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Abstract
Being one of the most frequently killed raptors by collision with wind turbines, little is known about the Griffon vulture’s flight

strategies and behaviour in a fine scale. In this study, we used high-resolution tracking data to differentiate between the most

frequently observed flight types of the Griffon, and evaluated the performance of our proposed approach by an independent

observation during a period of 4 weeks of fieldwork. Five passive flight types including three types of soaring and two types of

gliding were discriminated using the patterns of measured GPS locations. Of all flight patterns, gliding was classified precisely

(precision = 88%), followed by linear and thermal soaring with precision of 83 and 75%, respectively. The overall accuracy of

our classification was 70%. Our study contributes a baseline technique using high-resolution tracking data for the classification

of flight types, and is one step forward towards the collision management of this species.

Keywords Animal movement � Animal tracking � Collision � Gliding � Linear soaring � Slope soaring � Spain �
Spiral gliding � Telemetry � Wind turbine

Background

Flight and foraging behaviour, and migration of the Griffon

vulture (Gyps fulvus, Hablizl, 1783) have been well studied

(Bildstein et al. 2009; Duriez et al. 2014, Garcı́a-Ripollés

et al. 2011; Houston 1974) (see ‘‘Appendix’’). However,

little is known about the fine-scale flight and motion

capacity of this species, which is on the top list of most

frequently killed raptors by collision with wind turbines in

southern Spain (Barrios and Rodrı́guez 2004).

Flight type plays an important role in collision risk with wind

turbines, especially when associated with hunting and foraging

strategies of big raptors (Marques et al. 2014). Hoover and

Morrison (2015) highlighted that soaring flight, which needs

strong wind and occurs in rotor-swept zone of wind farm, is a

factor explaining the high collision rate of raptors.

The motion capacity of an individual is its ability to

move in various ways or modes either by its own loco-

motion or by externally vectored via physical means (e.g.,

winds, water flow, etc.) or by other organisms (e.g.,

wingless flower mites traveling on foraging bees) (Holyoak

et al. 2008). Generally, a movement paradigm was intro-

duced as the interplay amongst the four basic mechanistic

components: external factors affecting movement, internal

state (i.e., why move?), navigation capacity (i.e., where and

when to move?) and motion capacity (i.e., how to move?)

(Holyoak et al. 2008; Nathan et al. 2008). A more detailed

understanding of the motion capacity of flying birds has

been developed in many ornithological studies (Cone 1962;

Dhawan 1991; Pennycuick 1971, 1972; Tucker 2000;

Videler 2005). Soaring and gliding are the two most

common types of flight among raptors and have been at the

centre of many studies since the first attempt to understand
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raptors’ flight behaviour in 1913 (Dhawan 1991). However,

a major challenge underlying studies of movement type is

of a methodological nature, related to data collection and

the methods used to classify the movement patterns.

With respect to data collection, researchers have tradi-

tionally used direct observation as a method to monitor

birds, as well as to elucidate and describe flight phenomena

(Pennycuick and Scholey 1984). Bildstein et al. (2009), for

example, used this method during the autumns of

2004–2007 to determine Griffon vultures’ flight types

during migration. Not losing sight of a species is the most

challenging part of this traditional type of research (Pen-

nycuick 1973), but this has now been solved by telemetry

techniques. These methods provide practical insight into

wildlife movements (for instance see Harel et al. 2010;

Bouten et al. 2013; López-López et al. 2013).

Techniques for studying free-living birds’ behaviour have

advanced and flourished since these earlier attempts (Roy and

Hart 1963). Since then, technologies including radar (Konrad

et al. 1968), radio (Schemnitz et al. 1969), satellite and Global

Positioning System (GPS) tracking (Biro et al. 2002; Nowak

et al. 1990; Weimerskirch et al. 2002) have been deployed.

Recent advances in telemetry techniques, such as extensive use

of bio-loggers with GPS, have enabled spatiotemporal data to

be collected on vertebrates with ever-increasing accuracy as

well as density of data points (Tomkiewicz et al. 2010).

