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A B S T R A C T

In solving multiplication problems, children use both fast retrieval-based processes and slower computational
processes. In the current study, we explore the possibility of disentangling these strategies using information
contained in the observed response latencies using a method that is applicable in large data sets.
We used a tree-based item response-modeling framework (De Boeck & Partchev, 2012) to investigate whether

the proposed qualitative distinctions in fast and slow strategies can be detected. This so-called fast-slow model
was applied to responses to a set of multiplication items, totalling more than 180,000 responses, collected in an
online computer-adaptive training environment for mathematics.
Parameters describing person characteristics (ability) and item characteristics (easiness) are estimated with

the model. Both item and person characteristics differed between fast and slow processes and match predictions
from substantive models of multiplication. Moreover, the parameters allowed us to describe the fast and slow
strategies in more detail. Results emphasize the utility of the fast-slow model in the detection of strategies in
multiplication but also in other areas of cognition and learning where strategies are expected.

1. Introduction

The concept of strategy is central in the study of human problem
solving. Important aspects of problem solving behavior such as accu-
racy, duration, and type of errors, are due to the choice of the solution
strategy. For instance, in solving arithmetic items, people may use ei-
ther retrieval from memory or a computational strategy (Ashcraft &
Guillaume, 2009; Dowker, 2005; LeFevre et al., 1996), where the
former typically requires less time than the latter. In the case of basic
multiplication (for example single-digit problems), detailed models for
the retrieval process exist (Geary, Widaman, & Little, 1986; Verguts &
Fias, 2005), and several models for computational strategies have been
developed as well (Imbo, Vandierendonck, & Rosseel, 2007; Lemaire &
Siegler, 1995). These models make different predictions about item
difficulty and solution time (van der Ven, Straatemeier, Jansen,
Klinkenberg, & van der Maas, 2015).

When measuring arithmetic ability by using psychometric tests,
such as in IQ tests, individual differences in strategy choice are usually
not taken into account. Arithmetic ability is ultimately tested by
counting the number of correct items that participants solve in any
particular test (e.g., Aunola, Leskinen, Lerkkanen, & Nurmi, 2004; Liu,
Wilson, & Paek, 2008). Different patterns of response times and errors
are hence ignored when the aim is to compare individuals on a scale of

arithmetic ability. Using the number of correct responses may be war-
ranted when testing and comparing test takers, but may be in-
appropriate when concerned with studying development and under-
standing ability differences. In the latter case, different qualitative
processes or strategies should be considered.

In spite of the importance of the strategy concept, detecting stra-
tegies is still a major challenge in many areas of cognitive science.
Verbal reports and neural imaging features are both correlated with
strategy choice (Jost, Beinhoff, Hennighausen, & Rösler, 2004; Price,
Mazzocco, & Ansari, 2013; Tenison, Fincham, & Anderson, 2014), but
both also have pitfalls as strategy indicators. Verbal reporting, the most
commonly accepted method of strategy detection, may interfere with
the solution process and bias strategy choice (Kirk & Ashcraft, 2001;
Reed, Stevenson, Broens-Paffen, Kirschner, & Jolles, 2015). Another
important problem with using verbal reports for detecting strategy
choice is that it is time-consuming and thus not feasible in combination
with large scale automatic assessment of arithmetic abilities, which is
very common nowadays. The latter problem also applies when using
neural patterns to identify strategy choice. A third approach, whereby
strategies are assessed through a combination of latencies and accuracy,
is more promising. The utility of response times, obtained with large-
scale computer-based assessment, has already been demonstrated for
the detection of individual differences in reading literacy and problem
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solving (Goldhammer et al., 2014). For the detection of strategies we
use a different approach. This approach will be applied to develop-
mental data on multiplication skills but applications to other cognitive
skills are possible as well (see Coomans, Hofman, Brinkhuis, van der
Maas, & Maris, 2016), as long as strategies are associated with diver-
ging patterns of accuracy and response times.

An important developmental trend in learning multiplication can be
described by changes in strategy choice. Initially children will apply
various slower computational strategies (Freudenthal, 1991). Over
time, these computations become more sophisticated (Lemaire &
Siegler, 1995). Through practicing multiplication, children will build
up a network of associations between numbers. When this network is
sufficiently strong, children will be able to confidently retrieve answers
to items, and will tend to use faster retrieval from this network instead
of a slower computational strategy (Siegler, 1988). This development
from computation to automaticity is in line with the more general
theory on skill acquisition (Ackerman, 1988; Ackerman & Cianciolo,
2000). Children with learning difficulties do not show this typical
transition from computational to retrieval strategies (De Smedt,
Holloway, & Ansari, 2011; De Visscher & Noël, 2014). After years of
practice, adults will rely predominantly on memory retrieval for single
digit multiplication (LeFevre et al., 1996). Hence, the largest divide in
strategy choice is whether children and adults use a retrieval strategy or
a computational strategy.

In this paper, we investigate whether the fast-slow model
(DiTrapani, Jeon, De Boeck, & Partchev, 2016; Partchev & De Boeck,
2012) allows for automatic analyses of strategy use. The fast-slow
model is based on splitting the data into fast and slow responses and
estimating separate parameters for each of the processes. A third pro-
cess, based on the response latencies, indicates choice for the fast or
slow process. This approach is intermediate between the purely psy-
chometric approach of fitting IRT models to capture multiplication
ability on a single latent trait (e.g., Aunola et al., 2004; Liu et al., 2008)
and the purely cognitive approach of using computational models to
predict response accuracy based on problem characteristics and stra-
tegies (partial abilities) (e.g., de la Torre & Douglas, 2008).

