSP; it is well-known that it is

not compatible with alternative composition.. A rootedness condition needs to be introduced.

Definition 4. Let T = (S,−→,↑,↓) be a transition system. A divergence-preserving branching bismula-

tion relation R on T satisfies the rootedness condition for a pair of states s1, s2 ∈ S, if s1Rs2 and

1. if s1
a
−→ s′

1
, then s2

a
−→ s′

2
for some s′

2
such that s′

1Rs′
2
;

2. if s1 ↓, then s2 ↓.

s1 and s2 are rooted divergence-preserving branching bisimilar (notation: s1 ↔
∆
rb

s2) if there exists a

divergence-preserving branching bisimulation R that satisfies rootedness condition for s1 and s2.

We can extend the above relations (↔,↔b,↔
∆
b
, and↔∆

rb
) to relations over two transition systems by

defining that they are bisimilar if their initial states are bisimilar in their disjoint union. Namely, for two

transition systems T1 = (S1,−→1,↑1,↓1) and T2 = (S2,−→2,↑2,↓2), we make the following pairing on

their states. We pair every state s ∈ S1 with 1 and every state s ∈ S2 with 2. We have T ′
i
= (S′

i
,−→′i ,↑

′
i
,↓′

i
)

for i= 1,2 where S′
i
= {(s, i) | s ∈Si}, −→

′
i= {((s, i),a, (t, i)) | (s,a, t) ∈−→i}, ↑

′
i
= (↑i, i), and ↓′

i
= {(s, i) | s ∈↓i}.

We say T1 ≡ T2 if in T = (S′
1
∪S′

2
,−→

′
1∪−→

′
2,↑
′
1
,↓′

1
∪↓′

2
) we have ↑′

1
≡↑′

2
.



6 Sequential Composition in the Presence of Intermediate Termination

Xstart X ·Y X ·Y2 X ·Yn−1 X ·Yn

YnYn−1Y2Y1

a

b

a

b b

a

b b

c

c
c

c
c

c
c

c

c

c

c

Figure 3: A transition system with unboundedly branching behaviour

3 Transparency

Process expressions that have the option to terminate are transparent in a sequential context: if P has the

option to terminate and Q
a
−→ Q′, then P ·Q

a
−→ Q′ even if P can still do transitions. In this section we

shall explain how transparency gives rise to two phenomena that are undesirable in certain circumstances.

First, it facilitates the specification of unboundedly branching behaviour with a guarded recursive speci-

fication over TSP. Second, it gives rise to forgetful stacking of variables, and as a consequence it is not

clear how to specify an always terminating half-counter.

We first discuss process expressions with unbounded branching. It is well-known from formal lan-

guage theory that the context-free languages are exactly the languages accepted by pushdown automata.

The process-theoretic formulation of this result is that every transition system specified by a TSP speci-

fication is language equivalent to the transition system associated with a pushdown automaton and, vice

versa, every transition system associated with a pushdown automaton is language equivalent to the transi-

tion system associated with some TSP specification. The correspondence fails, however, when language

equivalence is replaced by (strong) bisimilarity. The currently tightest result is that for every context-

free process there is a pushdown process to simulate it modulo contra simulation [4]; we conjecture that

not every context-free process is simulated by a pushdown process modulo branching bisimilarity. The

reason is that context-free processes may have an unbounded branching degree. Consider the following

process:

X = a.X ·Y +b.1 Y = c.1+1 .

The transition system associated with X is illustrated in Figure 3. Note that every state in the second

row is a terminating state. The state Yn has n c-labelled transitions to 1,Y,Y2, . . . ,Yn−1, respectively.

Therefore, every state in this transition system has finitely many transitions leading to distinct states,

but there is no upper bound on the number of transitions from each state. Therefore, we say that this

transition system has an unbounded branching degree.

We can prove that the process defined by the TSP specification above is not strongly bisimilar to

a pushdown process since it has an unbounded branching degree, whereas a pushdown process is al-

ways boundedly branching. The correspondence does hold modulo contra simulation [4], and it is an

open problem as to whether the correspondence holds modulo branching bisimilarity. In Section 5, we

show that with a revised operational semantics for sequential composition, we eliminate such unbounded

branching and indeed obtain a correspondence between pushdown processes and context-free processes

modulo strong bisimilarity.



Jos Baeten, Bas Luttik & Fei Yang 7

Next, we discuss the phenomenon of forgetfulness. Bergstra, Bethke and Ponse introduce a process

calculus with iteration and nesting [11, 12] in which a binary nesting operator ♯ and a Kleene star operator
∗ are added. In this paper, we add these two operators to TCP (Strictly speaking, we use an unary variant

Kleene star operator). We give the operational semantics of these two operators in Figure 4.

