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Ground-state study of the spin-1 bilinear-biquadratic Heisenberg model on the triangular
lattice using tensor networks
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(Received 7 May 2018; revised manuscript received 12 June 2018; published 27 June 2018)

Making use of infinite projected entangled pair states, we investigate the ground-state phase diagram of
the nearest-neighbor spin-1 bilinear-biquadratic Heisenberg model on the triangular lattice. In agreement with
previous studies, we find the ferromagnetic, 120◦ magnetically ordered, ferroquadrupolar and antiferroquadrupolar
phases, and confirm that all corresponding phase transitions are first order. Moreover, we provide an accurate
estimate of the location of the ferroquadrupolar to 120◦ magnetically ordered phase transition, thereby fully
establishing the phase diagram. Also, we do not encounter any signs of the existence of a quantum paramagnetic
phase. In particular, contrary to the equivalent square lattice model, we demonstrate that on the triangular lattice
the one-dimensional Haldane phase does not reach all the way up to the two-dimensional limit. Finally, we
investigate the possibility of an intermediate partially magnetic partially quadrupolar phase close to θ = π/2,
and we show that, also contrary to the square lattice case, this phase is not present on the triangular lattice.

DOI: 10.1103/PhysRevB.97.245146

I. INTRODUCTION

Geometric frustration in strongly correlated materials can
cause even relatively simple systems to develop unexpected
types of order. For magnetic materials, the archetypal example
of a geometrically frustrated system is the triangular lattice
Heisenberg antiferromagnet. In 1973, Anderson [1] proposed
that the spin-1/2 triangular antiferromagnet has a ground state
consisting of resonating valence bonds, also called a quantum
spin liquid. However, it was later shown numerically [2,3] that
the ground state is ordered instead and displays 120◦ magnetic
order.

In this paper, we focus on the two-dimensional triangular
lattice spin-1 Heisenberg model with additional biquadratic
coupling—known as the bilinear-biquadratic Heisenberg
(BBH) model. It is defined by the following Hamiltonian:

H =
∑
〈i,j〉

cos(θ ) Si · Sj + sin(θ )(Si · Sj )2, (1)

where the sum goes over all nearest neighbors, Si =
(Sx

i ,S
y

i ,Sz
i ) is the vector of spin matrices for the spin-1

particle on site i, and θ ∈ [0,2π ) determines the strength
of the biquadratic term relative to the bilinear term. The
biquadratic term can appear as a second-order correction in
the expansion of the exchange interaction, in which case it
is small compared to the bilinear term. However, it has been
argued that a significant biquadratic interaction may exist. For
example, the behavior of the magnetic susceptibility of the
one-dimensional material LiVGe2O6 can be explained by a
significant biquadratic interaction [4], a suggested underlying
microscopic mechanism of which can be found in Ref. [5].

The triangular lattice spin-1 BBH model gained attention re-
cently because it was suggested that both its antiferroquadrupo-
lar [6–8] and ferroquadrupolar [9–11] ground-state phases
could give a possible explanation for the unusual behavior

[11–13] of NiGa2S4. Moreover, Cheng et al. [14] found spin-
liquid-like behavior of the 6H -B phase of the two-dimensional
triangular magnet Ba3NiSb2O9 [15,16], for which Serbyn et al.
[17] proposed a candidate spin-liquid ground state that within
the mean-field approximation was supposed to be a ground
state of the triangular spin-1 BBH model with additional
single-ion anisotropy. However, a further investigation by Bieri
et al. [18] demonstrated that the spin-liquid state found by
Serbyn et al. [17] turned out not to be the lowest energy state
of the triangular spin-1 BBH model with single ion anisotropy.

Additionally, at θ = π/4, the BBH model is equivalent to
the SU(3) Heisenberg model, which could potentially be sim-
ulated using cold atoms trapped in an optical lattice [19–26].
Besides, as the most general lattice-translation, lattice-rotation,
and spin-rotation-symmetric spin-1 Hamiltonian with nearest-
neighbor interactions, the BBH Hamiltonian is interesting in
its own right from a theoretical point of view.

Moreover, in our recent study of the spin-1 BBH model
on the square lattice [27,28], we found the occurrence of a
quantum paramagnetic phase in between the antiferromagnetic
and 120◦ magnetically ordered phases, and we were able to
show that this phase can be adiabatically connected to the
one-dimensional Haldane phase of decoupled spin-1 chains.
In addition, we also encountered a partially magnetic partially
quadrupolar phase in between the antiferroquadrupolar and
ferromagnetic phases. Both discoveries raise the question
whether any of the above phenomena also manifest themselves
on the experimentally more relevant triangular lattice.

Finally, it should be noted that the spin-1 BBH model on the
triangular lattice is very challenging to study from a numerical
perspective, as it suffers from the negative sign problem.
Previous studies—summarized in Sec. II B—are either based
on approximate methods, or involve exact diagonalization on
small systems; however, a complete and systematic study is
still lacking.
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FIG. 1. The iPEPS ground-state phase diagram. In anticlockwise
order starting at θ = 0, we have the 120 degree magnetically ordered
(AFM3), antiferroquadrupolar (AFQ), ferromagnetic (FM) and fer-
roquadrupolar (FQ) phases. The SU(3)-symmetric points at θ = π/4
and 5π/4 are labeled by black dots.

In this work, we use state-of-the-art tensor network algo-
rithms to map the entire ground-state phase diagram of the
triangular lattice spin-1 BBH model—displayed in Fig. 1.
In agreement with previous studies, we find the ferromag-
netic (FM), ferroquadrupolar (FQ), 120◦ antiferromagneti-
cally ordered (AFM3) [29] and antiferroquadrupolar (AFQ)
phases and obtain an accurate estimate of the location of
the FQ to AFM3 transition—which we predict to occur at
θc = 1.873π ± 0.007π—thereby fully establishing the phase
diagram.