We will first introduce the fast-slow model, derive predictions for
the case of multiplication, and then apply the model to a data set. This
data set includes a large set of responses, both accuracy data and re-
sponse times, collected with a popular Dutch online adaptive learning
environment for mathematics; the Math Garden (Klinkenberg,
Straatemeier, & van der Maas, 2011; Straatemeier, 2014).

1.1. The fast-slow model

The fast-slow model is a tree-based item response theory (IRT)
model (De Boeck & Partchev, 2012). The rationale of this model is that
responses are governed by one of two processes, one fast and one slow,
that can be separated by an additional observed variable, in this case
the (recoded) response times. The response times are recoded to either
fast (1) or slow (0), which serves as an approximation of the underlying
process and is modeled as a latent speed dimension. This tree model can
be formulated as follows, assuming that a (unidimensional) Rasch
model (Rasch, 1960) holds in dimension d, where d=1,2, or 3 and
denotes the speed-, fast- and slow dimensions, respectively. In these
dimensions, the probabilities of respectively a fast response, a fast and
correct response, and a slow and correct response are modeled using a
Rasch model. In the Rasch model, the probability of a correct (or for the
speed dimension a fast) response of a person p on an item i in dimension
d is given by the logistic function:
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where θpd denotes the ability of person p and βid denotes the easiness of
item i on dimension d. Hence, the full model has three sets of person

parameters, and three sets of item parameters: θp1 reflects the overall
probability of a person to generate a fast response, θp2 reflects the
ability to give a fast and correct response, and θp3 reflects the ability to
give a slow and correct response. Likewise, item easiness parameters
correspond to the probability that items are answered fast versus slow
(βi1, with a high βi1 indicating a high probability of a fast response), the
probability of a correct response given that the response was fast (βi2),
and the probability of a correct response given that the response was
slow (βi3).1 In line with De Boeck (2008), both θp=(θp1,θp2,θp3) and
βi=(βi1,βi2,βi3) are treated as random variables with µ( , )p
and µ( , )i , constraining μθ to zero to identify the model (see
Appendix A for a description of the model estimation procedure).

1.2. Qualitative differences in the fast-slow model

Within the fast-slow model, qualitative differences between fast and
slow processes would be reflected by a different ordering of the item
parameters, person parameters or both, in the fast compared to the slow
component of the model. Hence, to test the hypothesis that the fast and
slow processes differ qualitatively, the full fast-slow model with dif-
ferent item parameters for the fast and the slow process as well as
different person parameters for the two processes is compared against
three constrained versions of the model. This resulted in four different
models: (1) the full fast-slow model, (2) constrained item parameters:
i.e., βfast= βslow, (3) constrained person parameters: i.e., θfast= θslow,
and (4) a baseline model in which both item and person parameters are
constrained. If one, or both, constraints resulted in a worse model fit (in
terms of prediction; see Section 2.2), this would support the notion that
indeed qualitatively different processes were involved in the fast and
the slow responses. However, from a measurement perspective different
item parameters do not necessarily suggest that the person parameters
are different, since these abilities could be highly correlated (the same
holds for item parameters if person parameters are different).

Whenever a constraint was imposed we allowed for a difference in
the overall mean and in the variances of the fast and slow item and/or
person parameters. This reflects the idea that only a correlation be-
tween the fast and slow parameters that is significantly lower than one
truly reflects a qualitatively different process. For example, if fast re-
sponses are more often correct than slow responses it does not ne-
cessarily suggest that slow and fast responses have distinct response
processes. It may be that for slower responses, retrieval is simply more
difficult. However, if for some persons or items the slow responses are
more often (in)correct than the fast responses, thereby influencing the
correlations of these parameters, this would indeed suggest that dif-
ferent response processes are involved.

1.3. Empirical predictions for a fast-slow model of multiplication processes

Given the observed qualitative differences between fast and slow
strategies in multiplication (LeFevre et al., 1996), the full fast-slow
model is expected to describe the data best. In this model, both item and
person parameters have different estimates in the fast compared to the
slow process. It is expected that the fast process will more often match
fact retrieval and that the slow process will more often match compu-
tational strategies. If this is the case, some parameter estimates of the
processes should relate differently to item and person characteristics.
Finding that these relations match common findings in the multi-
plication literature would support the claim that the fast-slow model is
a useful method to identify strategies in multiplication at the individual
level.

1 For the readability of the remainder of the paper, we refer to θp1, θp2 and θp3
as θspeed, θfast, and θslow, and to βi1, βi2 and βi3 as βspeed, βfast, and βslow.
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1.3.1. Item effects
We focus on three prominent effects of item characteristics that are

reported in the literature on simple multiplication; the problem-size
effect, the tie-effect and effects of special operands. These character-
istics are associated with systematic differences in accuracy and re-
sponse times between items. Models of retrieval and computation
strategies in simple multiplication have coined different explanations
for these differences.

1) The problem size effect (Ashcraft & Guillaume, 2009) refers to the
fact that items with larger problem sizes are more difficult than
items with smaller problem sizes. In retrieval based models, this
effect is explained by less frequent practice with items with large
operands and therefore weak connections in the memory network
(Ashcraft, 1995). According to models of computational strategies
this effect is due to the additional steps necessary for computing the
answer (LeFevre et al., 1996; van der Ven et al., 2015). Thus, both
the probability of a correct, fast response (βfast) and the probability
of a correct, slow response (βslow) is expected to relate negatively
with problem size. Concerning overall speed, it is expected that
items with larger problem size are more often solved by means of
slow, computational processes than by retrieval. Hence, it is ex-
pected that the probability of a fast response versus slow response
(βspeed) is negatively related to problem size.