P∗ ↓

P
a
−→ P′

P∗
a
−→ P′ ·P∗

P1
a
−→ P′

1

P1
♯P2

a
−→ P′

1
· (P1

♯P2) ·P1

P2
a
−→ P′

2

P1
♯P2

a
−→ P′

2

P2 ↓

P1
♯P2 ↓

.

Figure 4: The operational semantics of nesting and iteration

To get some intuition for the operational interpretation of these operators, note that the processes P∗

and P1
♯P2 respectively satisfy the following equations modulo strong bisimilarity:

P∗ = P ·P∗+1 P1
♯P2 = P1 · (P1

♯P2) ·P1+P2

Bergstra et al. show how one can specify a half counter using iteration and nesting, which then allows

them to conclude that the behaviour of a Turing machine can be simulated in the calculus with iteration

and nesting (not including recursion) [11, 12].

The half counter is specified as follows:

CCn = a.CCn+1+b.BBn (n ∈ N)

BBn = a.BBn−1 (n ≥ 1)

BB0 = c.CC0 .

The behaviour of a half counter is illustrated in Figure 5. The initial state is CC0. From CC0 an

arbitrary number of a transitions is possible. After a b-labelled transition, the process performs the same

number of a-labelled transitions as before the b-labelled transition, to the state BB0. In state BB0, a zero

testing transition, labelled by c is enabled, leading back to the state CC0.

An implementation in a calculus with iteration and nesting is provided in [12] as follows:

HCC = ((a♯b) · c)∗ .

CC0start CC1 CC2 CCn−1 CCn

BBnBBn−1BB2BB1BB0

a

b

a

b b

a

b b

aaa

c

Figure 5: The transition system of a half counter



8 Sequential Composition in the Presence of Intermediate Termination

It is straightforward to establish that ((a♯b) · an · c) ·HCC is equivalent to CCn for all n ≥ 1 modulo

strong bisimilarity, and (an · c) ·HCC is equivalent to BBn for all n ∈ N modulo strong bisimilarity.

In a context with intermediate termination, one may wonder if it is possible to generalize their result.

It is, however, not clear how to specify an always terminating half counter. At least, a naive generalisation

of the specification of Bergstra et al. does not do the job. The culprit is forgetfulness. We define a half

counter that terminates in every state as follows:

Cn = a.Cn+1+b.Bn+1 (n ∈ N)

Bn = a.Bn−1+1 (n ≥ 1)

B0 = c.C0+1 .

Now consider the process HC defined by:

HC = ((a+1)♯(b+1) · (c+1))∗ .

Note that due to transparency, ((a + 1)n · (c + 1)) ·HC is not equivalent to Bn modulo any reasonable

behavioural equivalence for n > 1 since Bn only has an a-labelled transition to Bn−1 whereas the other

process has at least n+ 1 transitions leading to HC, (c+ 1) ·HC, (a+ 1) · (c+ 1) ·HC, . . . , (a+ 1)n−1 · (c+

1) ·HC, respectively. This process may choose to “forget” the transparent process expressions that have

been stacked using the sequential composition operator. We conjecture that, due to forgetfulness, the

always terminating half counter cannot be specified in TCP♯.

In Section 6, we show that with the revised semantics, it is possible to specify an always terminating

half counter and we shall prove that TCP extended with ∗ and ♯ (but without recursion) is reactively

Turing powerful.

4 A Revised Semantics of the Sequential Composition Operator

Inspired by the work in [1] and [13], we revise the operational semantics for sequential composition and

propose a calculus TCP;. Its syntax is obtained by replacing the sequential composition operator · by ; in

the syntax of TCP. Note that we also use the abbreviation of Pn as we did for the standard version of the

sequential composition operator.

The operational rules for ; are givem in Figure 6. Note that the third rule has a negative premise

P1 ↓ P2 ↓

P1; P2 ↓

P1
a
−→ P′

1

P1; P2
a
−→ P′

1
; P2

P1 ↓ P2
a
−→ P′

2
P1 6−→

P1; P2
a
−→ P′

2

.

Figure 6: The revised semantics of sequential composition

P1 6−→. Intuitively, this rule is only applicable if there does not exist a closed term P′1 and an action

a ∈ Aτ such that the transition P1
a
−→ P′

1
is derivable. For a sound formalisation of this intuition, using

the notions of irredundant and well-supported proof, see [17]. As a consequence, the branching degree of

a context-free process is bounded and sequential compositions may have the option to terminate, without

being forgetful.



Jos Baeten, Bas Luttik & Fei Yang 9

Xstart X;Y X;Y2 X;Yn−1 X;Yn

YnYn−1Y2Y1

a

b

a

b b

a

b b

ccc

Figure 7: The transition system in the revised semantics

Let us revisit the first example in Section 3. We rewrite it with the revised sequential composition

operator:

X = a.X;Y +b.1 Y = c.1+1 .

Its transition system is illustrated in Figure 7. Every state in the transition system now has a bounded

branching degree. For instance, a transition from Y5 to Y2 is abandoned because Y has a transition and

only the transition from the first Y in the sequential composition is allowed.

