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Chapter 1

Introduction

In mathematics, invariants are functions that help us distinguish between ob-
jects. In many areas of mathematics, invariants play an important role: the
Vassiliev invariants in knot theory, the Euler characteristic in topology, the
chromatic polynomial in graph theory, etc. In this thesis we are interested
in invariants of graphs, not so much to help us distinguish between graphs,
but to classify classes of invariants of graphs. Our main tool will be the edge
connection matrices, which we now define.

For t 2 N, a t-fragment is a graph with t labeled vertices of degree one
labeled 1, 2, . . . , t. For two t-fragments F1, F2, we define F1 ⇤ F2 to be the graph
obtained as follows: we take the disjoint union of F1 and F2, and for each pair
of equally labeled vertices, we identify the two vertices, remove the new vertex
and join its two incident edges into one edge, see the figure below. Note that
if F is the 2-fragment on two vertices, labeled 1 and 2, with one edge between
those two vertices, then F ⇤ F is the vertexless loop, which we denote by �.

1

3

2

1

3

2

The t-th edge connection matrix of a graph parameter f is the symmetric
matrix Mf ,t indexed by t-fragments such that the entry at the (F1, F2) position
is f (F1 ⇤ F2).

We will be interested in questions of the following type: what is the class
of graph parameters f such that for each t 2 N the connection matrix Mf ,t
has a certain property? The two properties we will focus on are being positive
semidefinite and having rank that is bounded by some exponential function
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Introduction

in t. We will not only restrict ourselves to graphs, but we will also give an-
swers to the corresponding questions for virtual links and 3-graphs, two types
of graphs with extra structure at each vertex.

1.1 Background
Partition functions were introduced to the graph theory community by de la
Harpe and Jones [15]. Partition functions form a rich class of graph parame-
ters and they appear in different guises throughout mathematics: in quantum
information theory they are known as tensor network contractions [24], in sta-
tistical physics among others as the partition function of the Ising model [16]
and in theoretical computer science they are a subclass of the Holant prob-
lems [7].

Weight systems for 3-graphs. Penrose introduced the theory of abstract ten-
sor systems and gave an example showing their relevance in combinatorics
by relating them to edge colorings of plane graphs and the four color conjec-
ture [25]. Murphy applied this framework to the structure tensors of metric
Lie algebras and showed how these give invariants for cubic graphs embed-
ded in an oriented surface modulo the AS and IHX relations [23]. Through the
work of Bar-Natan and Kontsevich the relevance of these invariants in knot
theory became apparent [2, 19]. Bar-Natan expanded the work of Penrose
and gave a statement about Lie algebras that is equivalent to the four color
theorem [1].

Invariants of virtual links. Reidemeister showed that a knot can be de-
scribed by a knot diagram modulo the three Reidemeister moves [27]. Turaev,
expanding on work of Jones [17], gave three conditions on partition functions
that correspond to the three Reidemeister moves and showed that a partition
function that satisfies these conditions gives a knot invariant [40]. The most
famous of these three conditions is the Yang-Baxter equation that has its origin
in statistical physics [3, 41]. Kauffman introduced virtual link invariants as the
invariants of virtual link diagrams modulo the three Reidemeister moves [18].

Reflection positivity and the orthogonal group. Motivated by a question of
Freedman stemming from the area of quantum computing, Freedman, Lovász
and Schrijver gave a characterization of partition functions of real vertex color-
ing models in terms of vertex reflection positivity [12]. They asked if a similar
characterization could be given for edge reflection positive graph parameters:
those real valued graph parameters f such that Mf ,t is positive semidefinite
for each t 2 N. Szegedy solved their question with a novel approach using the
invariant theory of the orthogonal group and the Positivstellensatz [39]. Schri-
jver later gave a strengthening of Szegedy’s theorem using a different type of
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1.2. New contributions

connection matrix [35]. The connection between the orthogonal group and
partition functions was further deepened by Draisma, Gijswijt, Lovász, Regts
and Schrijver [10]. Regts gave a more detailed exposition of this connection in
his PhD thesis [28].

The rank of connection matrices. In the characterization given by Freed-
man, Lovász and Schrijver [12], the rank of the vertex connection matrices of
the graph parameters plays an important role. If f is the partition function of
an edge coloring model, then it is not hard to see that rk (Mf ,t)  f (�)t for
each t 2 N. Schrijver [38] gave a characterization of partition function of edge
coloring models in terms of the rank of the edge connection matrices and the
value of �. To prove this, Schrijver extended an algebraic framework that was
developed in [12].

1.2 New contributions

We use Schrijver’s approach [35] to extend Szegedy’s theorem on edge reflec-
tion positive graph parameters [39] to invariants for 3-graphs and virtual link
invariants. A large part of the proofs of our theorems consists of characteriz-
ing which values f can take on � if f is edge reflection positive. This requires
some representation theory of the symmetric group and a theorem by Hanlon
and Wales [14]. Furthermore, the proofs of the theorems use the invariant
theory of the orthogonal group and a theorem by Procesi and Schwarz [26].
Outside of the characterizations of which value � can take, the proofs of the
two theorems follow the same line and are, mutatis mutandis, interchangeable.
We will also see that the partition functions we find are unique modulo the
action of the orthogonal group. This is based on (1.1) and (1.2) mentioned on
the following page.

We introduce a new type of graph parameter: skew partition functions. We
give a characterization of skew partition functions similar to that of Schrijver
[38] for partition functions of edge coloring models. We furthermore give a
characterization of skew partition functions that is similar to the characteriza-
tion of Draisma, Gijswijt, Lovász, Regts, Schrijver [10] for partition functions
of edge coloring models. The proof of our characterization makes use of the
invariant theory of the symplectic group. This is based on (1.3) mentioned on
the following page.

We introduce mixed partition functions, a common generalization of skew
partition functions and partition functions of edge coloring models, and we
show that for a mixed partition function f there is a constant r 2 R such that
rk (Mf ,t)  rt for each t 2 N. We furthermore show that mixed partition func-
tions satisfy certain algebraic identities related to the representation theory of
the symmetric group. We will exhibit a connection between the invariant the-
ory of the orthosymplectic supergroup and mixed partition functions. This is
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Introduction

based on (1.4) and on unpublished work with G. Regts.

1.2.1 Published papers and contributions

This thesis is based on the following three published papers.

G. Regts, A. Schrijver, B. Sevenster, On partition functions for 3-
graphs, Journal of Combinatorial Theory, Series B 121 (2016) 421–431. (1.1)

G. Regts, A. Schrijver, B. Sevenster, On the existence of real R-
matrices for virtual link invariants, Abhandlungen aus dem Mathe-
matischen Seminar der Universität Hamburg 87 (2017) 435–443.

(1.2)

G. Regts, B. Sevenster, Graph parameters from invariants of the
symplectic group, Journal of Combinatorial Theory, Series B 122 (2017)
844–868.

(1.3)

It is furthermore based on the following manuscript written with G. Regts.

G. Regts, B. Sevenster, Mixed partition functions and expo-
nentially bounded edge-connection rank, arXiv preprint, 2018,
arXiv:1807.04494.

(1.4)

In all four papers the contribution of each of the authors was equivalent.

1.3 Outline of this thesis

Chapter 2. Notation, preliminaries and our results. In this chapter we set
up some notation for the rest of the thesis and we recall the definitions of
partition functions as given by de la Harpe and Jones [15]. We state the the-
orem of Szegedy [39] and the theorem of Schrijver [38] and we indicate how
we extend these theorems. The formal statement of the theorems follows in
Chapter 4, Chapter 7 and Chapter 8.

Chapter 3. Matchings and a theorem by Hanlon and Wales. In this chapter
we consider the submatrix of the connection matrix induced by matchings. In
the proofs of all the afore mentioned theorems we need a solid understanding
of the value of the graph parameters on �. To this end we discuss a theorem
of Hanlon and Wales in [14] and we derive some consequences from this
theorem that will be useful later on.
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1.3. Outline of this thesis

Chapter 4. Skew and mixed partition functions. In this chapter we first
give the definition of skew partition functions and we show that they are
well-defined. Then we state our theorems on skew partition functions. Next,
we use the definition of skew partition functions to define mixed partition
functions. We state an algebraic property of mixed partition functions that we
will show to hold in Chapter 5. We prove that for a mixed partition function f
there exists a contant r 2 R such that rk (Mf ,t)  rt. Finally, we give two more
involved examples of mixed partition functions. De la Harpe and Jones [15]
asked if evaluations of the characteristic polynomial can be described as the
partition function of a spin model. We answer this question negatively, but
we do show that evaluations of the characteristic polynomial can be described
by mixed partition functions. This chapter is based on (1.3) and (1.4).

Chapter 5. Partition functions and invariant theory. In this chapter we
prove the algebraic characterization of skew partition functions given in Chap-
ter 4. The proof uses the invariant theory of the symplectic group and the rep-
resentation theory of the symmetric group. We furthermore show that mixed
partition functions satisfy certain relations that are related to the invariant
theory of the symmetric group. The proof of both theorems makes use of a
framework developed by Draisma, Gijswijt, Lovász, Regts and Schrijver [10].
This chapter is based on (1.3) and (1.4) and on unpublished work together
with G. Regts.

Chapter 6. Partition functions and the algebra of fragments. We give a
characterization of skew partition functions similar to that of Schrijver [38]
for partition functions of edge coloring models. The proof makes use of the
algebra of fragments introduced by Schrijver in [38]. The concept goes back
to [12]. This chapter is based on (1.3).

Chapter 7. Reflection positivity for 3-graphs. In this chapter we prove our
main theorem on 3-graphs. Most of the work is devoted to analyzing the value
that � can take. We make use of the theorem of Hanlon and Wales [14] that
we discussed in Chapter 3. We furthermore use the invariant theory of the
orthogonal group and a theorem of Procesi and Schwarz [26]. This chapter is
based on (1.1).

Chapter 8. Reflection positivity for virtual links. In this chapter we prove
our main theorem on virtual links. The proof goes along the same lines as the
proof of our theorem for 3-graphs, given in Chapter 7. We however need a
different combinatorial argument to analyze the value that � can take. This
chapter is based on (1.2).
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Chapter 2

Notation, preliminaries and
our results

In this chapter we give the definitions of partition functions of vertex coloring
models and partition functions of edge coloring models. Both definitions were
given by de la Harpe and Jones [15]. We discuss a theorem of Szegedy [39] that
we will extend to partition functions for 3-graphs and to partition functions
for virtual links in Chapter 7 and Chapter 8, respectively. We will furthermore
indicate how our results are related to work by Schrijver [38] and work by
Draisma, Gijswijt, Lovász, Regts and Schrijver [10]. We first set some notation
for the rest of this thesis.

2.1 Notation and basic definitions

Sets. We let the natural numbers include zero. So N := {0, 1, 2, . . . }. For
n 2 N, we define [n] := {1, . . . , n}. Note that [0] = ∆. A multiset is a
collection of elements where each element can occur more than once. The
number of times an element occurs in a multiset is called its multiplicity. A
multisubset of a set S is a multiset consisting of elements of S. We use the same
notation for a multiset as for a set. The cardinality of a multiset X is denoted
by |X|.

Graphs. In this thesis a graph is assumed to be finite and can possibly have
multiple edges, loops at vertices and free loops (a free loop is an edge of
which both ends are glued together). So a graph G = (V, E) consists of a
finite set of vertices V together with a finite multiset E of edges, which are
either multisubsets of V of cardinality two, or free loops. We think of a free
loop in E as an edge {u, u} for which u 62 V. Let G be the set of all graphs.
The graph (∆, {{u, u}}) is called the vertexless loop and is denoted by �. Note
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Notation, preliminaries and our results

that {u, u} is a free loop in this graph. If G is a graph, then V(G) denotes its
vertex set and E(G) denotes its edge set.

If v is a vertex of a graph G, then d(v), the neighborhood of v, is the mul-
tiset of edges that contain v with multiplicity (so a loop at v occurs twice in
d(v)). We define the degree of v to be d(v) := |d(v)|. The degree sequence of a
graph G is the non-increasing sequence of the degrees of its vertices. If v is
a vertex of degree 2 in a graph G = (V, E) and d(v) = {{u, v}, {v, w}}, then
by smoothening v we obtain the graph (V \ {v}, (E \ d(v)) [ {u, w}), i.e., we
remove the vertex v and we remove the edges incident with v and we add an
edge between u and w. In particular, if G = ({v}, {{v, v}}), i.e., G is a graph
with one vertex v and a loop at that vertex, then by smoothening v we obtain
the graph (∆, {{v, v}}) = �.

Walks. A walk in a graph G = (V, E) is a sequence (v0, a1, v1, . . . , an, vn) such
that vi 2 V for each i 2 {0, . . . , n} and ai 2 E for each i 2 [n], and such that
ai = {vi�1, vi} for each i 2 [n]. A walk (v0, a1, v1, . . . , an, vn) is said to start in
v0 and end in vn. A trail in a graph G is a walk in G in which each edge of G
occurs at most once. A circuit in a graph G is a trail in G that starts and ends
in the same vertex. A cycle in a graph G is a circuit in G in which the starting
vertex is only seen at the start and at the end, and in which each other vertex
of G occurs at most once.

Let G = (V, E) be a graph. For u, v 2 V, we say that u is reachable from v if
there is a walk in G that starts in v and ends in u. We say that G is connected
if G = �, or if E does not contain any free loops and if for any two vertices
u, v 2 V, the vertex u is reachable from v. If a graph G is the disjoint union of
connected graphs G0

1, . . . , G0
n, then G0

1, . . . , G0
n are referred to as the connected

components of G.

Directed graphs. In this thesis a directed graph, or digraph, is assumed to
be finite and can possibly have multiple arcs, loops and free directed loops.
So a digraph D = (V, A) consists of a finite set of vertices V together with
a finite multiset A of arcs, which are either ordered pairs of elements of V,
or free directed loops. We think of a free directed loop in A as an arc (u, u)
for which u 62 V. We say that an arc (i, j) of a digraph is outgoing at i and
incoming at j and we think of it as being directed from i to j. We say that a
digraph is Eulerian if at each vertex the number of incoming arcs is equal to
the number of outgoing arcs. The graph underlying a digraph D = (V, A) is the
graph (V, E), where E = {{i, j} | (i, j) 2 A}.

Graph parameters. Two graphs G = (V, E) and G0 = (V0, E0) are isomorphic
if there is a bijection f : V ! V0 such that for any two vertices v1, v2 2 V
the multiplicity of the edge {v1, v2} in E is the same as the multiplicity of
{f(v1), f(v2)} in E0, and such that the number of free loops in E is equal to

10



2.1. Notation and basic definitions

the number of free loops in E0. This induces an equivalence relation ⇠ on G.
Let G be the set of graphs, where two elements are considered the same if they
are isomorphic, i.e., G = G/ ⇠.

Let X be a non-empty set. A graph parameter over X is a function f : G ! X.
If H ✓ G, then a function f : H ! X is also called a graph parameter. A graph
parameter f over a commutative ring R is called multiplicative if for any two
graphs G, H 2 G, we have f (G [ H) = f (G) f (H), where G [ H is the disjoint
union of G and H.

Matrices. Let M be a matrix of which the rows are indexed by the elements
of a set I and the columns are indexed by the elements of a set J . For
i 2 I and j 2 J we denote the element in the i-th row and j-th column of
the matrix M by M(i, j) or by Mi,j. We refer to M as an I ⇥ J matrix. A
(possibly infinite) real symmetric matrix is called positive semidefinite if each
finite principal submatrix has only non-negative eigenvalues. The rank of a
matrix M is denoted by rk (M).

Vector spaces. Let F be a field. If X is a set, then FX is the vector space of
formal F-linear combinations of elements of X. If f : X ! F is a function,
then we extend f linearly to a function f : FX ! F.

Let W be a vector space over a field F of characteristic 0. The dual space of
W is denoted by W⇤. The tensor algebra TW of W is defined as

TW :=
•M

n=0
W⌦n. (2.1)

Here a tensor v 2 W⌦n for some n 2 N is said to be of degree n. The symmetric
algebra SW is the quotient of TW by the ideal of TW generated by elements of
the form x ⌦ y� y⌦ x, for x, y 2 W. One can identify SW with the polynomial
ring over F in indeterminates that form a basis of W. An element of SW is
called a symmetric tensor. The exterior algebra

V
W is the quotient of TW by the

ideal of TW generated by elements of the form x ⌦ y + y ⌦ x, for x, y 2 W. An
element of

V
W is called an alternating tensor. We can write

SW =
•M

n=0
SnW and

^
W =

•M

n=0

^n
W,

by (2.1), as the defining ideals are homogeneous.
Now we introduce two families of vector spaces that we will often en-

counter in this thesis. First, for k 2 N, let Vk := Ck with standard basis
{e1, . . . , ek}. The image of ei1 ⌦ · · ·⌦ ein 2 TVk in SVk under the quotient map
is denoted by

J
j2[n] eij . A basis of SVk is given by

⇢K

i2S
ei

��� S a multisubset of [k]
�

.

11
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We equip Vk with the standard inner product (·, ·) defined, for v1, v2 2 Vk, by
(v1, v2) := vT

1 v2. Here vT
1 denotes the transpose of the vector v1. For i, j 2 [k],

we have (ei, ej) = di,j, where di,j is the Kronecker delta.
Next, for ` 2 N, let V2` := C2` with standard basis { f1, . . . , f2`}. The

image of fi1 ⌦ · · ·⌦ fin 2 TV2` in
V

V2` under the quotient map is denoted by
fi1 ^ · · · ^ fin . A basis of

V
V2` is given by

{ fi1 ^ · · · ^ fin | 1  i1 < · · · < in  2`}.

Let I` be the ` ⇥ ` identity matrix. We equip V2` with a skew-symmetric
bilinear form h·, ·i defined, for v1, v2 2 V2`, by

hv1, v2i := vT
1

✓
0 I`

�I` 0

◆
v2 .

For i 2 [2`], define gi 2 V2` by

gi :=
⇢

� fi+` if i  `,
fi�` if i > `. (2.2)

Then hgi, f ji = di,j, for i, j 2 [2`].

Partitions and Young symmetrizers. The symmetric group on a set X is
denoted by SX . For n 2 N, we define Sn := S[n]. We briefly recall some
concepts from the representation theory of the symmetric group. For more
background, see e.g. [34].

A tuple l = (l1, . . . , lr) with l1, . . . , lr 2 N>0, l1 � · · · � lr and
Âr

i=1 li = m is called a partition of m, denoted by l ` m. The partition l
is called even if li is even for each i 2 [r]. The Young diagram of shape l consists
of r left-justified rows of cells such that for i 2 [r], row i contains exactly li
cells, see Figure 2.1a. The cell of a Young diagram in the i-th row and j-th
column is referred to as cell (i, j).

Let m 2 N and let l ` m. A Young tableau of shape l is a Young diagram of
shape l together with a bijection between the cells of the Young diagram and
[m]. We refer to such a bijection as a filling. If all the values in a Young tableau
are ascending when going from left to right in each row and when going from
top to bottom in each column in the Young tableau, then it is called a standard
Young tableau. If l = (l1, . . . , lr), then the filling that assigns j + Âi�1

k=1 lk to
the cell (i, j) of the Young diagram of shape l is called the standard filling. The
Young tableau of shape l with the standard filling is referred to as Yl. See
Figure 2.1b for an example.

Let Rl ✓ Sm be the subgroup of permutations that preserve each row of Yl

and let Cl ✓ Sm be the subgroup of permutations that preserve each column
of Yl. Then the Young symmetrizer el 2 CSm corresponding to l is given by

el := Â
r2Rl
s2Cl

sgn(s)sr, (2.3)

12



2.2. Partition functions of vertex coloring models

(a) The Young diagram for l = (4, 4, 2).

1 2 3 4

7 85 6

9 10

(b) The Young tableau Y(4,4,2).

Figure 2.1: Example of a Young diagram and the standard filling.

where sgn(s) is the sign of the permutation s.
Let k, ` 2 N. A partition l = (l1, . . . , lr) is called a (k, 2`)-hook if the cell

(k + 1, 2`+ 1) is not in the Young diagram of shape l, i.e., if r  k, or r > k
and lk+1  2`. We define

H(k, 2`) := {l | l an even (k, 2`)-hook}. (2.4)

We say that l is a (k, 2`)-block if the cell (k + 1, 2`+ 1) is in the Young diagram
of shape l, i.e., if r > k and lk+1 > 2`. We define

B(k, 2`) := {l | l an even (k, 2`)-block}. (2.5)

Note that B(k, 2`)[ H(k, 2`) is equal to the set consisting of all even partitions.

2.2 Partition functions of vertex coloring models
We first define the partition function of a vertex coloring model. We follow
the definition given by Freedman, Lovász and Schrijver [12], which is slightly
more general than the definition given by de la Harpe and Jones [15]. Let
G⇤ ⇢ G be the set consisting of graphs G such that G does not have loops at
any vertex and such that � is not a connected component of G.

Let R be a commutative and unitary ring and let n 2 N. A pair (a, B)
consisting of a map a : [n] ! R and a symmetric n ⇥ n matrix B over R
is called a vertex coloring model over R. The partition function of the vertex
coloring model (a, B) is the graph parameter p(a,B) : G⇤ ! R defined, for a
graph G = (V, E) 2 G⇤, by

p(a,B)(G) := Â
k:V![n]

’
v2V

a(k(v)) · ’
{v1,v2}2E

B(k(v1), k(v2)). (2.6)

Note that this is well-defined since B is a symmetric matrix and R is commu-
tative. If a(i) = 1 for all i 2 [n], then we retrieve the definition given by de la
Harpe and Jones. In this special case B is called a spin model and pB = p(a,B)
is called the partition function of the spin model B.

13
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Labeled graphs and vertex connection matrices. Vertex connection matri-
ces were introduced by Freedman, Lovász and Schrijver [12]. We need some
definitions to explain this concept.

For t 2 N, a t-labeled graph is a graph G 2 G⇤ with t labeled vertices,
labeled 1, 2, . . . , t. Let Lt be the set of t-labeled graphs. Note that L0 = G⇤. We
define the product L1L2 2 G⇤ of L1, L2 2 Lt by first taking the disjoint union
of L1 and L2 and then identifying equally labeled vertices and forgetting the
labeling afterwards. This product is called the vertex product, see Figure 2.2.
In particular, if L1, L2 2 L0, then L1L2 = L1 [ L2.

1

3

2

1

3

2

Figure 2.2: The vertex product of two 3-labeled graphs.

For a graph parameter f , we define the matrix Uf ,t to be the Lt ⇥Lt-matrix
such that Uf ,t(L1, L2) = f (L1L2) for L1, L2 2 Lt. We call this matrix the t-th
vertex connection matrix of f . A graph parameter f : G⇤ ! R is called vertex
reflection positive if Uf ,t is positive semidefinite for each t 2 N.

Freedman, Lovász and Schrijver gave the following characterization of ver-
tex reflection positive graph parameters.

Theorem 2.1. [12, Theorem 2.4] Let f : G⇤ ! R be a graph parameter and n 2 N.
Then there exist a map a : [n] ! R�0 and a symmetric real-valued n ⇥ n matrix
B such that f = p(a,B) if and only if f (∆) = 1, f is vertex reflection positive and
rk (Uf ,t)  nt for all t 2 N.

There are several other characterizations of partition functions of vertex
coloring models in terms of vertex connection matrices, see for example [36,
37].

2.3 Partition functions of edge coloring models
Partition functions of edge coloring models are defined in a manner similar
to that of partition functions of vertex coloring models, with interchanged
roles of edges and vertices. Partition functions of edge coloring models were
defined in [15] by de la Harpe and Jones. In their terminology they are called
vertex models. We stick to the name edge coloring model.

Let k 2 N and let F be a field of characteristic 0. Let {e1, . . . , ek} be the
standard basis of the vector space Fk. An element h 2 (SFk)⇤ is called a k-color

14
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edge coloring model over F. The partition function ph of the edge coloring model
h is the graph parameter over F defined, for a graph G = (V, E), by

ph(G) := Â
f:E![k]

’
v2V

h(
K

a2d(v)
ef(a)), (2.7)

where we recall that d(v) is the multiset consisting of edges incident with v
with multiplicities. Note that ph(�) = k and that ph is multiplicative. If a
graph parameter is the partition function of a k-color edge coloring model
over F for some k 2 N, then we sometimes refer to it as an ordinary partition
function over F to distinguish it from skew partition functions, to be defined
later. Note that if k = 0, then there is only one element h in (SVk)

⇤ and ph
is the function that evaluates to 1 on ∆ and that evaluates to 0 on all other
graphs.