2) The tie-effect (De Brauwer, Verguts, & Fias, 2006; Miller,
Perlmutter, & Keating, 1984) implies that ties (items with an equal
operand; e.g., 7× 7) are easier than other items. This effect is ex-
plained by more practice and easier storage in retrieval based
models. Hence, a tie-effect is expected in the fast process. More
specifically, the probability of a correct response given that the re-
sponse was fast (βfast) is expected to be higher for tie problems than
for non-tie problems. Models of computational strategies do not
predict a tie-effect since the computations involved in ties are the
same as in non-tie items. Hence, no tie-effect is expected in the slow
process, which is expected to be associated with computational
strategies. So, the probability of a correct response given that the
response was slow (βslow) is not expected to differ between tie pro-
blems and non-tie problems. Concerning overall speed, it is expected
that tie problems are more often solved by retrieval than by com-
putational processes. Hence, the tie effect is expected to be posi-
tively related to the probability of a fast versus slow response
(βspeed).

3) The special operands effect refers to the finding that items with 1, 2,
5 or 9 as operands are easier than other items (Lemaire & Siegler,
1995). This effect follows from easier computations according to
computational accounts, but is not predicted in models of retrieval.
Hence, the probability of a correct response given that the response
was fast (βfast) is not expected to differ between multiplication
problems with and without special operands, whereas the prob-
ability of a correct response given that the response was slow (βslow)
is expected to be higher for multiplication problems that include

special operands than for problems that do not include such oper-
ands. Finally, it is expected that problems with special operands are
more often solved with retrieval than with computational strategies,
implying a higher probability of a fast versus slow response (βspeed)
for problems with special operands than for problems without such
operands.

1.3.2. Person effects
As explained in the introduction the development of simple multi-

plication ability involves a shift from computational strategies to re-
trieval. This shift is expected to be reflected in a higher number of fast
(and correct) responses for older compared to younger children. The
increase in faster responses would result in a positive correlation be-
tween age and θspeed. The increase in correct responses would result in a
positive relation between age and the probability of a correct fast re-
sponse (θfast) as well as a correct slow response (θslow). A gender effect
on speed is expected as well, due to individual differences in response
styles. In addition and subtraction problems, boys provided more re-
trieval responses than girls, while girls were more likely to count with
their fingers (Carr & Jessup, 1997). Although addition and subtraction
are different domains, we assume that these response styles may be
active in multiplication as well. Hence, it is expected that boys have a
higher probability to respond fast (i.e., a higher θspeed) than girls. No
gender effects are expected for the accuracy in executing either the fast
or slow process. In other words, no gender effects are expected for θfast
and θslow.

2. Methods

2.1. Data sets: items and participants

Data are collected with the website Math Garden (see Fig. 1). Math
Garden is an online adaptive learning environment for learning basic
arithmetic, that is currently used by more than 200,000 children in-
volving more than 1500 schools in the Netherlands. Math Garden
provides a valuable data set, including accuracies and response times of
a large group of children, on a large set of multiplication items. Chil-
dren (or their parents) who indicated that they did not want to parti-
cipate in scientific research conducted with Math Garden were excluded
from the analyses. This research study was approved by the local Ethics
Committee.

In the multiplication game, children are given 15 items that must be
solved using the virtual numerical keypad, each with a time limit of
20 s. The time is visualized by disappearing coins (one is lost each
second that they do not provide a response). If a correct response is
given the coins are added to a total, whereas the coins are subtracted if
the response is incorrect. This explicit High Speed High Stakes (HSHS)
scoring-rule informs the users how to weigh speed and accuracy
(Klinkenberg et al., 2011; Maris & Van der Maas, 2012). This ensures
that children perceive some time-pressure since they are motivated to
provide fast responses, but they are discouraged from guessing due to

Fig. 1. Three screen shots of the Math Garden. The left panel shows the garden page where each plant represents a game measuring a different aspect of mathematics.
The middle panel shows an open format multiplication item, where children use a numeric keypad to provide a response. The coins at the bottom represent points,
and players lose one for each second that they do not provide a response. The coins turn green (or red) in case of a correct (incorrect) response, and are added to
(subtracted from) the total (right-panel). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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the penalty of a fast but incorrect response. When a child does not know
the answer (s)he can best wait the full 20 s. To prevent such waiting
times the child can also use the question-mark button, in which case (s)
he does not win or lose any coins. In our analyses, the question-mark
responses were labeled as incorrect, and the percentage of question-
mark responses was included as a person characteristic in secondary
analyses.

With the HSHS scoring rule in the Math Garden the person and item
estimates can be updated after each response.2 Based on these estimates
relevant items were selected for the child at each time point, such that
children were expected to provide 60%, 75% or 90% of correct re-
sponses when playing at the hard, medium or easy difficulty level (for
more details see Jansen, Hofman, Savi, Visser, & van der Maas, 2016).

For this study, we selected responses collected between June 1,
2011 and June 1, 2015 to items belonging to the multiplication tables
from two up to nine (64 items in total). We discarded the first 90 re-
sponses that each child made to allow children to become acquainted
with the task. Furthermore, because data were collected longitudinally
and abilities tend to change over time we selected a time frame for a
single assessment of a child's ability. This time-frame must contain
sufficient data but should also be small enough to ensure a relatively
stable ability, and was fixed to one week. Additionally, in order to set a
minimum number of responses for this time frame, we selected data of
children who completed at least 30 items within one week.3 Only the
child's first response to an item was selected (multiple responses for the
same item within the time frame are possible). In total 180,651 re-
sponses of 3551 children were analyzed. The adaptive item selection
resulted in 21% of missing responses. These missing responses are
missing by design, and can be seen as missing at random (MAR) since
the missingness is conditional on the estimated ability (Eggen &
Verhelst, 2011; Mislevy & Wu, 1996; Rubin, 1976).