Congruence is an important property to fit a behavioural equivalence into an axiomatic framework.

We have that in the revised semantics,↔∆
rb

is a congruence. Note that the congruence property can also

be inferred from a recent result of Fokkink, van Glabbeek and Luttik [14].

Theorem 1. ↔∆
rb

is a congruence with respect to TCP;.

As a remark, unlike the divergence-preserving variant of rooted branching bisimilarity, the more stan-

dard variant that does not require divergence-preservation (↔rb) is not a congruence for TCP;. Consider

P1 = τ.1 P2 = (τ.1)∗ Q = a.1 .

We have P1↔rb P2 but not P1; Q↔rb P2; Q, for P1; Q can do a a-transition after the τ-transition, whereas

P2; Q can only do τ transitions.

We also define a version of TCP with iteration and nesting (TCP♯) in the revised semantics. By

removing the facility of recursive specification and the operations ∗ and ♯, we get TCP♯. The operational

rules for ∗ and ♯ are obtained by replacing, in the rules in Figure 4, all occurrences of · by ;.

5 Context-free Processes and Pushdown Processes

The relationship between context-free processes and pushdown processes has been studied in the litera-

ture [4]. We consider the process calculus Theory of Sequential Processes (TSP;). We define context-free

processes as follows:

Definition 5. A context-free process is the strong bisimulation equivalence class of the transition system

generated by a finite guarded recursive specification over TSP;.

Note that there is a method to rewrite every context-free process into Greibach normal form [3],

which is also valid in the revised semantics. In this paper, we only consider context-free processes in

Greibach normal form ,i.e., defined by guarded recursive specifications of the form

X =
∑

i∈IX

αi.ξi(+1) .



10 Sequential Composition in the Presence of Intermediate Termination

In this form, every right-hand side of every equation consists of a number of summands, indexed by a

finite set IX (the empty sum denotes 0), each of which is 1, or of the form αi.ξi, where ξi is the sequential

composition of names (the empty sequence denotes 1).

We shall show that every context-free process is equivalent to a pushdown process modulo strong

bisimilarity. The notion of pushdown automaton is defined as follows:

Definition 6. A pushdown automaton (PDA) is a 7-tuple (S,Σ,D,−→,↑,Z,↓), where

1. S is a finite set of states,

2. Σ is a finite set of input symbols,

3. D is a finite set of stack symbols,

4. −→ ⊆ S×D×Σ×D∗×S is a finite transition relation, (we write s
a[d/δ]
−→ t for (s,d,a, δ, t) ∈ −→),

5. ↑ ∈ S is the initial state,

6. Z ∈ D is the initial stack symbol, and

7. ↓ ⊆ S is a set of accepting states.

We use a sequence of stack symbols δ ∈ D∗ to represent the contents of a stack. We associate

with every pushdown automaton a labelled transition system. The bisimulation equivalence classes of

transition systems associated with pushdown automata are referred to as pushdown processes.

Definition 7. LetM= (S,Σ,D,−→,↑,Z,↓) be a PDA. The transition system T (M)= (ST ,−→T ,↑T ,↓T )

associated withM is defined as follows:

1. its set of states is the set ST = {(s, δ) | s ∈ S, δ ∈ D∗} of all configurations ofM,

2. its transition relation −→T⊆ST ×Aτ×ST is the relation satisfying, for all a ∈ Σ, d ∈D, δ,δ′ ∈D∗:

(s,dδ)
a
−→T (t, δ′δ) iff s

a[d/δ′]
−→ t,

3. its initial state is the configuration ↑T= (↑,Z), and

4. its set of terminating states is the set ↓T= {(s, δ) | s ∈ S, s ↓, δ ∈ D∗}.

Recall that a context-free process is defined by a recursive specification in Greibach normal form;

all states of the context-free process are denoted by sequences of names defined in this recursive speci-

fication. Note that a sequence of names denotes a terminating state only if all names have the option to

terminate. Hence, to be able to determine whether a configuration of the pushdown automaton should

have the option to terminate, we need to know whether all names currently on the stack have the option

to terminate. We annotate the states of the pushdown automaton with the subset of names currently on

the stack. We shall use the stack to record the sequence of names corresponding to the current state.

The deepest occurrence of a name on the stack is marked and we shall include special transitions in the

automaton for the treatment of marked names. If a marked name is removed from the stack, then , intu-

itively, it should be removed from the set annotating the state from the set. On the other hand, if a name

not in the set is added to the stack, then we shall mark that name and add that name to the set annotating

the state. As an example, we introduce a PDA as in Figure 8 to simulate the process in Figure 7 modulo
↔.

To obtain a general result, we consider a context-free process defined by a set of names V =

{X0,X1, . . . ,Xm} with X0 as the initial state, where

X j =
∑

i∈IX j

αi j.ξi j(+1) .

