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1 introduction

In this chapter, we introduce the main ideas underlying this thesis, raise the 4
main research questions and introduce the core mathematical concepts.

1.1 towards a new approach to science

At the core of our existence, we are basically clueless. We have no idea where
we come from, why our universe came to life, and how some of the most in-
triguing aspects of our world work. Heidegger calls this state of affairs ”das
geworfen sein”, the state of being thrown into existence. After all, no one asked
us if we want to be alive and no one told us how life works, but yet here we
are. To get a grip on this most fundamental of all issues, humanity developed
the scientific method to shed light on the workings and meaning of life, or to
be more precise: to help us rule out conceptual mistakes about how the uni-
verse functions. By construction, the scientific method is limited through the
quality of experimental or theoretical questions one can ask. To increase the
precision of such questions, science is mostly concerned with reducing prob-
lems to their essence and modeling them explicitly in this reduced complexity
space. However, many phenomena are so entangled and non-deterministic, it
is questionable if they can ever be understood with the help of reductionist
mechanistic models of the world.

From this perspective, surrendering and giving up hope to fully understand
dynamics of complicated non-linear systems like the human brain, embod-
ied agents interacting with the real world, or large-scale social systems seems
perfectly sensible. Indeed, recent advances in artificial intelligence have empir-
ically shown exceptional performance of tools that embrace the fact that it is
hopeless to understand some of the most interesting problems in their full com-
plexity from first principles. There has been a transition in empirical sciences
and engineering from hard-coded heuristics, like Bag-of-Words in Computer
Vision, GLM-based approaches in Neuroimage Analysis and logic-based rules
in natural language processing, to fully learned generic systems in the form of
Deep Neural Networks, constituting the state-of-the-art in many problems to
date.

Deep Neural Networks learn the heuristics to reduce the complexity of a
problem by themselves, ”all” that is needed is a suitable architectural prior
and a large dataset that sufficiently describes the problem of interest.

7



8 introduction

Thus, we shift the problem of identifying our desired reduced complexity
space to a learning algorithm that can efficiently approximate a good solution
and automatically find a good trade-off between generalization and simplifi-
cation. It has been empirically shown that Deep Networks have the power
to capture highly non-linear, hierarchical interactions between extremely com-
plex variations in the data, while having a relatively simple structure in their
low-level building blocks. However, even though they are seemingly simple, a
large network of such basic elements is not simple anymore as it can, in essence,
learn any function. Thus, by replacing the tedious, and often even impossible
design of rules to solve complex real-world problems with a learner, we end
up with a new problem: A superstar in high-dimensional problem-solving that
is an entire black-box.

Understanding how and what these algorithms learn from data remains a
challenge. Overcoming this major disadvantage of current deep neural net-
works would open up the possibility to have these algorithms reveal their
heuristics to us. Imagine an algorithm that can be trained to classify MRI
brain scans of elderly humans as healthy or Alzheimer’s diseased from a small
dataset and not only get the guarantee of robust predictions but also being
able to extract the anatomical model identified by the algorithm that causes
the prediction of the disease. We would have found an algorithm that not only
robustly predicts which subject is diseased, we would also get a model hypoth-
esis about what Alzheimer’s actually is. To achieve this, we need a new breed
of structured deep networks that allow to open up the black-box, overcome
data-inefficiency and obtain robust predictions. Even though there is still a
long way to go to establish robust learning algorithm as an alternative to scien-
tific methods, there is a lot of work done in this direction and once we get there,
it might possibly change the toolbox of experimental scientists fundamentally
and will be tremendously helpful to obtain novel empirical insights in many
relevant areas.

In this thesis, we introduce various flavors of structured deep networks, that
aim to shed light on different aspects of the learned models. The chapters
are steps towards structured Deep Neural Networks, whose inner workings
can be easier understood to reveal the structure of the learned representations,
introduce new anchor points for regularization and improve data-efficiency in
limited sample scenarios.
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1.2 deep convolutional neural networks

Deep convolutional neural networks are amongst the most successful types of
deep learning algorithms and the ones this thesis focuses on. They are the cur-
rent state-of-the-art for many classification and regression tasks. Beyond their
superior performance on tasks they have been explicitly trained for, they have
also been shown to perform very well in transfer-learning scenarios, substanti-
ating the generic nature of their learned representations. Domains they excel
in include images, audio, medical images, chemistry data, physics data and
the range of applications is constantly expanding [1]. However, their mathe-
matical properties remain mysterious and there is little understanding of how
their learned structure relates to properties of the problems they have been
trained on [2], [3]. Understanding the regularities of the data these algorithms
exploit and how they discover them during learning to achieve their excellent
generalization, is thus of great scientific interest.