Fragments and edge connection matrices. For t 2 N, a t-fragment is a graph
with t labeled vertices of degree one labeled 1, 2, . . . , t. We denote the set of
all t-fragments by Ft. We now define a gluing operation on Ft. For two t-
fragments F1, F2 we define F1 ⇤ F2 2 G to be the graph obtained as follows.
We first take the disjoint union of F1 and F2, then we identify equally labeled
vertices, and finally we smoothen the labeled vertices and disregard the la-
beling. See Figure 2.3. It follows from the definitions that F0 = G and that
F1 ⇤ F2 = F1 [ F2 if F1, F2 2 F0. Let t 2 N. For i = 1, 2, let Fi be a 2t-fragment
such that each vertex of Fi is of degree 1 and is labeled. Then each connected
component of F1 ⇤ F2 is equal to �.

1

3

2

1

3

2

Figure 2.3: The graph obtained by gluing two 3-fragments.

For a graph parameter f , we define its t-th edge connection matrix Mf ,t to be
the Ft ⇥Ft matrix such that Mf ,t(F1, F2) = f (F1 ⇤ F2) for F1, F2 2 Ft. We note
here that if f is a multiplicative graph parameter, then, for t1, t2 2 N, we have

rk (Mf ,t1+t2) � rk (Mf ,t1)rk (Mf ,t2), (2.8)

as Mf ,t1 ⌦ Mf ,t2 is a submatrix of Mf ,t1+t2 .
A graph parameter f over R is called edge reflection positive if Mf ,t is positive

semidefinite for each t 2 N. Szegedy gave the following characterization of
edge reflection positive graph parameters.

15
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Theorem 2.2. [39, Theorem 2.2] A graph parameter f : G ! R is the partition
function of an edge coloring model over R if and only if f (∆) = 1, f is multiplicative
and f is edge reflection positive.

Schrijver [35] gave a strengthening of Szegedy’s theorem by introducing
a weaker form of reflection positivity. This proof uses a theorem by Procesi
and Schwarz [26] instead of the Positivstellensatz. We will use this approach
to extend Szegedy’s theorem to partition functions for 3-graphs and partition
functions for virtual links in Chapter 7 and Chapter 8, respectively.

Schrijver gave the following characterization of partition functions of edge
coloring models in terms of the rank of the associated connection matrices.

Theorem 2.3. [38, Theorem 1] A graph parameter f : G ! C is the partition
function of an edge coloring model over C if and only if f (∆) = 1, f (�) 2 R and

rk (Mf ,t)  f (�)t (2.9)

for each t 2 N.

Note that the condition rk (Mf ,t)  f (�)t implies that f (�) � 0. A nat-
ural question to ask here is what happens if we allow f (�) to be negative.
In Chapter 4 we will define skew partition functions. A skew partition func-
tion can be seen as the partition function of an element h 2 (

V
V2`)

⇤ for some
` 2 N. The definition is a bit more involved than the definition of ordinary
partition functions, as signs come into play when working with the exterior
algebra. This is why we postpone the definition.

In Theorem 4.3 we will see that skew partition functions are exactly the
graph parameters f : G ! C such that f (∆) = 1, f (�)  0 and

rk (Mf ,2t)  f (�)2t (2.10)

for each t 2 N. We will prove this in Chapter 6.

Algebraic characterizations of partition functions. In [10] Draisma, Gijwijt,
Lovász, Regts and Schrijver gave a characterization of ordinary partition func-
tions over an algebraically closed field F of characteristic 0, using the invariant
theory of the orthogonal group. We will give an alternative statement of The-
orem 1 in [10] to make the parallels between this theorem and our work more
clear.

Let G = (V, E) be a graph. For n 2 N and u : [2n] ! V any map, we
define

Gu := (V, E [ {{u(2i � 1), u(2i)} | i 2 [n]}). (2.11)

Recall that for a partition l we defined Cl to be the column stabilizer of Yl

and we defined Rl to be the row stabilizer of Yl, where Yl is the Young

16



2.3. Partition functions of edge coloring models

tableau with shape l and the standard filling. Let l ` 2n be an even partition.
Then n 2 N and we define J l ✓ CG to be the subspace spanned by

⇢
Â

(s,r)2Cl⇥Rl

sgn(s)Gu�s�r

��� G = (V, E) 2 G, u : [2n] ! V
�

. (2.12)

Let k, ` 2 N. Recall that B(k, 2`) is the set consisting of even partitions l such
that the Young diagram of shape l contains the cell (k + 1, 2`+ 1). We define
Jk,2` ✓ CG to be

Jk,2` :=
M

l2B(k,2`)

J l. (2.13)

In [10], Draisma, Gijswijt, Lovász, Regts and Schrijver gave a characteri-
zation of partition functions of edge coloring models using the First Funda-
mental Theorem and the Second Fundamental Theorem of invariant theory
of the orthogonal group. Over C their theorem is equivalent to the following
statement.

Theorem 2.4. [10, Theorem 1] Let k 2 N. A graph parameter f : G ! C is the
partition function of an element h 2 (SVk)

⇤ if and only if f (∆) = 1, f (�) = k, f
is multiplicative and f (Jk,0) = 0.

For skew partition functions we can give a similar characterization. We
will see in Theorem 4.4 that if f is a skew partition function coming from
h 2 (

V
V2`)

⇤, then f (∆) = 1, f is multiplicative and f (J0,2`) = 0. We will
also prove a converse to this statement. The proof is inspired by the proof of
Draisma, Gijswijt, Lovász, Regts and Schrijver and uses the First Fundamental
Theorem of invariant theory of the symplectic group.

In Chapter 4 we will define mixed partition functions, a common gen-
eralization of skew partition functions and ordinary partition functions. A
mixed partition function can be seen as the partition function of an element
h 2 (SVk ⌦

V
V2`)

⇤ for some k, ` 2 N. In Theorem 4.5 we will see that if f
is the partition function of an element h 2 (SVk ⌦

V
V2`)

⇤ for some k, ` 2 N,
then rk (Mf ,t)  (k + 2`)t for each t 2 N.

In Theorem 4.6 we will see that if f is the partition function of an element
h 2 (SVk ⌦

V
V2`)

⇤ for some k, ` 2 N, then f (Jk,2`) = 0. At the end of
Chapter 5 we formulate a conjecture saying that the converse of this statement,
where we add the assumptions that f (∆) = 1, f (�) = k � 2` and that f is
multiplicative, is also true and we will see how one can possibly prove this
conjecture using the invariant theory of the orthosymplectic supergroup.
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Chapter 3

Matchings and a theorem by
Hanlon and Wales

Let n 2 N. A perfect matching on [2n] is a set M consisting of edges {i, j} with
i, j 2 [2n] such that each vertex in the graph ([2n], M) has degree 1. The set
of perfect matchings on [2n] is denoted by M2n. For x 2 C, let A2n(x) be the
symmetric M2n ⇥M2n matrix defined, for M1, M2 2 M2n, by

A2n(x)(M1, M2) := xc(M1[M2),

where c(M1 [ M2) denotes the number of connected components of the graph
([2n], M1 [ M2). For M 2 M2n, let M0 = ([2n], M) be the 2n-fragment such
that vertex i 2 [2n] is labeled i. Then, if f is a multiplicative graph parameter
such that f (�) = x, we see, for M1, M2 2 M2n, that

xc(M1[M2) = f (M0
1 ⇤ M0

2).

This shows that A2n(x) can be identified with a submatrix of Mf ,2n if f (�) =
x and f is multiplicative.

In Proposition 3.1 we will see that CM2n, the space of formal linear combi-
nations of perfect matchings on [2n], decomposes multiplicity free into a sum
of the irreducible representations Sl, where l is an even partition of 2n. It
turns out that each Sl consists of eigenvectors of A2n(x) with the same eigen-
value. We discuss a theorem of Hanlon and Wales [14] that gives a closed
expression for these eigenvalues.

3.1 The action of the symmetric group on perfect
matchings

Let n 2 N. For p 2 S2n and M 2 M2n, let pM = {{p(i), p(j)} | {i, j} 2 M}.
This defines an action of S2n on M2n and we extend this action linearly to an
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action of CS2n on CM2n. We note here that for p 2 S2n and M1, M2 2 M2n,
we have

c(M1 [ M2) = c(pM1 [ pM2). (3.1)

Let l ` 2n be an even partition. Let M be the perfect matching on [2n] with
edges {2i� 1, 2i} for i 2 [n]. For s 2 Cl and r 2 Rl we can place the matching
srM in the Young tableau Yl, see Figure 3.1. Sometimes it is convenient to
think of srM in this way.

1 2 3 4

7 85 6

9 10

(a) The matching M.

1 2 3 4

7 85 6

9 10

(b) The matching srM for r = (2, 3) and
s = (2, 6).

Figure 3.1: Two examples of matchings placed in a Young tableau.

The irreducible representations of S2n are in bijective correspondence with
partitions of 2n. The irreducible representation corresponding to l ` 2n is
denoted by Sl. In [34, Ex. 3.12.7], a proof of the following equality is outlined:

Â
l`2n

l even

dim(Sl) = (2n � 1)!!, (3.2)

where for m 2 N, m!! = m(m � 2) · · · 1 if m is odd and m!! = 0 if m is even.
The proof is relatively straightforward, but uses some of the machinery of the
Robinson-Schensted-Knuth algorithm, which we do not describe here.

Proposition 3.1. For n 2 N, the S2n-module CM2n decomposes multiplicity free
as

CM2n ⇠=
M

l`2n
l even

Sl. (3.3)

Proof. Let n 2 N. According to the representation theory of the symmetric
group, CM2n decomposes as an S2n-module into

CM2n ⇠=
M

l`2n
(Sl)�µl , (3.4)

where µl is the multiplicity of the irreducible representation Sl in CM2n. We
first show that for even l ` 2n the multiplicity is non-zero. To this end it
suffices to show that M, the perfect matching on [2n] with edges {2i � 1, 2i}
for i 2 [n], occurs with non-zero coefficient in el M.
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Let s 2 Cl and r 2 Rl and suppose that srM = M. We think of srM as
being placed in the Young tableau Yl, cf. Figure 3.1. It follows that rM = M: if
this would not be the case then there would be an edge in rM that is between
two non-adjacent columns and hence there would be an edge in srM between
two non-adjacent columns, which is not the case for M. So for srM = M,
we need both s and r to preserve M. The sign of a permutation s 2 Cl

preserving M is 1. So the coefficient of M in el M is positive. Hence µl � 1
for even l ` 2n.

By (3.2), each Sl for even l ` 2n can occur at most once and all other
irreducible representations do not occur at all, as the dimension of CM2n is
(2n � 1)!!.

For n 2 N and l ` 2n even, we identify Sl with the S2n-module of CM2n
generated by el M, where M = {{2i � 1, 2i} | i 2 [n]}. We furthermore
identify CM2n with CM2n . Under this identification A2n(x) defines a linear
transformation of CM2n.

Lemma 3.2. Let x 2 C, n 2 N and let l ` 2n be an even partition. The linear
transformation of CM2n defined by A2n(x) acts as a scalar on Sl.

Proof. Let n 2 N and x 2 C. Let p 2 S2n and let Pp be the permutation matrix
that corresponds to the action of p on CM2n. By (3.1) we know that for all
p 2 S2n, we have A2n(x) = PT

p A2n(x)Pp = P�1
p A2n(x)Pp .

This shows that A2n(x) gives an S2n-equivariant linear map of CM2n to
itself. By Proposition 3.1 each irreducible representation in the decomposition
occurs with multiplicity one. So by Schur’s lemma the linear transformation
defined by A2n(x) acts as a scalar on Sl for even l ` 2n.

By this lemma, we know that for an even partition l ` 2n, the space
Sl consists of eigenvectors of A2n(x), all with the same eigenvalue. In the
next section we treat a theorem by Hanlon and Wales [14] that gives a closed
expression for these eigenvalues.

3.2 The theorem of Hanlon and Wales

For an even partition l = (l1, . . . , lr) ` 2n, we define

hl(x) :=
r

’
i=1

1
2 li

’
j=1

(x � i + 2j � 1). (3.5)

We can visualize this as follows. Take the grid with numbers placed in it as
in Figure 3.2. We place the Young diagram of shape l in the grid and let S
be the multiset of numbers in the grid that are within the Young diagram of
shape l. Now hl(x) := ’a2S(x + a). In Figure 3.2 we have placed the Young
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0 2 4 6 8

�1 1 3 5 7

�2 0 2 4 6

�3 �1 1 3 5

�4 �2 0 2 4

�5 �3 �1 1 3

�6 �4 �2 0 2

Figure 3.2: The infinite grid with the partition l = (6, 4, 4, 2, 2, 2).

diagram of l = (6, 4, 4, 2, 2, 2) in the grid. We see that hl(x) = x(x + 2)(x +
4)(x � 1)(x + 1)(x � 2)x(x � 3)(x � 4)(x � 5) in this case.

We can now state the theorem by Hanlon and Wales [14]. We do not give
a proof of the theorem, as it is worked out in full detail in [14].

Theorem 3.3. [14, Theorem 3.1] Let x 2 C, n 2 N and let l ` 2n be an even
partition. Then Sl consists of eigenvectors of A2n(x) with eigenvalue hl(x).

Let n 2 N and let l ` 2n be an even partition. Let M = {{2i � 1, 2i} |
i 2 [n]}. Let R0

l ✓ Rl be the stabilizer of M in Rl and let C0
l ✓ Cl be the

stabilizer of M in Cl. Then, like we have seen in the proof of Proposition 3.1,
the coefficient of M in el M is equal to |R0

l||C0
l|. So the eigenvalue of the vector

el M 2 Sl is equal to the coefficient of M in A2n(x)(el M) divided by |R0
l||C0

l|.
This shows that

hl(x) =
1

|R0
l||C0

l|
Â

r2Rl
s2Cl

sgn(s)xc(srM[M). (3.6)

With Theorem 3.3 we can prove the following lemma that will be useful later
on.

Lemma 3.4. If x < 0 and rk (A2n(x))  x2n for all n 2 N, then x is an even
integer.

Proof. Let us first show that x has to be integral. Suppose to the contrary that
x is not integral. Note that for any even l ` 2n with n 2 N, we have that
the eigenvalue of Sl is non-zero, by Theorem 3.3, as all zeroes of hl(x) are
integral. So A2n(x) has full rank and hence rk (A2n(x)) = (2n � 1)!!. As there
does not exist a constant c 2 R such that (2n � 1)!!  c2n for all n 2 N, this
gives a contradiction. So x 2 Z.

Now suppose that x = �2m + 1, for some m 2 N. We will show that

sup
n2N>0

(rk (A2n(�2m + 1)))1/2n � 2m + 1. (3.7)
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3.2. The theorem of Hanlon and Wales

This proves the lemma, as it shows that if x = �2m + 1, then the rank of
A2n(x) is not bounded by x2n for all n 2 N. Let l 2 N>0 be even and let
ll = (2m + l, 2m, . . . , 2m) ` 2ml + l. It follows from Theorem 3.3 that the
eigenvalue of Sll is non-zero, see Figure 3.3. Indeed, if we imagine the shape
of ll as a pan with a handle, then all the numbers occurring ’in the pan’ are
smaller than 2m � 1 and all the number occurring ’in the handle’ are larger
than 2m � 1. So hll (�2m + 1) 6= 0.

0 . . . 2m . . . 2m + l � 2

�1 . . . 2m � 1

.

.

.

. . . .
.
.

.

.

.
. . .

�l + 2 . . .

�l + 1 . . .

�l . . .

2m � 2

2m � 3

.

.

.

Figure 3.3: The infinite grid with the partition (2m + l, 2m, . . . , 2m) of 2ml + l.

Hence rk (A2ml+l(�2m+ 1)) � dim(Sll ). To compute dim(Sll ) we use the
hook length formula, see e.g. [34]. We have

dim(Sll ) =
(2ml + l)!
’ Hll (i, j)

, (3.8)

where the product in the denominator is over the cells (i, j) in the Young
diagram of shape ll and Hll (i, j) is the length of the hook corresponding to
cell (i, j). For k 2 [2m], the total contribution of the cells in column k to the
denominator in (3.8) is

(2m + 2l � k)
(l + 2m � k � 1)!

(2m � k)!
= l!

(2m + 2l � k)
l

✓
l + 2m � k � 1

2m � k

◆
.

We define
pk(l) := (2m + 2l � k)

✓
l + 2m � k � 1

2m � k

◆
.

Note that fixing m and k, pk(l) is a polynomial in l of degree 2m � k + 1. The
total contribution to the denominator in (3.8) of the cells in the handle is l!. So
we find that for l 2 N, the denominator in (3.8) is given by

(l!)2m+1

l2m

2m

’
k=1

pk(l). (3.9)

Now define p(l) := ’2m
k=1 pk(l). So (3.8) is equal to

dim(Sll ) =
(2ml + l)!l2m

(l!)2m+1 p(l)
.
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Matchings and a theorem by Hanlon and Wales

As p(l) is a polynomial of degree m(2m + 1) in l, we find that

lim
l!•

dim(Sll )1/(2ml+l) = lim
l!•

✓
(2ml + l)!l2m

(l!)2m+1 p(l)

◆1/(2ml+l)

= lim
l!•

✓
(2ml + l)!
(l!)2m+1

◆1/(2ml+l)
= 2m + 1,

where we use Stirling’s approximation in the last equality. This proves (3.7)
and hence the lemma follows.

In Theorem 4.5 we will see that for m 2 N, we have rk (A2n(�2m)) 
(2m)2n for each n 2 N. The following corollary follows immediately from the
lemma.

Corollary 3.5. Let f : G ! C be a multiplicative graph parameter. If f (�) < 0
and rk (Mf ,2n)  f (�)2n for all n 2 N, then f (�) is an even integer.
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Chapter 4

Skew and mixed partition
functions

In this chapter we first define skew partition functions. One can see ordinary
partition functions as contractions of a tensor network with respect to a sym-
metric bilinear form. Skew partition functions can be seen as contractions of
a tensor network with respect to a skew-symmetric bilinear form, hence the
name. We give an orientation to the edges of the graph to help us contract the
tensors in the right order with respect to the skew-symmetric bilinear form.
To make sure that this is independent of the orientation of the edges we need
to incorporate a sign into the definition. After giving the definition of a skew
partition function we will state our main results on skew partition functions.

Using the definition for skew partition functions, we define mixed parti-
tion functions. We next state our main results on mixed partition functions.
In this chapter we prove one of them, namely that mixed partition functions
have exponentially bounded edge connection rank. In Section 4.4 we discuss
two more elaborate examples of mixed partition functions. First, we will see
that evaluations of the characteristic polynomial of a graph can be described
by mixed partition functions. We will furthermore see that the evaluation of
the characteristic polynomial of a graph at 0 cannot be described by an ordi-
nary partition function, in doing so we answer a question of de la Harpe and
Jones [15]. Next, we will show that integral evaluations of the circuit partition
polynomial can be described by mixed partition functions. This chapter is
based on [31] and [32].

4.1 Skew partition functions

An Eulerian graph is a (not necessarily connected) graph such that each vertex
has even degree. Let G = (V, E) be an Eulerian graph. A local pairing at
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Skew and mixed partition functions

a vertex v of G is a decomposition kv of d(v) into ordered pairs, i.e., kv =
{(a1, a2), . . . , (ad(v)�1, ad(v))}. A local pairing k of G is a collection (kv)v2V ,
where, for each v 2 V, kv is a local pairing at v. If (ai, ai+1) 2 kv for some
v 2 V, then we say that the edges ai and ai+1 are paired at v.

Recall that a circuit is a closed walk where vertices may occur multiple
times, but edges may not. A local pairing k of G decomposes E into cir-
cuits that, after choosing a starting point v0 and a direction, are of the form
(v0, a1, . . . , ai, vi, ai+1, . . . , vn), where v0 = vn and such that ai and ai+1 are
paired at vi for each i 2 [n], where we consider the indices modulo n. We
refer to this decomposition as the k-decomposition and we refer to a circuit in
this decomposition as a k-circuit. We define c(k) to be the total number of free
loops in E and k-circuits in the k-decomposition.

Let C = (v0, a1, . . . , ai, vi, ai+1, . . . , vn) be a k-circuit. Let i 2 [n]. The edges
ai and ai+1 are paired at vi and if (ai+1, ai) 2 kvi , then we say that (ai+1, ai) is
an odd pairing in C. Let w be an orientation of E. For i 2 [n], if ai is oriented
from vi to vi�1 by w, then we say that ai is an odd arc in C. Let o(C, w, k) be
the total number of odd arcs and odd pairings in C. One can think of this as
walking along the circuit from v0 to vn and meanwhile keeping track of the
number of arcs that are traversed in the opposite direction and the number of
pairings that are traversed in the opposite direction.

Note that the parity of o(C, w, k) is independent of the starting vertex and
the direction in which we traverse C as the total number of edges and pairings
we encounter is even. So the parity of ÂC o(C, w, k), where the sum runs over
all k-circuits C in the k-decomposition, only depends on k and w and we
denote it by o(w, k).

Recall that for ` 2 N, V2` = C2` with standard basis { f1, . . . , f2`} and that
gi 2 V2`, for i 2 [2`], is defined by

gi :=
⇢

� fi+` if i  `,
fi�` if i > `. (4.1)

For f : E ! [2`], v 2 V, a 2 E incident with v and w an orientation of E, we
define

bf,a,w,v :=

(
ff(a) if a is incoming at v under w,
gf(a) if a is outgoing at v under w. (4.2)

Let G = (V, E) be an Eulerian graph with a local pairing k and an orientation
w of E. For h = (hv)v2V with hv 2 (

V
V2`)

⇤ for each v 2 V, we define

sh(G, w, k) := (�1)c(k)+o(w,k) Â
f:E![2`]

’
v2V

hv(
^

(a1,a2)2kv

bf,a1,w,v ^ bf,a2,w,v). (4.3)

By skew-symmetry this is independent of the order in which we take the
wedge over the elements of kv. We see that sh(G, w, k) = 0 if G contains a
vertex of degree larger than 2`, as

Vn V2` = 0 if n > 2`.
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4.1. Skew partition functions

Proposition 4.1. Let G = (V, E) be an Eulerian graph and let h = (hv)v2V with
hv 2 (

V
V2`)

⇤ for each v 2 V. Then sh(G, w, k) is independent of the choice of an
orientation w of E and a local pairing k of G.

Before proving this proposition, we first give the definition of a skew par-
tition function. For G = (V, E) an Eulerian graph and h = (hv)v2V with
hv 2 (

V
V2`)

⇤, we define sh(G) := sh(G, w, k) for some local pairing k of G
and orientation w of E. This is well-defined by Proposition 4.1.

Definition 4.1. For any element h 2 (
V

V2`)
⇤, the partition function ph : G ! C

of h is the graph parameter, defined, for a graph G, by

ph(G) :=
⇢

sx(G) if G is Eulerian,
0 otherwise, (4.4)

where x = (hv)v2V with hv = h for all v 2 V. If f is the partition function of
an element h 2 (

V
V2`)

⇤ for some ` 2 N, then we sometimes refer to f as a
skew partition function. An element h 2 (

V
V2`)

⇤ is also known as a skew edge
coloring model.

It follows directly from the definition that skew partition functions are
multiplicative. Recall that if ph is the partition function of h 2 (SVk)

⇤, then
ph(�) = k. If ph is the partition function of h 2 (

V
V2`)

⇤, then ph(�) = �2`.
Note that if ` = 0, then there is only one element h in (

V
V2`)

⇤ and then ph
is the function that evaluates to 1 on ∆ and that evaluates to 0 on all other
graphs.

Let G = (V, E) be an Eulerian graph and let w be an Eulerian orientation
of E. A local pairing k of G is called compatible with w if for each vertex v
and for each (a1, a2) 2 kv the arc a1 is incoming at v under w and the arc a2 is
outgoing at v under w. In this case (4.3) reduces to

sh(G, w, k) = (�1)c(k) Â
f:E![2`]

’
v2V

hv(
^

(a1,a2)2kv

ff(a1) ^ gf(a2)). (4.5)

For an Eulerian graph G = (V, E) with a local pairing k and an orientation w
of E, we define e(G, w, k) := (�1)c(k)+o(w,k). We first prove a lemma before
proving Proposition 4.1.