We introduce the following auxiliary functions:



Jos Baeten, Bas Luttik & Fei Yang 11

{X}start {X,Y} {Y} ∅
a[X†/X†Y†]

b[X†/ǫ]

a[X†/X†Y]

b[X†/ǫ]

c[Y/ǫ]

c[Y†/ǫ]

Figure 8: A PDA to simulate the process in Figure 7

1. length :V∗→N, length(ξ) is the length of ξ;

2. get :V∗ ×N→V, get(ξ, i) is the i-th name of ξ;

3. suffset :V∗×N→ 2|V|, suffset(ξ, i)= {get(ξ, j) | j= i+1, . . . length(ξ)} computes the set that contains

all the names in the suffix which starts from the i-th name of ξ.

We define a PDAM = (S,Σ,D,−→,↑,Z,↓) to simulate the transition system associated with X0 as fol-

lows: S = {D | D ⊆ V}; Σ =Aτ; D =V∪{X
† | X ∈ V}; ↑= {X0}; Z = X

†

0
; ↓= {D | if for all X ∈ D,X ↓};

and the transition relation −→ is defined as follows:

−→ = {(D,X†
j
,αi j, δ(D,X

†

j
, ξi j),merge(D,X†

j
, ξi j)) | i ∈ IX j

, j = 1, . . . ,n, D⊆V}

∪ {(D,X j,αi j, δ(D,X j, ξi j),merge(D,X j, ξi j)) | i ∈ IX j
, j = 1, . . . ,n, D⊆V} ,

where δ(D,X†
j
, ξi j) is the string of length length(ξi j) defined as follows: for k = 1, . . . , length(ξi j), we let

Xk = get(ξi j,k),

1. if Xk < (D/{X j})∪ suffset(ξi j,k), then the k-th symbol of δ(D,X†
j
, ξi j) is X

†

k
,

2. otherwise, the k-th symbol of δ(D,X†
j
, ξi j) is Xk,

δ(D,X j, ξi j) is a string of length length(ξi j) defined as follows: for k = 1, . . . , length(ξi j), we let Xk =

get(ξi j,k),

1. if Xk < D∪ suffset(ξi j,k), then the k-th symbol of δ(D,X j, ξi j) is X
†

k
,

2. otherwise, the k-th symbol of δ(D,X j, ξi j) is Xk, and

we also define merge(D,X†
j
, ξi j) = (D/{X j})∪ suffset(ξi j,0) and merge(D,X j, ξi j) = D∪ suffset(ξi j,0);

We have the following result:

Lemma 1. T (X0)↔T (M).

We have the following theorem.

Theorem 2. For every name X defined in a guarded recursive specification in Greibach normal form

there exists a PDAM, such that T (X)↔T (M).

Note that the converse of this theorem does not hold in general, a counterexample was established by

F. Moller in [22], and we conjecture that it is also valid modulo↔b in the revised semantics.



12 Sequential Composition in the Presence of Intermediate Termination

6 Executability in the Context of Termination

The notion of reactive Turing machine (RTM) [5] was introduced as an extension of Turing machines to

define which behaviour is executable by a computing system. The definition of RTM is parameterised

with the set Aτ, which we now assume to be finite, and with another finite set D of data symbols. We

extend D with a special symbol � <D to denote a blank tape cell, and denote the set D∪{�} of tape

symbols by D�.

Definition 8 (Reactive Turing Machine). A reactive Turing machine (RTM) is a quadruple (S,−→,↑,↓),

where

1. S is a finite set of states,

2. −→ ⊆ S×D� ×Aτ ×D� × {L,R} × S is a finite collection of (D� ×Aτ ×D� × {L,R})-labelled

transitions (we write s
a[d/e]M
−→ t for (s,d,a,e,M, t) ∈ −→),

3. ↑ ∈ S is a distinguished initial state, and

4. ↓ ⊆ S is a finite set of final states.

Intuitively, the meaning of a transition s
a[d/e]M
−→ t is that whenever the RTM is in state s, and d is the

symbol currently read by the tape head, then it may execute the action a, write symbol e on the tape

(replacing d), move the read/write head one position to the left or the right on the tape (depending on

whether M = L or M = R), and then end up in state t.

To formalise the intuitive understanding of the operational behaviour of RTMs, we associate with

every RTMM anAτ-labelled transition system T (M). The states of T (M) are the configurations ofM,

which consist of a state from S, its tape contents, and the position of the read/write head. We denote by

Ď� = {ď | d ∈ D�} the set of marked symbols; a tape instance is a sequence δ ∈ (D� ∪Ď�)∗ such that δ

contains exactly one element of the set of marked symbols Ď�, indicating the position of the read/write

head. We adopt a convention to concisely denote an update of the placement of the tape head marker.

