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Background. Type 2 diabetes (T2D) is a chronic metabolic disease potentially leading to serious widespread tissue damage. Human
organism develops T2D when the glucose-insulin control is broken for reasons that are not fully understood but have been
demonstrated to be linked to the emergence of a chronic inflammation. Indeed such low-level chronic inflammation affects the
pancreatic production of insulin and triggers the development of insulin resistance, eventually leading to an impaired control of
the blood glucose concentration. On the contrary, it is well-known that obesity and inflammation are strongly correlated. Aim. In
this study, we investigate in silico the effect of overfeeding on the adipose tissue and the consequent set up of an inflammatory
state. Wemodel the emergence of the inflammation as the result of adipose mass increase which, in turn, is a direct consequence of
a prolonged excess of high calorie intake. Results. *e model reproduces the fat accumulation due to excessive caloric intake
observed in two clinical studies. Moreover, while showing consistent weight gains over long periods of time, it reveals a drift of the
macrophage population toward the proinflammatory phenotype, thus confirming its association with fatness.

1. Introduction

Diabetes is a chronic disease characterized by a decreased
production of insulin and by a reduced efficacy of the insulin
produced. *is impaired condition is differently caused by
both type 1 and type 2 diabetes. In type 1 diabetes, insulin-
producing cells in the pancreas (i.e., the beta cells) have been
damaged by the immune system in a de facto autoimmune
response. In type 2 diabetes, the origin of beta cell mal-
functioning is diverse and mainly attributed to a systemic
low-grade inflammation which also impairs the various
organs ability to make use of insulin and remove glucose
from the blood.

If untreated, both forms of diabetes result over time in a
persistent high concentration of glucose in blood which
leads to serious tissue damage, especially to the nervous and
circulatory system with potentially fatal consequences. In
2015, diabetes caused five million deaths worldwide. *e
number of diabetic individuals has risen over the years from

285 million in 2010 to 387 million in 2014 and 415 in 2015,
while projections estimate 642 million in 2040 [1].

*ere is no doubt that this kind of “pandemic” requires
maximum attention and that besides clinical and biological
research, mathematics could contribute to shed light on this
complex pathology. In our study, we employed computa-
tional modeling and simulation to describe the effects of
high calorie diets on the pathology of type 2 diabetes limiting
our observation to the process of weight gain ultimately
leading to the onset of an inflammation state.

1.1. About Type 2 Diabetes. Symptoms of type 2 diabetes
(T2D) are not very pronounced, and as a result, the disease is
usually diagnosed several years after its onset, once com-
plications have already become established. *e In-
ternational Diabetes Federation estimated that 193 million
people with diabetes are undiagnosed and are therefore at
risk of developing complications. Since T2D comprises 90%
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of diabetes cases worldwide, by 2040, more than 570 million
people will likely be living with diabetes, the majority of
them being unaware of it [2]. Another cause of concern is the
fact that while T2D was previously prognosticated only in
adults, it is now also found in children [3]. It is also worth to
be mentioned that T2D is becoming worrying in developing
countries which have recently taken up higher calorie diets.
For all these reasons, there is an urgent need to understand
the complex mechanisms underpinning the onset of T2D
and to identify early diagnostic parameters and related in-
flammatory indicators, possibly using a personalized med-
icine approach.

A number of conceivable stress mechanisms (herein
indicated as “stressors”) leading to and participating in
insulin resistance and beta-cell dysfunction have been hy-
pothesized to explain the complex landscape of T2D onset,
such as oxidative stress, endoplasmic reticulum stress,
amyloid (i.e., insoluble fibrous proteins) deposition in the
pancreas, and ectopic lipid deposition in the muscle, liver,
and pancreas [4]. All of these stressors are potentially linked
to overnutrition although it has been difficult, so far, to
identify the precise mechanisms determining the decreased
rate of glucose uptake by the different tissues in individuals
proceeding to T2D. However, it is noteworthy that each of
these cellular stressors is thought to also either induce an
inflammatory response by itself or to be exacerbated by or
associated with inflammation [5]. Inflammation is a com-
plex, systemic, multiscale physiological process necessary to
cope with damaging agents, involving a variety of cells,
organs, and organ systems. *e complexity of the in-
flammatory process escapes reductionist approaches, since it
is characterized, among other things, by nonlinear kinetics
as well as numerous and nested feedback loops.