Motivated by our findings for the corresponding square
lattice model [27,28], we also investigate the anisotropic
triangular lattice spin-1 BBH model for θ ∈ (−π/4,π/4).
We show that, on the triangular lattice, the one-dimensional
Haldane phase does not reach up to the two-dimensional
isotropic model—albeit that it does extend far from the one-
dimensional limit. In addition, the triangular-lattice equivalent
of the partially magnetic partially quadrupolar phase found on
the square lattice is shown to not be present in the ground-state
phase diagram of the triangular lattice spin-1 BBH model.

This paper is organized as follows. After going over some
general background information on the spin-1 BBH model in
Sec. II A, we set the stage by discussing previous work that
has been done on the triangular lattice spin-1 BBH model in
Sec. II B, and identify possible points of interest. We then pro-
vide an overview of the numerical method used in Sec. III, and
present our results concerning the ground-state phase diagrams
of the isotropic and anisotropic triangular lattice spin-1 BBH
models in Sec. IV. Finally, we discuss our findings in Sec. V.

II. MODEL

A. Preliminaries

The biquadratic part (Si · Sj )2 of the Hamiltonian (1)
introduces on-site products of spin operators SαSβ , where

α,β ∈ {x,y,z}. Thought of as a 3 × 3 matrix (with indices
α and β), the trace and the antisymmetric parts of SαSβ are
just (a multiple of) the total spin S = 1 (times the identity
matrix) and the original spin dipole vector S (due to the
spin-commutation relations), respectively. What remains is
the traceless symmetric part of SαSβ , which is called the
quadrupole matrix, or Q matrix for short,

Qαβ := SαSβ + SβSα − 2
3S(S + 1)δαβ.

The five independent components of Qαβ can be organized into
a single vector, denoted by boldface Q, as follows

Q :=

⎛
⎜⎜⎜⎜⎜⎝

(Sx)2 − (Sy)2

1√
3
[2(Sz)2 − S(S + 1)]

SxSy + SySx

SySz + SzSy

SzSx + SxSz

⎞
⎟⎟⎟⎟⎟⎠

.

Rewriting the Hamiltonian in (1) in terms of the quadrupolar
vectors Qi (see Ref. [30]) yields

H =
∑
〈i,j〉

JS(θ ) Si · Sj + JQ(θ ) Qi · Qj , (2)

up to an additive θ -dependent constant of 4 sin(θ )/3 that is not
relevant for this discussion. The spin and quadrupolar coupling
constants are given by JS(θ ) = cos(θ ) − sin(θ )/2 and JQ(θ ) =
sin(θ )/2.

The advantage of expressing the Hamiltonian in terms of
S and Q (2) over the original notation (1) is that the former
clearly separates the dipolar and quadrupolar terms—related
to magnetic and (spin) nematic order, respectively. Nematic
order involves the breaking of spin-rotational symmetry while
preserving time-reversal symmetry [31]; it differs from mag-
netic order in that the latter breaks both spin-rotation and
time-reversal symmetries. We will provide examples of both
types of order in Sec. II B. Moreover, as described in, for
example, Ref. [28], the points of enhanced SU(3) symmetry
are made explicit in (2), which in the case of the tripartite
triangular lattice are those for which JS = JQ, i.e., θ = π/4
and 5π/4.

Technically, quadrupolar order is described by the spectrum
of the Q matrix. Since tr(Q) = 0, the spectrum of Q is fully
determined by two matrix invariants, for which there are many
possible choices, such as two out of three eigenvalues, or,
the invariants IIQ = − 1

2 tr(Q)2 and IIIQ = det(Q) used in
Ref. [28]. However, when we are searching for jumps in the
Q-matrix spectrum that signify a (first-order) phase transition,
finding a jump in just one matrix invariant is sufficient. An
obvious choice for this one invariant is the vector norm
| Q| = √

Q · Q, which [30] is also equal to (1/
√

2 times) the
Frobenius norm

√
tr(Q†Q) of the Q matrix. We will refer to

this norm as the Q norm for short.

B. Previous studies

Spin-1 BBH models have been extensively studied through-
out the years. Of relevance to our investigation of the triangular
lattice BBH model in particular, is the pioneering construction
of an exact ground state [32] of the spin-1 BBH chain at
θ = arctan(1/3) in the middle of the Haldane phase [33,34],
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FIG. 2. The product ground-state phase diagram. The FQ to
AFM3 phase transition occurs at �MF

c = arctan(−2) ≈ 1.648π

(Läuchli et al. [36]).

and the development of a form of spin-wave theory by
Papanicolaou [35] that is readily applicable to spin-1 BBH
models on bipartite lattices. However, it was not until 2005
that a discovery of a low temperature spin-disordered state in
the triangular magnet NiGa2S4 by Nakatsuji et al. [12,13])
sparked a surge of increased interest in the spin-1 BBH model
on the two-dimensional triangular lattice, initializing a series
of vibrant discussions on the nature of this new-found spin
disordered state.

In order to introduce some terminology, let us first discuss
the already very rich product ground-state phase diagram of
the triangular lattice spin-1 BBH model—shown in Fig. 2—
computed by Läuchli et al. [36] assuming a tripartite site-
factorized product state ansatz for the ground state. In addition
to the magnetized 120◦ antiferromagnetically ordered (AFM3)
and ferromagnetic (FM) phases, Fig. 2 also contains the ne-
matic ferroquadrupolar (FQ) and antiferroquadrupolar (AFQ)
phases.