Let δ be an element of D∗�. Then by δ< we denote the element of (D� ∪Ď�)∗ obtained by placing the

tape head marker on the right-most symbol of δ (if that exists; otherwise δ< denotes �̌). Similarly, >δ is

obtained by placing the tape head marker on the left-most symbol of δ (if that exists; otherwise >δ denotes

�̌).

Definition 9. Let M = (S,−→,↑,↓) be an RTM. The transition system T (M) associated with M is

defined as follows:

1. its set of states is the set CM = {(s, δ) | s ∈ S, δ a tape instance} of all configurations ofM;

2. its transition relation −→ ⊆ CM×Aτ×CM is the relation satisfying, for all a ∈ Aτ, d,e ∈ D� and

δL, δR ∈ D
∗
�: (s, δLďδR)

a
−→ (t, δL

<eδR) iff s
a[d/e]L
−→ t, and (s, δLďδR)

a
−→ (t, δLe >δR) iff s

a[d/e]R
−→ t;

3. its initial state is the configuration (↑, �̌); and

4. its set of final states is the set {(s, δ) | δ a tape instance, s ↓}.

Turing introduced his machines to define the notion of effectively computable function in [24]. By

analogy, the notion of RTM can be used to define a notion of effectively executable behaviour.

Definition 10 (Executability). A transition system is executable if it is the transition system associated

with some RTM.



Jos Baeten, Bas Luttik & Fei Yang 13

Executability can be used to characterise the absolute expressiveness of process calculi in two ways.

On the one hand, if every transition system associated with a process expression specified in a process

calculus is executable modulo some behavioural equivalence, then we say that the process calculus is

executable modulo that behavioural equivalence. On the other hand, if every executable transition system

is behaviourally equivalent to some transition system associated with a process expression specified

in a process calculus modulo some behavioural equivalence, then we say that the process calculus is

reactively Turing powerful modulo that behavioural equivalence.

Our aim in this section is to prove that all executable processes can be specified, up to divergence-

preserving branching bisimilarity in TCP♯. TCP♯ is obtained from TCP by removing recursive definitions

and adding the iteration and nesting operators.

To see that TCP♯ is executable modulo branching bisimilarity, it suffices to observe that their transi-

tion systems are effective. Thus we can apply the result from [5] and conclude that they are executable

modulo↔b.

Now we show that TCP♯ is reactively Turing powerful modulo↔∆
b

.

We first introduce the notion of bisimulation up to↔b, which is a useful tool to establish the proofs

in this section. Note that we adopt a non-symmetric bisimulation up to relation.

Definition 11. Let T = (S,−→,↑,↓) a transition system. A relation R ⊆ S×S is a bisimulation up to↔b

if, whenever s1Rs2, then for all a ∈ Aτ:

1. if s1 −→
∗

s′′
1

a
−→ s′

1
, with s1↔b s′′

1
and a , τ∨ s′′

1
6↔b s′

1
, then there exists s′

2
such that s2

a
−→ s′

2
,

s′′
1
↔b◦R s2 and s′

1
↔b◦R s′

2
;

2. if s2
a
−→ s′

2
, then there exist s′

1
, s′′

1
such that s1 −→

∗
s′′

1

a
−→ s′

1
, s′′

1
↔b s1 and s′

1
↔b◦R s′

2
;

3. if s1 ↓, then there exists s′2 such that s2 −→
∗

s′2, s′2 ↓ and s1Rs′2; and

4. if s2 ↓, then there exists s′
1

such that s1 −→
∗

s′
1
, s′

1
↓ and s′

1Rs2.

Lemma 2. If R is a bisimulation up to↔b, then R ⊆↔b.

Next we show that TCP♯ is reactively Turing powerful by writing a specification of the transition

system associated with a reactive Turing machine in TCP♯ modulo↔∆
b

. The proof proceeds in five steps:

1. We first specify an always terminating half counter.

2. Then we show that every regular process can be specified in TCP♯.

3. Next we use two half counters and a regular process to encode a terminating stack.

4. With two stacks and a regular process we can specify a tape.

5. Finally we use a tape and a regular control process to specify an RTM.

We first recall the infinite specification in TSP; of a terminating half counter from Section 3. We

provide a specification of a counter in TCP♯ as follows:

HC = ((a+1)♯(b+1); (c+1))∗

We have the following lemma:

Lemma 3. C0↔
∆
b

HC.

Next we show that every regular process can be specified in TCP♯ modulo ↔∆
b

. A regular process

is given by Pi =
∑n

j=1αi j; P j + βi (i = 1, . . . ,n) where αi j and βi are finite sums of actions from Aτ and

possibly with a 1-summand. We have the following lemma.



14 Sequential Composition in the Presence of Intermediate Termination

Lemma 4. Every regular process can be specified in TCP♯ modulo↔∆
b

.

Now we show that a stack can be specified by a regular process and two half counters. We first give

an infinite specification in TSP; of a stack as follows:

S ǫ = Σd∈D�push?d.S d +pop!�.S ǫ +1

S dδ = pop!d.S δ+Σe∈D�push?e.S edδ+1 .