*e ultimate conceptualization identifies the hallmark of
T2D in a chronic inflammatory state initiated by an excess of
nutrients and referred to as metabolic inflammation or
metaflammation. Indeed, proof-of-concept clinical studies
demonstrated the potential of using an anti-inflammatory
molecule in T2D therapy, thus strongly linking in-
flammation with the pathogenesis of T2D [4].

*is clear evidence is at the core of the present computer
simulation study as it constitutes the primary working
hypothesis of a mathematical model developed and used to
assess the risk of developing an inflammatory state thus
leading to T2D.

2. Computational Modeling

We used an agent-based model (ABM) of the immune
system to study in silico the emergence of a low-level chronic
inflammation in the adipose tissue, as the main place of
accrual of inflammatory evidences due to prolonged ex-
cessive calorie intake.

*e model is a derivation of a well-established general-
purpose immune system simulator [6], a modeling frame-
work that has been used over the past two decades to study
different human pathologies [7–9], specific aspects of the
immune response [10, 11], and also nonhuman immunity
[12].

It is a multiscale discrete-event model, generic enough to
account for the major hallmarks of the immune response.
*is computational model has been conceived to allow the
dynamic representation of hypotheses and their preliminary
testing [13]. *e model represents several primary and
secondary immune compartments playing a critical role in
the immune response: generic tissue (e.g., epithelial and
adipose tissue), lymphoid tissue, thymus gland, and bone
marrow. *ese components are bundled together in a
complex yet parsimonious model of immunity focused at the
mesoscopic (i.e., cellular) level.

Agent-based modeling is based on a general paradigm
for complex systems inspired by von Neumann’s “cellular
automata” [14]. It consists of discrete dimensional entities
(three-dimensional space and time in discrete steps), where
the agents are the relevant entities (cells or molecules)
equipped with virtual receptors and capabilities, which re-
flect biological observations.

In the used modeling framework, key immune cells such
as monocytes-derived macrophages, dendritic cells, and B
and T lymphocytes are represented by agents and follow a set
of rules describing the different phases of the recognition
and response of the immune system against a pathogen. In
particular, the model incorporates key immune processes
such as phagocytosis, antigen presentation, cytokine release,
cell activation from inactive or anergic states, development
of the immunememory, cytotoxicity, and antibody secretion
[6]. Additionally, this model reproduces the gene-regulation
mechanisms leading to macrophage differentiation during
the different stages of inflammation [11].

*e model represents a small volume of the body
populated by a fraction of immune cells which is calculated
according to generic leukocyte formulas. *e discrete time
step is equivalent to eight hours of real life.

For the work here presented, the above described model
has been enriched for the ongoing purpose of studying the
effects of excessive caloric intake by including specific
mechanisms pertaining the (i) accumulation of fat in the
adipose tissue, (ii) consequential growth of the adipose
tissue, (iii) the generation of proinflammatory cytokines,
and (iv) the endmost polarization of key innate immune
mediators such as the macrophages into the proin-
flammatory phenotype establishing de facto a low-grade
inflammatory state. *is implementation is described in
the following section.

2.1. Modeling the Effect of Excess Calories on Adipocytes.
Among the main risk factors of T2D is an excess in body
weight which is often the result of fat accumulation over an
extended period of time. *is process is the result of an
excess of caloric intake which is not balanced by a com-
parable caloric consumption due, for instance, to physical
activity.