States in any of the quadrupolar phases have zero on-
site magnetic dipole moment 〈S〉 = 0 (since time-reversal
symmetry is preserved), but they break spin-rotation symmetry
by developing an anisotropy in their spin fluctuations. A
typical example of a quadrupolar single-particle state is the |0〉
state in the Sz basis. This state clearly satisfies 〈0|S|0〉 = 0,
but it breaks spin-rotation symmetry because 〈0|(Sz)2|0〉 =
0, whereas 〈0|(Sx)2|0〉 = 1 = 〈0|(Sy)2|0〉, indicating that the
spin vector fluctuates only in the x-y plane. A unit vector per-
pendicular to the plane of fluctuations (±ez in the case of |0〉) is
called a director. Now, product states in the ferroquadrupolar
phase have directors on neighboring sites aligned in the same
direction, whereas states in the antiferroquadrupolar phase
have neighboring directors aligned in mutually perpendicular
directions—e.g., in the x, y, and z directions—assuming a
three-sublattice pattern. The quadrupolar states are pictured
by discs in Figs. 1 and 2 representing their planes of spin
fluctuations.

In the same paper [36], by means of exact diagonaliza-
tion, Läuchli et al. continued to show that the mean-field
critical parameter value �MF

c = arctan(−2) separating the
FQ and AFM3 phases gets renormalized to �ED

c ≈ −0.11π .
Moreover, Läuchli et al. also found the occurrence of an
m = 2/3 magnetization plateau in the AFQ phase without the

occurrence of an m = 1/3 magnetization plateau (something
that is unlikely to occur for purely magnetic states because of
the lower commensurability of the latter), and they consider
this a characteristic of the AFQ phase.

Following the above-mentioned discovery of Nakatsuji
et al. [12], Tsunetsugu and Arikawa [6,7] proposed that the
AFQ phase of the triangular lattice spin-1 BBH model could
explain many features of the new-found spin disordered state
in NiGa2S4. However, Bhattacharjee et al. [9] and later also
Nakatsuji et al. [11] both suggested that instead the FQ
phase is a more likely candidate for the same new-found
spin-disordered state. Additionally, there have been several
Monte Carlo studies of the triangular lattice spin-1 BBH model
concerning the pure biquadratic point θ = −π/2 [37] and the
θ ∈ [π,3π/2] part [38]—both of which are in agreement with
the phase diagram from Läuchli et al. [36].

More recently, we conducted an iPEPS study of the spin-1
BBH model on the two-dimensional square lattice [27,28],
which yielded the occurrence of two additional phases
on top of those present in the product ground-state phase
diagram. In particular, we found that in between the ordinary
antiferromagnetic (AFM) and 120◦ magnetically ordered
(AFM3) phases, a quantum paramagnetic phase arises [27] that
is characterized by the fact that it preserves spin-rotation and
lattice-translation symmetries, while breaking lattice-rotation
symmetry due to energy differences between the x and y

bonds. Moreover, by continuously shrinking all high-energy
bond couplings to zero, the quantum paramagnetic phase
turned out to be adiabatically connected to the Haldane phase
of decoupled spin-1 chains, and can thus be viewed as a
two-dimensional extension of the latter.

The AFM to Haldane transition, which was first predicted
in Ref. [39], has also been the subject of related works on
the next-nearest neighbor square lattice spin-1 J1-J2 [40,41],
J1-J2-K1-K2 [43] and J1-J2-K1 [44] models. Finally, Lee and
Kawashima [45] also found a spin-liquid-like ground state on
the spin-1 BBH model on the star lattice in a parameter regime
that encloses the region for which we found the Haldane phase
on the square lattice.

In addition to the Haldane phase, on the square lattice
we also encountered [28] the m = 1/2 partially magnetized
partially quadrupolar phase—a phase that was predicted to
appear only in the presence of an external magnetic field by
Tóth et al. [46]—and found that this phase is also present in
the zero-field phase diagram.

Motivated by the above discoveries, we shall investigate the
region −π/4 < θ < π/4 where the Haldane phase occurs in
the one-dimensional BBH chain, and keep an eye out for pos-
sible intermediate quantum paramagnetic phases. Moreover,
in light of the characteristic m = 2/3 magnetization plateau in
the AFQ phase in the presence external magnetic field [36],
we will also investigate the possibility that the m = 2/3 phase
extends to the zero-field phase diagram of the triangular lattice
spin-1 BBH model.

III. METHOD

A. iPEPS algorithm

We simulate the ground state of the two-dimensional
triangular lattice spin-1 BBH model in the thermodynamic
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Physical index

Auxiliary indices

FIG. 3. The iPEPS ansatz for the ground state. Each site is
represented by a five-legged tensor (right), with four auxiliary indices
and one physical index. The orange lines (left) are not present in the
actual iPEPS, but symbolically represent the diagonal interactions
present only in the triangular lattice Hamiltonian.

limit using a variational tensor network ansatz called an
infinite projected entangled pair state, or iPEPS [47,48] for
short. iPEPS is the infinite-system version of PEPS [49–51]:
a two-dimensional generalization of matrix product states
(MPS) [52–54], the latter being the ansatz underlying the
well-known density-matrix-renormalization-group (DMRG)
algorithm [55–57].

The iPEPS we use in our simulations consist of five-legged
tensors, one per site, with one physical leg corresponding to
the spin-1 particle on the site in question, and four auxiliary
legs that connect to neighboring tensors forming a square
lattice pattern. The triangular lattice structure of the model
is not encoded in the iPEPS, but only in the Hamiltonian,
which contains additional interaction terms along the diagonal
lines (Fig. 3). Each iPEPS is defined by a given unit cell of
tensors—depending on if and how the ground state breaks
translational symmetry—that is repeated all over the lattice.

The vector spaces corresponding to the auxiliary legs all
have the same dimension—called the bond dimension, denoted
by D—that controls the accuracy of the iPEPS. D = 1 de-
scribes product states, and as D increases, more entanglement
can be encoded in the iPEPS. In the D → ∞ limit, the
iPEPS can theoretically describe any state in the Hilbert space.
Therefore, when computing expectation values, we will take
the D → ∞ limit when precise quantities are needed (and the
ground state is not a product state).