Note that D� is a finite set of symbols. We suppose that D� contains N symbols (including �). We

use ǫ to denote the empty sequence. We inductively define an encoding from a sequence of symbols to a

natural number ⌈ ⌉ :D�
∗→N as follows:

⌈ǫ⌉ = 0 ⌈dk⌉ = k (k = 1,2, . . . ,N) ⌈dkσ⌉ = k+N ×⌈σ⌉ .

Hence we are able to encode the contents of a stack in terms of natural numbers recorded by half counters.

We define a stack in TCP♯ as follows:

S = [X∅ ‖ P1 ‖ P2]{a1,a2,b1,b2,c1 ,c2}

P j = ((a j!a+1)♯(b j!b+1); (c j!c+1))∗ ( j = 1,2)

X∅ = (ΣN
j=1((push?d j +1); (a1?a+1) j; (b1 +1); X j)+pop!�)∗

Xk = ΣN
j=1((push?d j +1);Pushj)+ (pop!dk +1);Popk (k = 1,2, . . . ,N)

Pushk = Shift1to2; (a1?a+1)k;NShift2to1; Xk (k = 1,2, . . . ,N)

Popk = (a1?a+1)k;1/NShift1to2;Test∅

Shift1to2 = ((a1?a+1); (a2?a+1))∗; (c1?c+1); (b2?b+1)

NShift2to1 = ((a2?a+1); (a1?a+1)N)∗; (c2?c+1); (b1?b+1)

1/NShift1to2 = ((a1?a+1)N ; (a2?a+1))∗; (c1?c+1); (b2?b+1)

Test∅ = (a2?a+1); (a1?a+1);Test1 + (c2?c+1); X∅

Test1 = (a2?a+1); (a1?a+1);Test2 + (c2?c+1); X1

Test2 = (a2?a+1); (a1?a+1);Test3 + (c2?c+1); X2

· · ·

TestN = (a2?a+1); (a1?a+1);Test1 + (c2?c+1); XN .

We have the following result.

Lemma 5. S ǫ ↔
∆
b

S .

Next we proceed to define the tape by means of two stacks. We consider the following infinite

specification in TSP; of a tape:

TδLďδR
= r!d.TδL ďδR

+Σe∈D�w?e.TδL ěδR + L?m.TδL<dδR +R?m.TδLd>δR +1 .

We define the tape process in TCP♯ as follows:

T = [T� ‖ S 1 ‖ S 2]{push1 ,pop1,push2,pop2}

Td = r!d.Td +Σe∈D�w?e.Te+ L?m.Leftd +R?m.Rightd +1 (d ∈ D�)

Leftd = Σe∈D�((pop1?e+1); (push2!d+1);Te)

Rightd = Σe∈D�((pop2?e+1); (push1!d+1);Te) ,

where S 1 and S 2 are two stacks obtained by renaming push and pop in S to push1,pop1,push2 and pop2,

respectively. We establish the following result.



Jos Baeten, Bas Luttik & Fei Yang 15

Lemma 6. T�̌↔
∆
b

T.

Finally, we construct a finite control process for an RTMM = (SM,−→M,↑M,↓M) as follows:

Cs,d = Σ(s,d,a,e,M,t)∈−→M(a.w!e.M!m.Σ f∈D�r? f .Ct, f )[+1]s↓M (s ∈ SM,d ∈ D�) .

We prove the following lemma.

Lemma 7. T (M)↔∆
b

[C↑M,� ‖ T ]{r,w,L,R}.

We have the following theorem.

Theorem 3. TCP♯ is reactively Turing powerful modulo↔∆
b

.

7 Conclusion

The results established in this paper show that a revision of the operational semantics of sequential com-

position leads to a smoother integration of process theory and the classical theory of automata and formal

languages. In particular, the correspondence between context-free processes and pushdown processes can

be established up to strong bisimilarity, which does not hold with the more standard operational seman-

tics of sequential composition in a setting with intermediate termination [2]. Furthermore, the revised

operational semantics of sequential composition also seems to work better in combination with the re-

cursive operations of [12]. We conjecture that it is not possible to specify an always terminating counter

or stack in a process calculus with iteration and nesting if the original operational semantics of sequential

composition is used.

There are also some disadvantages to the revised operational semantics.

First of all, the negative premise in the operational semantics gives well-known formal complications

in determining whether some process does, or does not, admit a transition. For instance, consider the

following unguarded recursive specification:

X = X;Y +1 Y = a.1 .

It is not a priori clear whether an a-transition is possible from X: if X only has the option to terminate, then

X;Y can do the a-transition from Y , but then also X can do the a-transition, contradicting the assumption

that X only has the option to terminate.

Second, as we have illustrated in Section 4, rooted branching bisimilarity is not compatible with

respect to the new sequential composition operation. The divergence-preserving condition is required

for the congruence property.