Much research has been conducted via the classification

of movement patterns to solve the difficulties of dealing

with large datasets and their interpretation (e.g., Güting

et al. 2010). These methods, however, have been used

mainly to analyse movement in two dimensions (i.e., x and

y) (Giannotti et al. 2008; Güting and Schneider 2005; Long

and Nelson 2013) and mostly at coarse temporal resolution

(i.e., daily or hourly movements) to determine home range,

dispersal and migration routes (Calenge et al. 2009;

Kranstauber et al. 2012; López-López et al. 2013; Mandel

et al. 2008; Smouse et al. 2010).

Research to date indicates that the Griffon vulture exhibits

mainly passive flight types (i.e., various kinds of soaring and

gliding) using air currents, as well as occasional flapping when

necessary (Bildstein et al. 2009; Dhawan 1991). Moreover,

using accelerometer data, Halsey et al. (2009) proved that the

species rarely flaps except during take-off or landings in non-

migratory movement. Since soaring birds such as the Griffon

vulture are not capable of maintaining constant altitude by

flapping flight alone (Newton 2010; Shepard et al. 2011) and it

has also been shown by Bildstein et al. (2009) that the flapping

rate in the Griffon vulture is very low (i.e., mean of 1.2 flaps per

30 s), we made a basic assumption in this study that the flapping

rate during daily flights can be considered negligible in non-

migratory movement.

Our study utilised collection methods using GPS-logger

technology. Based on the high-resolution tracking data

only, we developed and tested a baseline method to dif-

ferentiate passive flight in three spatial dimensions (i.e., x,

y and z) to classify these flight types of the Griffon vulture.

This study is one step forward to have more insight into

flight behaviour which may play a role in collision risk.

Materials and Methods

Study Area and Species

Our study area in southern Spain is part of the natural park

El Estrecho, in Tarifa, Andalucı́a region, and is located on

the northern side of the Strait of Gibraltar (36�070–
36�060N, 5�450–5�460W). The Strait of Gibraltar is the

shortest sea crossing between Europe and Africa and is a

well-known migratory bottleneck for soaring birds (Zalles

and Bildstein 2000). In this area, Ferrer et al. (2012)

reported the highest collision rates ever published for birds

(1.33 deaths/turbine/year) with the Griffon vulture being

the most frequently killed species (0.41 deaths/turbine/

year). An escarpment with north–south direction, 4 km

away from the Strait of Gibraltar, is a location of Griffon

vulture’s colony, consisting of approximately 65 breeding

pairs (Del Moral 2009) The population is surrounded by

several other breeding colonies, consisting of approxi-

mately 320 pairs so the area is persistently used by vulture

during their local movements (De Lucas et al. 2012) and is

encompassed by 25 wind farms, consisting of 491 operat-

ing turbines. Figure 1 shows the study area, location of

wind turbines and the colony.

A Griffon vulture was captured using a foot snare. The

bio-logger was attached to it as a backpack using a harness

made of Teflon ribbons with one strap fitting across each

wing and another strap below the crop (Kenward 2000).

The capture and release took place on September 11, 2010.

In addition, distinctive yellow patagial markers, with

unique combination of numbers and letters (i.e., 9FJ) were

attached to both wings. This method was proved to be

harmless to the bird with no changes in its normal beha-

viour (Reading et al. 2014). The captured Griffon vulture

was a male, sub-adult, and with a body mass of about 7 kg.

Collision risk may also be influenced by behaviour

associated with a specific sex or age. Although it is

reported that young vultures were not especially vulnerable

to collisions compared with the other age classes (Barrios

and Rodrı́guez 2004; Marques et al. 2014), de Lucas et al.

(2012) demonstrated that among 117 killed vultures by

collision with turbines, 74.36% (87) were juveniles and

25.64% (30) were matures and adults. Additionally, to the

best of our knowledge, no information has been published

about correlation between sex and collision rate of the

Griffon vulture.
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Tracking Device

We used the Bird Tracking System developed at the

University of Amsterdam (Bouten et al. 2013). The key

features of its bio-logger are rechargeable solar batteries,

low weight style (45 g,\ 0.6% of a Griffon vulture’s body

mass), two way data-communication, four megabytes flash

memory (capable of sorting 60,000 GPS fixes) and the GPS

tag with high resolution temporal intervals from 3 s up to

7200 s (see http://www.uva-bits.nl for more information).