Computing expectation values requires contracting an infi-
nite tensor network, which in two dimensions can only be done
approximately. We use a variant [58,59] of the corner-transfer
matrix (CTM) algorithm [60–63] based on a formalism derived
by Baxter [64,65]. This requires the introduction of an addition-
ally boundary bond dimension χ . In practice, we take χ (D) >

D2 to be large enough that the error due to the use of finite χ

is negligible compared to the error due to the use of finite D.
Given an initial iPEPS, we obtain a low-energy state by

evolving it in imaginary time using a triangular lattice variant
of either the simple [66] or the more accurate (but compu-
tationally more expensive) full update algorithm [47,48,67].
The triangular lattice simple update algorithm is a modified
version of the simple update method for square lattice Hamil-
tonians with an additional next-nearest-neighbor interaction
from Ref. [68]. The difference lies in the fact that, instead
of truncating the bond dimension back to D immediately after
applying a single imaginary-time evolution gate, the triangular
lattice algorithm simultaneously applies a horizontal, vertical,

and diagonal evolution gate, and only afterwards truncates the
bond dimensions back to D.

The triangular lattice full update method used here is a
variant of the next-nearest-neighbor method from Ref. [69]
(see also Ref. [42]). After time-evolving a given iPEPS |	〉 a
small step in imaginary time by means of the evolution gate
g [70]—which increases the bond dimension—the optimal
time-evolved iPEPS |	̃〉 with bond dimension D is obtained by
minimizing the norm distance ||g	 − 	̃||. In the regular full
update, this is usually done by iteratively minimizing over two
tensors (p,q) on a bond until the cost function ||g	 − 	̃|| has
converged (cf. Refs. [48,67]). In the presence of an additional
diagonal interaction we need to optimize over four of these
tensors, two on a horizontal bond (ph, qh) and two on a vertical
bond (pv , qv), respectively. We do this by performing an outer
loop where we switch between the horizontal and vertical pairs
of tensors, and an inner loop where we iteratively optimize over
the corresponding pair of tensors.

Where necessary, we do additional checks using the vari-
ational update algorithm [71] generalized to next-nearest-
neighbor interactions, which for fixed D gives the best results,
but can as of yet not always be pushed to as high a bond
dimension as the simple and full update simulations can be.
For a given value of θ , the ground state of the system is the
imaginary-time-evolved or variationally optimized iPEPS with
the lowest energy of the different unit cells considered. In this
work, we have used unit cells consisting of up to 6 × 6 sites.

We can choose to start a simulation either from a randomly
initialized iPEPS, or from an iPEPS that is already in a certain
phase. Making use of hysteresis, the latter can be particularly
useful to determine the critical value of θ for which a given
(first-order) phase transition occurs, which we have done
for the ferroquadrupolar to 120◦ magnetically ordered phase
transition.

B. SU(3)-symmetric point benchmark

Before we proceed, let us benchmark the triangular lattice
simple, full, and variational update algorithms at the SU(3)-
symmetric point θ = π/4 by comparing to a previous study of
the SU(3)-Heisenberg model by Bauer et al. [72]. We make
use of the additional symmetries of the Hamiltonian to push
the bond dimension to D = 16 for the simple update, and D =
12 for the full and variational updates. (See Refs. [73,74] on
how to implement global abelian symmetries within the tensor
network formalism.) The resulting energies per site are shown
in Fig. 4.

Figure 4 shows that the full and variational update both give
a visible improvement over the simple update. This reflects the
fact that the former two both use the full environment at each
optimization step, whereas the simple update only uses an ap-
proximate environment—making it computationally cheaper.

Because the ansatz used for the ground state is variational,
each iPEPS energy computed is higher than or equal to
the true ground-state energy. Therefore the lowest finite-D
energy obtained—in this case given by the D = 12 varia-
tional update simulation (shown in green) with an energy of
Evar

D=12 = 1.632—serves as an upper bound for the true ground-
state energy. Since increasing D introduces more variational
parameters in the iPEPS, the energy of the iPEPS decreases as
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FIG. 4. Energy per site at the SU(3) point θ = π/4 for the simple,
full, and variational update. The simulations make use of the SU(3)
symmetry of the ground state and can therefore be ran at higher bond
dimension than usual. We take the midpoint of the ends of the two
dotted lines to be the D → ∞ extrapolated energy per site (see main
text).

D increases. However, the behavior of the energy of an iPEPS
is typically such that the energy as a function of 1/D curve
flattens out as D increases. Thus a lower bound for the true
ground-state energy can be obtained by drawing a straight line
through the last few high-D data points (depicted by the lowest
dotted green line in Fig. 4) and extrapolating it to D → ∞. We
shall take the average of the lowest obtained finite-D energy
(Evar

D=12) and the straight-line extrapolated energy through the
last few data points as our estimate for the true ground-state
energy, which in this case yields Evar

D→∞ = 1.630. Because the
above-mentioned bounds are loose bounds, for our estimate of
the error, we shall take half of the difference between the lowest
obtained energy and the straight-line extrapolated energy,
resulting in an extrapolated energy of Evar

D→∞ = 1.630(1). The
error bar is depicted by the thin green slab on the y axis in
Fig. 4 [75].

Contrasted to the result obtained by Bauer et al. [72] of
E

previous
D→∞ = 1.633(14), we can conclude that our result is not

only slightly lower in energy, but also more accurate; in part
because we can go to higher bond dimension, but also due to
algorithmic improvement. Indeed, the lowest finite-D energy
obtained by Bauer et al. is a D = 10 simulation with an energy
of E

previous
D=10 = 1.646, which is higher than our D = 10 simple

update energy. Note that the ground-state energy per site of the
SU(3) Heisenberg model is related to the ground-state energy
per site of the BBH model at θ = π/4 through EBBH(π/4) =

1√
2
(ESU(3) + 3).