In this thesis, we focus on the setting of classifying natural images with con-
volutional networks, as an example of a domain where deep networks excel.
The goal of the classification task is to learn a mapping from high-dimensional
inputs xi ∈ RD to low-dimensional outputs yi ∈ Rd, where D >> d. Clas-
sification thus requires to eliminate a lot of non-informative variabilities, and
hence to contract space in appropriate directions. Natural images are high-
dimensional signals that exhibit many complex variabilities while mathemati-
cal tools are mostly limited to the case of low-dimensional geometry. However,
the directions to contract can be very high dimensional, are typically unknown
a priori and thus have to be learned from data. This is done by optimizing
the convolutional operators Wj of a J-layer network to minimize a task-specific
loss function:

ΦJ(x) = ρWJ(...(ρWj(...ρW1(x0)))). (1)

ρ is a point-wise non-linearity, e.g. ReLU � max(x, 0) and operators Wj convo-
lutions of n-dimensional signals x(u, v) with translation variable u and channel
index v with filters w(u, v) ∈ S, where S is the filters support, defined as:

Wj+1xj = ∑
v

∑
u′∈S

wj+1(u′, v)xj(u − u′, v). (2)

For natural image classification, u is 2-dimensional and v 1-dimensional. The
weights wj are often trained by minimizing the cross-entropy between the
ground truth label distribution and the estimated softmax probability distri-
bution:

L( f0(ΦJ(xi)), yi) = −∑
i

yilog(
esyi

∑j esj
). (3)

Here f0(.) is a final linear projection onto the logits sj and a subsequent softmax
function.
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The variabilities to be reduced by this mapping can be defined as the sym-
metries of the classification task [3]. The transformation T is said to be a
symmetry of the classification function f : RD → Rd, if it preserves the label
for all xi ∈ X:

f (xi) = f (T xi). (4)

We informally partition the set of symmetries of the classification task into
two categories:

TG : Well-understood transformation groups. To some extent, they can be tack-
led by imposing structure on the learned representation a priori.

TA : Transformations that are not well-defined and hard to estimate. They
lack mathematical structure that can be tackled efficiently and have to be
learned from data.

Chapter 3 and 4 focus on strategies to incorporate knowledge about TG into
deep networks. Chapter 5 focuses on structuring TA by approximating them
with known transformations. And finally, chapter 6 answers the question if
invariance with respect to any T has to be built progressively, or if powerful
deep representations can be learned that do not discard any information about
the data and thus build no global invariance up until the very last layer.

1.3 the local structure of images

CNNs are designed to exploit translation invariance of locally stationary sig-
nals which natural images are prime examples of. This is one case of a well-
understood symmetry TG of the classification task. A locally translated image
of a cat is still an image of a cat and so is a blurred or slightly rotated version
of it. More generally, we raise research question 1.

research question 1: Can we encode the structure of natural images into
CNNs by design?

In chapter 3 we increase the amount of local symmetries the network can
easily build invariance against. We do so by equipping each layer of a CNN
with a geometrically meaningful front-end. Inspired by scale-space theory [4],
this front-end is a content-agnostic operator designed to respect and emphasize
key properties of natural images in the following sense:

no location preference: Convolutional operator

no scale preference: Multi-scale representation

no orientation preference: Steerability with respect to rotation
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geometrically meaningful: Reveals complete set of differential invariants

It turns out, that the multi-scale Njet [5] obeys all the above properties. It
is the local Taylor expansion up to Nth order at each location of the image,
computed on multiple Gaussian-smoothed scales {σs = 2s}S

s=0:

Njetsx � {Gs1,...,sn(u, σs) ∗ x =
∂nG(u, σs)

∂u
∗ x}N

n=0. (5)

Note, that here observation and differentiation are the same operation, ex-
pressed as convolution with a Gaussian derivative of order n and scale σs. The
choice of an Njet is well-validated. It has its roots in the early days of visual
perception research [4] and has been extensively used in former state-of-the-art
computer vision systems, such as SIFT [6].