In this study, we used GPS fixes and their properties to

differentiate between the flight types.

Fig. 1 The study area in province of Cádiz, south Spain: the grey polygon (bottom) is the location of colony site and the asterisk symbols show

the location of observers. The observers’ angle of view is shown in solid and dashed line
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Collecting Data from a Free-Ranging Vulture

Tracking data were retrieved for 27 days between May and

July 2013. This period was a part of breeding season of the

bird. During this time, we also undertook fieldwork observa-

tions independent of the tracking dataset. We used a camera

recorder synchronized to Universal Time Coordinated (UTC)

time with Garmine eTrex Summit GPS along with direct

visual observations to note the times and flight types simul-

taneously. The observations were made by two observers

during daylight hours with the aid of 10 9 42 binoculars and a

20–609 telescope spot. We conducted a filed survey to select

the observation locations with a wide angle of view in almost

centre of the escarpment: one up and the other down on the

cliff with almost 360� and 270� angle of view, respectively. To

motivate the Griffon vulture to fly, carrion was dumped on the

ground. Additionally, observation points were selected to

provide a wide field of view of the tagged bird with the yellow

patagial markers on the dorsal and ventral surfaces of wings.

Data Preparation

Although we had set the measurement interval of the GPS

tracker to 3s, the retrieved datasets consisted of various

intervals. Therefore, to prepare the final dataset, we

extracted 11 days of collection data with a three-second

interval, yielding 66,766 data points. The instrument

recorded several properties for each point including time,

geographic coordinates, altitude, and instantaneous veloc-

ity in three directions (x, y and z). Based on this raw data,

we calculated the distance, cumulative distance, average

altitude, altitude difference and direction of motion

between all successive GPS fixes. To discriminate between

flying and non-flying modes, we considered speed of

movement and calculated the first non-static points with a

speed[ 4 m/s (Nathan et al. 2012).

Flight Types

This paper focuses on five different types of passive flights,

namely: thermal soaring, linear soaring, slope soaring, glid-

ing, and spiral gliding. Figure 2 illustrates all the flight types.

Thermal soaring is characterized by a circular flight in the

course of which birds gain altitude in thermal columns using

tight curves as close as possible to the centre (Pennycuick

1973, 2008; Videler 2005). The term linear soaring was

introduced by Pennycuick (1972). It refers to an almost straight

flight without circling when thermal currents are strong and

abundant (Videler 2005). Although this term was introduced to

describe long-distance flight, we have here applied the term to

straight flight with a minimum length of 350 m to discriminate

it from slope soaring. Slope soaring is a flight type often

exhibited by Griffon vultures along their nesting or roosting

cliffs. Generally, slope soaring takes place at a low altitude.

Birds repeat this type of flight parallel to the cliff. This type of

flight lasts until they detect a thermal or other air current

(Barrios and Rodrı́guez 2004; Pennycuick 1972). It is per-

formed in a shape that can be likened to a figure of eight.

Gliding refers to flight with wings spread (or folded) in a

downward or straight direction (Dhawan 1991; Pennycuick

1971, 2008). Spiral gliding is used to reduce altitude in an

almost spiral-like pattern, and in slow downward motion

towards the ground or to the nesting site. The term spiral gliding

is not commonly used in the ornithology literature; it was

borrowed from a study that focused on the flight behaviour of

seeds dispersed by the wind (see: Minami and Azuma 2003).

Flight Classification

To discriminate between linear flight patterns (i.e., linear

soaring and gliding) and non-straight flight patterns (i.e.,

thermal soaring, slope soaring and spiral gliding), we cal-

culated the radius of curvature parameter using a minimum

of three successive GPS fixes. To further differentiate

patterns within each flying type, we applied the laws of

motion, as defined in physics, based on the following

parameters: distance, altitude, speed and angle of direction.

For the space curve (like a non-straight flight pattern),

the radius of curvature is the length of the curvature vector.