In order to apply the model, the response times needed to be di-
chotomized into fast or slow categories. In our analyses, we used three
different approaches based on a median split: (1) a split on the overall
response times distribution; (2) a within person split allocating 50% of
the responses of each person to either fast or slow and (3) a within item
split allocating 50% of the responses to each item to either fast or slow.
The first split captures both person and item differences in speed,
whereas the person (item) split only captures differences between items
(persons) in speed respectively. A comparison of the results of each of
these split-methods provides information on the robustness of the re-
sults (see Appendix B).

2.2. Model comparison

To compare the fit of the four models we used the DIC statistic (a
Bayesian version of the AIC statistic; Gelman, Carlin, Stern, & Rubin,
2014, p. 172) and three statistics based on a cross-validation procedure.
We performed this additional cross validation procedure since it en-
ables a straightforward model comparison. The model with the best
prediction of the responses in the test set wins. For each person, data
from one response were selected for the test data. The remainder of the
data were used to estimate (train) the model parameters, and the esti-
mated models were subsequently used to predict the test data. This
approach naturally prevents over-fitting the data with overly-complex
models. The test data formed between 1.4% and 3.0% of the total data
in the different data sets but was still fairly large as, despite including
one response per person, a large number of persons was included.

Model predictions were based only on accuracy as the models did not
differ in their analyses of response times.

Three cross-validation statistics were used, all three based on the
deviation between the observed and the predicted response: the pre-
diction accuracy (ACC), the root mean squared error (RMSE) and the
log-likelihood (LL; Pelánek, 2015; see Appendix A for a detailed de-
scription). In both RMSE and LL, the continuous prediction of the
probability of a correct response is analyzed. This results in a more
detailed model comparison than the ACC, while the ACC provides a
simpler interpretation of the goodness-of-fit. When interpreting the
ACC and the LL, higher (less negative) values indicate better fit, while
for the RMSE and the DIC lower values indicate better fit.

3. Results

Since the results of the model comparisons were similar across the
various dichotomizations, we limit the results section to the analyses
from the data set where fast or slow was defined by the overall medium
split (see Appendix B for the results based on the other split methods).

3.1. Data Description

The RT distribution of the data set is presented in the left-panel of
Fig. 2. The median response time (RT) was 6.22 s; 59% (SE=0.0016)
of the fast responses and 62% (SE=0.0016) of the slow responses were
correct. The lower percentage for the fast responses was related to the
higher proportion of fast question-mark responses: 33% and 11% re-
spectively for fast and slow responses. This is also shown by the re-
lationship between RT and the probability of a question-mark response,
plotted in the right-panel of Fig. 2.

3.2. Model comparison

To estimate the model parameters we used 3000 iterations and a
burn-in of 100. Since some high auto-correlations were found we used
every third iteration for the MAP estimates of the model parameters.
Table 1 shows the fit measures for the estimated models. In line with
our hypothesis, the results indicated that the model with separate item
parameters and separate person parameters for the fast and slow pro-
cess – the full fast-slow model – provided a better fit that any of the
constrained models (see Table 1). This showed that qualitatively dif-
ferent processes were involved in the fast compared to the slow pro-
cesses.4

These results indicate that the response times (split into fast and
slow) distinguished between two qualitatively different response pro-
cesses, both with respect to item and person parameters. In the fol-
lowing sections, we will further describe the estimated parameters, and
thereby test our hypotheses concerning the relation between item
characteristics (problem size, ties, special operands) and item para-
meters as well as the relation between person characteristics (age,
gender) and person parameters in order to investigate whether differ-
ences between the fast and slow strategies can be explained by retrieval
and computational models of multiplication.

3.2.1. Effects of item characteristics on item parameters
After having established the superior fit of the full fast-slow model,

the next step consisted of analyses in which item parameters were re-
gressed on different item characteristics. We intended to replicate the
effects of problem-size, tie and effects of special operands and it was

2 See Maris and Van der Maas (2012) for a detailed description of the psy-
chometric properties of the HSHS rule and Klinkenberg et al. (2011) and
Straatemeier (2014) for a description of how the parameters are estimated
using an Elo (Elo, 1978) algorithm.
3 It was possible to make different choices for selecting data. However, using

different inclusion criteria yielded comparable results, see Appendix B.

4 To validate our results, we also fitted the four models on a second data set
that included a larger subset of items (150). The model comparison again se-
lected the full model as the best model. This supports the validity and the ro-
bustness of our results. See Appendix B for the fit statistics of all models and a
description of the second data set.
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expected that the effects would differ between the fast and slow pro-
cess.5

In three separate regression models, we predicted the item scores
reflecting 1) the probability of a correct response given that the re-
sponse was fast βfast, 2) the probability of a correct response given that
the response was slow (βslow), and 3) the probability of a fast response
versus a slow response (βspeed). We used the BIC (Schwarz et al., 1978)
for model selection, using a backward stepwise procedure.

Columns 2–4 from Table 2 show the regression coefficients that link
the item characteristics to the accuracy in the fast process. In line with
the predictions, we found a main effect of: (1) problem-size, indicating
that items with larger problem size were more difficult than items with
smaller problem size; and (2) ties, indicating that ties were easier than
non-tie items. Unexpectedly, the effects of problems with special op-
erands were significant as well, indicating that problems with two, five
and nine were easier than other problems. These main effects explained
in total 89.2% of the variance.

Columns 5–7 from Table 2 show the regression coefficients that link
the item characteristics to the accuracy in the slow process. All results
were in line with the predictions. Both a main effect of problem size and
main effects of special operands were observed and the main effect of
ties was not significant. The main effect of ties was even removed in the
stepwise procedure. The effects resulted in an explained variance of
88.6%.