IV. IPEPS RESULTS

A. Simple update results

To obtain a rough picture of the phase diagram, we
have performed randomly initialized simple update simula-
tions for unit cells up to size 6 × 6 and bond dimensions
D = 1,2,3, . . . ,8 for 80 equidistantly spaced values of θ ∈
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FIG. 5. Energy (top), magnetization m = √
S · S (middle), and Q

norm
√

Q · Q (bottom) per site for randomly initialized simple update
simulations. From left to right we have the AFM3, AFQ, FM, and FQ
phases (color online). The magnetic phases can be recognized by a
nonzero magnetization and a smaller Q norm than that of neighboring
quadrupolar phases.

[0,2π ). The resulting energy per site as a function of θ is shown
in Fig. 5 (top). For each fixed value of θ , only the lowest energy
of all unit cells considered is shown.

Observing the average magnetization and Q-norm per
site displayed in the middle and bottom graphs of Fig. 5,
the simple update simulations show four different phases.
Starting at θ = 0, we have, in order of increasing θ , the 120◦
magnetically ordered (AFM3), antiferroquadrupolar (AFQ),
ferromagnetic (FM), and ferroquadrupolar (FQ) phases, with
transitions occurring at θ = π/4, π/2, 5π/4, and roughly
1.9π , respectively. The simple update results quantitatively
agree with the phase diagram found by Läuchli et al. [36].
Moreover, the jumps in the magnetization suggest that the
corresponding phase transitions are of first order.

The simple update results do not hint at the existence of
any phases other than those occurring in the product state
phase diagram. However, we have learned from our study of
the corresponding square lattice model [27,28] that—close
to transition points especially—randomly initialized simple
update simulations can overlook certain phases. Therefore we
will next proceed with a more thorough full and variational
update analysis, and investigate all four of the above phase
transitions. In particular, we will have a look at the FQ to
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FIG. 6. Energy per site (full update) for FQ and AFM3 (color
online) states at θ = 1.86π − 1.89π in the vicinity of the FQ to AFM3
phase transition.

AFM3 transition, and provide a more accurate estimate of
the critical value of θ for which the transition occurs. Note
that the locations of the other three transitions are fixed,
either because they sit at one of the SU(3)-symmetric points
θ = π/4 and 5π/4, or because the extent (π/2 < θ < 5π/4)
of the FM product state phase is independent of the underlying
two-dimensional lattice structure. Additionally, we will keep
an eye out for a possible appearance of the m = 2/3 phase, as
well as determine the extent of the one-dimensional Haldane
phase in the anisotropic triangular lattice spin-1 BBH model.

B. FQ to AFM3 transition

Making use of hysteresis in the vicinity of a first-order
transition, we can simulate states in the FQ and AFM3 phases
just beyond the transition point by initializing them from a state
that lies deeper in the phase we want to simulate. Doing so
around the simple-update-estimated transition point θ ≈ 1.9π

yields the energy per site for simulations in the FQ and AFM3
phase as shown in Fig. 6.

For states in the FQ phase, we have imposed U(1) symmetry
(aligning the on-site magnetic dipole moment along the z axis),
allowing us to push the full update to D = 11. The AFM3
states, however, break U(1) symmetry because the spins do
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FIG. 7. (Top) Extrapolated energy per site (top and bottom of error
bars from Fig. 6 shown) for the FQ and AFM3 states around the FQ to
AFM3 phase transition. The vertical lines signified with “L-bnd.” and
“U-bnd.” indicate the locations for which the error bars separate. The
“Estimate” is the intersection point of the curves drawn through the
centers of the error bars shown in Fig. 6. We conclude that the phase
transition occurs at θc = 1.873(7)π . (Bottom) Magnetization and Q

norm per site for FQ and AFM3 states left (θ = 1.86π ) and right
(θ = 1.89π ) of the phase transition. The magnetization especially
displays a clear jump when going from the FQ to AFM3 phase, which,
combined with the slight kink in the energy, demonstrates that this
transition is first order.

not align along a given axis, and we can therefore go up to
D = 9 at best [76].

Extrapolating D → ∞ as explained in Sec. III B yields
an estimated energy per site and corresponding error bar for
both the FQ and AFM3 simulations at different values of
θ . Plotting the upper and lower bounds of the error bars as
a function of θ (top Fig. 7) then gives an estimate for the
critical value of θ that separates the FQ and AFM3 phases of
θc = 1.873(7)π . This result is a more accurate refinement of
the exact diagonalization result extrapolated to infinite system
size (θED

c ≈ 1.89π ) obtained by Läuchli et al. [36].
The fact that the energy per site curves for the FQ and AFM3

simulations have (slightly) different slopes in Fig. 7 implies
that the energy per site of the ground state displays a (slight)
kink at the FQ to AFM3 intersection. Supplemented by the
jump in magnetization and the different 1/D behavior of the
quadrupole norm—displayed in the bottom plots of Fig. 7—we
can conclude that the FQ to AFM3 transition is first order.
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FIG. 8. The three-sublattice m = 2/3 state with ferromagneti-
cally aligned magnetic moments on two sublattices and a director—
i.e., a normal vector to the plane of fluctuations—on the third
sublattice that is parallel to the neighboring magnetic moments.