To calculate the radius of curvature, we combined the flight

distance and speed within non-straight flight patterns. In

this regard, speed was smoothed with a running mean over

three successive GPS fixes.The curvature k is defined as:

k ¼ D/
Ds

¼ /iþ1 � /i

siþ1 � si
ð1Þ

where / denotes the tangential angle and s is the arc length.

In three-dimensional space, the space curve r(t) for the

tangent vector T̂ is defined as:

T̂ �
Dr
Dt
Dr
Dt

�
�

�
�
¼

Dr
Dt
Ds
Dt

¼ Dr
Ds

: ð2Þ

According to the Frenet–Serret formula, in differential

geometry, keeping T̂ as the tangent vector and N̂. is the

normal vector (Coxeter 1969) then we have:

€̂r ¼ T̂ ð3Þ

€̂r ¼ kN̂: ð4Þ

When €̂r changes constantly, it will show a circular flight

(such as thermal soaring). However, if €̂r fluctuates by

showing increasing and decreasing magnitude, the flight

can be considered to be slope soaring with its radius of

curvature going up and down.
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Another parameter that assisted in discriminating

between non-straight flights was altitude, which constantly

increases in thermal soaring and decreases in spiral gliding.

However, it remains almost steady during the slope-soaring

movement (z * 0).

Flights with a radius of curvature[ 350 m were con-

sidered straight flights. To determine whether a flight pat-

tern was soaring or gliding, regardless of whether it was

straight or non-straight, the altitude of five successive GPS

fixes (over a period of 15 s) were also considered. In this

Fig. 2 Thematic illustration of the Griffon vulture’s different flight patterns a thermal soaring, b spiral gliding, c linear soaring, d gliding, e slope

soaring
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regard, soaring or gliding were characterized when the

majority of the fixes (n C 3) were either ascending or

descending, respectively. Figure 3 shows the steps we took

in building and evaluating our differentiation of Griffon

vulture flight types.

Evaluation of Flight Pattern Differentiation

An independent observation dataset was gathered during

the fieldwork and used to evaluate predicted flight patterns.

For this purpose, we collated and compared records based

on the field observations and extracted 1146 s of flight

synchronized with the final dataset. Considering each

interval between two successive GPS points is 3 s, the

length of recording consisted of 382 segments in total,

matched with the dataset. It consisted of 54, 104, 109, 23

and 92 segments for linear soaring, gliding, thermal soar-

ing, spiral gliding and slope soaring, respectively.

Validated results are presented in the form of a confusion

matrix, (for example see: Kohavi and Provost 1998) giving

the number of cases that were correctly classified as positive

(i.e., predicted flight pattern), as well as the number correctly

identified as negative (other flight patterns). The cases where

a negative sample was misclassified as positive, and vice

versa, are called false positive and false negative, respec-

tively. The performance of the identified flight patterns was

evaluated based on indicators, namely precision, true-posi-

tive rate, true-negative rate, the accuracy of each flight pat-

tern, and the overall accuracy, as well as the kappa value

(Weiss and Provost 2001) (see below for definitions).

Precision is defined as the proportion of the predicted

cases that were correct. The true-positive rate indicates that

the percentage of a flight pattern matches what is also

observed from the data, while the true-negative rate

expresses the proportion of other flight patterns that are

correctly predicted as that class. The accuracy of each flight

pattern is the proportion of predictions (positive or negative)

that are correct. Overall accuracy is calculated by the total

number of correct classifications divided by the total number

of samples. Finally, the kappa value is used to measure the

agreement between predicted and observed classes, while

correcting for an agreement that might occur by chance

(Stehman 1997; Viera and Garrett 2005). The confusion

matrix (Table 1, left) shows the number of segments

belonging to each flight pattern. For instance, in the first row,

41, 0, 7 and 6 are number of segments corresponding to each

flight pattern classified as linear soaring, gliding, thermal

soaring, spiral gliding and slope soaring, respectively. The

Databases GPS measures

Data preparation &
filtering

V>4m/s
No

Non-flying mode

Yes

Flying mode

Ascending
No

Yes

Straight 
direction

No

Yes

Linear soaring

Non-straight 
soaring

Straight 
direction

Yes

Gliding

No

Spiral Gliding

Fluctuation 
in Radius of 

curvature

Slope soaring Thermal soaring

No

Flight patterns 

Flight observation

Accuracy of 
Flight patterns  

Evaluation

Yes

Fig. 3 Study workflow of the Griffon vulture’s flight patterns and evaluation of the classification
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numbers in diagonal line (in bold) are those segments that

were correctly classified as positive.