In the literature, there are very few attempts to quantify
and model the link between the effects of high caloric intake
[15–18] and the emergence of the inflammation state. In the
present study, therefore, we present a model on the effects of
food intake linked to a model of weight gain eventually
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driving a systemic low-grade inflammation. Our model
represents besides key immune cells responsible for the
inflammation process, a population of adipocytes as the sum
of individual cells acting as reservoirs for fat and originators
of inflammatory signals. Model’s anthropometric inputs
include the subject initial body weight (BW) in kilograms,
height (H) in meters, age (A) in years, and gender (G) male
or female. Starting from these parameters, the relationship
between adipocyte diameter and body mass index (BMI) is
determined as in equation (1) to set the initial distribution of
the volume of adipocytes. *is relationship has been esti-
mated in [19] from data on 54men and 207 women and links
the diameter of an adipocyte of the omental adipose tissue
(ϕ) with the BMI:

ϕ(BMI) � ϕc − λe
−δBMI

, (1)

where, respectively, for female and male, ϕc � 123 and
120 μm, λ � 198.445 and 74.905 μm, and δ � 0.061 and
0.049m2/kg [19]. *ese values for the parameter ϕc for male
and female are in accordance with another experimental
finding [18], which shows a maximal cell diameter value
ranging from 120 to 130 μm. Omental fat constitutes the
larger part of visceral adipose tissue (VAT, i.e., the main spot
of the inflammation), and hence, we surmise that relation in
equation (1) is valid for all adipocytes in VAT. Moreover,
since the body mass index is calculated as BMI � BW/H2, the
relationship in equation (1) links the average diameter of a
visceral adipocyte ϕ to BW and therefore it allows the esti-
mation of the distribution of the initial diameter of the ad-
ipocytes making up the fraction of the adipose tissue given the
BMI of the subject at the beginning of the simulated period.

Another value of use to set the initial condition of the
model is the initial value of the fat mass FM(0). To this
purpose, the following compartmental relation between fat
and body weight [20] allows to compute FM as a function of
the body weight and the free fat mass (FFM):

FM(BW) � BW− FFM(BW; A, H). (2)

According to Westerterp’s regression equations in [21],
different values of FFM for men and women can be esti-
mated on the basis of the age A, body weight BW, and height
H as follows:

FFM(BW; A, H) � α + βA + cH + δBW, (3)

where the parameters α, β, c, δ depend on the gender and are,
respectively, α � −12.47 kg, β � −0.074 kg/years, c � 27.392
kg/m, and δ � 0.218 for female and α � −18.36 kg,
β � −0.105 kg/years, c � 34.009 kg/m, and δ � 0.292 for
male.

During periods of excessive calorie intake, adipocytes
grow in order to stock the energy surplus (swelling). *e
growth continues until a critical size for the diameter of a
visceral adipocyte (ϕc) is reached (equation (1)). Beyond this
value, the adipocyte stimulates the generation (adipogenesis)
of new adipocytes from precursor cells [15–17].

To model the enlargement of the adipocyte due to a
(daily) surplus of calorie intake indicated by E, we assume a
spherical shape and define the critical value for the volume

for the cells vc � (4/3)π(ϕc/2)3 where, as already mentioned
above, ϕc is set to 123 μm for females and 120 μm for males
[18, 19] (Figure 1).

We now define the swelling factor as the relation between
the actual volume v(t) and the critical value vc:

ϑ(t) � 1−
v(t)

vc
. (4)

Since we are representing cells as agents, we can model
the increase of the volume of each single adipocyte in-
dividually. At each time step, the volume of an adipocyte
changes with probability

ps � Pr[swelling] �
1
2

1 + tanh k1ϑ(t) + k2( 􏼁􏼂 􏼃, (5)

in view of the fact that larger cells are less likely to increment
their volume than smaller ones. With this probability ps, the
volume variation of each single adipocyte is described as
follows:

v(t + 1)− v(t) �
k3E + η, if v0 ≤ v(t) + k3E + η,

0, otherwise,
􏼨 (6)

where η∼N(0, k4v0) is a Gaussian noise with zero mean and
variance proportional to the baseline volume of an adipocyte
v0 � 8.181 · 10−6 μL calculated for a “normal” individual
(approximate value) [22, 23].

Note that in equation (6), the volume v(t) is not allowed
to become smaller than v0 even in case of successive negative
values of η and E (as for a prolonged low caloric intake diet,
i.e., E< 0 kcal/day). Also, note that even though equation (6)
does not impose constrains on the growth of the volume, the
probability ps becomes negligible when v(t) approaches 2vc
and hence the volume of the adipocytes cannot become too
large.