Lemma 4.2. Let G = (V, E) be an Eulerian graph with a local pairing k and an
orientation w of E. Let h = (hv)v2V with hv 2 (

V
V2`)

⇤ for each v 2 V. If
w0 is obtained from w by inverting the orientation of an edge, then sh(G, w0, k) =
sh(G, w, k). Similarly, if k0 is obtained from k by inverting the order of a pairing at a
vertex, then sh(G, w, k0) = sh(G, w, k).

Proof. Let G = (V, E) be an Eulerian graph with a local pairing k and an
orientation w of E. Define

s0h(G, w, k) := Â
f:E![2`]

’
v2V

hv(
^

(a1,a2)2kv

bf,a1,w,v ^ bf,a2,w,v). (4.6)
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Skew and mixed partition functions

So sh(G, w, k) = e(G, w, k)s0h(G, w, k).
Now to prove the first assertion, suppose a = {v1, v2} 2 E is oriented from

v1 to v2 under w and let w0 be obtained from w by inverting the orientation of
a and leaving the orientation of the other edges in E unchanged. The number
of odd arcs changes by one in doing so, hence e(G, w0, k) = �e(G, w, k).

Let f : E ! [2`] and let f0 : E ! [2`] be defined by f0(a) = f(a) + `
mod 2` and f0 = f for all other edges. For f we see that bf,a,w,v1 = gf(a)
and bf,a,w,v2 = ff(a). For f0 we see that bf0 ,a,w0 ,v1 = ff0(a) = ff(a)+` and
bf0 ,a,w0 ,v2 = gf0(a) = gf(a)+`. So s0h(G, w0, k) = �s0h(G, w, k) by (4.1). This
shows that indeed sh(G, w0, k) = sh(G, w, k).

To prove the second assertion, suppose that k0 is obtained from k by chang-
ing the order of a pairing at a vertex v. The number of odd pairings changes
by one in doing so, hence e(G, w, k0) = �e(G, w, k). By skew-symmetry, we
see that s0h(G, w, k0) = �s0h(G, w, k). This shows that indeed sh(G, w, k0) =
sh(G, w, k).

Proof of Proposition 4.1. Let G = (V, E) be an Eulerian graph with a local
pairing k and an orientation w of E. By the previous lemma, we may assume
that w is an Eulerian orientation and that k is compatible with w. So to prove
the proposition, it suffices to show that sh(G, w, k) = sh(G, w0, k0), where k0 is
a local pairing of G compatible with some Eulerian orientation w0 of E.

Suppose there exists a vertex v such that (a1, a2) and (a3, a4) are in kv. Let
k0 be obtained from k by replacing (a1, a2) and (a3, a4) in kv by (a1, a4) and
(a3, a2). Note that k0 is still compatible with w. The parity of the number of k-
circuits is different from the parity of the number of k0-circuits. So e(G, w, k) =
�e(G, w, k0). As the evaluation of the tensor at v also changes sign by skew
symmetry, this cancels out. We can repeatedly apply these swaps at each v
to k without changing the value of sh. This shows that we can go from any
k compatible with w to any other k0 compatible with w without changing the
value of sh.

Now it remains to show that if w and w0 are Eulerian orientations of E,
then sh(G, w, k) = sh(G, w0, k0), where k is any local pairing of G compatible
with w and k0 is any local pairing of G compatible with w0.

So, to finish the proof, let w and w0 be Eulerian orientations of G. The
symmetric difference of w and w0, i.e., the set of edges where they do not
give the same orientation gives a subgraph of G such that w restricts to an
Eulerian orientation of this subgraph. If w 6= w0, let C be a directed circuit
in this graph. By the previous part, the value of sh(G, w, k) is independent
of the choice of local pairing k compatible with w. So we can choose k such
that C is a k-circuit. Let w00 be obtained from w by inverting the orientation
of the edges of C and let k00 be obtained from k by flipping the order of each
two paired edges of C incident with a vertex v, for all vertices v of C. Then
sh(G, w, k) = sh(G, w00, k00). So repeating this until there are no circuits left in
the symmetric difference finishes the proof.
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4.2. Mixed partition functions

4.1.1 Statement of results on skew partition functions

For skew partition functions we can give a characterization that is close in
spirit to Theorem 2.3 by Schrijver.

Theorem 4.3. A graph parameter f : G ! C is a skew partition function if and only
if f (∆) = 1, f (�)  0 and

rk (Mf ,2t)  f (�)2t (4.7)

for each t 2 N.

We can also give another characterization of skew partition functions that
is close in spirit to the characterization given by Draisma, Gijswijt, Lovász,
Regts and Schrijver [10, Theorem 1]. Let G = (V, E) be a graph. Recall that
for n 2 N and u : [2n] ! V any map, we defined

Gu := (V, E [ {{u(2i � 1), u(2i)} | i 2 [n]}).

We can now give the characterization.

Theorem 4.4. Let ` 2 N. A graph parameter f : G ! C is the partition function of
an element h 2 (

V
V2`)

⇤ if and only if f (∆) = 1, f (�) = �2`, f is multiplicative,
f (G) = 0 if G is not Eulerian and for each graph G = (V, E) and for each map
u : [2`+ 2] ! V, we have

Â
r2S2`+2

f (Gu�r) = 0. (4.8)

This formulation is different from our description of this theorem in Chap-
ter 2. In the proof it will become clear how the two formulations are related.
To prove Theorem 4.3 we will use Theorem 4.4.

4.2 Mixed partition functions

For a graph G = (V, E) and F ✓ E, the subgraph (V, F) of G is denoted by
G(F). If G(F) is Eulerian, then we say that F is Eulerian. For v 2 V, let dE\F(v)
be the set of edges (with multiplicities) incident with v that are not in F.

Let k, ` 2 N. An element h 2 (SVk ⌦
V

V2`)
⇤ is called a (k, 2`)-color edge

coloring model. Let G = (V, E) be a graph with an Eulerian subset F ✓ E.
Let w be an orientation of F and let k be a local pairing of G(F). For h 2
(SVk ⌦

V
V2`)

⇤, we define sh(G, F, w, k) to be

(�1)c(k)+o(w,k) Â
f:F![2`]

y:E\F![k]

’
v2V

h(
K

a2dE\F(v)
ey(a) ⌦

^

(a1,a2)2kv

bf,a1,w,v ^ bf,a2,w,v).

(4.9)
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Skew and mixed partition functions

Fix y : E \ F ! [k]. For v 2 V, let hv
y 2 (

V
V2`)

⇤ be defined, for i1, . . . , in 2 [2`],
by

hv
y( fi1 ^ · · · ^ fin) = h(

K

a2dE\F(v)
ey(a) ⌦ fi1 ^ · · · ^ fin).

Now let hy = (hv
y)v2V . If follows from (4.3) that

sh(G, F, w, k) = Â
y:E\F![k]

shy
(G(F), w, k).

So by Proposition 4.1, sh(G, F, w, k) is independent of the choice of w and k.
So we can define sh(G, F) := sh(G, F, w, k) for some choice of orientation w of
F and local pairing k of G(F). Now the partition function ph of h is defined,
for the graph G = (V, E), by

ph(G) := Â
F✓E

F Eulerian

sh(G, F). (4.10)

We sometimes refer to the partition function just defined as a mixed par-
tition function to distinguish it from ordinary partition functions and skew
partition functions. It follows from the definition that a mixed partition func-
tion is multiplicative. Note that if h is a (k, 2`)-color edge coloring model, then
ph(�) = k � 2`.

Example 4.2. Let h be a (k, 0)-color edge coloring model. For a graph G =
(V, E) and F ✓ E, we have that if F 6= ∆, then sh(G, F) = 0. So we find that

ph(G) = sh(G, ∆) = Â
y:E![k]

’
v2V

h(
K

a2d(v)
ey(a)).

So we see that ph is an ordinary partition function as in (2.7). We similarly
see that if h is a (0, 2`)-color edge coloring model, then ph is a skew partition
function as in (4.4).

Note that for k, ` 2 N, the basis for SVk and the basis for
V

V2` that we
defined in Chapter 2 give a basis of SVk ⌦

V
V2`, i.e., a basis of SVk ⌦

V
V2` is

formed by the K

i2S
ei ⌦

^

i2T
fi, (4.11)

where S is a multisubset of [k] and T = {i1, . . . , in} with 1  i1 < · · · < in  2`
(here the wedge over T is taken in ascending order).

Example 4.3. Let h be the (1, 2)-color edge coloring model defined on basis
elements by h( f1 ^ f2) = �1 and h(e1 � e1) = 1 and let h evaluate to zero on
all other basis elements of SV1 ⌦

V
V2. We claim that for any graph G,

ph(G) =

⇢
(�1)c(G) if G is two-regular,

0 otherwise,
(4.12)
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where c(G) is the number of connected components of G.
Let G = (V, E) be a graph. Note that as h evaluates to 0 on any tensor

that is not of degree 2, we have ph(G) = 0 if G has a vertex that is not of
degree 2. So let us assume that each vertex of G has degree 2. Because of
the multiplicativity of ph we may assume that G is connected. We have that
ph(G) = sh(G, E) + sh(G, ∆) as ∆ and E are the only Eulerian subsets of E.

Let us first compute sh(G, ∆). There is only one coloring y : E ! [1] and
for this coloring we see h(e1 ⌦ e1) = 1 at each vertex. So sh(G, ∆) = 1.

Let us next compute sh(G, E). Let w be an Eulerian orientation of E and
let k be a local pairing of G compatible with w. The only colorings f : E ! [2]
that give a non-zero contribution to sh(G, F, w, k) are those that color all edges
1 or that color all edges 2. If f : E ! [2] assigns 1 to each edge, then at any
vertex we see h( f1 ^ g1) = �h( f1 ^ f2) = 1 by (4.1). If f : E ! [2] assigns 2 to
each edge, then at any vertex we see h( f2 ^ g2) = h( f2 ^ f1) = 1, again by (4.1)
and skew-symmetry. We see that e(G, w, k) = �1 as there are no odd arcs or
odd pairings and exactly one k-circuit. This shows that sh(G, E) = �2.

So we find that ph(G) = sh(G, E) + sh(G, ∆) = �1. This shows (4.12).

Example 4.4. If h0 2 (SVk)
⇤ and h1 2 (

V
V2`)

⇤, then let h = h0 ⌦ h1 2 (SVk ⌦V
V2`)

⇤. For a graph G = (V, E) and F ✓ E Eulerian, it follows directly from
(4.9) that sh(G, F) = ph0(G(E \ F))ph1(G(F)). So we find that

ph(G) = Â
F✓E

F Eulerian

ph0(G(E \ F))ph1(G(F)). (4.13)

4.2.1 Statement of results on mixed partition functions

In the next section we will prove that mixed partition functions indeed have
exponentially bounded edge connection rank. We state the theorem here.

Theorem 4.5. Let k, ` 2 N. If f : G ! C is the partition function of an element
h 2 (SVk ⌦

V
V2`)

⇤, then
rk (Mf ,t)  (k + 2`)t

for each t 2 N.

If f is a skew partition function, then this implies that rk(Mf ,2t)  f (�)2t

for each t 2 N. In Chapter 5 we will prove the following theorem on mixed
partition functions. Recall the definition of Jk,2` for k, ` 2 N given in (2.13).

Theorem 4.6. Let k, ` 2 N. If f : G ! C is the partition function of an element
h 2 (SVk ⌦

V
V2`)

⇤, then f (Jk,2`) = 0.

In Section 5.3 we will formulate a conjecture saying that the reverse state-
ment of this theorem also holds (where we add the assumption that f (∆) = 1
and that f is multiplicative) and we will see how this is related to the invariant
theory of the orthosymplectic supergroup.
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4.3 The rank growth of mixed partition functions
In this section we prove Theorem 4.5. We first show a lemma on matchings
that will be useful later on. Let n 2 N. A simple arc on [2n] is an ordered
pair (i, j) with i, j 2 [2n] and i 6= j. A directed perfect matching on [2n] is a
set M consisting of simple arcs on [2n] such that each vertex in the digraph
([2n], M) is incident with exactly one arc. Let

�!M2n denote the set of directed
perfect matchings on [2n]. For p 2 S2n and M 2 �!M2n, we define pM =

{(p(i), p(j)) | (i, j) 2 M}. This defines an action of S2n on
�!M2n.

For M, N 2 �!M2n, we denote by o(M [ N) the parity of the number of arcs
in M [ N that need to be flipped to make ([2n], M [ N) into an Eulerian di-
graph. Since each cycle in ([2n], M [ N) has even length this is well-defined.
As before, we define c(M [ N) to be the number of connected components of
the graph underlying ([2n], M [ N). We will refer to these connected compo-
nents as the connected components of ([2n], M [ N).

Lemma 4.7. Let n 2 N and let M, N 2 �!M2n. Then the sign of any permutation in
S2n that sends M to N is equal to (�1)c(M[N)+o(M[N).

Proof. Note that all permutations that send M to N have the same sign, as
each permutation in S2n that stabilizes M has trivial sign. We may assume
that ([2n], M [ N) consists of a single connected component. Let s1, s2 2 S2n
be permutations that flip edges of M and N respectively such that

([2n], s1M [ s2N)

is an Eulerian digraph. If the vertices of the cycle are given by v1, v2, . . . , v2n
in cyclic order, then the permutation t = (v1v2 . . . v2n) has the property that
ts1M = s2N. So the permutation s�1

2 ts1 sends M to N. As 2n is even, the
sign of t is �1. Per construction we have sgn(s1)sgn(s2) = (�1)o(M[N). This
proves the lemma.

Let k, ` 2 N. Recall that Vk is equipped with a non-degenerate symmet-
ric bilinear form (·, ·) and that V2` is equipped with a non-degenerate skew-
symmetric bilinear form h·, ·i. We define Vk,2` := Vk � V2`. We write an
element w of Vk,2` as w0 + w1, where w0 2 Vk and w1 2 V2`. We equip Vk,2`
with a non-degenerate bilinear form [·, ·] defined, for x, y 2 Vk,2`, by

[x, y] := (x0, y0) + hx1, y1i.

For each m 2 N, the bilinear form [·, ·] extends to a bilinear form on V⌦m
k,2` and

we denote this bilinear form also with [·, ·]. We note that this form is often
called a super symmetric bilinear form, cf. [8].

A directed trail T in a directed graph D = (V, A) is a sequence

(v0, a1, . . . , ai, vi, ai+1, . . . , an, vn)
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4.3. The rank growth of mixed partition functions

such that vi 2 V for i 2 {0, . . . , n}, ai 2 A for i 2 [n], ai = (vi�1, vi) for i 2 [n]
and such that each arc occurs at most once in the sequence. We say that T is
a trail from v0 to vn.

Proof of Theorem 4.5. Our goal is to show that for each t 2 N, we can write
Mf ,t as a Gram matrix of vectors in V⌦t

k,2` with respect to the bilinear form [·, ·].
This implies Theorem 4.5.

Let t 2 N and let F = (V, E) be a t-fragment. Recall that a t-fragment is a
graph with t vertices of degree 1 labeled 1, . . . , t. The set of unlabeled vertices
of F is denoted by V0(F). A subset H ✓ E is called Eulerian if the degree of
each unlabeled vertex in F(H) is even. Let H ✓ E be Eulerian. Let S(H) be
the set of labeled vertices incident with an edge in H. If H is chosen, we refer
to S(H) as S. Note that |S| is even because H is Eulerian. We identify the
labeled vertices with [t] according to the labeling. Through this identification
we view S as a subset of [t].

We now extend some of the definitions we gave for graphs to fragments.
An Eulerian orientation w of H is an orientation of the edges of H such that in
F(H), at each unlabeled vertex the number of incoming arcs is equal to the
number of outgoing arcs. A local pairing k of F(H) is an assignment k to each
v 2 V0(F) of a decomposition kv of the edges in H incident with v into ordered
pairs. The local pairing k is called compatible with a Eulerian orientation w if
for each v 2 V0(F) and for each (a1, a2) 2 kv the arc a1 is incoming under w
and the arc a2 is outgoing under w.

Now let k be a local pairing of F(H) compatible with an Eulerian orienta-
tion w of H. Note that k partitions the edge set of H into circuits and directed
trails that begin and end in labeled vertices. We call this decomposition the k-
decomposition of H. Let ĉ(k) be the number of circuits in the k-decomposition.
Define M(w, k) to be the directed perfect matching on S ✓ [t] such that (i, j)
is an arc of M(w, k) if there is a directed trail in the k-decomposition from i to
j. Write S = {i1, . . . , i|S|} with i1 < · · · < i|S|. Let sgn(M(w, k)) be the sign of
a permutation that sends M(w, k) to the directed perfect matching with arcs
(i1, i2), . . . , (i|S|�1, i|S|). This is well-defined by Lemma 4.7.

Let c = (c0, c1) with c0 : [t] \ S ! [k] and c1 : S ! [2`]. Such a pair
c = (c0, c1) is called consistent with S. We say that a coloring y : E \ H ! [k]
extends c0 if, for each i 2 [t] \ S, we have c0(i) = y(a), where a 2 E \ H is
the edge incident with i. We denote this by y ⇠ c0. Similarly, we say that
f : H ! [2`] extends c1 if, for each i 2 S, we have c1(i) = f(a), where a 2 H
is the edge incident with i. Again, we denote this by f ⇠ c1.

For i 2 [t] \ S, let cc,w,i = ec0(i), and for i 2 S, let cc,w,i = fc1(i) if the
edge incident with i is incoming at i under w and let cc,w,i = gc1(i) if the edge
incident with i is outgoing at i under w. We define the tensor t0h,c(F, H, w, k)
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in V⌦t
k,2` by

t0h,c(F, H, w, k) :=

(�1)ĉ(k) Â
y⇠c0
f⇠c1

’
v2V0(F)

h(
K

a2dE\H(v)
ey(a) ⌦

^

(a1,a2)2kv

ff(a1) ^ gf(a2))
O

i2[t]
cc,w,i,

where the sum runs over all y : E \ H ! [k] with y ⇠ c0 and all f : H ! [2`]
with f ⇠ c1. We define

t0h(F, H, w, k) := Â
c consistent

with S

t0h,c(F, H, w, k),

and finally we define

th(F, H, w, k) := (�1)|S|/4sgn(M(w, k))t0h(F, H, w, k).

We first make an important observation. Let w0 be obtained from w by invert-
ing the arcs in a directed trail P in the k-decomposition and let k0 be obtained
from k by inverting all the pairings in the directed trail P (hence k0 is com-
patible with w0). Note that sgn(M(w, k)) = �sgn(M(w0, k0)), as M(w0, k0) is
obtained from M(w, k) by inverting the direction of one arc. The total number
of pairings and arcs in the directed trail P is odd. So similar to what we have
seen in the proof of Lemma 4.2, we find that t0h(F, H, w, k) = �t0h(F, H, w0, k0).
This shows that

th(F, H, w, k) = th(F, H, w0, k0). (4.14)

Now let F1 = (V1, E1) and F2 = (V2, E2) be two t-fragments with Eulerian
subsets H1 ✓ E1 and H2 ✓ E2 such that S(H1) = S(H2) = S. Let G =
(V, E) = F1 ⇤ F2. Note that H1 and H2 induce an Eulerian subset of E. We
denote this set by H1 ⇤ H2. For i = 1, 2, let wi be an Eulerian orientation of Hi
with a compatible local pairing ki of Fi(Hi). We next show that

[th(F1, H1, w1, k1), th(F2, H2, w2, k2)] = sh(G, H1 ⇤ H2). (4.15)

By (4.14) we may assume that w1, k1, w2 and k2 are chosen in such a way that
(S, M(w1, k1) [ M(w2, k2)) is an Eulerian digraph. By Lemma 4.7 we see that

sgn(M(w1, k1))sgn(M(w2, k2)) = (�1)c(M(w1,k1)[M(w2,k2)),

as o(M(w1, k1) [ M(w2, k2)) = 0. Furthermore, w1 and w2 induce an Eulerian
orientation w of H1 ⇤ H2 and the local pairing k of G(H1 ⇤ H2) induced by k1
and k2 is compatible with w. So we find that

sgn(M(w1, k1))sgn(M(w2, k2))(�1)ĉ(k1)(�1)ĉ(k2) = (�1)c(k). (4.16)

Now let c = (c0, c1) and c0 = (c0
0, c0

1) both be consistent with S. We
consider

[t0h,c(F1, H1, w1, k1), t0h,c0(F2, H2, w2, k2)]. (4.17)
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Note that this is equal to 0 if c0 and c0
0 do not agree. Furthermore, as the

orientations of w1 and w2 are opposite at a labeled vertex in S, we see that
c1 and c0

1 also have to agree for (4.17) to be non-zero. So let us assume that
c = c0. Note that as the orientation w is Eulerian, at half of the vertices in S
the arc of H1 is incoming and the arc of H2 is outgoing. So at such a vertex i
the bilinear form becomes h fc1(i), gc1(i)i = �1. At the other half of the vertices
in S the arc of H2 is incoming and the arc of H2 is outgoing. So at such a vertex
i the bilinear form becomes hgc1(i), fc1(i)i = 1. These contributions cancel with
(�1)|S(H1)|/4(�1)|S(H2)|/4. Together with (4.16) this shows (4.15).

Now, for i = 1, 2, let Hi ✓ Ei and let wi be an Eulerian orientation of Hi
with a compatible local pairing ki of Fi(Hi). Suppose that S(H1) 6= S(H2).
Then it follows that

[th(F1, H1, w1, k1), th(F2, H2, w2, k2)] = 0, (4.18)

because at i in the symmetric difference of S(H1) and S(H2) there occurs an
element of Vk at one side of the bilinear form and an element of V2` at the
other side.

Note that as H1 and H2 run over all Eulerian subsets of F1 and F2, we have
that H1 ⇤ H2 runs over all Eulerian subsets of G. So it follows from (4.15) and
(4.18) that


Â

H1✓E1
H1 Eulerian

th(F1, H1, w1, k1), Â
H2✓E2

H2 Eulerian

th(F2, H2, w2, k2)

�
= (4.19)

Â
H✓E

H Eulerian

sh(G, H, w, k) = f (G), (4.20)

where, for i = 1, 2, ki is a local pairing of Fi(Hi) compatible with an Eulerian
orientation wi of Hi. This shows that Mf ,t indeed is the Gram matrix of a set
of vectors in V⌦t

k,2` with respect to the bilinear form [·, ·]. So the rank of Mf ,t is
bounded by (k + 2`)t. This proves Theorem 4.5.

4.4 Examples

In this section we give two more examples of mixed partition functions related
to other work. We first show that evaluations of the characteristic polynomial
of a graph can be described as partition functions of (2, 2)-color edge coloring
models and we will see how this is related to a question by de la Harpe and
Jones [15]. We also show how integral evaluations of the circuit partition
polynomial of a graph can be described by mixed partition functions.
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4.4.1 The characteristic polynomial

In this subsection we assume that our graphs do not have � as a connected
component, as they are irrelevant for the characteristic polynomial. The adja-
cency matrix A of a graph G = (V, E) is the V ⇥ V matrix such that for i, j 2 V
with i 6= j, A(i, j) is the multiplicity of the edge {i, j} in E and such that for
i 2 V, A(i, i) is the twice the number of loops at the vertex i. The characteristic
polynomial p(G) of G is defined as p(G; t) := det(tI � A). De la Harpe and
Jones [15, Problem 1] asked about the existence of a spin model B(t) 2 C[t]
such that pB(t)(G) = p(G; t) for each graph G. In the following proposition
we shall show that the answer to this question is negative. In fact we show
something stronger.

Proposition 4.8. There does not exist an edge coloring model h such that ph(G) =
p(G; 0) for all graphs G.

This proposition is indeed stronger than we need, since, by a result of
Szegedy [39], the partition function of any spin model is equal to the partition
function of an ordinary edge coloring model and hence Proposition 4.8 rules
out the existence of a spin model of which the partition function equals the
characteristic polynomial evaluated at 0. However, we shall show that for
each t 2 C, there exists a (2, 2)-color edge coloring model h(t) such that
ph(t)(G) = p(G; t) for all graphs G, cf. Proposition 4.9 below. This may serve
as an alternative answer to the question of de la Harpe and Jones.