C. AFQ to FM transition and absence of m=2/3 phase

The m = 2/3 magnetization plateau in the AFQ phase
found by Läuchli et al. [36] at finite magnetic field (mentioned
in Sec. II B) corresponds to a three-sublattice state with
magnetic moments ferromagnetically aligned on two of the
sublattices, and on the third a quadrupolar director parallel
to the magnetic moments on the neighboring sites (Fig. 8).
Läuchli et al. discovered that, as θ increases towards π/2, the
value of the external magnetic field for which the transition
to the m = 2/3 phase occurs decreases as θ increases, up
to the critical point θ = π/2 where the AFQ and m = 2/3
states are simultaneous ground states of the zero-external-field
BBH model. On the square lattice, Tóth et al. [46] showed
that a very similar phenomenon occurs (in that case, the
partially magnetized state was half-magnetized instead of
two-thirds). Thus, in light of our recent discovery [28] of
the half-magnetized phase actually taking up a non-negligible
portion of the square lattice zero-field phase diagram, it seems
natural to ask whether the m = 2/3 phase also occurs on the
triangular lattice BBH model with zero external field.

We initialized several simulations in the vicinity of θ =
π/2. The energy per site of the AFQ, FM and m = 2/3
simulations is shown in Fig. 9. We can conclude that, contrary
to the square lattice case, the m = 2/3 states are everywhere
higher in energy than the AFQ states—except at the AFQ to FM
transition point where the ground state is degenerate and the
m = 2/3 state is one of the many ground states—and thus the
m = 2/3 phase does not occur in the zero-field phase diagram.

Note that, in the FM phase, the ground state is a product
state. In the vicinity of the FM phase, the ground state is
very close to a product state, as can be seen from the fact
that the energy does not visibly improve with increasing
bond dimension. Therefore we do not have to do D → ∞
extrapolations to get accurate results. From the clear kink in
the energy per site, and the jumps in magnetization and Q norm
(Fig. 9), we can conclude that the AFQ to FM transition is also
of first order.

Finally, let us have a look at the remaining two phase
transitions, located at the SU(3)-symmetric points θ = π/4
and 5π/4. The results we find agree with previous studies, and
will be presented for completeness.

D. AFM3 to AFQ transition

Approaching the phase transition at the SU(3) point θ =
π/4 from both the AFM3 and AFQ sides by slowly walking
towards the critical point, loading each simulation from the
last (for fixed D), we obtain the energy per site plot shown in
Fig. 10.
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FIG. 9. (Top) Energy per site (full update) for AFQ, FM and m =
2/3 states around θ = π/2. Because all states are (practically) product
states, the energies do not depend on D. (Bottom) Magnetization and
Q norm per site (full update) for AFQ, FM and m = 2/3 states around
θ = π/2. The jumps in both and kink in the energy show that the
transition is first order.

Moving towards the transition as described above, we can
ensure that simulations stay in their respective phases even
at the critical point itself (where both D → ∞ extrapolated
AFM3 and AFQ states are ground states of the system).
Figure 10 shows the resulting magnetization and Q norm
exactly at the transition at θ = π/4. The subtle kink in the
fixed-D energy per site plots and the jumps in magnetization
and Q norm show that the transition is first order.

E. FM to FQ transition

The FM to FQ phase transition can be investigated in the
same manner as the AFQ to FM transition. As noted by Völl
et al. [38], the ground state in (and close to) the FM phase is
a product (or almost product) state, implying that no D → ∞
extrapolation will be required. The clear kink in the energy per
site and jumps in magnetization and Q norm (Fig. 11) show
that the FM to FQ phase transition is also of first order.

F. Haldane phase in the anisotropic model

Our previous investigation [27] of the square lattice BBH
model showed that in between the ordinary antiferromagnetic
and the 120◦ magnetically ordered phases a quantum para-
magnetic phase arises that can be adiabatically connected
to the Haldane phase of decoupled one-dimensional spin-1
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FIG. 10. (Top) Energy per site (full update) for D = 4, 6, and 8
for AFM3 and AFQ states around θ = π/4. (Bottom) Magnetization
and Q norm per site (full update) for AFM3 and AFQ states exactly
at θ = π/4. The jumps in both and slight kink in the energy for fixed
values of D show that the AFM3 to AFQ transition is of first order.

BBH chains. On the triangular lattice, there is no competition
between two and three-sublattice order. Nevertheless, the fact
that the FQ to AFM3 product ground-state phase transition
point at θ = arctan(−2) ≈ 1.658π shifts significantly to θ =
1.873(7)π shows that quantum fluctuations play an important
role in the FQ to AFM3 transition, and perhaps also allow
for the possibility of an intermediate quantum paramagnetic
phase.

The first sign that hinted at the presence of a quantum
paramagnetic phase on the square lattice was the vanishing
magnetization in the antiferromagnetic phase. Looking at
Fig. 7, the magnetization in the AFM3 phase clearly does
not vanish in the D → ∞ limit, but we do observe that the
quadrupolar order of the FQ simulation at θ = 1.89π goes
down as D increases. However, it would be too strong a claim
to say that it extrapolates to zero. Besides, θ = 1.89π is already
in the AFM3 phase, as the extrapolated FQ energy is higher
than the extrapolated AFM3 energy. Thus, based on the full
update results in Fig. 7, there is no intermediate paramagnetic
phase in between the FQ and AFM3 phases.

It is possible that the FQ to AFM3 transition is not the
right place to look for a paramagnetic ground state. Motivated
by the emergence of the one-dimensional Haldane phase on
the two-dimensional square lattice, a natural starting point for

θ/π
1.235 1.24 1.245 1.25 1.255 1.26 1.265

E
ne

rg
y 

pe
r 

si
te

-4.45

-4.4

-4.35

-4.3

-4.25

-4.2
FM: D=2
FM: D=4
FQ: D=4
FQ: D=6
FQ: D=8

θ/π
1.24 1.25 1.26

M
ag

ne
tiz

at
io

n 
pe

r 
si

te

0

0.2

0.4

0.6

0.8

1

θ/π
1.24 1.25 1.26

Q
-n

or
m

 p
er

 s
ite

1

1.2

1.4

1.6

1.8

2

2.2

2.4

FM: D=2
FM: D=4
FQ: D=4
FQ: D=6
FQ: D=8
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norm per site (full update) for FM and FQ states around θ = 5π/4.
The jumps in magnetization and Q norm and the kink in the energy
support the claim that this transition is first order.

looking for a quantum paramagnetic phase is to investigate
the extent of the Haldane phase on the anisotropic triangular
lattice. Because the one-dimensional spin-1 BBH chain lies in
the Haldane phase for −π/4 < θ < π/4, this is the parameter
range will shall focus on.