Columns 8–10 from Table 2 show the regression coefficients that
link the item characteristics to the probability that an item is solved

using the fast process as compared to the slow process. For the item
speed parameter, a high βspeed indicated a high probability of a fast
response. Thus, the negative effect of problem size in Table 2 shows that
responses to items with large problem sizes were more often slow than
responses to problems with smaller problem size, which matches the
predictions. Also in line with expectations were the findings that re-
sponses to ties and items belonging to the two and five multiplication
tables were often fast (see Table 2). The latter results indicate that these
items were more often solved by retrieval rather than computational
strategies. These effects explained in total 70.6% of the variance in the
item speed parameters. Unexpectedly, there was no effect of special
operand 9 on the probability of a fast response.

To conclude, the high explained variances indicate that the item
parameters could be largely understood by these item characteristics.
This supported the reliability of both the data and the model estimation.
Results were largely in line with expectations, although an operand
effect was unexpectedly observed in the fast process and there was no
effect of special operand 9 on the probability of a fast response.

3.2.2. Effect of person characteristics on person parameters
In the second set of regression models we investigated whether

person characteristics were differentially related to fast and slow abil-
ities. For these analyses, we only included children between 6 and
11 years old (N=4233; excluded 467), and children whose age mat-
ched their grade (excluded 417 children for whom their age deviated
more than 1.5 years from the grade average). The average age of the
selected children was 7.86 (SD=1.04), and 33% were girls.

Again, three separate regression analyses were performed to predict
the person estimates that were associated with 1) the probability of
using a fast versus slow process (θspeed), 2) the probability of being
correct using a fast process (θfast), and 3) the probability of being cor-
rect using a slow process (θslow). All results, based on a stepwise
backward procedure using BIC, are presented in Table 3. As expected
we found main effects of age, indicating that with increasing age,
children were more likely to give a fast response than a slow response
and were more able in both the fast and the slow process. A gender
effect was only expected for the probability of giving a fast response.
Indeed, boys were more likely to give a fast response than girls and
there were no gender effects for the probability of responding correctly
in both processes. In fact, the effect of gender was excluded in the
stepwise procedure of the analyses concerned. Finally, children with
more question-mark responses were more likely to respond fast. More
question-mark response was also related to a lower ability. This is a
trivial results since question-mark responses are labeled as incorrect.

Fig. 2. Data description. The left-panel shows the RT distribution. The vertical line indicates the median. The peak around 20 s is caused by the response deadline.
The right-panel describes the proportions of a correct, incorrect and question-mark response for the different observed response times. The question-mark response is
counted as incorrect.

Table 1
Fit statistics for each of the four models.

Model DIC ACCCV RMSECV LLCV

Baseline model 168,836 0.763 0.399 −2498
θfast≠θslow 166,932 0.767 0.399 −2507
βfast≠βslow 169,443 0.768 0.400 −2535
Full model 163,923 0,779 0.393 −2427

Note. Results of the best fitting model are printed in bold. The baseline model
refers to the fully constrained fast-slow model. The full model is the model that
allows for both different person and item parameters in the fast and slow part.
CV indicates that these fit statistics are based on cross validation.

5 To investigate these effects, we imputed the full original data set by gen-
erating a new set of responses based on the estimated model parameters. We
analyzed the sum-scores over items for both fast and slow responses. This ap-
proach ensured that effects can be directly compared between different nodes.
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However, this latter effect was smaller with slow compared to fast
abilities. This highlights that the differences between the abilities
measured by fast and slow responses can partly be explained by dif-
ferences in how children relate to the question-mark answer option.
These effects explain 54.9%, 36.7% and 27.3% of the variance for fast
abilities, slow abilities and the speed dimension, respectively.

3.3. Exploring correlations between fast accuracy, slow accuracy and speed

In this last section, we explore the relations between speed and
accuracy from an item and a person perspective.6 The model compar-
ison indicated that fast and slow item and person parameters are qua-
litatively different. However, the correlation between βfast and βslow was
high (r=0.969). The correlation between θfast and θslow was lower
(r=0.778). The lower correlation between person parameters might be
explained by the smaller number of observations for the person para-
meters compared to the item parameters (which may have created more
measurement error). Furthermore, higher variances in βfast compared to
βslow were found (σβ,fast=1.943 and σβ,slow=1.085; Levene's test of
equality of variance: F(1, 62)= 30.07, p < 0.001). The lower esti-
mated variance in the slow process correspond to the results of Partchev
and De Boeck (2012) and DiTrapani et al. (2016), and could suggest
that there is more random variation (error), compared to structural
variance (responses explained by the model parameters), in the slow
responses. This might be caused by a mixture of different strategies
within the slow responses, which could not be captured by the model.

Item speed and accuracy correlated positively, with correlations
between βspeed and βfast and βslow of 0.837 and 0.739, see Fig. 3.

We observed two interesting results. First, the relationship between
speed and accuracy showed an interesting pattern. A regression model
with a breakpoint resulted in an explained variance of 83.8%, an in-
crease of 13.5% compared to the explained variance of 70.4% of the
linear regression model. Furthermore, the breakpoint could be

confidently estimated at zero, indicated by a clear peak in explained
variance compared to models with differently located non-zero break-
points. This strongly suggested that, for items that were solved quickly
(βspeed>0), there was a strong relationship between speed and accu-
racy, whereas for items that were more often solved slowly this relation
was absent. In line with results of the model comparison, this result
signifies that fast strategies are qualitatively different from slow stra-
tegies.

Second, for persons, a different pattern was found. Negative corre-
lations between person overall speed and fast and slow abilities were
found: −0.125 and −0.033 respectively. Thus, in contrast to ex-
pectations, children that were faster were more often incorrect. To test
whether the negative correlation was related to differences between
children in question-mark usage we calculated separate correlations for
children who provided less or more than 13% question-marks (median
split). We found a correlation of 0.306 for children who used fewer
question-marks, indicating that for these children, the faster children
were more able than the slower children, see the blue line in the second
panel of Fig. 3. This suggested that the negative relation is related to
question-mark uses. Furthermore, all correlations were positive
(min=0.191 and max= 0.373) when children were grouped by
question mark use from 0 to 90% in increments of 10%. To conclude,
these results indicate that, when corrected for question-mark usage,
children who are faster had higher fast and slow abilities.