We now turn to a proof of Proposition 4.8.

Proof of Proposition 4.8. Let us abuse notation and write det(G) for the deter-
minant of the adjacency matrix of G. Note that for a graph with an even
number of vertices we have p(G; 0) = det(G). We will make use of the char-
acterization of partition functions of edge coloring models as given in [10]. Fix
k and consider the graph G consisting of k + 1 copies of the 6-cycle C6. Direct
one edge in each cycle and label the endpoints of these arcs 1 up to k + 1. For
a permutation p 2 Sk+1, denote by Gp the graph obtained from G by letting
p permute the endpoints of the directed edges. Note that if the permutation
p can be written as the product of disjoint cycles p1, . . . , pt, then Gp is the
graph consisting of t cycles, of length 6|p1|, . . . , 6|pt| respectively. Here |pi|
denotes the length of the cycle pi; we include cycles of length 1. If p(G; 0) is
the partition function of a k-color edge coloring model, then, by [10, Theorem
1], it must satisfy

Â
p2Sk+1

sgn(p)p(Gp ; 0) = 0. (4.21)

It follows from, for example, [6, Section 1.4.3], that det(Ck) = 0 if k = 0
mod 4 and det(Ck) < 0 if k = 2 mod 4. This implies that for det(Gp) to be
non-zero none of the cycles p1, . . . , pt may be of even length. However, if all
cycles in the cycle decomposition of p are of odd length, then the parity of the
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number of these cycles is equal to the parity of k + 1. So in this case, det(Gp)
is strictly positive if this parity is even and strictly negative if this parity is odd
for all such permutations p. As all orbits of p are odd we have sgn(p) = 1.
Since det(Gp) = p(Gp ; 0) for all p, this shows that Âp2Sk+1

sgn(p)p(Gp ; 0) is
either strictly positive or strictly negative. So it is non-zero. So we conclude
that (4.21) is violated and hence that p(·; 0) cannot be the partition function of
any edge coloring model.

Proposition 4.9. For each t 2 C, there exists a (2, 2)-color edge coloring model h(t)
such that ph(t)(G) = p(G; t) for all graphs G.

Proof. Using the Leibniz expansion of the determinant, Sachs [33] gave an
expression of the characteristic polynomial of a graph G in terms of certain
subgraphs of G. The expression extends to graphs with multiple edges and
loops. Let G = (V, E) be a graph. Let H be the set of H ✓ E such that
each connected component of G(H) is either a vertex, an edge or a cycle. For
H 2 H, let e⇤(H) and c(H) denote the number of connected components
of G(H) that are edges and cycles respectively. Let V[H] ✓ V be the set of
vertices of G that are incident with an edge of H. Then Sachs showed that

p(G; t) = Â
H2H

(�1)e⇤(H)(�2)c(H)t|V|�|V[H]|. (4.22)

We now give a (2, 2)-color edge coloring model h = h(t) such that ph(G) =
p(G; t) for each t 2 C and graph G. Let h be defined as follows:

h(e�i
1 ⌦ f1 ^ g1) = 1 for i 2 N,

h(e�i
1 � e2) =

p
�1 for i 2 N,

h(e�i
1 ) = t for i 2 N,

and let h evaluate to 0 on basis elements of SV2 ⌦
V

V2 that are not in the span
of these elements. Now let F ✓ E be Eulerian. We compute sh(G, F). If G(F)
has a vertex that is not of degree 0 or 2, then sh(G, F) = 0.

So let us assume that each vertex of G(F) has degree 0 or 2. Let w be an
Eulerian orientation of F with a compatible local pairing k of G(F). Now let
f : F ! [2] and y : E \ F ! [2]. We first note that for the contribution of f
and y to sh(G, F, w, k) to be non-zero, we need y�1(2) to be a matching in G
that is not incident with any edge in F.

Now fix y : E \ F ! [2] such that y�1(2) is a matching in G that is not
incident with any edge in F. Let H = F [ y�1(2) ✓ E. Note that at each
vertex v 2 V that is not incident with H, we see h(e�d(v)

1 ) = t. There are
|V|� |V[H]| such vertices v. If v, u 2 V are two vertices such that {u, v} is an
isolated edge of (V, H), then at u we see h(e�d(u)�1

1 � e2) =
p
�1 and at v we

see h(e�d(v)�1
1 � e2) =

p
�1. So two vertices u, v such that {u, v} is an isolated

edge of (V, H) contribute �1 to the partition function.
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Now consider the colorings f : F ! [2]. Similar to what we have seen
in Example 4.12, we have that such a f has non-zero contribution if and
only if it is constant on the edges of each 2-regular connected component
of (V, H). So there are exactly 2c(H) colorings f : F ! [2] that have a non-
zero contribution. As there are no odd arcs or odd pairings, we find that
(�1)c(k)+o(w,k) = (�1)c(H). So we see that the total contribution to the parti-
tion function of these colorings is exactly

(�1)e⇤(H)(�2)c(H)t|V|�|V[H]|. (4.23)

Now summing over all F and corresponding f and y, we find that ph(G) is
indeed equal to p(G; t) by (4.22).

4.4.2 Evaluations of the circuit partition polynomial

The circuit partition polynomial, introduced, in a slightly different form, by
Martin in his thesis [22], is related to Eulerian walks in graphs and to the
Tutte polynomial of planar graphs. Several identities for the circuit partition
polynomial were established by Bollobás [5] and Ellis-Monaghan [11].

Recall that a circuit is a closed walk where each edge is used at most once.
We say that two circuits are equivalent if one can be obtained from the other
by possibly changing the starting vertex or the direction of the walk. For a
graph G = (V, E), let X(G) be a set of representatives of this equivalence
relation. Let C(G) be the collection of all partitions of E into circuits in X(G).
For C 2 C(G), let |C| be the number of circuits in the partition.

The circuit partition polynomial J(G, x) is defined, for a graph G, by

J(G, x) := Â
C2C(G)

x|C|.

So if G is not an Eulerian graph, then J(G, x) = 0. We clearly have that
J(G [ H, x) = J(G, x)J(H, x) for two graphs G and H and it is natural to
define J(�, x) = x.

For k 2 N, it was shown in [5, 11] that J(G, k) can be expressed as

J(G, k) = Â
A

’
v2V

k

’
i=1

(degAi
(v)� 1)!!, (4.24)

where A ranges over ordered partitions of E into k subsets A1, . . . , Ak such
that Ai is Eulerian for all i 2 [k].

We express (4.24) as the partition function of h0 2 (SVk)
⇤ as follows. For

(a1, . . . , ak) 2 Nk, we set

h0(
K

i2[k]
e�ai

i ) :=
k

’
i=1

(ai � 1)!!. (4.25)
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Then ph0(G) = J(G, k) for each graph G.
Bollobás [5] showed that the evaluation of the circuit partition polynomial

J(G, x) of a graph at negative even integers �2` can be expressed as

J(G,�2`) = Â
H1,...,H`

(�2)Â`
i=1 c(Hi), (4.26)

where this sum runs over all ordered partitions H1, . . . , H` of the edge set of
G such that for each i 2 [`] each vertex in (V, Hi) has degree 0 or degree 2 and
where c(Hi) is the number of 2-regular connected components of (V, Hi).

We express (4.26) as the partition function of h1 2 (
V

V2`)
⇤. To this end

we use expression (4.5) for skew partition functions. Let G = (V, E) be an
Eulerian graph and let w be an Eulerian orientation of E with a compatible
local pairing k of G. For h 2 (

V
V2`)

⇤ and f : E ! [`], we define

sh,f(G, w, k) := (�1)c(k) Â
y:E!{0,`}

’
v2V

h(
^

(a,b)2kv

f(f+y)(a) ^ g(f+y)(b)), (4.27)

where (f + y) : E ! [2`] is defined as e 7! f(e) + y(e) for e 2 E. It follows
from the proof of Proposition 4.1 that (4.27) is independent of the choice of
Eulerian orientation w and compatible local pairing k. So we can denote it by
sh,f(G). Note that

sh(G) = Â
f:E![`]

sh,f(G). (4.28)

For S ✓ [`], we define
h1(

^

i2S
fi ^ gi) = 1 (4.29)

and we let h1 evaluate to 0 on basis elements of
V

V2` that are not in the span
of the

V
i2S fi ^ gi. Consider a coloring f : E ! [`] of the edges. We compute

sh1,f(G). If, for some j 2 [`], G(f�1(j)) has a vertex that is not of degree 0 or
2, then, by (4.29), we see that sh1,f(G) = 0. So let us assume that G(f�1(j))
has only vertices of degree 0 or degree 2 for each j 2 [`]. Let w be an Eulerian
orientation of E such that for each j 2 [`], each cycle in G(f�1(j)) is directed.
Let k be a local pairing of G compatible with w such that for each j 2 [`] at
each vertex v of degree 2 in G(f�1(j)), the two edges of G(f�1(j)) at v are
paired.

For j 2 [`], let c(f�1(j)) be the number of 2-regular connected components
of G(f�1(j)) and let c(f) := Â`

j=1 c(f�1(j)). We have that c(k) = c(f). Note
that a coloring y : E ! {0, `} gives a non-zero contribution to (4.27) if and
only if it is constant on each connected component of G(f�1(j)) for each
j 2 [`]. Each such coloring contributes (�1)c(f) to sh1,f(G, w, k) by (4.29). So
we find that sh1,f(G) = (�2)c(f). And hence by (4.28) we find that ph1(G) =
J(G,�2`) according to (4.26).
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We next show that mixed partition functions can also express evaluations
of the circuit partition polynomial at negative odd integers. In [11], Ellis-
Monaghan showed for a graph G = (V, E) that

J(G, x + y) = Â
A✓E

J(G(A), x)J(G(E \ A), y). (4.30)

Now, for a negative odd integer �2`+ 1, let h0 2 (SV1)⇤ correspond to k = 1
in (4.25) and let h1 2 (

V
V2`)

⇤ be as in (4.29). Let h = h0 ⌦ h1 2 (SV1 ⌦
V

V2`)
⇤.

Then by (4.13) and (4.30) we find that ph(G) = J(G,�2`+ 1).
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Chapter 5

Partition functions and
invariant theory

This chapter is devoted to proving Theorem 4.4 and Theorem 4.6. We first
prove Theorem 4.6 and then use Theorem 4.6 to prove Theorem 4.4. The proof
of Theorem 4.4 uses the First Fundamental Theorem of invariant theory (FFT)
of the symplectic group and is inspired on the proof of Theorem 1 in [10] by
Draisma, Gijwijt, Lovász, Regts and Schrijver. In our proof, however, we use
the tensor FFT for the symplectic group, whereas in the proof of Theorem 1
in [10] the authors use the polynomial FFT and the Second Fundamental The-
orem of invariant theory for the orthogonal group. The proof of Theorem 4.6
uses a result by Berele and Regev [4] that is related to the invariant theory
of the general linear Lie superalgebra. In the last section we will go deeper
into this connection and we will see how one could possibly use this connec-
tion to prove a converse to Theorem 4.6. This chapter is based on [31] and
unpublished work with Guus Regts.

5.1 Proof of Theorem 4.6
Let us restate the theorem. Recall the definition of Jk,2` for k, ` 2 N given in
(2.13).

Theorem. Let k, ` 2 N. If f : G ! C is the partition function of an element
h 2 (SVk ⌦

V
V2`)

⇤, then f (Jk,2`) = 0.

The main idea of the proof is as follows. In Chapter 3 we defined an
S2m-action on CM2m, the space of formal C-linear combinations of perfect
matchings on [2m]. We will define an S2m-action on V⌦2m

k,2` and construct an
S2m-equivariant map t : CM2m ! V⌦2m

k,2` . The kernel of the map t will turn
out to consist of the modules Sl such that l is a (k, 2`)-block, as defined in

41



Partition functions and invariant theory

(2.5). We will construct graphs from matchings and using this construction
we can prove the theorem. We first develop some framework.

5.1.1 The map p

Let k, ` 2 N. Recall that Vk,2` = Vk � V2`, where Vk = Ck with standard basis
{e1, . . . , ek} and V2` = C2` with standard basis { f1, . . . , f2`}. We define

^
0

V2` :=
M̀

i=0

^2i
V2`,

i.e.,
V

0 V2` is the subspace of
V

V2` spanned by basis elements of even degree.
We define

R := S(SVk ⌦
^

0
V2`).

We can describe R as the quotient of T(SVk ⌦
V

0 V2`), the tensor algebra of
SVk ⌦

V
0 V2`, by the ideal generated by {x ⌦ y � y ⌦ x | x, y 2 SVk ⌦

V
0 V2`}.

Let n 2 N and for i 2 [n], let ci 2 SVk ⌦
V

0 V2`. We denote the image of
c1 ⌦ · · ·⌦ cn 2 T(SVk ⌦

V
0 V2`) under the quotient map by ’n

i=1 ci.
Through the canonical isomorphisms Vk ⇠= (V⇤

k )
⇤ and V2`

⇠= (V⇤
2`)

⇤, we can
view R as the space of regular functions on (SVk ⌦

V
0 V2`)

⇤. We let p : CG ! R
be the map such that for each h 2 (SVk ⌦

V
V2`)

⇤ and each G 2 G, we have
p(G)(h) = ph(G) (we are abusing notation here, but one should interpret
p(G)(h) as the evaluation of h restricted to the subspace S(SVk ⌦

V
0 V2`) of

S(SVk ⌦
V

V2`)). For the sake of completeness, we give the definition of the
map p below.

Let G = (V, E) be a graph with F ✓ E Eulerian. Let w be an orientation of
F and let k be a local pairing of G(F). We recall from (4.2) that for f : F ! [2`]
and a 2 F incident with v 2 V, we define

bf,a,w,v :=

(
ff(a) if a is incoming at v under w,
gf(a) if a is outgoing at v under w, (5.1)

where gi for i 2 [2`] is defined in (4.1). We define s(G, F, w, k) 2 R as

(�1)c(k)+o(w,k) Â
f:F![2`]

y:E\F![k]

’
v2V

K

a2dE\F(v)
ey(a) ⌦

^

(a1,a2)2kv

bf,a1,w,v ^ bf,a2,w,v. (5.2)

This is independent of the choice of k and w by a similar argument as in
Proposition 4.1. So we define s(G, F) := s(G, F, w, k) for some local pairing k
of G(F) and orientation w of H. Now let p : CG ! R be the unique linear
map, defined, for a graph G = (V, E), by

p(G) := Â
F✓E

F Eulerian

s(G, F). (5.3)

For h 2 (SVk ⌦
V

V2`)
⇤ it is immediate that p(G)(h) = ph(G).
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5.1.2 The commutative diagram

Let D = (d1, . . . , dn) 2 Nn such that d1 � · · · � dn and Ân
i=1 di = 2m for some

m 2 N. Let RD be the subspace of R consisting of the elements

n

’
i=1

qi with qi 2
bdi/2cM

j=0
(Sdi�2jVk ⌦

^2j
V2`).

Let GD be the set of graphs with degree sequence D. Then p restricts to a map
pD : CGD ! RD. Recall that M2m is the set of perfect matchings on [2m]. We
will next define linear maps µD, sD and t so as to make the following diagram
commute:

CGD RD

CM2m V⌦2m
k,2` .

µD

t

sD

pD

(5.4)

For j 2 [n], we define

Pj :=
⇢

1 +
j�1

Â
i=1

di, 2 +
j�1

Â
i=1

di, . . . , dj +
j�1

Â
i=1

di

�
. (5.5)

So {P1, . . . , Pn} is a partition of [2m]. Let pD : [2m] ! {v1, . . . , vn} be the map,
defined for i 2 [2m], by pD(i) := vj if i 2 Pj. Let µD : CM2m ! CGD be the
unique linear map defined, for a matching M 2 M2m, by

µD(M) := ({v1, . . . , vn}, {{pD(a), pD(b)} | {a, b} 2 M}).

Let us now define the map t : CM2m ! V⌦2m
k,2` . Recall that

�!M2m is the set
of directed perfect matchings on [2m]. We associate to M 2 M2m a directed
perfect matching

�!
M 2 �!M2m by directing each edge from the lower to the

higher index, i.e.,

�!
M = {(i, j) | {i, j} 2 M and i < j}.

We identify the edges of M with the arcs of
�!
M, i.e., {i, j} 2 M with i < j is

identified with (i, j) 2 �!
M.

Let M 2 M2m and F ✓ M. Define S(F) ✓ [2m] to be [F, i.e., it is the set
consisting of elements i of [2m] such that i 2 a for some a 2 F. We often write
S for S(F). Let

�!
M[S] be the directed perfect matching on S defined by

�!
M[S] := {(i, j) | {i, j} 2 F and i < j}.
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Write S = {s1, . . . , s2r} with s1 < · · · < s2r. Let NS be the directed perfect
matching on S defined by NS := {(s2i�1, s2i) | i 2 [r]}. We define sgnS(M) as

sgnS(M) := (�1)c(NS[
�!
M[S])+o(NS[

�!
M[S]), (5.6)

where we recall that for two directed matchings M1 and M2 on S we defined
c(M1 [ M2) as the number of connected components of (S, M1 [ M2) and
where we defined o(M1 [ M2) as the parity of the number of arcs of M1 [ M2
that need to be flipped to make (S, M1 [ M2) into an Eulerian digraph. For
f : M ! [k + 2`], we define for i 2 [2m] and a 2 M incident with i

bf,i :=

8
><

>:

ef(a) if f(a)  k,
ff(a)�k if f(a) > k and a is incoming at i in ([2m],

�!
M),

gf(a)�k if f(a) > k and a is outgoing at i in ([2m],
�!
M).

(5.7)

For M 2 M2m and F ✓ M, we define

F(F) := {f : M ! [k + 2`] | f(a) 2 {k + 1, . . . , k + 2`} iff a 2 F}

and
t(M, F) := sgnS(F)(M) Â

f2F(F)

O

i2[2m]

bf,i. (5.8)

The map t : CM2m ! V⌦2m
k,2` is the unique linear map defined, for M 2 M2m,

by
t(M) := Â

F✓M
t(M, F). (5.9)

To define sD : V⌦2m
k,2` ! RD, let c =

N
i2[2m] ci 2 V⌦2m

k,2` with, for each
i 2 [2m], ci 2 {e1, . . . , ek, f1, . . . , f2`}. Recall the definition of Pj in (5.5). For
each j 2 [n], let

PE(c)
j := {i 2 Pj | ci 2 {e1, . . . , ek}} and PO(c)

j := {i 2 Pj | ci 2 { f1, . . . , f2`}}.

We say that c is balanced if |PO(c)
j | is even for each j 2 [n]. Now sD : V⌦2m

k,2` !
RD is the unique linear map defined by

sD(c) :=

8
<

:

’
j2[n]

(
J

i2PE(c)
j

ci ⌦
V

i2PO(c)
j

ci) if c is balanced,

0 otherwise,
(5.10)

where we take the wedge over the elements in PO(c)
j in ascending order.

Lemma 5.1. Diagram (5.4) commutes, that is, for any M 2 M2m, sD(t(M)) =
pD(µD(M)).
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Proof. It indeed suffices to show that sD(t(M)) = pD(µD(M)) for each M 2
M2m, as the maps involved are linear. So we fix M 2 M2m and set G :=
µD(M) and write G = (V, E). We say that F ✓ M is balanced if |S(F) \ Pj| is
even for each j 2 [n]. Note that

sD(t(M, F)) = 0 if F is not balanced (5.11)

by the definition of sD in (5.10). The sets M and E are in bijection under µD
and balanced subsets of M correspond one-to-one to Eulerian subsets of E
under this bijection. So by (5.11) it suffices to show for a balanced F ✓ M and
H = µD(F) ✓ E that

sD(t(M, F)) = s(G, H), (5.12)

as summing over all F ✓ M then shows that sD(t(M)) = pD(µD(M)).
So let us fix a balanced F ✓ M and let S = S(F). Let furthermore H =

µD(F). We first define a convenient local pairing k = (kvj)j2[n] of G(H) and
a convenient orientation w of H. For j 2 [n], let Pj \ S = {i1, . . . , i2rj} with
i1 < · · · < i2rj and for t 2 [2rj], let ait be the image under µD of the unique
edge of M that contains it. For j 2 [n], we define

kvj := {(ai1 , ai2), . . . , (ai2rj�1 , ai2rj
)}.

Let w be the orientation of H such that an edge {vi, vj} 2 H is oriented from
vi to vj under w if i  j. Note that this orientation corresponds with the
orientation of

�!
M[S].

Now note that a k-circuit in G(H) corresponds to a connected component
of (S, NS [

�!
M[S]). Let X be a set of arcs in NS [

�!
M[S] such that (S, NS [

�!
M[S])

becomes an Eulerian digraph after inverting the direction of all arcs in X.
Then an arc in X \ NS corresponds to an odd pairing in a k-circuit and an
arc in X \ �!

M[S] corresponds to an odd arc in a k-circuit. This shows that
sgnS(M) = (�1)c(k)+o(w,k).

Let c 2 F(F). We define f : H ! [2`] by f(a) := c(p�1
D (a))� k for a 2 H

and we define y : E \ H ! [k] by y(a) := c(p�1
D (a)) for a 2 E \ H. Now we

find that

sD(sgnS(M)
O

i2[2m]

bc,i) = sgnS(M) ’
j2[n]

K

i2Pj\S
bc,i ⌦

^

i2Pj\S
bc,i

= (�1)c(k)+o(w,k)
n

’
j=1

K

a2dE\H(vj)

ey(a) ⌦
^

(a1,a2)2kvj

bf,a1,w,vj ^ bf,a2,w,vj ,

where we take the wedge over the elements in Pj \ S in ascending order. Sum-
ming over all c 2 F(F), we see that sD(t(M, F)) = s(G, H, w, k) = s(G, H).
So (5.12) holds. This proves the lemma.
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5.1.3 The kernel of t

To prove Theorem 4.6, we need to understand the kernel of the map t. To
do so, we will use some representation theory. We briefly recall the relevant
concepts and results from Chapter 3.

For p 2 S2m and M 2 M2m, we set pM = {{p(i), p(j)} | {i, j} 2 M}.
This makes CM2m into an S2m-module. The S2m-module CM2m decomposes
multiplicity free into irreducible representations:

CM2m =
M

l`2m even
Sl, (5.13)

where Sl is the S2m-module generated by el M and where M = {{2i � 1, 2i} |
i 2 [m]}.

The space V⌦2m
k,2` also has the structure of an S2m-module, that we now

define. A basis for V⌦2m
k,2` is given by elements b =

N
j2[2m] bj with bj 2

{e1, . . . , ek, f1, . . . , f2`} for each j 2 [2m]. To define an action of S2m on V⌦2m
k,2` , it

suffices to define the action of transpositions of the form (i, i + 1) 2 S2m with
i 2 [2m � 1] on basis elements. Let b =

N
j2[2m] bj be a basis element and let

I = {j 2 [2m] | bj 2 { f1, . . . , f2`}}. We define the action of a transposition
p = (i, i + 1) 2 S2m on b by

p ·
O

j2[2m]

bj = sgnI(p)
O

j2[2m]

bp(j), (5.14)

where sgnI(p) = �1 if i, i + 1 2 I and sgnI(p) = 1 otherwise. We extend this
linearly to an action on V⌦2m

k,2` . For a proof that this really defines an action on
V⌦2m

k,2` we refer to [4]. We now show that the map t preserves the S2m-actions
on CM2m and V⌦2m

k,2` .

Lemma 5.2. The map t is S2m-equivariant.

Proof. Let M 2 M2m and F ✓ M and let p = (i, i + 1) 2 S2m with i 2 [2m� 1].
Let pF = {{p(j1), p(j2)} | {j1, j2} 2 F} ✓ pM. By the linearity of t it suffices
to show that t(pM, pF) = p · t(M, F), as summing over all F ✓ M then gives
that t(pM) = p · t(M). Recall that S = [F.