To model the adipocyte recruitment from precursors at
each step of the simulation, we first define the fraction ζ(t) of
adipocytes which, by enlargement due to caloric excess
intake, have surpassed the critical value vc and are thus
secreting growth factors (i.e., adipokines) signaling adipo-
cyte precursors for the need to generate new cells [16, 17, 26],
that is,

ζ(t) �
cell i : vi(t)> vc􏼈 􏼉

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

N(t)
, (7)

where N(t) is the total number of adipocytes in the sim-
ulated volume. *en with probability pa defined below, we
generate new adipocytes at a rate of one cell/time step per
microliter of adipose tissue volume:

pa � Pr[adipogenesis] �
1
2

tanh k5ζ(t) + k6( 􏼁 + tanh(1)􏼂 􏼃.

(8)

*e newly generated adipocytes increase the total adi-
pose tissue volume since each adipocyte is initialized with
volume v0. It is worth to note that, in case of prolonged
excess of calories, this new tissue amounts to a new reservoir
for further accumulation of fat, whereas if the diet is low
calorie (data not shown), the weight is initially lost relatively

Computational and Mathematical Methods in Medicine 3



quickly because of the shrinkage of the adipocytes but then
proceeds more slowly due to the relatively long half-life of
the adipocytes.

Figure 2 shows ps and pa corresponding to the values of
the parameters estimates with experimental data as de-
scribed in the following section.

*e process described above simulates the weight gain
process resulting from a prolonged highly caloric diet de-
scribed in the following section. To compute the weight from
the population of simulated adipocytes, we use equations (3)
and (2) and compute the weight changes at time t as follows:

BW(t)−BW(0) � FM(0) ·
1

1− δ
·
V(t)−V0

V0

�
FM(0)

1− δ
􏽐

N(t)
j�1 vj(t)

v0N0
− 1⎛⎝ ⎞⎠,

(9)

where BW(0) and FM(0) are, respectively, the initial values
for body weight and the fat mass, N(0) � N0 is the initial
number of adipocytes, V0 � v0N0 is the initial volume of the
tissue, vj is the volume of the jth adipocyte, and V(t) �

􏽐
N(t)
j�1 vj(t) is the volume of the tissue at time t.

2.2. Modeling the Link to Inflammation. Macrophages are at
heart of many immune-related phenomena including in-
flammation, but their complexity and plasticity only recently
have gained much appreciation. In particular, the differ-
entiation of macrophages into the two phenotypesM1 (pro-)
and M2 (anti-inflammatory) is the topic of one of our
previous works [11] and has been exploited also in the
present study.

*e goal of our model is to determine how an excess of
calorie triggers, in the long run, a state of low-grade in-
flammation through the accumulation in the adipose tissue
of proinflammatory macrophages [27, 28]. *e link from
the excess calories to macrophage differentiation to the
proinflammatory phenotype is provided by the fact that the
increase in volume of adipocytes does not just lead to
adipogenesis from precursors but also induces the immune
system to set up the inflammatory condition [26, 27]. *is
process is modeled by having adipocytes which are
stimulating adipogenesis (with probability pa) to also
secrete inflammatory cytokines such as tumor necrosis
factor alpha (TNFa), interleukin-6 (IL-6), and interleukin-
1beta (IL-1b). *ese cytokines create a milieu for the
differentiation of macrophages into the M1 (proin-
flammatory) phenotype as described in [11], thus pro-
viding a positive feedback on the further exacerbation of
the inflammation.

2.3. Available Data and Parameters Estimation. In this
section, we describe the data used to find the parameters of
the model (i.e., k1, k2, k3, k4, k5, and k6). We run a set of fifty
independent simulations with different random number
initializations and compute statistics to fit against experi-
mental data from the studies in [24, 25].