4. Discussion

In this paper, we investigated whether the application of the fast-
slow model (DiTrapani et al., 2016; Partchev & De Boeck, 2012) to the
domain of multiplication was feasible by testing whether the model
would result in the detection of two qualitatively different processes.
The fast-slow model uses a split in response times to detect processes
and results in parameter estimates for the items (probability of being
solved with a fast versus slow process; probability that an item is solved
correctly when a fast process is used and the probability that an item is
solved correctly when a slow process is used) and in parameter esti-
mates for persons (a person's tendency to use either the slow or the fast
process and probability of responding correctly for both the slow and

Table 2
Regression of the item easiness parameters for fast and slow processes and speed (reflecting the probability of a fast response).

Fast Slow Speed

Predictor B SE T-value B SE T-value B SE T-value

Intercept 2.851 0.374 7.632** 2.277 0.225 10.139** 0.034 0.167 0.204
Problem-size −0.351 0.032 −11.044** −0.218 0.019 −11.289** −0.039 0.013 −3.002*
Tie 1.432 0.212 6.765** ex ex ex 0.491 0.104 4.713*
Times 2 2.408 0.207 11.607** 1.152 0.125 9.224** 0.757 0.100 7.577**

Times 5 1.224 0.168 7.282** 0.762 0.101 7.543** 0.211 0.083 2.538*
Times 9 0.817 0.203 4.016** 0.476 0.123 3.876** ex ex ex

Note. ex= excluded in the stepwise procedure.
* p<0.05.
** p<0.001.

Table 3
Regression person ability parameters for fast and slow processes and speed (reflecting the probability of a fast response).

Fast Slow Speed

Predictor B SE T-value B SE T-value B SE T-value

Intercept −0.038 0.019 −1.971 −0.023 0.012 −1.860 −0.173 0.021 −8.074*
Age 0.432 0.020 21.508* 0.267 0.013 20.631* 0.221 0.013 17.077*
Gender ex ex ex ex ex ex 0.198 0.026 7.478*
% ? −1.184 0.020 −58.910* −0.476 0.013 −36.817* 0.487 0.013 37.786*

Note. Boys are coded as 1 and girls as 0; %?=percentage of question-mark responses; ex= excluded in the stepwise procedure.
* p<0.001.

6 The presented results were stable under the different RT splits; the within
item split to investigate person speed and the within person split to investigate
item speed.
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the fast process). A successful application of the fast-slow model in the
domain of multiplication would be indicative for the use of the fast-
slow model in other domains of cognition and learning as well.

Indeed, the two detected processes differed in expected ways and
matched fast retrieval versus slow computational processes of multi-
plication (Siegler, 1988). On the item side, the probability to solve
items with a fast versus slow process decreased as problem size in-
creased. Also, the probability to solve items correctly decreased with
size in both the slow and the fast process. The tie effect was indeed
observed for the fast but not the slow process and the tendency to solve
items with the fast process was higher for tie than for non-tie problems.
Contrary to expectations was the observation that the effect of most
special operands (2, 5) was observed in both the fast and slow process.
These effects had been expected in the slow process only. On the person
side, older children (who are assumed to have more experience) pro-
vided more fast responses. Although older children can be faster in
multiple ways, the results indicate that this developmental trend is
partly due to a higher probability of a retrieval strategy for older
compared to younger children. As expected, the probability of correct
responses increased with age, in both the fast and slow process. Ad-
ditionally, although boys and girls did not differ with respect to accu-
racy in executing the fast and slow processes – in line with the results of
Carr and Jessup (1997) – boys provided more fast responses than girls.
These results confirm that children's strategies for solving mental
multiplication items can be disentangled using a split in observed re-
sponse times, as is implemented in the fast-slow model.

The unexpected finding that the effect of special operands (2, 5 and
9) was comparable for the fast and slow process could be explained by
having used rather crude methods to disentangle strategies. These
methods may have allocated some retrieval responses as slow and some
computational responses as fast, resulting in a lower power to find
differential effects. Especially with special operands, the computational
process can be fast, which may have resulted in accidentally assigning
computational strategies to the fast process and may explain why spe-
cial operands 2 and 5 also had a positive effect on the accuracy in the
fast process. However, using various split methods do show consistent
results. Further methodological improvements are possible with de-
veloping better ways of splitting response times as the most important
one. Ideally, the data itself determines the classification into fast and
slow processes, resulting in a more optimal classification of responses to
strategies (DiTrapani et al., 2016).

Other limitations of the study are the following. First, we used only
a single split, restricting the number of multiplication strategies to only

two. LeFevre et al. (1996) showed that children report the use of var-
ious computational strategies (e.g., repeated addition, derived facts),
rules and number series, next to fact retrieval. Moreover, fact retrieval
may be required to execute the computational strategy of derived facts,
showing that the fast and slow process are sometimes combined.
Second, data are collected under specific settings, that is, children
solved math problems to practice their skills in a natural classroom
setting. Results may be different in a controlled lab setting, with dif-
ferent instructions and different consequences of performance (e.g., in a
test situation).

Exploratory analyses showed that the application of the fast-slow
model also provided additional information on children's solution
strategies on multiplication items. In the application that was currently
used for data collection (Math Garden), children are allowed to “es-
cape” from an item by selecting a question mark. Some children are
more inclined than others to provide a question-mark response, and
exploratory analyses showed that those who do so have a different
speed-accuracy trade-off than those who use the question-mark less
often.