First suppose that {i, i + 1} 2 M. So pM = M and pF = F, and hence we
want to show that t(pM, pF) = t(M, F) = p · t(M, F), i.e.,

Â
f2F(F)

sgnS(M)
O

j2[2m]

bf,j = p · ( Â
f2F(F)

sgnS(M)
O

j2[2m]

bf,j). (5.15)

If {i, i + 1} 62 F, then p acts with sign 1 on the right hand sign of (5.15) and
bf,i = bf,i+1 for every f 2 F(F). So (5.15) holds in this case. If {i, i + 1} 2 F,
then p acts with sign �1 on the right hand sign of (5.15). Summing over all
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5.1. Proof of Theorem 4.6

f 2 F(F) we see that this sign cancels, as the tensor Âj2[2`] gj ⌦ f j is skew-
symmetric. This shows that (5.15) indeed holds.

Now suppose {i, i + 1} 62 M. Then
��!
pM = p

�!
M. Let us now show that

sgnpS(pM) = sgnS(p)sgnS(M). (5.16)

Let s 2 S2m be a permutation such that sNS =
�!
M[S]. So sgnS(M) =

sgn(s) by Lemma 4.7.
If i, i + 1 2 S, then sgnS(p) = �1 and we have that pS = S. Then

psNpS = psNS = p(
�!
M[S]) =

��!
pM[pS].

This shows that

sgnpS(pM) = sgn(ps) = �sgn(s) = �sgnS(M) = sgnS(p)sgnS(M),

by Lemma 4.7. So (5.16) holds in this case.
If at least one of i and i + 1 is not in S, then sgnS(p) = 1. Then

pspNpS = psppNS = p(
�!
M[S]) =

��!
pM[pS].

This shows that

sgnpS(pM) = sgn(psp) = sgn(s) = sgnS(M) = sgnS(p)sgnS(M),

by Lemma 4.7. So (5.16) holds also in this case.
For f 2 F(F), let fp 2 F(pF) be defined by fp({p(i), p(j)}) = f({i, j})

for {i, j} 2 M. Note that S(pF) = pS(F) = pS. As
��!
pM = p

�!
M, we see that

for j 2 [2m] and f 2 F(F), we have bfp ,j = bf,p(j). Combining all of this, we
find

sgnpS(pM)
O

j2[2m]

bfp ,j = sgnS(p)sgnS(M)
O

j2[2m]

bf,p(j)

= sgnS(p)sgnS(M)(sgnS(p)p ·
O

j2[2m]

bf,j)

= p · (sgnS(M)
O

j2[2m]

bf,j).

Summing over all the f 2 F(F), we find that t(pM, pF) = p · t(M, F). This
proves the lemma.

If follows from Lemma 5.2 that the kernel of t is an S2m-module. Recall
that we call a partition l a (k, 2`)-hook if the cell (k + 1, 2`+ 1) is not in the
Young diagram of shape l. Berele and Regev [4, Theorem 3.20] showed that
V⌦2m

k,2` has the following decomposition as an S2m-module:

V⌦2m
k,2`

⇠=
M

l`2m
l a (k,2`)-hook

(Sl)�µl , (5.17)
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where µl is the multiplicity of the corresponding module Sl in the decompo-
sition. Note that l is not required to be even in (5.17). Recall that the bilinear
form [·, ·] we defined in Section 4.3 extends to a bilinear form on V⌦2m

k,2` . We
have the following proposition describing the decomposition of the kernel of
t into irreducible representations. Recall that B(k, 2`) is the set consisting of
even partitions l such that the Young diagram of shape l contains the cell
(k + 1, 2`+ 1) (so it is not a (k, 2`)-hook).

Proposition 5.3. The kernel of t has the following decomposition into irreducible
representations:

ker (t) =
M

l`2m
l2B(k,2`)

Sl, (5.18)

where Sl is the S2m-module of CM2m generated by el M and where M = {{2i �
1, 2i} | i 2 [m]}.

In the proof of this proposition we will work with a different definition of
t. For M 2 M2m and S ✓ [2m], we say that M is compatible with S if for every
edge {i, j} 2 M we have i, j 2 S or i, j 62 S. If M is compatible with S, then
M[S] is the perfect matching on S consisting of the edges {i, j} 2 M such that
i, j 2 S. We define

tS(M) :=
⇢

t(M, M[S]) if M is compatible with S,
0 otherwise. (5.19)

It follows from the definition of t that

t(M) = Â
S✓[2m]

tS(M). (5.20)

For S ✓ [2m], let S̄ = [2m] \ S. Note that

V⌦2m
k,2` =

M

S✓[2m]

VS̄
k ⌦ VS

2`,

where VS̄
k ⌦ VS

2` is the subspace of V⌦2m
k,2` consisting of the tensors

N
i2[2m] ci

with ci 2 Vk if i 2 S̄ and ci 2 V2` if i 2 S. For M 2 M2m, tS(M) is equal to the
projection of t(M) to VS̄

k ⌦ VS
2`. So we have that

t(M) 6= 0 if and only if there exists an S ✓ [2m] such that tS(M) 6= 0. (5.21)

Let l ` 2n be an even partition. Let R0
l ✓ Rl be the stabilizer of M =

{{2i � 1, 2i} | i 2 [n]} and let R0
l be a set of representatives of the cosets

Rl/R0
l. We have that

Â
r2R0

l
s2Cl

sgn(s)srM =
1

|R0
l|

Â
r2Rl
s2Cl

sgn(s)srM. (5.22)
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5.1. Proof of Theorem 4.6

So, by (3.6), we find that

hl(x) =
1

|C0
l|

Â
r2R0

l
s2Cl

sgn(s)xc(srM[M). (5.23)

We now turn to the proof of the proposition.

Proof op Proposition 5.3. The fact that the right-hand side of (5.18) is con-
tained in the kernel of t follows immediately from (5.13) and (5.17). It there-
fore suffices to show that, if l = (l1, . . . , lr) is an even partition of 2m and l
is a (k, 2`)-hook, then t(el M) 6= 0, where M = {{2i � 1, 2i} | i 2 [m]}.

Recall that Yl is the Young tableau of shape l with the standard filling. Let
S ✓ [2m] be the set consisting of the numbers contained in columns 1, . . . , 2`
in Yl. We will show that

[tS(el M), tS(M)] 6= 0. (5.24)

By (5.21) this implies that t(el M) 6= 0, as required.
Let R0

l ✓ Rl be the stabilizer of M in Rl and let R0
l be a set of coset

representatives of Rl/R0
l. To show (5.24), it suffices to show that

Â
r2R0

l
s2Cl

sgn(s)[tS(srM), tS(M)] 6= 0. (5.25)

by the linearity of t and by (5.22). Now let r 2 R0
l and s 2 Cl. If the

matching srM is not compatible with S, then tS(srM) = 0, by the definition
of tS. As srM is compatible with S if and only if rM is compatible with S,
we can compute (5.25) by only summing over those r 2 R0

l such that rM is
compatible with S.

Let us now choose R0
l in a convenient way. Let S1 := S̄ and S2 := S. For

i = 1, 2, let Xi be the set of cosets rR0
l such that rM is compatible with S and

such that (rM)[Si] = M[Si]. For i = 1, 2, let Ri be a set of representatives r0

of the cosets in Xi such that r0 acts trivially on Si. Now R1R2 ✓ S2m is a set
of representatives of the cosets rR0

l such that rM is compatible with S. We
extend this set of representatives to a full set of representatives R0 of Rl/R0

l.
For i = 1, 2, let Ci be the subgroup of Cl consisting of the permutations s

such that s acts trivially on Si. Then C1C2 = Cl.
Finally, let M1 = M[S] and let M2 = M[S̄] (note that, for i = 1, 2, the

non-identity elements of Ri and Ci act non-trivially on Mi). We find that

Â
r2R0

l
s2Cl

sgn(s)
⇥
tS(srM), tS(M)

⇤
(5.26)

= (�1)|S|/2� Â
r12R1
s12C1

sgn(s1)(�2`)c(s1r1 M1[M1)
�
·
�

Â
r22R2
s22C2

sgn(s2)kc(s2r2 M2[M2)
�
.
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This follows from explicitly computing the form h·, ·i on positions in S and
computing the form (·, ·) on the positions in S̄, similar to what we did in the
proof of Theorem 4.5.

To show that (5.26) is non-zero we use Theorem 3.3 by Hanlon and Wales.
Let µ = (µ1, . . . , µr) with µi = min{2`, li} for i 2 [r]. Let n = (n1, . . . , nk) with
ni = max{0, li � 2`} for i 2 [k] (if one of the ni equals 0 then we disregard it).
Then µ is an even partition of |S| and n is an even partition of |S̄|. We find
that

Â
r12R1
s12C1

sgn(s1)(�2`)c(s1r1 M1[M1) = |C0
µ|hµ(�2`) 6= 0,

cf. (5.23). Similarly, we find that

Â
r22R2
s22C2

sgn(s2)kc(s2r2 M2[M2) = |C0
n |hn(k) 6= 0,

cf. (5.23). So we find that (5.26) is non-zero. This proves Proposition 5.3.

We first derive a corollary from this proposition before proving the theo-
rem.

Corollary 5.4. Let n 2 N. If n  m and l ` 2n is in B(k, 2`), then

t( Â
r2Rl
s2Cl

sgn (s)srM) = 0,

where M = {{2i � 1, 2i} | i 2 [m]} and where we view S2n as a subgroup of S2m
acting on [2n].

Proof. For w 2 N, write t2w for the map t : CM2w ! V⌦2w
k,2` and write M2w

for the perfect matching {{2i � 1, 2i} | i 2 [w]} on [2w]. Let n, m 2 N with
n  m and let l ` 2n be in B(k, 2`). We find that

t( Â
r2Rl
s2Cl

sgn(s)srM) = Â
r2Rl
s2Cl

sgn(s)t2m(srM2m)

= Â
r2Rl
s2Cl

sgn(s)t2n(srM2n)⌦ t2m�2n(M2m�2n)

= t2n( Â
r2Rl
s2Cl

sgn(s)srM2n)⌦ t2m�2n(M2m�2n) = 0,

where the last equality follows from Proposition 5.3. This proves the corollary.

We are now ready to prove Theorem 4.6.
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5.1.4 Finishing the proof of Theorem 4.6

Recall that for a graph G = (V, E), n 2 N and u : [2n] ! V, we defined

Gu := (V, E [ {{u(2i � 1), u(2i)} | i 2 [n]}). (5.27)

Let k, ` 2 N and let h 2 (SVk ⌦
V

V2`)
⇤. Let n 2 N and let l ` 2n with l 2

B(k, 2`). To prove Theorem 4.6, it suffices to show that for a graph G = (V, E)
together with a map u : [2n] ! V, we have

Â
r2Rl
s2Cl

sgn(s)ph(Gu�s�r) = 0.

So we fix a graph G = (V, E) and a map u : [2n] ! V. As p(G)(h) = ph(G) it
suffices to show that

Â
r2Rl
s2Cl

sgn(s)p(Gu�s�r) = 0. (5.28)

Let D = (d1, . . . , dr) be the degree sequence of Gu and let 2m = Âr
i=1 di. Let

M = {{2i � 1, 2i} | i 2 [2m]} and let N 2 M2m be such that µD(N) = Gu.
Let p 2 S2m such that pN = M and such that the edge of N corresponding to
{u(2i � 1), u(2i)} is mapped to {2i � 1, 2i} for each i 2 [2n]. Then

µD(p
�1srpN) = Gu�s�r for all (s, r) 2 Cl ⇥ Rl. (5.29)

So we find that

Â
r2Rl
s2Cl

sgn(s)p(Gu�s�r) = sD(t( Â
r2Rl
s2Cl

sgn(s)p�1srpN)) (5.30)

= sD(p
�1 · t( Â

r2Rl
s2Cl

sgn(s)srM)), (5.31)

where the first equality follows from (5.29) and Lemma 5.1, and where the last
equality follows from the S2m-equivariance of t. By Corollary 5.4 we have

t( Â
r2Rl
s2Cl

sgn(s)srM) = 0,

as l 2 B(k, 2`) and n  m. So we see that (5.28) indeed holds. This proves
Theorem 4.6.

5.2 Proof of Theorem 4.4
In this section we prove Theorem 4.4. The proof is slightly different from
the proof given in [31], but uses the same ideas. The proof uses the invariant
theory of the symplectic group and is inspired by the proof of [10, Theorem 1].
We restate Theorem 4.4. Recall the definition of Gu given in (5.27).
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Theorem. Let ` 2 N. A graph parameter f : G ! C is the partition function of
an element h 2 (

V
V2`)

⇤ if and only if f (∆) = 1, f (�) = �2`, f is multiplicative,
f (G) = 0 if G is not Eulerian and for each graph G = (V, E) and for each map
u : [2`+ 2] ! V, we have

Â
r2S2`+2

f (Gu�r) = 0. (5.32)

To prove this theorem, we will use the results we derived in Section 5.1
applied to the case k = 0. We briefly recall the relevant results and trans-
late these to our current situation. Let ` 2 N. We have a linear map p :
CG ! S(

V
0 V2`) = R such that p(G)(h) = ph(G) for each h 2 (

V
V2`)

⇤. For
m 2 N, we defined an S2m-equivariant linear map t : CM2m ! V⌦2m

2` . By
Proposition 5.3 we have the following description of the kernel of t:

ker(t) =
M

l=(l1,...,lr)`2m even
l1�2`+2

Sl. (5.33)

According to Corollary 5.4, applied to the partition l = (2`+ 2) of 2`+ 2, we
can derive from this that, if 2m � 2`+ 2, then

t( Â
r2S2`+2

rM) = 0, (5.34)

where M = {{2i � 1, 2i} | i 2 [m]} and where we view S2`+2 as a subgroup of
S2m acting on [2`+ 2].

Let D = (d1, . . . , dn) 2 Nd with d1 � · · · � dn such that Ân
i=1 di = 2m for

some m 2 N. We defined GD to be the set of graphs with degree sequence D
and RD to be the subspace of R consisting of elements ’n

i=1 ci with ci 2
Vdi V2`

for each i 2 [n]. The map p restricts to a map pD : CGD ! RD. In Lemma 5.1
we proved that for any k 2 CM2m we have pD(µD(k)) = sD(t(k)).

The space CG has a natural algebra structure, where the multiplication of
two graphs is given by their disjoint union. As the map p is multiplicative,
it is an algebra homomorphism. Let J2` be the ideal of CG spanned by non-
Eulerian graphs together with

⇢
Â

r2S2`+2

Gu�r

��� G = (V, E) 2 G, u : [2`+ 2] ! V
�

. (5.35)

The symplectic group Sp2` is the group of 2` ⇥ 2` matrices that preserve the
skew-symmetric bilinear form; i.e., for g 2 C2`⇥2`, g 2 Sp2` if and only if
hgx, gyi = hx, yi for all x, y 2 V2`. The action of Sp2` on V2` extends to an
action on

V
0 V2` and hence it also extends to an action on R.

We have the following proposition regarding the image and kernel of p.

Proposition 5.5. The image of p is equal to RSp2` , the space of Sp2`-invariant ele-
ments of R, and the kernel of p is equal to J2`.
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Proposition 5.5 actually implies Theorem 4.4. We give the proof of the
theorem using the proposition now, and the rest of this section is devoted to
proving the proposition.

Proof of Theorem 4.4. Let h 2 (
V

V2`)
⇤. Then ph is multiplicative, f (∆) = 1

and f (�) = �2`. By Proposition 5.5, we know that for any g = Âi giGi 2 J2`
with gi 2 C and Gi 2 G, p(g) = 0. Hence Âi gi ph(Gi) = Âi gi p(Gi)(h) =
p(g)(h) = 0. This shows that ph(G) = 0 if G is a non-Eulerian graph and

Â
r2S2`+2

ph(Gu�r) = 0,

for each graph G = (V, E) with u : [2`+ 2] ! V.
The proof of the ‘if’ direction is based on a beautiful, and by now, well-

known idea of Szegedy, cf. [39]; see also [10]. We will give the proof.
The idea is to use Hilbert’s Nullstellensatz to find a solution h 2 (

V
V2`)

⇤ to
the set of equations f (G) = p(G)(h), with G 2 G. Since f is multiplicative and
maps J2`, the kernel of p, to zero, there is a unique algebra homomorphism
f̂ : im (p) = RSp2` ! C such that f = f̂ � p.

If there is no solution h 2 (
V

V2`)
⇤ to the set of equations f (G) = p(G)(h),

then, by Hilbert’s Nullstellensatz, 1 is contained in the ideal generated by
f (G) � p(G). In other words, there exist G1, . . . , Gn and r1, . . . , rn 2 R such
that

1 =
n

Â
i=1

ri( f (Gi)� p(Gi)). (5.36)

As the image of p is equal to RSp2` , applying the Reynolds operator of Sp2`
to both sides of (5.36), we may assume that each ri belongs to RSp2` = im (p)
and hence is equal to p(hi) for some linear combination hi of graphs. Now
applying f̂ to both sides of (5.36) we obtain

1 =
n

Â
i=1

f̂ (p(hi))( f (Gi)� f̂ (p(Gi))) =
n

Â
i=1

f̂ (p(hi))( f (Gi)� f (Gi)) = 0,

a contradiction. This finishes the proof.

The rest of this section is devoted to proving Proposition 5.5. The action of
Sp2` respects RD, for any degree sequence D. So to prove Proposition 5.5, it
suffices to show that

im(pD) = RSp2`
D and ker(pD) = J2` \ CGD (5.37)

for each degree sequence D = (d1, . . . , dn). This is trivial if at least one of
d1, . . . , dn is odd. So for the rest of the proof we fix D = (d1, . . . , dn) 2 Nn

such that d1 � · · · � dn are all even. Let 2m = Ân
i=1 di.
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5.2.1 The image of p

We first show that RSp2`
D ✓ im(pD). To this end, let q 2 RSp2`

D . Then there
is a v 2 V⌦2m

2` with sD(v) = q, by the surjectivity of sD. The map sD is an
equivariant map for the natural action of Sp2` on V⌦2m

2` and the action on RD.
So by applying the Reynolds operator, we can assume that v is invariant under
Sp2`. It follows from the First Fundamental Theorem of invariant theory for
the symplectic group [13, Section 5.4] that

im(t) = (V⌦2m
2` )Sp2` . (5.38)

This shows that v is in the image of t. So there exists a k 2 CM2m such that
sD(t(k)) = q. By Lemma 5.1 we know that q = sD(t(k)) = pD(µD(k)). So
q 2 im(pD). This shows that indeed RSp2`

D ✓ im(pD).
Next we show that im(pD) ✓ RSp2`

D . To this end, let r 2 im(pD). Then there
is some g 2 CGD such that r = pD(g). By the surjectivity of µD there is some
k 2 CM2m such that µD(k) = g. Now t(k) is invariant under the action of
Sp2` by (5.38) and hence sD(t(k)) 2 RSp2`

D as sD is an Sp2`-equivariant map.
We have that r = pD(µD(k)) = sD(t(k)) by Lemma 5.1. So r 2 RSp2`

D . This
shows that im(pD) ✓ RSp2`

D .
This proves the first part of (5.37) and hence proves the first part of Propo-

sition 5.5.

5.2.2 The kernel of p

We first give an alternative description of ker(t).

Lemma 5.6. Let ` 2 N with m � ` + 1 and let M = {{2i � 1, 2i} | i 2 [m]}.
Then the kernel of t is equal to the span of

K =

⇢
p Â

r2S2`+2

rM
��� p 2 S2m

�
, (5.39)

where S2`+2 is the subgroup of S2m acting on [2`+ 2].

Proof. We first show that the span of K is contained in the kernel of t. Let
p 2 S2m. We see that

t(p Â
r2S2`+2

rM) = p · t( Â
r2S2`+2

rM) = 0,

where the first equality follows from the S2m-equivariance of t and where the
second equality follows from (5.34). So by the linearity of t we find that the
span of K is indeed contained in the kernel of t.
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We now prove the converse inclusion. By (5.33), it suffices to show, for any
element k 2 Sl with l = (l1, . . . , lr) ` 2m such that l1 � 2`+ 2, that k is in
the span of K. Recall that the module Sl is the S2m-module generated by

Â
r2Rl
s2Cl

sgn(s)srM.

Now we write Rl = [i2IriS2`+2, where {ri}i2I is a set of coset representatives
of Rl/S2`+2. We find that

Â
r2Rl
s2Cl

sgn(s)srM = Â
i2I

s2Cl

Â
r02S2`+2

sgn(s)srir
0M = Â

i2I
s2Cl

sgn(s)sri Â
r02S2`+2

r0M.

For every s 2 Cl and for every i 2 I we have that sri Âr02S2`+2
r0M is an

element of K. So we see that the kernel of t is contained in the span of K. This
proves the lemma.

Recall the definition of Pj given in (5.5). Let Q := SP1 ⇥ · · ·⇥ SPn ✓ S2m.
Let i, j 2 [n] such that |Pi| = |Pj|. Write Pi = {i1, . . . , ir} with i1 < · · · < ir and
write Pj = {j1, . . . , jr} with j1 < · · · < jr. Let ni,j = (i1, j1) . . . (ir, jr) 2 S2m
and let T ✓ S2m be the subgroup generated by the elements ni,j, for i, j 2 [n]
such that |Pi| = |Pj|. Note that G = TQ is the group of permutations in S2m

maintaining the partition {P1, . . . , Pn}.1 For a tensor v 2 V⌦2m
2` , we define

vG :=
1

|T||Q| Â
p12T

Â
p22Q

(p1p2) · v,

i.e., we apply the Reynolds operator of the group G to v. Now (V⌦2m
2` )G, the

subspace of G-invariant elements of V⌦2m
2` , is equal to {vG | v 2 V⌦2m

2` }. Note
that for any v 2 V⌦2m

2` we have that sD(vG) = sD(v). So sD restricts to a
surjective map from (V⌦2m

2` )G to RD, because sD is surjective. We will now
show that sD actually restricts to a bijection between (V⌦2m

2` )G and RD.
Note that (V⌦2m

2` )Q, the subspace of Q-invariant elements of V⌦2m
2` , is equal

to ⇢
1
|Q| Â

p22Q
p2 · v

��� v 2 V⌦2m
2`

�
,

which is linearly isomorphic to
Nn

i=1(
Vdi V2`). We identify (V⌦2m

2` )Q with
Nn

i=1(
Vdi V2`). As di is even for each i 2 [n], we have that the elements of T

act with sign 1 on V⌦2m
2` . So we find that (V⌦2m

2` )G is linearly isomorphic to
⇢

1
|T| Â

p12T
p1 · v

��� v 2
nO

i=1
(
^di V2`)

�
,

1In [31] we implicitly, and incorrectly, used the larger group Sn instead of the group T. The
current proof shows how to modify the proof in [31] to ensure correctness.
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which is isomorphic to ’n
i=1(

Vdi V2`) = RD. This shows that sD restricts to a
bijection between (V⌦2m

2` )G and RD.
Using a similar line of reasoning, we find that µD restricts to a bijection

between (CM2m)G and CGD, where (CM2m)G is the subspace of G-invariant
elements of CM2m.

Let us now show that

ker(pD) = µD(ker(t)). (5.40)

First note that if g 2 µD(ker(t)), then g = µD(k), for some k 2 ker(t), and
pD(g) = sD(t(k)) = 0, by Lemma 5.1. This shows that g 2 ker(pD) and
hence that µD(ker(t)) ✓ ker(pD).

For the converse inclusion, let g 2 ker(pD). Then there is a unique k 2
(CM2m)G such that µD(k) = g, because µD restricts to a bijection between
(CM2m)G and CGD. Note that t(k) 2 (V⌦2m

2` )G by the S2m-equivariance of
t. So 0 = pD(g) = sD(t(k)) implies that t(k) = 0 because sD restricts to
a bijection between (V⌦2m

2` )G and RD. This shows that g 2 µD(ker(t)) and
hence that ker(pD) ✓ µD(ker(t)). This proves (5.40).

We finally prove that ker(pD) = CGD \ J2`, which finishes the proof of
Proposition 5.5. By (5.40), this is equivalent to showing that µD(ker(t)) =
CGD \ J2`. To show this we will relate the elements of K in (5.39) to graphs
G = (V, E) with a map u : [2`+ 2] ! V.

We first show that µD(ker(t)) ✓ CGD \ J2`. Let g 2 µD(ker(t)). By
Lemma 5.6 and linearity, we may assume that g = µD(k) with

k = p Â
r2S2`+2

rM,

for some p 2 S2m, where M = {{2i � 1, 2i} | i 2 [m]}. Let (V, E0) = µD(pM).
We define

E := E0 \ {{µD(p(2i � 1)), µD(p(2i))} | i 2 [`+ 1]}.