The front-end is incorporated into deep convolutional networks by removing
the standard pixel basis and expressing each individual filter wj in every layer
as a weighted linear combination over the multi-scale Njet coefficients:

wj(u) =
S×N

∑
i=0

ciNjeti(u), (6)

where the weights ci are learned via backpropagation. We call such CNNs
”Structured Receptive Field Networks” (RFNNs), in honor of Koenderinks
work on receptive field families and the Njet. In chapter 3, we show how
this multi-scale representation lends itself well to re-structure a deep CNN in
a principled way and is easily extended to higher dimensional images. We
also show, that RFNNs obtain state-of-the-art results in various limited data
scenarios, outperforming strong baselines like the Scattering network. This
work was the first to successfully connect handcrafted basis parametrizations
with learned CNNs without loss of generality. The proposed framework makes
it straightforward to achieve rotation- or approximately scale-invariant layers
with subpixel accuracy and similar parametrizations have recently been proven
useful in equivariant networks [7], [8] as well.

1.4 frame-based cnns and steerability

In chapter 4 we formalize the idea of alternative CNN parametrizations and
their transformation properties. The multi-scale Njet is not a basis in the clas-
sical sense, as its coefficients are overcomplete and non-orthogonal. Thus, we
need a more general notion of spanning sets that allows for overcompleteness
and non-orthogonality.

research question 2: Can we generalize alternative parametrizations and
exploit their transformation properties explicitly?
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In the signal processing literature [9], the natural generalization of a basis of
a vector space is called a frame. In frame terminology, an orthonormal basis is a
Parseval-tight frame with unit norm. Every tight frame preserves the norm and
exhibits perfect reconstruction. Frames can be seen as a superset of orthogonal
bases in the sense that every basis is a frame, but not the reverse.

Any finite spanning set of vectors V = {φn}N
n=1 in a Hilbert space H is a

frame. This means there must exist two constants A, B > 0, such that for all x
in H:

A||x||2 ≤
N

∑
n=1

|〈x, φn〉|2 ≤ B||x||2. (7)

If A = B, the frame is a tight frame and if A = B = 1, it is a Parseval tight
frame. Frames allow us to represent signals in another domain where salient
properties can be emphasized more. Further, it gives us the right framework
to make sure we preserve the norm of the signals. For instance, by moving A
into the sum, any tight frame can be converted into a Parseval tight frame with
unit norm.

We show that various spanning sets vary significantly in their performance
when used as an alternative parametrization in CNNs. At the same time,
parametrizations that emphasize key aspects of the data perform superior to
the naive pixel basis. If the chosen frame is steerable [10], [11], it also enables
us to separate a features pose from its canonical appearance. Steering an arbi-
trary filter w(u, v) under a k-parameter Lie group TG, for the transformation
g(τ) ∈ TG, can be written as follows:

g(τ)w(u, v) =
N

∑
n=1

cng(τ)en =
M

∑
m=1

bmαm(θ)φm. (8)

Thus, it is sufficient to first transform the frame at each location of the input
and apply the weights of the canonical feature afterwards. This disentangles
the canonical filter from its transformed k-parameter variants, i.e. cn and bm
respectively govern the weight of each coefficient to form a filter w(u, v) and
αm(θ) are the steering functions governing the transformation of g(τ) acting
on w(u, v) as a whole. As frames may be overcomplete, a frame-parametrized
filter can potentially have m > n coefficients. This means transforming features
amounts to a point-wise multiplication of frame coefficients with cos, sin and
exp activation functions, which is suitable for learning in a CNN.

The steering equations that determine αm can be derived a priori, based on
the frame of choice by solving a linear system determined by the infinitesimal
generator and applying the exponential map. However, the pose parameters θk
either have to be pre-defined based on some heuristic or estimated from data.
To avoid such heuristics, we learn a small neural network that dynamically
estimates a vector of pose parameters at each location, conditioned on the
input:

θ(u, v) = PoseNet(x(u, v)). (9)
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This pose estimation network can be understood as a learned pooling func-
tion, which does data-dependent pooling on the orbit of poses, conditioned on
the input. The depth of this network determines the amount of local context
around the filtered image patch we want to include into the estimation, an
important hyper-parameter as we show in chapter 4. Disentangling pose and
canonical appearance this way gives rise to deep networks with the ability to
dynamically adapt their filters under pre-defined transformations. It also pro-
vides a simple way to regularize the pose variables to obtain local invariants.