Results

The evaluation method indicated a substantial agreement

between the predicted and observed Griffon vulture’s flight

types (Table 1, right). The estimated kappa value

(0.61 ± 0.06) is intended to illustrate the agreement

between two groups of predicted and actual flights. The

overall classification accuracy was 70%. Of all flight pat-

terns, gliding had the highest precision (88%), while linear

and thermal soaring had a precision of 83 and 75%,

respectively. The lowest values of precision were present

for spiral gliding (34%) and slope soaring (53%).

The flying and stationary modes were clearly distin-

guished. The variation of instantaneous speed[ 4 m/s, as a

main proxy of the flying mode, is demonstrated in Fig. 4.

This figure also shows that the stationary mode is more

frequent than flying mode in the period of our study.

Although thermal and linear soaring, as well as gliding,

were classified correctly to a high degree of the estimated

precision, some misclassifications of flights also occurred.

Linear soaring was mostly misclassified as thermal soaring.

Gliding was also misidentified as slope soaring, while

spiral gliding was misclassified as either gliding or slope

soaring. Finally, slope soaring was mixed up with thermal

soaring, gliding, and linear soaring. Slope soaring and

spiral gliding had the lowest values of the true-positive

rate. The highest true-positive rate (81%) was achieved for

thermal soaring at 81% and was slightly better than that for

linear soaring or gliding. The true-negative rates were

excellent for all flight patterns. The lowest and highest

values of true-negative rate were achieved for slope soaring

(85%) and linear soaring (97%), respectively. The pre-

dicted accuracy measures, and the proportion of positives

or negatives were excellent for all flight patterns.

Linear soaring (92%) and slope soaring (75%) were the

most and least accurate flight types, respectively.

Examples of the different flight types in three dimen-

sions are visualized in Fig. 5a, b, demonstrating variation

of flight behaviour in different altitude and with the use of

thermal soaring the bird reached up to 1400 m above sea

level. Additionally, Fig. 5c, d shows a scheme of radius

changes as the bird flew along the curve.

Discussion

Our study differentiated five passive flight types of the

Griffon vulture including linear soaring, thermal soaring,

slope soaring, gliding and spiral gliding. To ourTa
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knowledge, this is the first reported differentiation of a

raptor’s flight patterns using tracking data. Our results

show differences between flight patterns in terms of

accuracy, precision, true-positive rate, and true-negative

rate. Each class shows over 75% performance in accuracy.

Due to the unbalanced structure (the ratio of positive and

negative cases, the predicted flight and other flight pattern)

in most of the observed data, other measures of the clas-

sification’s performance, such as precision and true-posi-

tive rate, are more informative (Kubat et al. 1998;

Martiskainen et al. 2009).

The classification precision was high for linear and ther-

mal soaring as well as for gliding. The lower precision values

seen for spiral gliding and slope soaring indicate that the

classification method can be problematic in predicting pos-

itive cases (predicted flight pattern) correctly. Most cases of

confusion involved slope soaring. This may be because it

could be the most complex flight pattern, or because it clo-

sely resembles other patterns. Part of the difficulty could lie

in the sampling rate of the flight type, which might have been

too low to discriminate slope soaring well enough. This is in

fact supported by the Nyquist Theorem (also known as the

sampling theorem), according to which the minimum sam-

pling rate must be twice the highest frequency contained in

the flight pattern (Grenander 1959).

Our results reveal that the highest percentage of mis-

classification is seen for spiral gliding, due to the inade-

quate number of samples (Bohrer et al. 2012; Kubat et al.

1998; Mellone et al. 2015) in our current dataset. Since

only two fieldworkers were assigned to collect the obser-

vational dataset in a limited time, there may also have been

some human error during sightings or recording the bird’s

flight behaviour and this might have affected the dataset.