Now let G = (V, E) and let u : [2`+ 2] ! V be defined, for i 2 [2`+ 2], by
u(i) := µD(p(i)). For each r 2 S2`+2, we see that Gu�r = µD(prM). So we
find that

µD(k) = Â
r2S2`+2

Gu�r.

This shows that g 2 J2` \ GD and hence that µD(ker(t)) ✓ CGD \ J2`.
For the converse inclusion, let g 2 J2` \ GD. By (5.35), we may assume

that
g = Â

r2S2`+2

Gu�r,

where G = (V, E) is a graph and where u : [2`+ 2] ! V is a map such that
Gu has degree sequence D. Choose N 2 M2m such that µD(N) = Gu. Let
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p 2 S2m be a permutation such that p�1N = M, where M = {{2i � 1, 2i} |
i 2 [m]}, and such that u(i) = µD(p(i)) for each i 2 [2`+ 2].

For each r 2 S2`+2, we find that µD(prp�1N) = Gu�r. This shows that

g = Â
r2S2`+2

Gu�r = Â
r2S2`+2

µD(prp�1N) = µD(p Â
r2S2`+2

rM).

So g 2 µD(ker(t)) by Lemma 5.6 and hence CGD \ J2` ✓ µD(ker(t)). This
proves the second part of (5.37) and hence proves the second part of Proposi-
tion 5.5.

5.3 Connections with the invariant theory of the or-
thosymplectic supergroup

In the previous section we have seen how the invariant theory of the sym-
plectic group is related to skew partition functions. In this section we will
sketch how the invariant theory of the orthosymplectic supergroup is related
to mixed partition functions. Let us first formulate a conjecture.

Conjecture 5.7. Let k, ` 2 N. Then a graph parameter f : G ! C is the partition
function of an element h 2 (SVk ⌦

V
V2`)

⇤ if and only if f (�) = k � 2`, f (∆) = 1,
f is multiplicative and f (Jk,2`) = 0.

Note that Theorem 4.6 gives the forward implication in this conjecture.
We hope to prove the converse implication using the invariant theory of the
orthosymplectic supergroup. We sketch some of the ideas.

Lehrer and Zhang gave the FFT and the SFT of invariant theory for the or-
thosymplectic supergroup in [20] and [21]. They prove a more general state-
ment than we need. For a direct reference, see [42]. We also refer to [42]
for more background on the orthosymplectic supergroup. We first give the
necessary background on super vector spaces.

A super vector space W is a vector space with a Z/2Z grading, i.e., W =
W0 � W1. For a homogeneous element w 2 Wi we define the parity |w| of
w to be i. The subspace W0 is also referred to as the even part of W and
the subspace W1 is also referred to as the odd part of W. The space End(W)
naturally inherits the structure of a super vector space: we write End(W) =
End(W)0 �End(W)1, where End(W)0 consists of those X 2 End(W) such that
|Xw| = |w| for all homogeneous w 2 W and where End(W)1 consists of those
X 2 End(W) such that |Xw| = |w|+ 1 mod 2 for all homogeneous w 2 W.

The super symmetric algebra S(W) over the super vector space W is defined
as the quotient of the tensor algebra TW by the ideal generated by elements of
the form x ⌦ y � (�1)|x||y|y ⌦ x, for x, y homogeneous elements of W. The al-
gebra S(W) inherits a super structure: for homogeneous x1, . . . , xn, the image
of x1 ⌦ · · ·⌦ xn under the quotient map has parity Ân

i=1 |xi|.
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We briefly recall some relevant linear algebra. Let k, ` 2 N. Recall that
Vk is equipped with a symmetric bilinear form (·, ·) and that V2` is equipped
with a skew-symmetric bilinear form h·, ·i. We extended these bilinear forms
to a bilinear form [·, ·] on Vk,2`. In the previous section we have seen that Sp2`,
the symplectic group, acts on

V
V2`. The orthogonal group Ok is the group of

k ⇥ k matrices that preserve the symmetric bilinear form; i.e., for g 2 Ck⇥k,
g 2 Ok if and only if (gx, gy) = (x, y) for all x, y 2 Vk. The orthogonal group
Ok has a natural action on SVk. Combining these two actions, we find that the
group Ok ⇥ Sp2` acts on R = S(SVk ⌦

V
0 V2`).

If ` = 0, then the image of p is exactly the space of Ok-invariant elements in
S(SVk) and if k = 0, then the image of p is exactly the space of Sp2`-invariant
elements of S(

V
0 V2`). For k, ` both positive, we find that the image of p is

still contained in the space of Ok ⇥ Sp2`-invariant elements of S(SVk ⌦
V

0 V2`),
but unfortunately equality does not hold. This is where the orthosymplectic
supergroup comes into play.

We view Vk,2` = Vk � V2` as a super vector space where Vk is the even part
of Vk,2` and V2` is the odd part of Vk,2`. The orthosymplectic Lie superalgebra
osp(Vk,2`) ✓ End(Vk,2`) is the Lie superalgebra preserving the form [·, ·], i.e.,
for each X 2 osp(Vk,2`), we have [Xv, w]� (�1)|X||v|[v, Xw] = 0 for all v, w 2
Vk,2`, where we assume all elements involved to be homogenous. We interpret
the orthosymplectic supergroup OSp(Vk,2`) as a pair (Ok ⇥ Sp2`, osp(Vk,2`)).
The action of g 2 Ok ⇥ Sp2` on V⌦2m

k,2` is given by the diagonal action. So
if v = v1 ⌦ · · · ⌦ v2m 2 V⌦2m

k,2` , then g · v = gv1 ⌦ · · · ⌦ gv2m. The action of
X 2 osp(Vk,2`) on v is given by

X · v =
2m

Â
i=1

(�1)|X|(Âi�1
j=1 |vj |)v1 ⌦ · · ·⌦ vi�1 ⌦ Xvi ⌦ vi+1 ⌦ · · ·⌦ v2m, (5.41)

where we assume all elements involved to be homogeneous. If M is an
OSp(Vk,2`)-module, then MOSp(Vk,2`), the subspace of OSp(Vk,2`)-invariants of
M is defined as

{v 2 M | X · v = 0 and g · v = v for all X 2 osp(Vk,2`) and all g 2 Ok ⇥ Sp2`}.

It follows from the work of Lehrer and Zhang [20] that the image of t in (5.9)
is actually equal to (V⌦2m

k,2` )OSp(Vk,2`).
We view S(SVk ⌦

V
0 V2`) as a linear subspace of S(S(Vk,2`)). There is a

natural action of Ok ⇥ Sp2` on S(S(Vk,2`)). Similar to what we have seen in
the previous section, we can describe S(S(Vk,2`)) as a direct sum of quotients
of V⌦2m

k,2` by subgroups of S2m, where m runs through N. As the action of
osp(Vk,2`) commutes with the S2m-action on V⌦2m

k,2` , there is a natural action of
osp(Vk,2`) on S(S(Vk,2`)).

If we project the space of (Ok ⇥ Sp2`, osp(Vk,2`))-invariants in S(S(Vk,2`))
to S(SVk ⌦

V
0 V2`), then we get exactly the image of p. In future work we hope
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that by using a similar argument as in the proof of Proposition 5.5 we can use
the Nullstellensatz to show that the reverse statement in Conjecture 5.7 indeed
is true.
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Chapter 6

Partition functions and the
algebra of fragments

In this chapter we prove Theorem 4.3. One direction of follows directly from
Theorem 4.5. For the other direction, we make use of Theorem 4.4 and the
algebra of fragments, as defined by Schrijver in [38] (the concept goes back
to [12]). This chapter is based on [31].

6.1 The algebra At

We now give an algebra structure to the fragments. Let t 2 N. Recall that
a 2t-fragment is a graph with 2t labeled vertices of degree 1 labeled 1, . . . , 2t.
The set of 2t-fragments is denoted by F2t. A labeled vertex of a fragment is
referred to as an open end.

It is convenient to refer to the open ends labeled 1, . . . , t of elements of F2t
as the left open ends and we relabel these as l1, . . . , lt; the open ends labeled
t + 1, . . . , 2t are referred to as right open ends and we relabel these as r1, . . . , rt.

Let G be a graph with two vertices v1 and v2 of degree 1. The graph
obtained by gluing v1 and v2 is the graph obtained from G by identifying v1
and v2 and subsequently smoothening the identified vertex. If we glue labeled
vertices in a fragment, then we disregard the labeling of the identified vertices
after the gluing operation.

For F1, F2 2 F2t, let F1F2 be the 2t-fragment obtained from the disjoint
union of F1 and F2 by gluing the open end labeled ri of F1 and the open
end labeled li of F2, for i = 1, . . . , t. We extend this bilinearly to obtain an
associative multiplication on CF2t, making CF2t into an associative algebra.
Notice that this extends the algebra structure we defined on CG = CF0, where
the multiplication of two graphs is given by their disjoint union. The unit, 1t,
in CF2t is given by t disjoint edges e1, . . . , et such that the endpoints of ei are
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labeled li and ri. Following [12], we sometimes call elements of CF2t quantum
fragments, and quantum graphs if t = 0. Recall that, for F1, F2 2 F2t, we defined
F1 ⇤ F2 to be the graph obtained by taking the disjoint union of F1 and F2 and
gluing equally labeled open ends.

Let f : G ! C be a multiplicative graph parameter. We define

I2t := {g 2 CF2t | f (g ⇤ F) = 0 for all F 2 F2t}.

Then I2t is a two-sided ideal in CF2t. So

At := CF2t/I2t

is an associative algebra. We have a non-degenerate symmetric bilinear form
on At defined by (x, y) 7! f (x ⇤ y) for x, y 2 At (this is well-defined as f (x ⇤ y)
is independent of the choice of representatives x and y). Assume that there
exists an r 2 R such that rk(Mf ,2t)  r2t and for each t. Note that I2t can be
identified with the kernel of the matrix Mf ,2t and hence

dim(At) = rk(Mf ,2t)  r2t (6.1)

for each t 2 N. Define t : At ! C, for x 2 At, by

t(x) := f (x ⇤ 1t). (6.2)

Using this function t and the fact that dim(At) is bounded by r2t for each t,
Schrijver [38, Propositions 5 and 6] showed that the algebras At have some
useful properties that we will use in the proof of Theorem 4.3. Recall that an
idempotent in an algebra A is an element x 2 A such that x2 = x.

6.2 Proof of Theorem 4.3

We recall the statement of the theorem.

Theorem. A graph parameter f : G ! C is a skew partition function if and only if
f (∆) = 1, f (�)  0 and

rk (Mf ,2t)  f (�)2t (6.3)

for each t 2 N.

Proof. We first prove the forward direction. If f is a skew partition function,
then there is an ` 2 N and an element h 2 (

V
V2`)

⇤ such that f is the partition
function of h. Then f (∆) = 1, f (�) = �2`  0 and (6.3) holds for each t 2 N

by Theorem 4.5.
Let us now prove the other direction. Let f : G ! C be a graph parameter

such that f (∆) = 1, f (�)  0 and such that (6.3) holds for each t 2 N. As the
rank of Mf ,0 is at most 1 and f (∆) = 1, f is multiplicative. If f (�) = 0, then
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Mf ,2t = 0 for all t > 0, so f (G) = 0 if G 6= ∆. Hence f is the partition function
of the unique h 2 (

V
V2`)

⇤ with ` = 0. So we can assume that f (�) < 0. It
follows from Corollary 3.5 that there exists an ` 2 N>0 such that f (�) = �2`.

In Proposition 5 in [38] Schrijver showed that the algebra At is semisimple
for each t 2 N. Let us now show that

if x is a non-zero idempotent in At, then
⇢

t(x) 2 N<0 if t is odd,
t(x) 2 N>0 if t is even. (6.4)

This follows almost directly from Proposition 6 in [38] by Schrijver. It follows
from the proof of Proposition 6 in [38] that for an idempotent x of At we have
that t(x) 2 Z and

|t(x)|  | f (�)t|. (6.5)

Note that t(1t) = f (�)t. If x is an idempotent of At, then 1t � x is also an
idempotent. For an idempotent x, we find that

t(1t � x) = t(1t)� t(x) = f (�)t � t(x). (6.6)

If t is odd, then (6.6) and (6.5) imply that t(x)  0. If t is even, then (6.6) and
(6.5) imply that t(x) � 0. Schrijver furthermore shows that for a non-zero
idempotent x, we have t(x) 6= 0. This shows (6.4).

Let k, m 2 N. Then, following [38], for p 2 Sm, let Pk,p be the 2km-fragment
consisting of km disjoint edges ei,j for i = 1, . . . , m and j = 1, . . . , k, where ei,j
connects the vertices labeled j + (i � 1)k and km + j + (p(i)� 1)k. We define
qk,m to be

qk,m := Â
p2Sm

Pk,p .

Let o(p) be the number of orbits of the permutation p. If m > (2`)k and k is
odd, we have

t(qk,m) = Â
p2Sm

((�2`)k)o(p) = (�1)m Â
p2Sm

(�1)m�o(p)(2`)ko(p)

= (�1)m Â
p2Sm

sgn(p)((2`)k)o(p) = 0, (6.7)

since Âp2Sm sgn(p)xo(p) = x(x � 1) · · · (x � m + 1).
We apply Theorem 4.4 to show that f is a skew partition function. Recall

the definition of Gu given in (5.27). Using (6.7), we first show that, for each
graph G = (V, E) and u : [2`+ 2] ! V, f satisfies

Â
r2S2`+2

f (Gu�r) = 0. (6.8)

Let m = 2`+ 2 and consider q1,m. Then, by (6.7), we have t(q1,m) = 0. Since
1

m! q1,m is an idempotent, (6.4) implies that q1,m = 0 in A`+1. In other words,
q1,m 2 Im.
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Now let G = (V, E) be a graph and let u : [m] ! V be such that Gu is
Eulerian. Let F 2 Fm be obtained from G as follows: for each i 2 [m] add an
open end vi labeled i to the graph and add the edge {vi, u(i)} to the graph.
Then for all r 2 Sm, we have that F ⇤ P1,r = Gu�r. Hence, as q1,m 2 Im,

0 = f (F ⇤ q1,m) = Â
r2Sm

f (Gu�r), (6.9)

proving (6.8).
Finally, we show that f (G) = 0 if G is non-Eulerian. Let G = (V, E) be a

graph with v 2 V such that d(v) = k is odd. Define fragments F0, F1 2 Fk as
follows: F0 has k + 1 vertices, of which k are open ends and of which one has
degree k and is a neighbor of all open ends (i.e., it is a star of which all the
vertices of degree 1 are labeled); F1 is obtained from G by removing v from
G and for each loop {v, v} at v adding an edge between two open ends to
G and for each non-loop edge {u, v} adding an edge {u, w}, where w is an
open end, to G. Then F0 ⇤ F1 = G. Now take m such that m > (2`)k. Then
1

m! qk,m is an idempotent and by (6.7), t(qk,m) = 0, and so, by (6.4), qk,m is
actually 0 in Akm. Now, take m copies of both F0 and F1 and create a fragment
F 2 Fkm from their disjoint union as follows: the end labeled j in Fi gets label
ikm + j + k(n � 1) in the n-th copy of Fi. Then, as qk,m 2 Imk,

0 = f (F ⇤ qk,m) = m!( f (F0 ⇤ F1)
m) = m!( f (G)m).

So f (G) = 0. Now it follows from Theorem 4.4 that f is indeed a skew
partition function.
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Chapter 7

Reflection positivity for
3-graphs

There is a connection between invariants for 3-graphs and knot invariants,
but we will not go into detail here. For more information, see the book by
Chmutov, Duzhin and Mostovoy [9]. In this chapter we prove a theorem on 3-
graphs similar to Theorem 2.2 by Szegedy. We follow an approach by Schrijver
that makes use of a theorem of Procesi and Schwarz [35]. This chapter is based
on [29].

7.1 Partition functions and k-joins for 3-graphs

We restrict ourselves to R, but the following concepts can be defined over any
field. A 3-graph is a non-empty connected cubic graph with at each vertex a
cyclic order of the edges incident with it (a cubic graph is a graph of which
each vertex has degree 3). The collection of 3-graphs is denoted by T . The
graph � is also an element of T . We let T 0 be the collection of finite disjoint
unions of 3-graphs.

For n 2 N, the linear space of tensors in (Rn)⌦3 that are invariant under
the natural action of the cyclic group C3 on (Rn)⌦3 is denoted by ((Rn)⌦3)C3 .
An element c = (cijk)

n
i,j,k=1 of ((Rn)⌦3)C3 is called a 3-graph edge coloring model

over R . For any 3-graph G = (V, E) and 3-graph edge coloring model c 2
((Rn)⌦3)C3 , define

fc(G) := Â
f:E![n]

’
v2V

cf(e1)f(e2)f(e3), (7.1)

where, when v 2 V is chosen, e1, e2, e3 denote the edges incident with v, in
cyclic order. This is well-defined as c 2 ((Rn)⌦3)C3 . Now fc is the partition
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function of the 3-graph edge coloring model c = (cijk)
n
i,j,k=1. It follows directly

that fc(�) = n.
Let R[T ] denote the commutative R-algebra freely generated by the col-

lection of 3-graphs. Any function from T to any R-algebra can be extended
uniquely to an algebra homomorphism on R[T ]. We identify the product
G1 · · · Gk of 3-graphs in R[T ] with the disjoint union of G1, . . . , Gk, which is
a cubic graph with a cyclic ordering at each vertex. So the collection T 0 of
cubic graphs with a cyclic ordering at each vertex corresponds to the set of
monomials in R[T ].

Let k 2 N. For G and H in T 0, the k-join G k
_ H is the element of R[T ]

obtained as follows. We first take the disjoint union of G and H. Then we
choose distinct vertices u1, . . . , uk of G and distinct vertices v1, . . . , vk of H, and,
for i = 1, . . . , k we apply the following transformation, where the orientations
at vi and ui are clockwise

vi ui 1
3

 

+

!
.+

Figure 7.1: The join operation for 3-graphs

Note that we join the two triples of edges in cyclic order. We denote this
element of R[T ] by Gu1,...,uk ⇤ Hv1,...,vk . Finally, G k

_ H is obtained by adding
up these elements of R[T ] over all choices of distinct u1, . . . , uk 2 V(G) and
distinct v1, . . . , vk 2 V(H):

G k
_ H := Â

u1,...,uk2V(G)
Â

v1,...,vk2V(H)

Gu1,...,uk ⇤ Hv1,...,vk . (7.2)

A function f : T ! R is called weakly reflection positive if for each k 2 N the
T 0 ⇥ T 0 matrix Mf ,k defined by Mf ,k(G, H) := f (G k

_ H) is positive semidefi-
nite.

We can extend G k
_ H bilinearly to a bilinear function R[T ] ⇥ R[T ] !

R[T ]. Then weak reflection positivity means that f (g k
_ g) � 0 for each

g 2 R[T ] and each k 2 N. We can now state our main theorem on 3-graphs.

Theorem 7.1. A function f : T ! R is the partition function of some 3-graph edge
coloring model over R if and only if f is weakly reflection positive.

Let us see how this is related to Theorem 2.2 by Szegedy. Recall that for
t 2 N a t-fragment is a graph with t labeled vertices of degree one labeled
1, . . . , t. The t-th edge connection matrix of a parameter f is indexed by t-
fragments with entry f (F1 ⇤ F2) at the (F1, F2) position. We could give a similar
definition of fragment in the 3-graph setting: a connected graph with t vertices
of degree one labeled 1, . . . , t such that all unlabeled vertices have degree three
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7.1. Partition functions and k-joins for 3-graphs

and a cyclic ordering of the edges incident with it. The connection matrix is
then obtained by gluing equally labeled vertices and then smoothening the
vertices of degree two to obtain a 3-graph. Following an argument of Schrijver
[35, Corollary 1a], we can write G1

t
_ G2 for any two 3-graphs G1, G2 as

G1
t
_ G2 = (

1
3t Â Fi) ⇤ (

1
3t Â Fj),

where the sums run over certain sets of 3t-fragments. This shows that the
characterization using t-joins is stronger than the one given using t-fragments,
as the condition is weaker.

Before proving the theorem, we first derive a corollary for real-valued
weight systems. If f : T ! R is a function that respects the relation G = �G0,
where G0 is obtained from G by reversing the cyclic order at one vertex of
G, then we say that f satisfies the AS-relation. If the function f respects the
relation in Figure 7.2 below, then we say that f satisfies the IHX-relation. In
Figure 7.2 the cyclic ordering of the edges incident with a vertex is clockwise
and we assume that the graph remains unchanged outside of the drawing.

= �

Figure 7.2: The IHX relation

A function f : T ! R is a called a (real-valued) weight system if it satisfies
both the AS-relation and IHX-relation. Key instances of weight systems are the
Lie algebra weight systems: the partition functions fc of the structure tensor c of a
finite-dimensional Lie algebra g, expressed in a basis that is orthonormal with
respect to some symmetric ad-invariant bilinear form on g. For c 2 ((Rn)⌦3)C3

this amounts to c satisfying the following two properties:

(i) ckij = �ckji for all k, i, j 2 [n], (7.3)

(ii) Â
a

cijacakl + cilacajk + cikacalj = 0 for all i, j, k, l 2 [n]. (7.4)

The first property corresponds to the Lie bracket being antisymmetric, the
second to it satisfying the Jacobi identity. This roots in the work of Penrose
[25], Murphy [23], Bar-Natan [2] and Kontsevich [19].

Corollary 7.2. A function f : T ! R is a Lie algebra weight system if and only if f
is weakly reflection positive and satisfies f ( ) = � f ( ) and f ( ) = 2 f ( ).
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Proof. This follows from Theorem 7.1, as for any n and any c 2 ((Rn)⌦3)C3 ,
if fc( ) = � fc( ), then c is an alternating tensor, as fc( ) = � fc( ) is
equivalent to

Â
i,j,k

(cijk + cikj)
2 = 0, and hence to: cikj = �cijk for all i, j, k. (7.5)

This shows that (7.3) is satisfied. Moreover, if c is alternating, then fc( ) =
2 fc( ) gives us

Â
i,j,k,l

�
Â
a
(cijacakl + cilacajk + cikacalj)

�2
= 0.

This shows that (7.4) is also satisfied.

The rest of this chapter is devoted to proving Theorem 7.1. In Lemma 7.4
we will see that a weakly reflection positive function f : T ! R has f (�) 2 N

using Theorem 3.3 by Hanlon and Wales. Then, using the invariant theory of
the orthogonal group and a theorem by Processi and Schwarz [26], we prove
Theorem 7.1. Before deciding on the value of �, we first prove a lemma on
k-joins.

7.2 A lemma on k-joins

In the following lemma, J denotes the 3-graph , and Ji is the i-th power of
J, that is, the disjoint union of i copies of .

Lemma 7.3. For any k and any G 2 T 0 with n vertices:
✓

n
k

◆
G = 2�kk!�2

k

Â
i=0

(�1)k�i
✓

k
i

◆
(G k

_ Ji)Jk�i. (7.6)

Proof. For each i, let G k
_ Ji be equal to the sum describing G k

_ Ji in (7.2) (with
H := Ji) restricting the summation to those v1, . . . , vk where each connected
component of Ji contains at least one vertex among v1, . . . , vk. So for each i,
G k

_ Ji = Âi
j=0 (

i
j)(G

k
_ Jj)Ji�j. Hence

k

Â
i=0

(�1)k�i
✓

k
i

◆
(G k

_ Ji)Jk�i =
k

Â
i=0

(�1)k�i
✓

k
i

◆ i

Â
j=0

✓
i
j

◆
(G k

_ Jj)Jk�j =

k

Â
j=0

✓
k
j

◆
(G k

_ Jj)Jk�j
k

Â
i=j

(�1)k�i
✓

k � j
k � i

◆
= G k

_ Jk = 2kk!2
✓

n
k

◆
G,

the last equality because u1, . . . , uk can be chosen in (n
k)k! ways and v1, . . . , vk

in 2kk! ways, while each term of G k
_ Jk is equal to G.
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7.3 The value of f on �
This section is devoted to proving the following lemma.