In summary, we introduced frame-based CNNs, that give us means to ex-
plicitly encode knowledge about salient signal properties and priors about
well-understood symmetries TG of the classification problem into generically
learned CNNs. Having pose as an explicit parameter in the network allows us
to disentangle pose and appearance of each filter and pre-define structures in
the CNN to learn geometrically meaningful representations from fewer data
and dedicate parameters explicitly to geometric tasks (e.g. by incorporating
them into the PoseNet).

1.5 structuring the channel domain of cnns

In chapter 3 and chapter 4 we have structured and exploited spatial regulari-
ties of the classification problem. As explained earlier, this can be done if we
understand the transformations TG we want to encode into our network well.
However, in most cases we also deal with transformations TA that are hard
to describe mathematically and not known a priori. In the following we will
highlight the role of the channel dimension in CNNs for such transformations
and discuss methods to tackle the third research question.

research question 3: Can we structure and reveal unknown symmetries
of the classification problem?

[3] introduces multi-scale hierarchical convolutional networks, a novel class
of deep networks. They approximate the symmetries of the classification task
with factorized groups of symmetries who’s size grows with depth while the
network progressively builds larger local invariants. The one-dimensional
channel index v of a vanilla CNN is replaced by a multidimensional vector
of attribute indices v = (u, v1, ..., vj) and every layers linear operators Wj are
generalized convolutions along (u, v). Each vj represents an attribute of the
data and indexes a finite-dimensional Lie group, potentially sampled in dis-
crete intervals. A parallel transport is defined as an action gj ∈ TA along the
index space (u, v) of xj [3]:

∀vj ∈ v, gj.xj(vj) � xj(gj.vj). (10)
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TA TG

Figure 1: Hierarchical Attribute CNNs learn a function that locally linearizes unknown
non-linear transformations TA and approximates them with euclidean translations TG
that can be structured and analyzed much easier.

The dimensionality of local symmetries Hj is growing with depth and can be
factorized as follows:

∀j ≥ 0, Gj = Gj−1 � Hj. (11)

In chapter 5 we show that the operators Wj can be implemented via linear
multi-dimensional convolutions. The group of symmetry we employ to ap-
proximate the symmetries of the classification problem, are n-dimensional Eu-
clidean translations Gj = Rd, d ∈ N. Thus, Gj factorizes as:

∀j ≥ 0, Gj = Rdj−1
� Rdj . (12)

This can be seen as a special case of the general multi-scale hierarchical net-
works introduced in [3], as it does not permit to embed non-commutative
groups without additional effort. To allow invariance with respect to non-
commutative groups, we integrate earlier attribute dimensions out and thus
create explicit invariants with respect to all attribute transformations except
the last three. Further, this helps to keep the number of parameters stable,
which would otherwise grow exponentially. The layer j + 1 is thus computed
via multi-dimensional convolution operators Wj+1 as follows:

Wj+1xj =
∫

∑
u′ ,v′j ,v

′
j−1∈S

wj(u′, v′j, v′j−1)xj(u − u′, vj − v′j, vj−1 − v′j−1, vj−2) dvj−2.

(13)
Hierarchical Attribute CNNs aim to locally linearize the unknown symme-

tries TA and map them to well-defined Euclidean translations. This corre-
sponds to mapping possibly high-dimensional curved manifolds to flat multi-
dimensional translations, as illustrated in figure 1 for a 1-dimensional curved
manifold-like structure. We propose an efficient training algorithm for such
networks, analyze the learned translations and show that Hierarchical Attribute
CNNs learn highly structured representations with an order of magnitude
fewer parameters compared to vanilla CNNs.
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1.6 deep invertible networks

The previous research questions have focused on building and analyzing flexi-
ble discriminative invariants efficiently. In contrast, chapter 6 asks the question
if it is necessary at all to progressively build invariance and discard seemingly
un-informative variability about the input signal.

research question 4: Is invariance and loss of information a necessity for
deep networks to generalize well?