We introduce an additional coupling parameter 0 � Janis �
1 that modifies the diagonal and vertical bonds of the triangular
lattice simultaneously; Janis = 0 corresponding to the limit
of decoupled horizontal one-dimensional chains, and Janis =
1 corresponding to the isotropic two-dimensional triangular
lattice.

To map the entire θ -Janis phase diagram using full updates
and D → ∞ extrapolation is computationally too expensive.
Thus, we shall revert to a fixed D = 9 simple update in-
vestigation. The result is plotted in Fig. 12. Note that we
also looked for additional phases other than the FQ, AFM3,
and Haldane phases—by running simulations with randomly
initialized tensors scattered throughout the θ -Janis plane—but
we did not encounter other types of order.

To estimate the accuracy of the simple update result, we can
use the FQ to AFM3 transition point at Janis = 1 computed
in Sec. IV B. Because the critical θ

simple
c separating the FQ
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FIG. 12. D = 9 simple update phase diagram of the spin-1 BBH
model on the anisotropic triangular lattice. The full update result θc =
1.873(7)π for the location of the FQ to AFM3 phase transition at
Janis = 1 indicated by the black error bar is shown to give an idea of
the accuracy of the D = 9 simple update phase diagram.

and AFM3 phases predicted by the fixed D = 9 simple update
lies just outside the error bar of the full update result θc =
1.873(7)π , we can expect that the true phase separation lines
lie in the vicinity of those shown in Fig. 12, but their precise
location cannot be inferred form the plot. However, the D = 9
simple update phase diagram does seem accurate enough to
conclude that the Haldane phase does not extend all the way
up to the isotropic limit.

From Fig. 12 we observe that the Haldane phase extends
maximally in the vicinity of the Heisenberg point θ = 0 (where
the biquadratic coupling is zero) rather than at the FQ to
AFM3 transition point. As an extra check, we have pushed
our simulations at the Heisenberg point to high D (Appendix
A, Fig. 13) to verify that the magnetization stays nonzero in
the D → ∞ limit. In addition, we have also done full update
simulations for Janis = 1 initialized directly from within the
Haldane phase and compared the energy to that of the FQ and
AFM3 simulations (both close to the FQ to AFM3 transition—
Appendix A, Fig. 14, and at the Heisenberg point—Appendix
A, Fig. 15); the result of which shows that clearly, the Haldane
simulations are much higher in energy in the isotropic model.

We note that the Haldane phase in the extreme anisotropic
limit might a priori be better approximated by an anisotropic
iPEPS (with a larger bond dimension in the x direction).
However, by comparing the weights on the x and y bonds
obtained in the simple update approach [66] in the Haldane
phase at largeD, we observe that, asJanis increases, the smallest
weights on the x and y bonds become of similar magnitude
[77], showing that an isotropic ansatz is appropriate here. (An
isotropic ansatz was also used in Ref. [27] to determine the
phase boundary between the Haldane and antiferromagnetic
phases on the square lattice spin-1 BBH model, but even in the
strongly anisotropic limit, the iPEPS result was found to be
very close to the reference value from quantum Monte Carlo.)
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FIG. 13. The energy (top) and the magnetization and Q norm
(bottom) per site for the simple, full and variational update algorithm
at the Heisenberg point θ = 0. The variational update results extrap-
olate to a ground-state energy of Evar

D→∞ = −1.8368(5).

Combining our results from the simple update anisotropic
phase diagram, the full update study at the Heisenberg point
and the full update Haldane simulations at the isotropic limit,
we can safely conclude that the Haldane phase does not extend
all the way up to the isotropic triangular lattice Janis = 1.
Moreover, we did not encounter any other signs that hint at
the presence of a quantum paramagnetic phase, and we can
therefore conclude that the phase diagram as shown in Fig. 1
is the complete ground-state phase diagram.

V. CONCLUSION

We have presented a complete and systematic iPEPS study
of the ground-state phase diagram of the spin-1 bilinear-
biquadratic Heisenberg (BBH) model on the triangular lattice.
We found the ferromagnetic and 120◦ magnetically ordered as
well as the ferro and antiferroquadrupolar phases, and precisely
determined that the ferroquadrupolar to 120◦ magnetically or-
dered phase transition occurs at θc = 1.873(7)π . This number
is close to the exact diagonalization estimate by Läuchli et al.
[36] that predicted the transition to occur at θED

c ≈ 1.89π .
Moreover, our simulations show that the partially magnetic
partially quadrupolar phase that we encountered on the square
lattice [28] does not appear on the triangular lattice spin-1 BBH
model (Fig. 9).
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FIG. 14. Energy (top) and magnetization and Q norm (bottom)
per site (full update) comparing the FQ and AFM3 simulations
to simulations initialized in the Haldane phase at θ = 1.86π . The
fluctuations in both order parameters show that the Haldane-initialzed
simulations do not stay in their original phase.

Inspired by our finding [27] of the one-dimensional Haldane
phase extending all the way to the two-dimensional isotropic
limit on the square lattice, we searched for signs of a possible
quantum paramagnetic phase on the triangular lattice. The
simple update results (Fig. 5) did not hint at the presence of a
quantum paramagnetic phase. At the ferroquadrupolar to 120◦
magnetically ordered phase transition, we observed that the
Q norm of the ferroquadrupolar simulations decreases as we
approach the magnetic phase (Fig. 7), but it still extrapolates
to a nonzero number even beyond the phase transition (at
θ = 1.89π ) in the magnetically ordered phase.