Lemma 7.4. If f : T ! R is weakly reflection positive, then f (�) 2 N.

Let f : T ! R be weakly reflection positive. A direct computation shows

(J � J0)
2
_ (J � J0) =

2
3
� (�� 1)(�� 2). (7.7)

By the weak reflection positivity of f this implies f (�)( f (�) � 1)( f (�) �
2) � 0, hence f (�) � 0. To prove that f (�) is integer, define k := d f (�)e+
1.

Recall that M6k is the set of perfect matchings on [6k]. To each M 2 M6k
we can associate a graph GM 2 T 0 on [2k] by identifying the vertices 3j �
2, 3j � 1, 3j of ([6k], M) for j 2 [2k], with the cyclic order at j in the following
way

3j � 2 3j � 1 3j j . (7.8)

For all M, N 2 M6k, GM
2k
_ GN is a polynomial in �, since both GM and

GN have 2k vertices. To describe this polynomial, we recall the natural action
of the symmetric group S6k on M6k: for M 2 M6k and p 2 S6k we define
pM = {p(e) | e 2 M}. This induces an action on RM6k and makes RM6k an
S6k-module.

For j 2 [2k], let Bj be the group of cyclic permutations of {3j� 2, 3j� 1, 3j},
and define B := B1B2 · · · B2k. Let D be the group of permutations d 2 S6k for
which there exists p 2 S2k such that d(3j � i) = 3p(j)� i for each j = 1, . . . , 2k
and i = 0, 1, 2. Set Q := BD, which can be seen to be a group again.

For M, N 2 M6k, recall that c(M [ N) denotes the number of connected
components of ([6k], M [ N). Then, by definition of the operation 2k

_ , we have

GM
2k
_ GN = (2k)!3�2k Â

t2Q
�c(M[tN). (7.9)

We briefly recall some concepts from Chapter 3. For p 2 S6k, let Pp be
the M6k ⇥M6k permutation matrix corresponding to p; that is, Ppw = pw
for each w 2 RM6k . For any x 2 R, let A(x) and AQ(x) be the M6k ⇥M6k
matrices defined by

(A(x))M,N := xc(M[N) and AQ(x) := Â
t2Q

A(x)Pt , (7.10)
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for M, N 2 M6k. Note that each Pp commutes with A(x), as for all M, N 2
M6k one has c(pM [ pN) = c(M [ N), implying A(x) = PT

p A(x)Pp =
P�1

p A(x)Pp .
Define

h(x) :=
k�1

’
i=0

(x � i)(x � i + 2)(x + 2i + 4). (7.11)

We will show that

|Q|h(x) is an eigenvalue of AQ(x). (7.12)

This implies the lemma, since AQ( f (�))M,N = (2k!)�132k f (GM
2k
_ GN), by

(7.9). Hence, by the weak reflection positivity of f , AQ( f (�)) is positive
semidefinite. So h( f (�)) � 0, hence, as k � 1 = d f (�)e and as k � 1 is the
largest zero of h(x), with multiplicity 1, we know f (�) = k � 1,

To prove (7.12), we will give an eigenvector u of AQ(x) belonging to
|Q|h(x). We derive u from the eigenvector v of A(x) belonging to h(x) as
described by Theorem 3.3. Consider the following Young tableau, associated
to the partition (2k + 4, 4, . . . , 4| {z }

k�1

) of 6k:

T :=

1 1 2 2 3 3 6 6 9 9 · · · 3k 3k
4 4 5 5
7 7 8 8
...

...
...

...
3k � 2 3k � 2 3k � 1 3k � 1

,

where i := 3k + i for i 2 [3k].
Let F be the perfect matching in M6k with edges {i, i}, for i 2 [3k]. For

i = 1, . . . , 4, let Ki denote the set of elements in the i-th column of T and let
Ci be the subgroup of S6k that permutes the elements of Ki. Then C is the
group C1C2C3C4. Similarly, for i = 1, . . . , k, let Ri be the subgroup of S6k that
permutes the numbers in row i of T and leaves all other numbers fixed, and
R is the group R1 · · · Rk. Define v and u in RM6k by

v := Â
s2C,r2R

sgn(s)srF and u := Â
t2Q

tv, (7.13)

identifying an element of M6k with the corresponding basis vector in RM6k .
By Theorem 3.3, v is an eigenvector of A(x) with eigenvalue h(x). Hence

AQ(x)u = Â
t0 ,t2Q

APt0Ptv = Â
t0 ,t2Q

Pt0Pt Av = h(x) Â
t0 ,t2Q

Pt0Ptv = |Q|h(x)u.

(7.14)
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So to prove (7.12), and hence the lemma, it suffices to show that u is non-zero.
To this end we show that the coefficient uF of F in u is non-zero. Note that

uF = Â
t2Q

(tv)F = Â
t2Q

Â
s2C,r2R

sgn(s)(tsrF)F = Â
t2Q,s2C,r2R

tsrF=F

sgn(s). (7.15)

So it suffices to show that for any t 2 Q, s 2 C, and r 2 R, if tsrF = F then
sgn(s) = 1. As Q is a group, equivalently it suffices to show for any t 2 Q,
s 2 C, r 2 R:

if tF = srF, then sgn(s) = 1. (7.16)

Choose t 2 Q, s 2 C, and r 2 R with tF = srF. Let s = s1s2s3s4 with si 2 Ci
(i = 1, . . . , 4) and define M := tF. Let z 2 S6k be defined by z(i) := i + 1 if
3 does not divide i and z(i) := i � 2 if 3 divides i. So z3 = id and zF = F.
Moreover, zt = tz (since z commutes with B and with D). Hence zM = M.

Let f(i) := i for i 2 [3k]. We show that for each a 2 K1:

s2fs�1
1 (a) = z�1s4fs�1

3 z(a). (7.17)

This implies sgn(s2s�1
1 ) = sgn(s4s�1

3 ), and hence sgn(s) = 1.
As both s2fs�1

1 and z�1s4fs�1
3 z are bijections K1 ! K2, it suffices to show

(7.17) for all a 2 K1 \ {s1(1)}. Therefore, choose a 2 K1 with i := s�1
1 (a) 6= 1.

Let b := s2(i) = s2fs�1
1 (a). Note that b 2 K2, z(a) 2 K3, and z(b) 2 K4. We

must show that s�1
4 z(b) = fs�1

3 z(a), that is, s�1
3 z(a) and s�1

4 z(b) belong to
the same row of T.

First assume that {i, i} 2 rF. Then {a, b} 2 srF = M, hence, by the z-
invariance of M, {z(a), z(b)} 2 M. So {s�1

3 z(a), s�1
4 z(b)} belongs to rF, and

hence it is contained in a single row of T.
Second assume that {i, i} 62 rF. Since i 6= 1, this implies that i and i

are matched in rF with elements of K3 [ K4. So a and b are matched in M
with elements of K3 [ K4. Hence, by the z-invariance of M, z(a) and z(b) are
matched in M with elements of z(K3 [ K4), which is the first row of T outside
K1 [ K2 [ K3 [ K4. So s�1

3 z(a) and s�1
4 z(b) are matched in rF with elements

of the first row of T, and hence they both also belong to the first row of T.

7.4 The map pn

Choose n 2 N and let W be the linear space

W := ((Rn)⌦3)C3 . (7.18)

As usual, O(W) denotes the algebra of polynomials on W. For each 3-graph
G, define the polynomial pn(G) 2 O(W) by pn(G)(c) := fc(G) for any c 2 W
(defined in (7.1)). This can be extended uniquely to an algebra homomor-
phism pn : R[T ] ! O(W).
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For any q 2 O(W), let dq be its derivative, being an element of O(W)⌦
W⇤. So dkq 2 O(W)⌦ (W⇤)⌦k. Note that the standard inner product on Rn

induces an inner product on W, hence on W⇤, and hence it induces a product
h., .i : (O(W)⌦ (W⇤)⌦k)⇥ (O(W)⌦ (W⇤)⌦k) ! O(W).

The following lemma will be used several times in our proof.

Lemma 7.5. For all G, H 2 T 0 and all k, n 2 N:

pn(G
k
_ H) = hdk pn(G), dk pn(H)i. (7.19)

Proof. Let {b1, . . . , bn} be the standard basis of Rn, with dual basis {b⇤1 , . . . , b⇤n}.
For i, j, k = 1, . . . , n, let yijk be the element b⇤i ⌦ b⇤j ⌦ b⇤k |W of W⇤.

Consider some G 2 T 0. For f : E(G) ! [n] and v 2 V(G), denote

bfv := yf(e1)f(e2)f(e3), (7.20)

where e1, e2, e3 are the edges incident with v, in order. Then

pn(G) = Â
f:E(G)![n]

’
v2V(G)

bfv. (7.21)

Hence dk pn(G) expands as:

dk pn(G) = Â
f:E(G)![n]

Â
u1,...,uk2V(G)

�
’

v2V(G)\{u1,...,uk}
bfv
�
⌦ bfu1 ⌦ · · ·⌦ bfuk , (7.22)

with u1, . . . , uk taken distinct. Now for all functions i, j : [3] ! [n],

hyi(1)i(2)i(3), yj(1)j(2)j(3)i =
1
3
|{p 2 C3 | j(s) = i(p(s)) for s 2 [3]}|, (7.23)

since for each i : [3] ! [n] and x 2 W, by the C3-invariance of x:

yi(1)i(2)i(3)(x) = hbi(1) ⌦ bi(2) ⌦ bi(3), xi = h1
3 Â

p2C3

bi(p(1)) ⌦ bi(p(2)) ⌦ bi(p(3)), xi.

(7.24)
Hence, as 1

3 Âp2C3 bi(p(1)) ⌦ bi(p(2)) ⌦ bi(p(3)) belongs to W, the left-hand side
of (7.23) is equal to

h1
3 Â

p2C3

bi(p(1)) ⌦ bi(p(2)) ⌦ bi(p(3)),
1
3 Â

r2C3

bj(r(1)) ⌦ bj(r(2)) ⌦ bj(r(3))i, (7.25)

which is equal to the right-hand side of (7.23), as the bi form an orthonormal
basis.

So for any f : E(G) ! [n] and y : E(H) ! [n] and any u 2 V(G) and
v 2 V(H), hbfu, byvi is equal to 1/3 of the number of bijections h : d(u) ! d(v)
such that y � h = f|d(u) that preserve the cyclic order. (d(w) is the set of
edges incident with a vertex w.) This being in conformity with (7.1), we have
(7.19).
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Similar to what we have seen in Proposition 5.5 we now find that

pn(R[T ]) = O(W)On , (7.26)

the latter denoting the space of On-invariant elements of O(W). A direct proof
of this was first given by Szegedy [39].

7.5 Proof of Theorem 7.1
To see necessity in the theorem, let n 2 N and let c = (cijk)

n
i,j,k=1 2 W (=

((Rn)⌦3)C3 ). Then the positive semidefiniteness of Mfc ,k follows from

fc(G
k
_ H) = pn(G

k
_ H)(c) = hdk pn(G)(c), dk pn(H)(c)i, (7.27)

using Lemma 7.5.
To prove sufficiency, let f : T ! R be weakly reflection positive. By

Lemma 7.4, f (�) belongs to N. Set n := f (�). We show that f = fc for
some c 2 ((Rn)⌦3)C3 . First:

there is an algebra homomorphism F : pn(R[T ]) ! R such that f = F � pn.
(7.28)

Otherwise, as pn and f are algebra homomorphisms, there is a g 2 R[T ] with
pn(g) = 0 and f (g) 6= 0. We can assume that pn(g) is homogeneous, that
is, all graphs in g have the same number of vertices, k say. So g

k
_ g has no

vertices, that is, it is a polynomial in �. As moreover f (�) = n = pn(�),
we have f (g k

_ g) = pn(g
k
_ g) = 0, the latter equality because of Lemma 7.5.

By the weak reflection positivity of f this implies that f (g k
_ H) = 0 for each

H 2 T 0. Hence, by the linearization of (7.6) (substituting g for G), f (g) = 0.
This proves (7.28).

As in the proof of Theorem 4.4, (7.28) with (7.26) implies the existence of c
in the complex extension of W satisfying F(q) = q(c) for each q 2 O(W)On =
pn(R[T ]). To prove that we can take c real, we apply the Procesi-Schwarz
theorem [26]. For all G, H 2 T , using Lemma 7.5:

F(hdpn(G), dpn(H)i) = F(pn(G
1
_ H)) = f (G 1

_ H) = (Mf ,1)G,H . (7.29)

Since Mf ,1 is positive semidefinite, (7.29) implies that for each q 2 pn(R[T ]):
F(hdq, dqi) � 0, and hence by [26] we can take c real.

Concluding, f (G) = F(pn(G)) = pn(G)(c) = fc(G) for each G 2 T , as
required.

We finally observe that if f is the partition function of a 3-graph edge
coloring model, then f = fc for some unique c, up to the natural action of
On on c (which action leaves fc invariant (cf. (7.26))). To see this, let b 2
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((Rm)⌦3)C3 and c 2 ((Rn)⌦3)C3 with fb = fc. Then m = fb(�) = fc(�) = n.
We show that there exists U 2 On such that b = cU (where x 7! xU is the
natural action of U on x 2 W).

Suppose to the contrary that b 6= cU for each U 2 On. Then the sets
{bU | U 2 On} and {cU | U 2 On} are disjoint compact subsets of W. So, by
the Stone-Weierstrass theorem, there exists a polynomial q 2 O(W) such that
q(bU)  0 and q(cU) � 1 for each U 2 On. As On is compact, we can average
q to make it On-invariant. Hence by (7.26), q 2 pn(R[T ]), say q = pn(g) with
g 2 R[T ]. Then fb(g) = pn(g)(b) = q(b)  0 and fc(g) = pn(g)(c) = q(c) �
1. This contradicts fb = fc.
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Chapter 8

Reflection positivity for
virtual links

In this chapter we extend Theorem 2.2 by Szegedy [39] to virtual link dia-
grams. The proof follows the same line as the proof we gave in the previous
chapter for 3-graphs. We only provide the necessary background on virtual
links. For more information on virtual links, see the book by Chmutov, Duzhin
and Mostovoy [9] or the paper by Kauffman [18]. This chapter is based on [30].

8.1 Virtual link diagrams

Virtual link diagrams were introduced by Kauffman [18]. We first give a
purely combinatorial description. A virtual link diagram is an undirected 4-
regular graph G such that at each vertex v a cyclic order of the edges incident
with v is specified, together with one pair of edges opposite at v that is labeled
over crossing. The set of virtual link diagrams is denoted by V .

(a) A link diagram. (b) A virtual link diagram.

Figure 8.1: Two link diagrams.

When we draw a virtual link diagram in the plane, we draw it in such
a way that the cyclic ordering at each vertex is clockwise. In doing so we
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Reflection positivity for virtual links

sometimes see crossings that are artefacts of the drawing and not vertices of
the diagram. We mark such a crossing by a circle, see Figure 8.1.

Two virtual link diagrams D1 and D2 are equivalent if we can go from
D1 to D2 by a sequence of Reidemeister moves, depicted in Figure 8.2. When
performing such a move the rest of the diagram remains unchanged. A virtual
link invariant is a function on V that is invariant under the Reidemeister moves.

R1

R2

R3

Figure 8.2: The three Reidemeister moves.

Let us briefly recall some concepts from knot theory to digest this defini-
tion. A link is a smooth embedding of a finite disjoint union of circles into
R3. If we project a link to a plane and keep track of the over and underlying
crossings, we get a link diagram. Note that a link diagram inherits a cyclic
ordering of the edges incident with a vertex at each vertex from the plane.
Reidemeister showed that two links are ambient isotopic if and only if their
corresponding link diagrams can be obtained from one another by a sequence
of Reidemeister moves [27].

Kauffman introduced virtual links as a generalization of links. A virtual
link is a smooth embedding of a disjoint union of circles into R ⇥ M, where
M is some oriented surface. If we project the virtual link to M and keep track
of the over and under crossing edges, we obtain a virtual link diagram. If we
apply the Reidemeister moves to the virtual link diagram, we might have to
add a handle to the surface M. So the surface M is not stable under the Reide-
meister moves. For more information we refer to the paper by Kauffman [18].

8.2 Partition functions and k-joins for virtual links

We work over the real numbers, but most concepts defined below can be
defined over any field. Let n 2 N. Let s 2 S2 be the non-identity element of
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S2. For x1, x2, x3, x4 2 Rn, we define

s(x1 ⌦ x2 ⌦ x3 ⌦ x4) = x3 ⌦ x4 ⌦ x1 ⌦ x2

and we extend this linearly to an action of S2 on (Rn)⌦4. Let the space of
S2-invariant elements of (Rn)⌦4 be denoted by Rn. For R 2 Rn, we express R
in the standard basis {b1, . . . , bn} of Rn, i.e., Rijkl is the coefficient of bi ⌦ bj ⌦
bk ⌦ bl in R. An element of Rn will be referred to as a virtual link diagram edge
coloring model over R.

Let G = (V, E) be a virtual link diagram and let e1, e2, e3, e4 be the edges
incident with a vertex v in cyclic order such that e1, e3 is the over crossing pair.
For f : E ! [n], let f(d(v)) = (f(e1), f(e2), f(e3), f(e4)). Then fR, the partition
function of an element R 2 Rn, is defined by

fR(G) = Â
f:E![n]

’
v2V

Rf(d(v)). (8.1)

By the S2-invariance of R this is well-defined. It is straightforward to check
using Figure 8.2 that the following conditions on R 2 Rn make fR into a
virtual link invariant:

Â
a

Riaaj = dij for all i, j, (8.2)

Â
a,b

RijabRalkb = dikdjl for all i, j, k, l, (8.3)

Â
a,b,c

RiabhRjkcaRbclm = Â
a,b,c

RijbcRbklaRcamh for all i, j, k, l, m, h, (8.4)

where dij is the Kronecker delta and all indices run over [n]. Condition (8.4)
is called the Yang-Baxter equation, which has its roots in statistical physics
[3, 41]. An element R 2 Rn that satisfies all three conditions above is called
an R-matrix.

Let RV be the space of formal linear combinations of elements in V . An el-
ement of RV is called a quantum virtual link diagram. Any virtual link diagram
invariant can be extended uniquely to a linear function on RV .

Let k 2 N. For G, H 2 V we define the k-join G k
_ H 2 RV as the sum

over all distinct u1, . . . , uk ✓ V(G) and distinct v1, . . . , vk ✓ V(H), where for
i = 1, . . . , k we apply the transformation given in Figure 8.3. Note that for vi
and ui these are the two ways to identify the over crossing edges at ui with
the over crossing edges at vi that respect the cyclic ordering.

The k-th connection matrix of a function f : V ! R is the V ⇥ V matrix
with Mf ,k(G, H) = f (G k

_ H). If f is real valued and the matrix Mf ,k is positive
semidefinite for each k 2 N, then we say that f is weakly reflection positive. A
function f : V ! R is called multiplicative if f (G [ H) = f (G) f (H) for
G, H 2 V . We can now state our theorem on virtual link invariants.
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ui vi +1
2

1
2

Figure 8.3: The gluing operation on virtual link diagrams.

Theorem 8.1. A function f : V ! R is the partition function of some virtual link
diagram edge coloring model over R if and only if f is multiplicative, f is weakly
reflection positive, f (∆) = 1 and f (�) � 0.

Just as we have seen for 3-graphs, the k-join is a weaker operation than
gluing labeled vertices of degree 1 as in Szegedy’s characterization for edge
coloring models. Hence it gives a stronger characterization.

Note the assumption that f (�) � 0 in the theorem. In Lemma 8.3 we
will see that for a multiplicative, weakly reflection positive f : V ! R we
have f (�) 2 {. . . ,�6,�4,�2, 0, 1, 2, 3, . . . }. This makes us wonder if there
is a way to define skew partition functions for virtual link diagrams that are
weakly reflection positive.

We will prove the theorem in the next sections. Working over the real
numbers, we can detect when a function on virtual link diagrams actually
comes from an R-matrix.

Corollary 8.2. Let f : V ! R. Then there exists an R-matrix R with f = pR if and
only if f is multiplicative, f is weakly reflection positive, f (∆) = 1, f (�) � 0 and
f satisfies

(i) f
� �

+ f (�) = 2 f
� �

,

(ii) f
� �

+ f (�)2 = 2 f
� �

,

(iii) f
� �

= f
� �

.

Proof of Corollary 8.2. Let f : V ! R be a function that satisfies the conditions
in the statement of Corollary 8.2. By Theorem 8.1 there is some R 2 Rn such
that f := fR. Condition (i) is equivalent to

Â
i,j

�
Â
a

Riaaj � dij
�2

= 0, (8.5)
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and hence to (8.2); condition (ii) is equivalent to

Â
i,j,k,l

�
Â
a,b

RijabRalkb � dikdjl
�2

= 0, (8.6)

and hence to (8.3); and condition (iii) is equivalent to

Â
i,j,k,l,m,h

�
Â
a,b,c

RiabhRjkcaRbclm � Â
a,b,c

RijbcRbklaRcamh
�2

= 0, (8.7)

and hence to (8.4). So R is an R-matrix, as required.

The rest of this chapter is devoted to proving Theorem 8.1. The proof
follows the same line as the proof of Theorem 7.1. Occasionally we will refer
to the proof of Theorem 7.1 if the proofs, mutatis mutandis, are equivalent. We
first consider the value of f on the vertexless loop.

8.3 The value of f on �
The proof of the following lemma will rely heavily on Theorem 3.3 just like
the proof of Lemma 7.4.

Lemma 8.3. If f : V ! R is multiplicative and weakly reflection positive, then
f (�) belongs to {. . . ,�6,�4,�2, 0, 1, 2, 3, . . . }.

Proof. I. We first describe some tools, using Theorem 3.3. Consider any k 2 N.
Recall that M8k is the set of perfect matchings on [8k]. For M 2 M8k and
p 2 S8k, we defined pM = {p(e) | e 2 M}. So the group S8k acts on M8k,
which induces an action of S8k on RM8k .

To each M 2 M8k we can associate a virtual link diagram GM on [2k] by
identifying, for each j 2 [2k], the vertices 4j � 3, 4j � 2, 4j � 1, 4j of ([8k], M) to
one crossing called j in the following way

4j � 3 4j � 2 4j � 1 4j j
. (8.8)

To describe GM
2k
_ GN for M, N 2 M8k, we define the following subgroups

of S8k. For j 2 [2k], let Bj be the group consisting of the identity and of
(4j � 3, 4j � 1)(4j � 2, 4j). Define B := B1B2 · · · B2k. Let D be the group of
permutations d 2 S8k for which there exists p 2 S2k such that d(4j � i) =
4p(j) � i for each j = 1, . . . , 2k and i = 0, . . . , 3. Set Q := BD, which is a
group.
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As before, for M, N 2 M8k, let c(M [ N) denote the number of connected
components of the graph ([8k], M [ N). Then, by definition of the operation
2k
_ , we have

GM
2k
_ GN = 2�2k(2k)! Â

t2Q
�c(M[tN). (8.9)

For p 2 S8k, let Pp be the M8k ⇥M8k permutation matrix corresponding
to p; then Ppw = pw for each w 2 RM8k . For any x 2 R, let A(x) and AQ(x)
be the M8k ⇥M8k matrices defined by

(A(x))M,N := xc(M[N) and AQ(x) := Â
t2Q

A(x)Pt , (8.10)

for M, N 2 M8k. So, by the weak reflection positivity of f , (8.9) implies
that AQ( f (�)) is positive semidefinite. Note that each Pp commutes with
A(x), as for all M, N 2 M8k one has c(pM [ pN) = c(M [ N), implying
A(x) = PQ

p A(x)Pp = P�1
p A(x)Pp .

In Theorem 3.3 we have seen that the irreducible S8k-module of RM8k
corresponding to any partition l = (l1, . . . , lm) consists of eigenvectors with
eigenvalue

hl(x) :=
m

’
a=1

1
2 la

’
b=1

(x � a + 2b � 1). (8.11)

It will be convenient to describe the eigenvectors in the following way.
Make a Young tableau T associated to l such that each row of T has the form

i1 i1 i2 i2 · · · it it (8.12)

for some i1, . . . , it 2 [4k], where i := 4k + i for each i 2 [4k]. For i = 1, . . . , l1,
let Ki denote the set of numbers in column i of T and let Ci be the subgroup
of S8k that permutes the elements of Ki. Then C := C1 · · ·Ct1 . Similarly, for
i = 1, . . . , m, let Ri be the subgroup of S8k that permutes the numbers in row i
of T, and R := R1 . . . Rm.