Several lines of work suggest that progressive loss of information and invari-
ance are essential properties of representations that generalize well to unseen
data [12], [13]. And the difficulty to recover inputs from hidden representa-
tions in many common deep network architectures [14], [15], [16] supports this
claim.

In chapter 6 we show that this loss of information is indeed just a sufficient,
but not a necessary condition to learn powerful representations. We do so,
by designing an invertible model that ensures, that the mutual information
between representations is constantly equal to one for any depth:

I(xi, xj) = 1, ∀i, j ≤ J. (14)

To avoid trivial invertibility, we design a so-called i-RevNet. It is a cascade
of homeomorphic layers and thus ensures that the model can not just copy the
signal and store one part for a perfect reconstruction and work on the other
part for good classification accuracy. In a bijective net, such a duplication is
not possible by definition as we have a unique 1-to-1 mapping of the form:

f (x) = y ⇔ f−1(y) = x. (15)

Typically such an inverse is ill-defined, as the condition number of trained
neural networks is large. Thus, a small change in the input can cause a large
change in the output and vice versa. In an i-RevNet we define the inverse
explicitly, inspired by work on RevNets, Real-NVP and NICE [17], [18], [19].
i-RevNets are the first fully-invertible deep network, that performs well on
large-scale problems like Imagenet.

However, to achieve good generalization performance, the network should
progressively separate and contract the data with appropriate change of vari-
ables [3]. A deep network that generalizes well should contract the inner-class
distances:

||Φj(xi)− Φj(xk)|| ≤ ||xi − xk||, if f (xi) = f (xk), (16)

and at the same time separate the classes by at least an ε-margin to not collapse
them into one another:

∃ε > 0, f (xi) �= f (xj) ⇒ ||Φj(xi)− Φj(xj)|| > ε. (17)
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We empirically identify such a contraction and separation phenomenon in
i-RevNets trained on Imagenet and propose to explain the good generaliza-
tion performance with these progressive properties. Our results illustrate, that
the Euclidean metric becomes progressively more meaningful with depth and
that deep networks can build progressively more task-related representations
without discarding any information.
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3 structured receptive fields in cnns

3.1 introduction

Where convolutional networks have appeared enormously powerful in the clas-
sification of images when ample data are available [20], we focus on smaller
image datasets. We propose structuring receptive fields in CNNs as linear
combinations of basis functions to train them with fewer image data.

The common approach to smaller datasets is to perform pre-training on a
large dataset, usually ImageNet [21]. Where CNNs generalize well to domains
similar to the domain where the pre-training came from [22], [23], the per-
formance decreases significantly when moving away from the pre-training do-
main [23], [24]. We aim to make learning more effective for smaller sets by
restricting CNNs parameter spaces. Since all images are spatially coherent and
human observers are considered to only cast local variations up to a certain
order as meaningful [4], [25] our key assumption is that it is unnecessary to
learn these properties in the network. When visualizing the intermediate lay-
ers of a trained network, see e.g. [26] and Figure 3, it becomes evident that the
filters as learned in a CNN are locally coherent and as a consequence can be
decomposed into a smooth compact filter basis [27].

We aim to maintain the CNN’s capacity to learn general variances and in-
variances in arbitrary images. Following from our assumptions, the demand is
posed on the filter set that i) a linear combination of a finite basis set is capa-
ble of forming any arbitrary filter necessary for the task at hand, as illustrated
in Figure 2 and ii) that we preserve the full learning capacity of the network.
For i) we choose the family of Gaussian filters and its smooth derivatives for

Figure 2: A subset of filters of the first structured receptive field CNN layer as trained
on 100-class ILSVRC2012 and the Gaussian derivative basis they are learned from. The
network learns scaled and rotated versions of zero, first, second and third order filters.
Furthermore, the filters learn to recombine the different input color channels which is
a crucial property of CNNs.
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20 structured receptive fields in cnns

Figure 3: Filters randomly sampled from all layers of the GoogLenet model [29], from
left to right layer number increases. Without being forced to do so, the model exhibits
spatial coherence (seen as smooth functions almost everywhere) after being trained on
ILSVRC2012. This behaviour reflects the spatial coherence of the input feature maps
even in the highest layers.

which it has been proven [27] that 3-rd or 4-th order is sufficient to capture
all local image variation perceivable by humans. According to scale-space the-
ory [4], [28], the Gaussian family constitutes the Taylor expansion of the image
function which guarantees completeness. For ii) we maintain backpropagation
parameter optimization in the network, now applied to learning the weights
by which the filters are summed into the effective filter set.