*e study from Diaz in reference [24] has been con-
ducted for a period of seven months subdivided in five
phases: baseline, overfeeding, free diet, underfeeding, and
free diet. *e only data of interest for us corresponds to the
overfeeding phase which went on for 42 days and included 6
lean plus 3 overweighted young men. In this phase, in-
dividuals were overfed 50% above their baseline re-
quirement. *is corresponds to an excess of 6.2 ± 1.9 MJ/
day (1506 kcal/day).*e weight increased from 73.7 ± 9.5 kg
to 81.4 ± 9.6 kg, namely, 7.6 ± 1.6 kilograms.
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Figure 1: *e volume of an adipocyte changes with an excess (or
defect) of caloric intake. We model the swelling and also the re-
cruitment of new adipocytes as stochastic events whose probabilities,
respectively, ps and pa are function of the actual volume as in
equation (5) and equation (8) and reach 0 and the maximum value,
respectively, for lim
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In another study [25], Trembley and coauthors have
investigated the effect of overfeeding on energy expenditure
in 23 young men (21 ± 2 years, 1.74 ± 0.06 meters tall)
subjected to a diet consisting of a surplus of caloric intake of
353MJ. *ese individuals were overfed 6 days a week for
100 days, that is, 84 days of overfeeding on the total of
100 days. Dietary regimen consisted of 4.2MJ/day (i.e.,
1004 kcal/days) over the preestablished energy cost of weight
maintenance. According to this study, the weight of the
subjects changed from 60.3 kg ( ±8.0) to 68.4 kg ( ±8.2).

Figure 3(a) shows data from the study in [24] together
with the average value of the total weight BW(t) for fifty
runs corresponding to an excess of E � 1506 kcal/day for the
whole duration of the simulated period of a year. In these
runs, we simulate a 36-year-old male individual 175 cm tall
weighting 73.7 kg. *e simulation curve is in accordance
with the experimental data.

For the second set of data, those of the study in [25], we
have performed simulations of a high calorie intake cor-
responding to an excess of 1004 kcal/day for 6 days a week,
for a 36-year-old 60 kg male subject 172 cm tall. Figure 3(b)
shows that the average weight computed on fifty in-
dependent runs is also in accordance with this set of ex-
perimental data.

3. Results and Discussion

To have a comprehensive view, simulations have been
performed for diverse calories excess intake (here again each
of them were run fifty times to account for stochastic
variability).

Figure 4 shows the effect of different high calorie diets
expressed in kcal/day on the body weight of a simulated 60 kg,
170 cm height, 35-year-old (slim)male. It is worth to note that,
overall, BW(t) in Figure 4 is nonlinear and has two phases: the
first one due to the swelling of the adipocytes present at the

initial time, and the second due to the enlargement of the
newly recruited adipocytes.*is result suggests that the weight
gain dynamics has the characteristics of a nonlinear process
with a quicker phase followed by a slower progression due to,
respectively, swelling and recruitment of new cells; a peculiar
dynamics which certainly depends on the individual char-
acteristics such as the distribution and/or metabolic charac-
teristics of the adipocytes in the adipose tissue.

As for the emergence of the inflammation, we recall that
when the simulated adipocytes reach the critical volume vc,
they start releasing inflammatory cytokines TNFa, IL-6,
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Figure 3: Simulation agreement with the overfeeding phase of the study of (a) Diaz [24], matching an excess caloric intake E � 1506 kcal/day,
and (b) Tremblay [25] equating to E � 1004 kcal/day. In the first case, we simulate a subject with BMI� 24.06, whereas in the second case, the
subject has BMI� 20.38. According to the current classification with respect to the body mass index, both subjects are considered normal.
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and IL-1b with a certain probability pa. *rough the
complex machinery of gene regulation, these cytokines
induce the differentiation of macrophage precursors into
the M1 proinflammatory form. *ese detailed dynamics
have been implemented in the agent-based model in a
previous work as a Boolean network describing the
activation/inhibition of key genes [11]. *e interested
reader can also refer to an older example of use of gene
regulatory network modeling to implement the differenti-
ation rule of an immune cell. In [29], the differentiation of
helper T lymphocytes into the two subtypes *1 and *2 is
carried through the analysis of the dynamics of a Boolean
network representing the gene regulatory machinery per-
taining the cellular differentiation [29].