Let F be the perfect matching on [8k] with edges {i, i} for i 2 [4k]. Then

v := Â
s2C,r2R

sgn(s)srF (8.13)

is an eigenvector of A(x) belonging to hl(x). Then for u := Ât2Q tv one has

AQ(x)u = Â
t0 ,t2Q

A(x)Pt0Ptv = Â
t0 ,t2Q

Pt0Pt A(x)v

= hl(x) Â
t0 ,t2Q

Pt0Ptv = |Q|hl(x)u.
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So u is an eigenvector of AQ(x) belonging to |Q|hl(x), provided that u is non-
zero. For this it suffices that the coefficient uF of u in F is non-zero. Note
that

uF = Â
t2Q

(tv)F = Â
t2Q

Â
s2C,r2R

sgn(s)(tsrF)F = Â
t2Q,s2C,r2R

tsrF=F

sgn(s). (8.14)

So u 6= 0 if for any t 2 Q, s 2 C, and r 2 R, if tsrF = F then sgn(s) = 1;
that is (as Q is a group), if for any t 2 Q, s 2 C, r 2 R:

if tF = srF, then sgn(s) = 1. (8.15)

II. We first apply part I to the case where f (�) � 0. Let k := d f (�)e+ 1, and
consider the partition l := (8, 8, . . . , 8) of 8k. Then, by (8.11),

hl(x) =
k�1

’
i=0

(x � i)(x � i + 2)(x � i + 4)(x � i + 6). (8.16)

We give a Young tableau associated to l that will yield (8.15). This implies
that |Q|hl(x) is an eigenvalue of AQ(x). So hl( f (�)) � 0. Hence, as the
polynomial hl(x) has largest zero k � 1, with multiplicity 1, and as k � 1 =
d f (�)e, we know f (�) = k � 1.

Consider the following Young tableau associated to l:

T :=

1 1 2 2 3 3 4 4
5 5 6 6 7 7 8 8
...

...
...

...
...

...
...

...
4k � 3 4k � 3 4k � 2 4k � 2 4k � 1 4k � 1 4k 4k

. (8.17)

To prove (8.15), choose t 2 Q, s 2 C, and r 2 R with tF = srF. Let
s = s1 · · · s8 with si 2 Ci (i = 1, . . . , 8) and define M := tF. Since F has
no edges between X := K1 [ K2 [ K5 [ K6 (the set of odd numbers in T) and
Y := K3 [ K4 [ K7 [ K8 (the set of even numbers in T) and since QX = X and
QY = Y, we know that M has no edges between X and Y. For any N 2 M8k
and Z ✓ [8k], let NZ be the set of edges of N contained in Z.

Let z 2 S8k be defined by z(i) := i+ 1 if 4 does not divide i and z(i) := i� 3
if 4 divides i. So z4 is the identity element, z(X) = Y, and zF = F. Moreover,
zt = tz (since z commutes with B and D). So zM = M. Hence zMX = MY.

Let N := rF. So M = sN. As no edge of M connects X and Y, also no edge
in N connects X and Y. Moreover, as zMX = MY, for each two columns Ki and
Kj in X, we have |MKi[Kj | = |MKi+2[Kj+2 |, and hence |NKi[Kj | = |NKi+2[Kj+2 |.
Moreover, if an edge e 2 N connects Ki and Kj, then N has an edge in the
same row as e connecting the other two columns in X; similarly for Y.
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This implies that there exists a permutation s0 2 C1C2C5C6 that permutes
complete rows in X in such a way that s0NX is a shift of NY; that is, zs0NX =
NY. As s0 maintains rows in X, there exists r0 2 R with s0N = r0F; so
s(s0)�1r0F = srF. Moreover, sgn(s0) = 1, and, setting N0 := r0F we have
zN0

X = z(r0F)X = z(s0N)X = zs0(NX) = NY = N0
Y. Therefore, by replacing r

by r0 and s by s(s0)�1 we can assume that zNX = NY.
Next consider any two columns Ki and Kj in X. Let X0 := Ki [ Kj and

Y0 := Ki+2 [ Kj+2. So Y0 = z(X0) and zNX0 = NY0 . Then e 7! z�1s�1zs(e)
is a permutation s of the edges e in NX0 , since e 2 NX0 ) s(e) 2 MX0 )
zs(e) 2 MY0 ) s�1zs(e) 2 NY0 ) z�1s�1zs(e) 2 z�1NY0 = NX0 . As s
permutes edges in X0, there exists a permutation s0 2 CiCj such that s0(e) =
z�1s�1zs(e) for all e 2 NX0 and such that s0 only permutes elements covered
by NX0 . Then sgn(s0) = 1. By replacing s by s(s0)�1 we attain that e =
z�1s�1zs(e) for all edges e 2 NX0 . So sz(e) = zs(e) for all e 2 NX0 .

Doing this for all Ki and Kj in X, we finally achieve that sz(e) = zs(e)
for all e 2 NX . As NX is a perfect matching on X, this implies sz(i) = zs(i)
for all i 2 X. Equivalently, s3s4s7s8z(i) = zs1s2s5s6(i) for all i 2 X. Hence
sgn(s3s4s7s8) = sgn(s1s2s5s6), implying sgn(s) = 1.

III. Next we apply part I of this proof to the case where f (�)  0. Choose
k 2 N, and consider the partition l := (8k) of 8k and the following Young
tableau

T := 1 1 2 2 · · · 4k � 1 4k � 1 4k 4k . (8.18)

Then by (8.11),

hl(x) =
4k

’
b=1

(x � 2 + 2b). (8.19)

Moreover, (8.15) trivially holds, as C only consists of the identity. The zeros
of hl are �8k + 2,�8k + 4,�8k + 6, . . . ,�2, 0, all with multiplicity 1, so that
hl( f (�)) � 0 implies that f (�) does not belong to any interval (�4t �
2,�4t) for any t 2 N with t < 2k. As k can be chosen arbitrarily large, we
know that f (�) 62 (�4t � 2,�4t) for all t 2 N.

To exclude the intervals (�4t � 4,�4t � 2), consider the partition l :=
(8k � 2, 2) of 8k and the Young tableau

T :=
1 1 3 3 4 4 · · · 4k � 1 4k � 1 4k 4k
2 2

. (8.20)

In this case, again by (8.11),

hl(x) = (x � 1)
4k�1

’
b=1

(x � 2 + 2b). (8.21)

To show (8.15), let s = s1s2 with s1 2 C1, s2 2 C2. Observe that M := tF
contains no edges connecting an odd number with an even number (as F does
not, and as Q maintains the sets of odd and even numbers).
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If {2, 2} belongs to M, then either s1 and s2 both are the identity permuta-
tion, or s1 and s2 both are transpositions. In either case, sgn(s) = 1 follows.

If {2, 2} does not belong to M, then 2 and 2 are matched in M to even
numbers in the first row of T. In this case, both s1 and s2 are transpositions,
and again sgn(s) = 1 follows. This proves (8.15).

Now the zeros of hl are �8k + 4,�8k + 6, . . . ,�2, 0, 1, all with multiplicity
1, so that, like above, f (�) 62 (�4t � 4,�4t � 2) for all t 2 N.

8.4 Proof of Theorem 8.1
The space RV of formal linear combinations of elements of V , is in fact an
algebra, by taking the disjoint union G t H of two virtual link diagrams G
and H as multiplication GH. Choose n 2 N and recall that Rn denotes the
linear space

Rn := ((Rn)⌦4)S2 . (8.22)

As usual, O(Rn) denotes the algebra of polynomials on Rn. Define an algebra
homomorphism pn : RV ! O(Rn) by

pn(G)(R) := fR(G) (8.23)

for G 2 V and R 2 Rn. So the element R in the theorem can be described as
a common zero of the polynomials pn(G)� f (G) for all G 2 V .

For any q 2 O(Rn), let dq be its derivative, being an element of O(Rn)⌦
R⇤

n. So dkq 2 O(Rn)⌦ (R⇤
n)

⌦k. Note that the standard inner product on Rn

induces an inner product on (Rn)⌦4, hence on Rn and R⇤
n, and therefore it

induces a product h., .i : (O(Rn)⌦ (R⇤
n)

⌦k)⇥ (O(Rn)⌦ (R⇤
n)

⌦k) ! O(Rn).
Then, for all G, H 2 V and all k, n 2 N:

pn(G
k
_ H) = hdk pn(G), dk pn(H)i. (8.24)

This is similar to Lemma 7.5 and can be proved by a word for word translation
of the method. This connection between k-joins and k-th derivatives will be
used a number of times in our proof of the theorem.

Similar to what we have seen in Proposition 5.5 we now find that

pn(RV) = O(Rn)
On , (8.25)

the latter denoting the space of On-invariant elements of O(Rn). The proof is
similar to that given in [39].

Proof of Theorem 8.1. To see necessity in the theorem, let R be a virtual
link diagram edge coloring model over R. Then fR is trivially multiplicative.
Positive semidefiniteness of MfR ,k follows from

fR(G
k
_ H) = pn(G

k
_ H)(R) = hdk pn(G)(R), dk pn(H)(R)i, (8.26)

83



Reflection positivity for virtual links

using (8.24).
To prove sufficiency, let f satisfy the conditions of the theorem. As f (�) �

0 by assumption, the lemma implies that n := f (�) is a nonnegative integer.
Then

there exists an algebra homomorphism F : pn(RV) ! R such that f = F � pn.
(8.27)

Otherwise, as f and pn are algebra homomorphisms, there exists a quantum
virtual link diagram g with pn(g) = 0 and f (g) 6= 0. We can assume that
pn(g) is homogeneous, that is, all virtual link diagrams in g have the same
number of crossings, k say. So g

k
_ g has no crossings, that is, it is a polynomial

in �. As moreover f (�) = n = pn(�), we have f (g k
_ g) = pn(g

k
_ g) = 0,

the latter equality because of (8.24). Similarly to Lemma 7.3, g belongs to
the ideal in RV generated by g

k
_ bi (i = 0, . . . , k), where b is the virtual link

diagram

b :=

(8.28)

Note that G 1
_ b = 2|V(G)|G for each virtual link diagram G. As f (g k

_ g) =

0 implies that f (g k
_ bi) = 0 for each i (by the weak reflection positivity of f ),

we know f (g) = 0, proving (8.27).
Now, by (8.25), pn(RV) = O(Rn)On . Basic invariant theory then gives the

existence of an R in the complex extension of Rn such that F(q) = q(R) for
each q 2 O(Rn)On , similar to the proof of Theorem 7.1. To prove that we can
take R real, we apply the Procesi-Schwarz theorem [26].

For all G, H 2 V , using (8.24):

F(hdpn(G), dpn(H)i) = F(pn(G
1
_ H)) = f (G 1

_ H) = (Mf ,1)G,H . (8.29)

Since Mf ,1 is positive semidefinite, (8.29) implies F(hdq, dqi) � 0 for each
q 2 pn(RV) = O(Rn)On . Then by [26] there exists a (real) R 2 Rn such that
F(q) = q(R) for each q 2 O(Rn)On = pn(RV). Then f = fR, as f (G) =
F(pn(G)) = pn(G)(R) = fR(G) for each G 2 V .

One can also prove that if f is the partition function of a virtual link dia-
gram edge coloring model, then f = fR for some unique R 2 Rn, up to the
natural action of On on R, by a similar proof as that for 3-graphs.
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Summary

New Characterizations of Partition Functions Using
Connection Matrices

In this thesis we expand upon a line of research pioneered by Freedman,
Lovász and Schrijver [12] and Szegedy [39], that uses algebraic methods to
characterize families of partition functions. Before we summarize the contri-
butions of this thesis, we first recall the definition of an ordinary partition
function.

If W is a vector space, then SW denotes the symmetric algebra on W andV
W denotes the exterior algebra on W. For x, y 2 SW, we denote their product

in SW by x � y. Let F be a field of characteristic 0. Let k 2 N and let
{e1, . . . , ek} be the standard basis of the vector space Fk. If h 2 (SFk)⇤, then
the partition function of h is the F-valued graph parameter ph, defined, for a
graph G = (V, E), by

ph(G) := Â
f:E![k]

’
v2V

h(
K

a2d(v)
ef(a)), (8.30)

where d(v) is the multiset consisting of edges incident with v with multiplic-
ities. If a graph parameter f is equal to ph for some h 2 (SFk)⇤ and k 2 N,
then we say that f is an ordinary partition function over F.

We introduce two new types of partition functions: skew partition functions
and mixed partition functions. A skew partition function can be seen as the
partition function of an element h 2 (

V
C2`)⇤ for some ` 2 N. The definition

is slightly more involved than the definition of an ordinary partition function
and therefore we do not give it here. Using the invariant theory of the sym-
plectic group and Hilbert’s Nullstellensatz, we give a characterization of skew
partition functions in terms of identities related to the Second Fundamental
Theorem of invariant theory for the symplectic group. This characterization
is close in spirit to the characterization of ordinary partition functions given
by Draisma, Gijswijt, Lovász, Regts and Schrijver [10].

Mixed partition functions are a common generalization of both ordinary
partition functions and skew partition functions, and we show that they satisfy
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certain identities related to the Second Fundamental Theorem of invariant
theory for the orthosymplectic supergroup.

We also give a characterization of skew partition functions in terms of
properties of their associated connection matrices, which are defined as fol-
lows.

For t 2 N, a t-fragment is a graph with t labeled vertices of degree 1 labeled
1, 2, . . . , t. For two t-fragments F1 and F2, we define F1 ⇤ F2 to be the graph
obtained as follows: we take the disjoint union of F1 and F2, and for each
pair of equally labeled vertices, we identify the two vertices, remove the new
vertex and join its two incident edges into one edge. See Figure 8.4. Note that
if F is the 2-fragment on two vertices, labeled 1 and 2, with one edge between
those two vertices, then F ⇤ F = �, the vertexless loop, which we also consider
to be a graph.

1

3

2

1

3

2

Figure 8.4: An example of the gluing operation.

The t-th connection matrix of a graph parameter f is the symmetric matrix
Mf ,t whose rows and columns are indexed by t-fragments such that the entry
at the (F1, F2) position is f (F1 ⇤ F2).

We characterize skew partition functions as those C-valued graph param-
eters f such that f (�)  0, f (∆) = 1 and rk (Mf ,2t)  f (�)2t for all t 2 N.
The proof of this characterization makes use of a framework developed by
Schrijver [38]. We also show that for a mixed partition function f there is a
constant r 2 R such that rk (Mf ,t)  rt for each t 2 N. An open problem is in
how much this characterizes mixed partition functions.

Szegedy [39] showed that an R-valued graph parameter f is an ordinary
partition function over R if and only if f (∆) = 1, f (G [ H) = f (G) f (H) for
any two graphs G and H, and Mf ,t is positive semidefinite for each t 2 N.
We give similar characterizations of partition functions for the following two
types of graphs that are related to knot theory.

A 3-graph is a non-empty connected graph such that each vertex has degree
3 and such that each vertex has a cyclic order of the edges incident with it.
For two 3-graphs G and H we define their k-join, an operation that results in a
formal linear combination of disjoint unions of 3-graphs. Using the k-join we
define a new type of connection matrix for 3-graphs. We give a characteriza-
tion of R-valued partition functions for 3-graphs in terms of positive semidef-
initeness of the associated connection matrices. The proof makes use of the
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invariant theory of the orthogonal group, a theorem by Procesi and Schwarz
[26] and a theorem by Hanlon and Wales [14]. From this characterization we
derive a characterization of real Lie algebra weight systems.

The techniques we use in proving our results on 3-graphs can also be ap-
plied to virtual link diagrams. We define a k-join for virtual link diagrams and
give a characterization of R-valued partition functions on the set of virtual link
diagrams in terms of positive semidefiniteness of the associated connection
matrices. From this characterization we derive a characterization of partition
functions for virtual link diagrams coming from real R-matrices.
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Samenvatting

Nieuwe Karakteriseringen van Partitiefuncties met
Behulp van Connectiematrices

In dit proefschrift bouwen we voort op een onderzoeksprogramma opgezet
door Freedman, Lovász en Schrijver [12] en Szegedy [39] dat gebruikmaakt
van algebraïsche technieken om families van partitiefuncties te karakteriseren.
Voordat we de bevindingen in dit proefschrift samenvatten, herhalen we eerst
de definitie van een gewone partitiefunctie.

Als W een vectorruimte is, dan is SW de symmetrische algebra op W en
V

W
de uitwendige algebra op W. Voor x, y 2 SW noteren we hun product in SW
als x � y. Laat F een lichaam van karakteristiek 0 zijn. Laat k 2 N en laat
{e1, . . . , ek} de standaardbasis van de vectorruimte Fk zijn. Als h 2 (SFk)⇤,
dan is de partitiefunctie van h de F-waardige graafparameter ph gedefinieerd,
voor een graaf G = (V, E), door

ph(G) := Â
f:E![k]

’
v2V

h(
K

a2d(v)
ef(a)), (8.31)

waar d(v) de collectie van kanten is die v bevatten (met multipliciteiten). Als
een graafparameter f gelijk is aan ph voor een zekere h 2 (SFk)⇤ en k 2 N,
dan zeggen we dat f een gewone partitiefunctie over F is.

We introduceren twee nieuwe soorten partitiefuncties: scheve partitiefunc-
ties en gemengde partitiefuncties. Een scheve partitiefunctie kan gezien worden
als de partitiefunctie van een element h 2 (

V
C2`)⇤ voor een zekere ` 2 N.

De definitie is wat ingewikkelder dan die van een gewone partitiefunctie en
daarom geven we die hier niet. Gebruikmakend van de invariantentheorie van
de symplectische groep en Hilbert’s Nullstellensatz, geven we een karakteri-
sering van scheve partitiefuncties aan de hand van identiteiten die gerelateerd
zijn aan de Tweede Fundamentele Stelling van de invariantentheorie van de
symplectische groep. Deze karakterisering heeft veel weg van de karakteri-
sering van gewone partitiefuncties gegeven door Draisma, Gijswijt, Lovász,
Regts en Schrijver [10].

Gemengde partitiefuncties zijn een veralgemenisering van zowel gewone
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partitiefuncties als scheve partitiefunctes, en we laten zien dat zij voldoen
aan bepaalde identiteiten die gerelateerd zijn aan de Tweede Fundamentele
Stelling van de invariantentheorie van de orthosymplectische supergroep.

We geven ook een karakterisering van scheve partitiefuncties aan de hand
van eigenschappen van hun connectiematrices, die als volgt zijn gedefinieerd.

Voor t 2 N is een t-fragment een graaf met t gemarkeerde vertices van
graad 1 gemarkeerd met 1, 2, . . . , t. Voor twee t-fragmenten F1 en F2 defi-
niëren we F1 ⇤ F2 als de graaf die als volgt wordt verkregen: we nemen de
disjuncte vereniging van F1 en F2, en voor elk paar gelijk gemarkeerde ver-
tices identificeren we de twee vertices, verwijderen we de nieuwe vertex en
smelten de twee kanten die met deze vertex verbonden waren samen tot een
kant. Zie Figuur 8.5. Als F het 2-fragment is met twee vertices, gemarkeerd 1
en 2, met een kant tussen deze twee vertices, dan F ⇤ F = �, de vertexloze lus,
die we ook als graaf zien.

1

3

2

1

3

2

Figuur 8.5: Een voorbeeld van het plakken van fragmenten.

De t-de connectiematrix van een graafparameter f is de symmetrische matrix
Mf ,t waarvan de rijen en de kolommen geïndiceerd worden door t-fragmenten
en waarbij f (F1 ⇤ F2) in de (F1, F2)-positie van de matrix staat.

We karakteriseren scheve partitiefuncties als die C-waardige graafparame-
ters f zodat f (�)  0, f (∆) = 1 en rk (Mf ,t)  f (�)2t voor alle t 2 N. Het
bewijs van deze karakterisering maakt gebruik van een raamwerk dat ont-
wikkeld is door Schrijver [38]. We tonen ook aan dat er voor een gemengde
partitiefunctie f een constante r 2 R bestaat zodat rk (Mf ,t)  rt voor alle
t 2 N. Een open probleem is in hoeverre dit gemengde partitiefuncties karak-
teriseert.

Szegedy [39] heeft bewezen dat een R-waardige graafparameter f een ge-
wone partitiefunctie over R is dan en slechts dan als f (∆) = 1, f (G [ H) =
f (G) f (H) voor elke twee grafen G en H, en Mf ,t positief semi-definiet is voor
alle t 2 N. We geven gelijksoortige karakteriseringen van partitiefuncties voor
de volgende twee soorten grafen die gerelateerd zijn aan knopentheorie.

Een 3-graaf is een niet-lege samenhangende graaf zodat elke vertex graad
3 heeft en zodat voor iedere vertex de kanten die de vertex bevatten cyclisch
geordend zijn. Voor twee 3-grafen G en H definiëren we hun k-koppeling.
Dit is een operatie die resulteert in een lineaire combinatie van disjuncte
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verenigingen van 3-grafen. Aan de hand van de k-koppeling definiëren we
een nieuw type connectiematrix voor 3-grafen. We geven een karakterisering
van reëelwaardige partitiefuncties voor 3-grafen in termen van positief semi-
definietheid van de connectiematrices. Het bewijs van deze stelling maakt
gebruik van de invariantentheorie van de orthogonale groep, een stelling van
Procesi en Schwarz [26] en een stelling van Hanlon en Wales [14]. Uit deze
karakterisering leiden we een karakterisering van reële Lie algebra gewichts-
systemen af.

De technieken die we gebruiken om onze resultaten over 3-grafen af te
leiden, gebruiken we ook om resultaten over virtuele-linkdiagrammen af te lei-
den. We definiëren een k-koppeling voor virtuele-linkdiagrammen en we ge-
ven een karakterisering van reëelwaardige partitiefuncties op de verzameling
van virtuele-linkdiagrammen in termen van positief semi-definietheid van de
connectiematrices. Uit deze karakterisering leiden we een karakterisering van
partitiefuncties van virtuele-linkdiagrammen die afkomstig zijn van reële R-
matrices af.
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3-graph, 65

AS-relation, 67

balanced, 44
block, 13

circuit, 10
connected, 10
connected components, 10
cubic graph, 65
cycle, 10

degree sequence, 10
directed graph, 10

Eulerian, 10

edge coloring model
3-graph, 65
mixed, 29
ordinary, 15
skew, 27
virtual link diagram, 77

edge connection matrix, 15
edge reflection positive, 15
Eulerian graph, 25
exterior algebra, 11

filling, 12
standard, 12

fragment, 15
compatible, 33
Eulerian, 33
local pairing, 33

gluing, 61

graph, 9
isomorphic, 10

graph parameter, 11
multiplicative, 11

hook, 13

idempotent, 62
IHX-relation, 67

labeled graph, 14
Lie algebra weight system, 67
link, 76
link diagram, 76
local pairing, 26

compatible, 27

multiset, 9
multisubset, 9

multiplicity, 9

neighborhood, 10

odd arc, 26
odd pairing, 26
open end, 61
orthogonal group, 58

partition, 12
even, 12

partition function
3-graph edge coloring model, 65
mixed, 30
ordinary, 15
skew, 27
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spin model, 13
vertex coloring model, 13
virtual link diagram edge color-

ing model, 77
perfect matching, 19

directed, 32
positive semidefinite, 11

quantum fragments, 62
quantum graph, 62

R-matrix, 77
Reidemeister moves, 76

smoothening, 10
spin model, 13
super symmetric algebra, 57
symmetric algebra, 11
symplectic group, 52

tensor
alternating, 11
degree, 11
symmetric, 11

tensor algebra, 11
trail, 10

directed, 32

vertex coloring model, 13
vertex connection matrix, 14
vertex product, 14
vertex reflection positive, 14
vertexless loop, 9
virtual link

invariant, 76
virtual link diagram, 75

quantum, 77

walk, 10
weakly reflection positive

3-graph, 66
virtual link diagram, 77

weight system, 67

Young diagram, 12
Young symmetrizer, 12

Young tableau, 12
standard, 12
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