We then investigated the extent of the Haldane phase on
the anisotropic triangular lattice (Fig. 12) and found that,
close to the Heisenberg point θ = 0, it extends maximally
to approximately Janis ≈ 0.8. However, both the high D full
update simulations at the Heisenberg point as well as the
full update simulations initialized directly from within the
Haldane phase (Appendix A) confirm that the ground state is
ordered, reaffirming that the ground-state phase diagram of the
triangular lattice spin-1 BBH model is as depicted in Fig. 1, and
in particular does not contain a quantum paramagnetic phase.
Surprisingly then, for the spin-1 BBH model, quantum effects
seem to have less surprising consequences on the (in the AFM
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FIG. 15. Energy (top) and magnetization and Q norm (bottom)
per site (full update) comparing the AFM3 simulations to simulations
initialized in the Haldane phase at the Heisenberg point θ = 0. Also
here, the fluctuations in both order parameters show that the Haldane-
initialized simulations do not stay in their original phase.

phase) geometrically frustrated triangular lattice than they do
on the square lattice.

Because the triangular lattice has a larger coordination num-
ber than the square lattice, it seems tempting to hypothesize that
the Haldane phase is unlikely to occur for densely connected
lattices. Intuitively, this makes sense, because the energy
gained by forming valence bonds in one particular direction
at the cost of increased energy on the remaining bonds seems
beneficial only when there are not too many remaining bonds.
For lattices with a small coordination number on the other hand,
if a possibility exists to form short valence bond loops—which
is the case on the honeycomb [78] and Kagome [79] lattices—
the ground state will break translational symmetry by forming
loops of length six and three respectively. Also, a very recent
study of the spin-1 BBH model on the star-shaped lattice by
Lee and Kawashima [45] shows that a spin-liquid-like phase
appears (in a region that encompasses the region in which we
found the Haldane phase on the square lattice) that a priori does
not seem to be connected to a one-dimensional state. Only on
the square lattice the system prefers infinitely long Haldane
chains over four-site valence bond loops.

Our study of the anisotropic model does reveal that spin-1
materials with a triangular lattice structure that are effectively
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described by a simple Heisenberg antiferromagnetic coupling
(θ = 0) are quite sensitive to anisotropies. Indeed, based on
our simple update calculations, we expect a transition to the
Haldane phase at around J

triang
anis ≈ 0.8, which is significantly

larger than the value of J
square
anis ≈ 0.04 for which the same

transition occurs at the Heisenberg point on the square lattice.
This fact could possibly be used for future experimental
research that attempts to realize the extended Haldane phase
in an actual two-dimensional material.

From the perspective of tensor network methods—viewing
the triangular lattice as a square lattice with additional diagonal
next-nearest-neighbor interactions—we would like to point
out that this is one of the few systematic full update studies
of models beyond nearest-neighbor interactions (see also
Refs. [41,42,44,69,80,81]).

Lastly, having accurately established the ground-state phase
diagram of the triangular lattice spin-1 BBH model in the
thermodynamic limit by means of an unbiased method, future
research can more confidently look at exited states or additions
to the Hamiltonian beyond the biquadratic interaction in search
for an explanation of the unusual behavior [6–13] of NiGa2S4

and the 6H -B phase [14–18] of Ba3NiSb2O9,
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APPENDIX: ADDITIONAL DATA

1. The Heisenberg point

We have looked for signs of a vanishing magnetization at
the Heisenberg point (θ = 0)—a point that lies in the region
where the Haldane phase extends furthest in the θ -Janis phase
diagram towards the isotropic limit (Fig. 12)—by pushing the

simple update to D = 11, and the full and variational update to
D = 9. The resulting energy, magnetization and Q norm per
site are plotted in Fig. 13.

The full and variational update simulations (Fig. 13) clearly
extrapolate to a finite magnetic and quadrupole moment, and
we can therefore conclude that the ground state is ordered at
θ = 0. The less-accurate simple update magnetization and Q

norm seem to curve downwards, but this is likely an artifact
of the simple update, as the D = 11 simple update result is
very similar in energy, magnetization and quadrupole moment
to the D = 8 full and variational update results. Moreover,
magnetization and quadrupole curves as a function of 1/D

typically do not lie on a perfectly straight line, so not too much
importance should be given to an individual data point.

2. Haldane simulations at the isotropic limit

As a final check, we have initialized full update simula-
tions from within the Haldane phase directly at the isotropic
limit Janis = 1 at two points of interest. Close to the FQ to
AFM3 phase transition—at θ = 1.86π—Fig. 14 (top) shows
that the simulations initialized in the Haldane phase are far
from competitive, with the exception of the D = 3 and D =
4 simulations. However, Fig. 14 (bottom) reveals that the
aforementioned simulations are actually in the FQ phase, as
their quadrupole moment shows. The other Haldane-initialized
simulations also develop some quadrupolar order in the energy-
minimization process, supporting the claim that the ground
state is quadrupolar. Note that it therefore also does not make
sense to do a D → ∞ extrapolation on the Haldane-initialized
simulations, as the simulations are not in a well-defined phase.

At the Heisenberg point θ = 0, we encounter a similar
situation. Also in this case, the energy of the Haldane-
initialized simulations is far from competitive. Moreover, the
Haldane-initialized simulations do not remain paramagnetic in
the optimization process because they develop magnetic and
quadrupolar order (Fig. 15). Thus, as before, it does not make
sense to do a D → ∞ extrapolation on the Haldane-initialized
simulations. In conclusion, the ground state is ordered at both
θ = 1.86π and θ = 0, and the Haldane phase is absent in the
isotropic limit.
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