In the present simulations, to show the emergence of an
inflammatory state, the population of macrophages is
plotted in Figure 5 at year 1 to 5. We observe the presence of
M1 proinflammatory macrophages resulting from high
levels of proinflammatory cytokines released by adipocytes
at first and proinflammatory macrophages subsequently
which therefore exerts a positive feedback on the

inflammation. In Figure 5, at year five (Figure 5(e)), there
seems to be a critical excess calorie intake E∼103 for which a
larger fraction of macrophages participate to the in-
flammation. Also note that the shift toward the M1
proinflammatory phenotype of the macrophage population
as a function of the excess caloric intake E is not meaningful
at the first year (Figure 5(a)) but becomes pronounced from
year three onwards (Figures 5(c)–5(e)) even for relatively
lower values of E. Also interesting is the fact that, at year five,
the number of M2 anti-inflammatory macrophages is
somehow increased for E≥ 1500 kcal/day bearing witness of
the hopeless anti-inflammatory effort to restore equilibrium
(Figure 5(e)).

Another way of looking at the effects of high calorie diets
on the setup of the inflammation is by plotting the per-
centage of cases that did not trigger an inflammatory re-
action for each dietary conditions over a time period of five
years. *ese are the Kaplan–Maier curves of Figure 6
pointing to the fourth year as the critical one in the con-
solidation of the inflammatory state for diets matching
E≥ 1500 kcal/day.
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Figure 5: Number of macrophages in the two differentiation classes M1 andM2 per μL of simulated adipose tissue at different time points of
simulations of varying calorie diets.*e shift toward theM1 proinflammatory phenotype of the macrophage population is not meaningful at
the first year (a) but becomes pronounced from year three onwards (c–e) even for relatively lower values of the excess caloric intake (e). Note
that at year five (e) also the number of M2 anti-inflammatory macrophages is increased in high calorie diets E≥ 1500, indicating the attempt
of the immune system to counterbalance the inflammation by empowering anti-inflammatory mechanisms.
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4. Conclusions

Computational multiscale modeling of immune-related
diseases is a growing field of the study [30]. In the present
work, we discuss a recently developed computational
model for the simulation of the weight gain process
leading to inflammation. *e model is initialized with
some anthropometric measures of the individual such as
age, weight, height, and gender, and simulates, on the basis
of an excess calorie diet and the accumulation of fat in the
adipocyte tissue which is ultimately responsible for the
inflammation. *e model calculates the body weight as a
function of the size and of the volume of the adipocytes
which in turn swells and increases in number as a con-
sequence of the lipid accumulation due to the excess of
calorie intake.

*e parameters of the model have been chosen to re-
produce the weight gain increase in the relatively short
period (i.e., few months) of two separate experimental
studies [24, 25]. By extending the high calorie period to five
years, the model shows a weight increase which is within
reasonable ranges (Figure 4).

Concurrently to the weight gain, the simulation de-
scribes the emergence of the inflammatory state in terms of
the relative fraction of macrophages differentiating into the
proinflammatory M1 phenotype. As expected, the magni-
tude of the inflammation correlates with the calorie excess of
the diet. Interestingly, it also shows the attempt of the
immune system to counterbalance the inflammation elic-
iting a smaller fraction of anti-inflammatory macrophages
M2 (Figure 5(e)).

A number of improvement to this model can be
foreseen as, for instance, the effect of physical exercise on

the release of the pro/anti-inflammatory cytokine IL-6 [31],
a better definition of the individual in terms of not just
weight and age but also fitness level and daily energy ex-
penditure [32] or a more detailed transformation of the
dietary input into the calorie intake [33]. *e latter is the
core of a work in progress which will be submitted for
publication in due date. As another direction of work, we
are planning to extend the model to account for the use of
drugs for the treatment of diabetes.*is step, which implies
a number of complex modifications to account for the
impairment of pancreatic beta-cells and the establishment
of insulin sensitivity, could enable the model to evaluate
treatment schedules not much differently to what was
previously done for the optimisation of vaccines [34, 35].
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