Hence, as described by Siegler (2007) and Van der Ven, Boom,
Kroesbergen, and Leseman (2012), the application of the fast-slow
model also shows that multiplication ability should be seen as a toolbox
of different strategies, where both the ability of each child within a
certain strategy and individual differences in strategy selection de-
termine the observed performance. This study indicates that these
processes, often studied in smaller and controlled experimental settings,
also determine multiplication ability in a large-scale online learning
platform, supporting the generalizability of the effects and the validity
of the Math Garden.

4.1. Implications for education

This line of research may provide applied researchers, teachers and
students with valuable information on strategies in multiplication,
without using time-intensive methods such as verbal protocols. The
application of the fast-slow model indicates for each response of a child
whether the child used the fast or the slow strategy and whether the
strategy was performed correctly. This enables tailored feedback about
proficiency of strategies when learning multiplication, and thereby
matches the aims for mathematics education. For instance, in the
Netherlands education ultimately aims for both understanding multi-
plication concepts and memorization of the single-digit tables of mul-
tiplication (SLO, 2009). Ideally, a teacher receives the information on

Fig. 3. Relationship between speed and fast accuracy for items and persons. Low ? and high ? denote the frequency of question mark usage.
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each child's tendency to respond fast and on proficiencies in the fast and
the slow process from the online learning environment and can next
adapt instructions. If a child is proficient in the slow but not the fast
process, the teacher could introduce evidence-based interventions for
promoting automaticity (see for example Kroesbergen & Van Luit,
2002). If however a child is proficient in the fast but not the slow
process, this might indicate that the child has rote-learned various math
facts but doesn’t possess any successful backup strategies (see for a
possible approach Kroesbergen, Van Luit, & Maas, 2004).

4.2. Future directions

It should be noted that the mixture of retrieval and computational
processes underlying the responses in multiplication will depend on the
testing conditions. In the Math Garden, items were selected to match
children's ability, resulting in a mixture of different strategies.
Presenting solely easy or hard items will change the mixture of

strategies. Additionally, the test conditions were such that children
perceived time-pressure. This evokes faster responses, and probably
influences the strategies that were used (Hofman, Visser, Jansen, & van
der Maas, 2015). Further research should investigate whether children's
performances in high-stakes tests also depends on multiple processes.
Additionally, next to response latencies, error types also contain in-
formation about the used strategy (Siegler, 1988). In a first minimal
example, Coomans et al. (2016) already showed that fast errors in re-
sponse to multiplication items were different from slow errors. Utilizing
both response latency and error types could provide additional con-
fidence in estimating the used strategy.

Finally, the fast-slow model may be applied to other domains in
cognition and learning where the use of strategies that differ in speed is
expected. For example, the fast-slow model can detect strategies in
other arithmetic domains, decision making, memory, and spelling.
Detection of strategies may not only inform theory-formation but also
shed light on the desired instruction in children's education.

Appendix A. Model estimation and comparison

A.1. Estimation of the fast-slow model

We adopt a Bayesian approach to estimate the parameters of our fast-slow model, and wish to quantify our uncertainty about these parameters in
a joint posterior distribution: i.e., f(θ, β, μβ, Σθ, Σβ∣data). To this aim, we need to specify a prior distribution for the population parameters {μβ, Σθ,
Σβ}. First, we specify a Jeffreys prior for the between dimension person covariance matrix Σθ (Gelman et al., 2014, page 37)

f ( ) | | ,2

where we assume that Σθ is independent of {μβ, Σβ} a priori. Second, we constrain the off-diagonal elements from the between dimension item
covariance matrix Σβ to be zero and assign independent Jeffreys priors to the mean and variance for each dimension (Gelman et al., 2014, page 64),
i.e.,

f µ( , ) .d d d, ,
2

,
2

Constraining the off-diagonal elements of Σβ to zero means that we a priori assume that the item parameter values are independent between
dimensions. This is of course highly unlikely, but we have chosen to do this to favor convergence of our estimation procedure; the Gibbs sampler
(Geman & Geman, 1984). Recent Bayesian theory shows that such a choice may shrink the posterior estimate of the between-dimension correlation
to zero, but also that this shrinkage effect will be minor when there are many observations (Marsman, Maris, Bercher, & Glas, 2016). We expect the
shrinkage of these correlations to be small in our analyses, and our suspicion was confirmed by some additional simulations.

A.2. Simulating from the full-conditional distributions

The full-conditional distribution of the between dimension person covariance matrix Σθ is easily sampled from:
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where n refers to the sample size and Sθ to the ‘sample’ covariance matrix Cov(θ). Similarly, we find that the full-conditional distributions for
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where k refers to the number of items in our analyses.
Unfortunately, the full-conditional distributions of the person and the item parameters are not readily sampled from. Standard approaches, such

as the Metropolis within Gibbs approach of Patz and Junker (1999a, 1999b), are difficult to apply here due to the need of non-trivial fine-tuning that
is required for each of the n×3 person and k×3 item parameters. This fine-tuning is particularly problematic as each of the persons responds to a
possibly different set of items, and, similarly, each of the items has been responded to by a different set of persons.

To sample from the full-conditional distributions of the person and the item parameters we therefore utilize an independence chain Metropolis
algorithm that was proposed by Marsman, Maris, Bechger, and Glas (2015). Their approach is particularly efficient when applied to the Rasch model
and is simple to use with incomplete designs.7

A.3. Model comparison

Three cross-validation statistics were used, all three based on the deviation between the observed and the predicted response in the test data set.
First, the prediction accuracy (ACC):

7 Details about this algorithm as applied to the Rasch model can be found in Marsman (2014) pages 85–88.
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where, both oi is the observed response and pi is the predicted response and n is the number of responses in the test data. Here, pi is either correct or
incorrect based on the probabilities following from Eq. (1), and the maximum a-posteriori (MAP) estimates of θ and β. The ACC reflects the
percentage of correctly predicted responses by the model parameters.