The true-positive rate was high in the three flight pat-

terns of linear soaring, thermal soaring and gliding. This

implies that fewer negative cases (predicted other flight

pattern) were falsely classified in those flight patterns; in

other words, the true-positive rate shows these three flight

types were more often correctly identified than slope

soaring and spiral gliding. The excellent values (85% and

higher) of the true-negative rate in all the flight types also

shows that the negative cases were correctly classified for

those flight patterns. The value of kappa (0.61 ± 0.06)

shows a substantial classification agreement, which could

be interpreted as demonstrating the method’s success.

For the above flight types, data with finer temporal reso-

lution (e.g., a 1 s interval) of GPS fixes might be useful for

making a more precise and accurate classification. In this

experiment, although we set the measurement interval of the

GPS tracker to 3 s, the retrieved dataset consisted of unequal

intervals. By filtering out the coarse temporal resolution,

some gaps in the dataset decreased the consistency of the

data. Due to the varying success in classifying the flight

types, it might be worthwhile to include various parameters

(e.g., time window) in the classification process. More

specifically, including other parameters (e.g., aspect ratio or

wing loading) would entail considering the traits of each

flight pattern. Another point that could improve classifica-

tion performance is the further optimization of different

flight characteristics (e.g., horizontal vs. vertical speed).

Since we can assume birds’ flight types are affected by the

environmental conditions (Shamoun-Baranes et al. 2004)

Fig. 4 Variation and frequency

of instant speed in the dataset:

a instantaneous speed[ 4 m/s

(red dashed line) is the main

proxy to identify flying mode,

and b frequency of flying and

static modes in the dataset
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Fig. 5 a Scheme of the Griffon vulture’s flight patterns in three

dimensions, and b in two dimensions segregated using the concept of

motion in physics. c Scheme of the Griffon vulture’s flight patterns in

three dimensions, and d its relative radius of curvature (red line) and

altitude (green line) during the flight
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when gathering data in different seasons, there may be an

opportunity to observe and digitally capture more flight

types, particularly those that were seen less often during the

period of this study. We speculate that the Griffon vulture

spent more time in the non-flight mode because we per-

formed the study during the breeding season; the birds would

have been in parental mode and more vigilant than at other

times of the year to protect their chicks from bad weather and

predators (Xirouchakis and Mylonas 2009).

Conclusion

This study investigated the flight types of the Griffon

vulture using high-resolution GPS data and we provide

evidence that such data contains sufficient information to

recognize Griffon vulture’s flight types. In movement

ecology research, our study makes a useful contribution by

providing a new baseline technique using GPS sensor data

to classify a bird’s flight type as a part of its motion

capacity. However, more studies are needed to refine the

properties employed in this classification method, includ-

ing the testing of other types of sensory data (e.g.,

accelerometer data) or the use of different analytical

parameters. Collision risk of the Griffon vulture was

mediated by flight behaviour and it is suggested that a

detailed research on flight behaviour is needed at precise

location where the turbines are installed (Barrios and

Rodrı́guez 2004), so our study is one step forward to solve

the collision dilemma.
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López-López P, Benavent-Corai J, Garcı́a-Ripollés C, Urios V (2013)

Scavengers on the move: behavioural changes in foraging search

patterns during the annual cycle. PLoS One 8(1):e54352. https://

doi.org/10.1371/journal.pone.0054352

Mandel JT, Bildstein KL, Bohrer G, Winkler DW (2008) Movement

ecology of migration in turkey vultures. Proc Natl Acad Sci USA

105(49):19102–19107. https://doi.org/10.1073/pnas.0801789105

Marques AT, Batalha H, Rodrigues S, Costa H, Pereira MJR, Fonseca

C, Mascarenhas M, Bernardino J (2014) Understanding bird

collisions at wind farms: an updated review on the causes and

possible mitigation strategies. Biol Cons 179:40–52. https://doi.

org/10.1016/j.biocon.2014.08.017

Martiskainen P, Järvinen M, Skön J-P, Tiirikainen J, Kolehmainen M,

Mononen J (2009) Cow behaviour pattern recognition using a

three-dimensional accelerometer and support vector machines.

Appl Anim Behav Sci 119(1–2):32–38. https://doi.org/10.1016/j.

applanim.2009.03.005
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