Finally, note that (a+ 1);b is not strongly bisimilar to (a;b)+ (1;b), and hence ; does not distribute

from the right over +. It is to be expected that there is no finite sound and ground-complete set of

equational axioms for the process calculus TCP; with respect to strong bisimilarity. We leave for future

work to further investigate the equational theory of sequential composition.

Another interesting future work is to establish the reactive Turing powerfulness on other process cal-

culi with non-regular iterators based on the revised semantics of the sequential composition operator. For

instance, we could consider the pushdown operator “$” and the back-and-forth operator “⇆” introduced

by Bergstra and Ponse in [12]. They are given by the following equations:

P1
$P2 = P1; (P1

$P2); (P1
$P2)+P2 P1

⇆P2 = P1; (P1
⇆P2); P2 +P2 .

By analogy to the nesting operator, we shall also give them some proper rules of operational seman-

tics, and then use the calculus obtained by the revised semantics to define other versions of terminating

counters. In a way, we should be able to establish their reactive Turing powerfulness.



16 Sequential Composition in the Presence of Intermediate Termination

References

[1] Luca Aceto & Matthew Hennessy (1992): Termination, deadlock, and divergence. Journal of the ACM
(JACM) 39(1), pp. 147–187, doi:10.1145/147508.147527.

[2] Jos Baeten, Twan Basten & Michel Reniers (2010): Process algebra: equational theories of communicating

processes. Cambridge Tracts in Theoretical Computer Science 50, Cambridge University Press, doi:10.

1017/CBO9781139195003.

[3] Jos Baeten, Jan Bergstra & Jan Klop (1993): Decidability of bisimulation equivalence for processes generat-

ing context-free languages. J. ACM 40(3), pp. 653–682, doi:10.1145/174130.174141.

[4] Jos Baeten, Pieter Cuijpers & Paul van Tilburg (2008): A context-free process as a pushdown au-

tomaton. In: International Conference on Concurrency Theory, Springer, pp. 98–113, doi:10.1007/

978-3-540-85361-9_11.

[5] Jos Baeten, Bas Luttik & Paul van Tilburg (2013): Reactive Turing Machines. Inform. Comput. 231, pp.

143–166, doi:10.1016/j.ic.2013.08.010.

[6] Jos Baeten, Bas Luttik & Fei Yang (2017): Sequential composition in the presence of intermediate termina-

tion. CoRR abs/1706.08401. Available at http://arxiv.org/abs/1706.08401.

[7] Jos C. M. Baeten, Pieter J. L. Cuijpers, Bas Luttik & P. J. A. van Tilburg (2009): A process-theoretic look

at automata. In Farhad Arbab & Marjan Sirjani, editors: Fundamentals of Software Engineering, Third IPM

International Conference, FSEN 2009, Kish Island, Iran, April 15-17, 2009, Revised Selected Papers, Lecture
Notes in Computer Science 5961, Springer, pp. 1–33, doi:10.1007/978-3-642-11623-0_1.

[8] Jos C. M. Baeten, Bas Luttik, Tim Muller & Paul van Tilburg (2016): Expressiveness modulo bisimilarity

of regular expressions with parallel composition. Mathematical Structures in Computer Science 26, pp.

933–968, doi:10.1017/S0960129514000309.

[9] Jos C. M. Baeten, Bas Luttik & Paul van Tilburg (2011): Computations and interaction. In Raja Natarajan

& Adegboyega K. Ojo, editors: ICDCIT, Lecture Notes in Computer Science 6536, Springer, pp. 35–54,

doi:10.1007/978-3-642-19056-8_3.

[10] Jos C. M. Baeten, Bas Luttik & Paul van Tilburg (2012): Turing Meets Milner. In Maciej Koutny & Irek

Ulidowski, editors: CONCUR, Lecture Notes in Computer Science 7454, Springer, pp. 1–20, doi:10.1007/

978-3-642-32940-1_1.

[11] Jan Bergstra, Inge Bethke & Alban Ponse (1994): Process algebra with iteration and nesting. The Computer

Journal 37(4), pp. 243–258, doi:10.1093/comjnl/37.4.243.

[12] Jan Bergstra & Alban Ponse (2001): Non-regular iterators in process algebra. Theoretical Computer Science

269(1), pp. 203–229, doi:10.1016/S0304-3975(00)00413-8.

[13] Bard Bloom (1994): When is partial trace equivalence adequate? Formal Aspects of Computing 6(3), pp.

317–338, doi:10.1007/BF01215409.

[14] Wan Fokkink, Rob van Glabbeek & Bas Luttik (2017): Divide and congruence III: stability& divergence. In:

Proceedings 28th International Conference on Concurrency Theory (CONCUR 2017), Leibniz International

Proceedings in Informatics (LIPIcs) 85, pp. 11:1–11:15.