The second cross-validation statistic was the root mean squared error (RMSE):
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where, pi is the predicted probability on a continuous scale between 0 and 1.
The third cross-validation statistic was the log-likelihood (LL), defined as follows:
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=
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n

i i i i
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Both the RMSE and the LL are presented since the LL provides a higher penalty to predictions that were confident and wrong (high deviation
between oi and pi), whereas the RMSE provides an equal penalty for each deviation between oi and pi (Pelánek, 2015).

Appendix B. Robustness analysis

To investigate the stability of the comparison of the full fast-slow model with the more constrained versions of the model, we constructed
multiple data sets and replicated the analyses presented in the paper.

B.1. Data selection

For the second data set, we selected responses to the 150 most played items, referred to as the most-played data set. This second data set includes
some of the items from the first subset and additionally includes multi-digit multiplication items (such as: 1× 500, 7×100, 9×12, 803× 10 and
80×6000). Items with a minimum of 200 encounters were selected, resulting in 145 items. Through analysing the second data set we investigated
whether the results from the first data set can be generalised to a data set including responses to a broader set of items. Also, replicating the initial
analyses using this second data set provides a check of the robustness of the results.

For the single-digit items, we constructed two data sets based on the selection of children that completed at least thirty items within one day or
within one week. For the most-played items, we selected data of children that completed at least 30 items within one day or one week or sixty items
within one week. These choices resulted in a total of five different data sets. Within each data set, we selected items with a minimum of 200
responses, and looked at the child's first response to an item (multiple responses can be given to the same item within a set of 30 items). The total
number of responses, children, items and percentage of missing responses for each data set are presented in Table B.4.

Table B.4
Data description. The number of responses, children, items, and amount of missing data in the different constructed data sets.

Item selection Time N responses N children N items % missing

Single digit Day 51,284 1164 64 31
Week 180,651 3551 64 21

Most played Day 387,882 7403 135 61
Week 422,634 7860 145 63

For each of the four data sets, the response times were split using the overall median RT, within-person median RT and the within-item median
RT. This resulted in a total of twelve model comparisons.

B.2. Model comparison

Table B.5
Fit statistics for each of the four models based on all different data selection procedures based on week data.

Item selection RT split Model DIC ACCCV RMSECV LLCV

Single digit med Baseline model 168,836 0.763 0.399 −2498
θfast≠θslow 166,932 0.767 0.399 −2507
βfast≠βslow 169,443 0.768 0.400 −2535
Full model 163,923 0.779 0.393 −2427

us Baseline model 168,287 0.763 0.399 −2490
θfast≠θslow 165,004 0.773 0.396 −2495
βfast≠βslow 169,718 0.761 0.405 −2573
Full model 161,507 0.776 0.391 −2401

(continued on next page)
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Table B.5 (continued)

Item selection RT split Model DIC ACCCV RMSECV LLCV

it Baseline model 169,285 0.759 0.401 −2515
θfast≠θslow 169,907 0.759 0.415 −2760
βfast≠βslow 170,249 0.766 0.403 −2566
Full model 164,251 0.776 0.393 −2428

Most played med Baseline model 439,633 0.736 0.424 −5428
θfast≠θslow 432,042 0.741 0.422 −5381
βfast≠βslow 437,394 0.735 0.424 −5416
Full model 429,223 0.748 0.418 −5284

us Baseline model 439,734 0.731 0.427 −5495
θfast≠θslow 426,316 0.748 0.416 −5250
βfast≠βslow 437,301 0.737 0.422 −5409
Full model 420,960 0.752 0.413 −5186

it Baseline model 439,659 0.736 0.424 −5437
θfast≠θslow 434,761 0.741 0.422 −5375
βfast≠βslow 440,873 0.734 0.424 −5448
Full model 430,136 0.744 0.419 −5301

Note. RT split refers to the split method used for the dichotomization of the response times: med=overall median split, us=within person split, it=within item
split. The baseline model refers to the fully constrained fast-slow model. The full model is the model that allows for both different person and item parameters in the
fast and slow part. CV indicates that these fit statistics are based on cross validation.

Table B.6
Fit statistics for each of the four models based on all different data selection procedures based on day data.

Item selection RT split Model DIC ACCCV RMSECV LLCV

Single digit med Baseline model 46,019 0.797 0.377 −675
θfast≠θslow 45,392 0.806 0.374 −668
βfast≠βslow 45,760 0.789 0.380 −691
Full model 44,689 0.806 0.371 −658

us Baseline model 45,910 0.791 0.377 −670
θfast≠θslow 44,244 0.807 0.370 −650
βfast≠βslow 45,623 0.784 0.382 −695
Full model 44,073 0.806 0.367 −636

it Baseline model 46,208 0.793 0.380 −683
θfast≠θslow 44,858 0.812 0.372 −661
βfast≠βslow 47,733 0.803 0.380 −691
Full model 44,646 0.804 0.371 −656

Most played med Baseline model 395,163 0.750 0.416 −5255
θfast≠θslow 388,508 0.749 0.415 −5244
βfast≠βslow 393,494 0.752 0.414 −5235
Full model 383,261 0.760 0.409 −5105

us Baseline model 397,674 0.747 0.417 −5289
θfast≠θslow 380,354 0.764 0.408 −5119
βfast≠βslow 391,909 0.753 0.416 −5285
Full model 376,130 0.768 0.406 −5039

it Baseline model 394,142 0.752 0.415 −5241
θfast≠θslow 388,683 0.755 0.415 −5338
βfast≠βslow 393,792 0.752 0.415 −5284
Full model 384,519 0.762 0.410 −5116

Note. The baseline model refers to the fully constrained fast-slow model. The full model is the model that allows for both different person and item parameters in the
fast and slow part. CV indicates that these fit statistics are based on cross validation.
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