[15] Rob van Glabbeek, Bas Luttik & Nikola Trčka (2009): Branching bisimilarity with explicit divergence.

Fundamenta Informaticae 93(4), pp. 371–392, doi:10.3233/FI-2009-109.

[16] Rob J. van Glabbeek (1993): The linear time - branching time spectrum II. In Eike Best, editor: CONCUR

’93, 4th International Conference on Concurrency Theory, Hildesheim, Germany, August 23-26, 1993, Pro-

ceedings, Lecture Notes in Computer Science 715, Springer, pp. 66–81, doi:10.1007/3-540-57208-2_

6.

[17] Rob J. van Glabbeek (2004): The meaning of negative premises in transition system specifications II. J. Log.

Algebr. Program. 60-61, pp. 229–258, doi:10.1016/j.jlap.2004.03.007.

http://dx.doi.org/10.1145/147508.147527
http://dx.doi.org/10.1017/CBO9781139195003
http://dx.doi.org/10.1017/CBO9781139195003
http://dx.doi.org/10.1145/174130.174141
http://dx.doi.org/10.1007/978-3-540-85361-9_11
http://dx.doi.org/10.1007/978-3-540-85361-9_11
http://dx.doi.org/10.1016/j.ic.2013.08.010
http://arxiv.org/abs/1706.08401
http://dx.doi.org/10.1007/978-3-642-11623-0_1
http://dx.doi.org/10.1017/S0960129514000309
http://dx.doi.org/10.1007/978-3-642-19056-8_3
http://dx.doi.org/10.1007/978-3-642-32940-1_1
http://dx.doi.org/10.1007/978-3-642-32940-1_1
http://dx.doi.org/10.1093/comjnl/37.4.243
http://dx.doi.org/10.1016/S0304-3975(00)00413-8
http://dx.doi.org/10.1007/BF01215409
http://dx.doi.org/10.3233/FI-2009-109
http://dx.doi.org/10.1007/3-540-57208-2_6
http://dx.doi.org/10.1007/3-540-57208-2_6
http://dx.doi.org/10.1016/j.jlap.2004.03.007


Jos Baeten, Bas Luttik & Fei Yang 17

[18] Rob J. van Glabbeek, Bas Luttik & Nikola Trčka (2009): Computation Tree Logic with deadlock detection.

Logical Methods in Computer Science 5(4), doi:10.2168/LMCS-5(4:5)2009.

[19] Bas Luttik & Fei Yang (2015): Executable behaviour and the π-calculus (extended abstract). In Sophia

Knight, Ivan Lanese, Alberto Lluch-Lafuente & Hugo Torres Vieira, editors: Proceedings 8th Interaction and
Concurrency Experience, ICE 2015, Grenoble, France, 4-5th June 2015., EPTCS 189, pp. 37–52, doi:10.

4204/EPTCS.189.5.

[20] Bas Luttik & Fei Yang (2016): On the executability of interactive computation. In Arnold Beckmann, Laurent

Bienvenu & Natasa Jonoska, editors: Pursuit of the Universal - 12th Conference on Computability in Europe,

CiE 2016, Paris, France, June 27 - July 1, 2016, Proceedings, Lecture Notes in Computer Science 9709,

Springer, pp. 312–322, doi:10.1007/978-3-319-40189-8_32.

[21] Robin Milner (1989): Communication and concurrency. PHI Series in computer science, Prentice Hall.

[22] Faron Moller (1996): Infinite results. In Ugo Montanari & Vladimiro Sassone, editors: CONCUR ’96,

Concurrency Theory, 7th International Conference, Pisa, Italy, August 26-29, 1996, Proceedings, Lecture

Notes in Computer Science 1119, Springer, pp. 195–216, doi:10.1007/3-540-61604-7_56.

[23] David Park (1981): Concurrency and automata on infinite sequences. In P. Deussen, editor: Theoretical Com-

puter Science, Lectures Notes in Computer Science 104, Springer, pp. 167–183, doi:10.1007/BFb0017309.

[24] Alan Turing (1937): On Computable Numbers, with an Application to the Entscheidungsproblem. Proceed-

ings of the London Mathematical Society s2-42(1), pp. 230–265, doi:10.1112/plms/s2-42.1.230.

http://dx.doi.org/10.2168/LMCS-5(4:5)2009
http://dx.doi.org/10.4204/EPTCS.189.5
http://dx.doi.org/10.4204/EPTCS.189.5
http://dx.doi.org/10.1007/978-3-319-40189-8_32
http://dx.doi.org/10.1007/3-540-61604-7_56
http://dx.doi.org/10.1007/BFb0017309
http://dx.doi.org/10.1112/plms/s2-42.1.230

	1 Introduction
	2 Preliminaries
	3 Transparency
	4 A Revised Semantics of the Sequential Composition Operator
	5 Context-free Processes and Pushdown Processes
	6 Executability in the Context of Termination
	7 Conclusion