Similarly motivated, the Scattering Transform [30], [31], [32], a special type
of CNN, uses a complete set of wavelet filters ordered in a cascade. How-
ever, different from a classical CNN, the filters parameters are not learned by
backpropagation but rather they are fixed from the start and the whole net-
work structure is motivated by signal processing principles. In the Scattering
Network the choice of local and global invariances are tailored to the type of
images specifically. In the Scattering Transform invariance to group actions
beyond local translation and deformation requires explicit design [31] with the
regards to the variability encountered in the target domain such as transla-
tion [30], rotation [32] or scale. As a consequence, when the desired invariance
groups are known a priori, Scattering delivers very effective networks.
Our paper takes the best of two worlds. On the one hand, we adopt the Scatter-
ing principle of using fixed filter bases as a function prior in the network. But
on the other hand, we maintain from plain CNNs the capacity to learn arbitrary
effective filter combinations to form complex invariances and equivariances.

Our main contributions are:

• Deriving the structured receptive field network (RFNN) from first princi-
ples by formulating filter learning as a linear decomposition onto a filter
basis, unifying CNNs and multiscale image analysis in a learnable model.

• Combining the strengths of Scattering and CNNs. We do well on both
domains: i) small datasets where Scattering is best but CNNs are weak;
ii) complex datasets where CNNs excel but Scattering is weak.
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• State-of-the-art classification results on a small dataset where pre-training
is infeasible. The task is Alzheimer’s disease classification on two widely
used brain MRI datasets. We outperform all published results on the
ADNI dataset.

3.2 related work

3.2.1 Scale-space: the deep structure of images

Scale-space theory [28] provides a model for the structure of images by steadily
convolving the image with filters of increasing scale, effectively reducing the
resolution in each scale step. While details of the image will slowly disappear,
the order by which they do so will uniquely encode the deep structure of the
image [4]. Gaussian filters have the advantage in that they do not introduce
any artifacts [25] in the image while Gaussian derivative filters form a complete
and stable basis to decompose locally any realistic image. The set of responses
to the derivative filters describing one patch is called the N-jet [5].

In the same vein, CNNs can be perceived to also model the deep structure
of images, this time in a non-linear fashion. The pooling layers in a CNN
effectively reduce resolution of input feature maps. Viewed from the top of the
network down, the spatial extent of a convolution kernel is increased in each
layer by a factor 2, where a 5x5 kernel at the higher layer measures 10x10 pixels
on the layer below. The deep structure in a CNN models the image on several
discrete levels of resolution simultaneously, precisely in line with Scale-space
theory.

Where CNNs typically reduce resolution by max pooling in a non-linear fash-
ion, Scale-space offers a linear theory for continuous reduction of resolution.
Scale-space theory treats an image as a function of the mathematical apparatus
to reveal the local image structure. In this paper, we exploit the descriptive
power of Scale-space theory to decompose the image locally on a fixed filter
basis of multiple scales.

3.2.2 CNNs and their parameters

CNNs [33] have large numbers of parameters to learn [34]. This is their
strength as they can solve extremely complicated problems [34], [35]. At the
same time, their number of unrestricted parameters is a limiting factor in terms
of the large amounts of data needed to train. To prevent overfitting, which is
an issue even when training on large datasets like the million images of the
ILSVRC2012 challenge [21], usually regularization is imposed with methods
like dropout [36] and weight decay [37].
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Regularization is essential to achieving good performance. In cases where
limited training data are available, CNN training quickly overfits regardless
and the learned representations do not generalize well. Transfer learning
from models pre-trained in similar domains to the new domain is necessary
to achieve competitive results [38]. One thing pre-training on large datasets
provides is knowledge about properties inherent to all natural images, such
as spatial coherence and robustness to uninformative variability. In this paper,
we aim to design these properties into CNNs to improve generalization when
limited training data are available.

3.2.3 The Scattering representation

To reduce model complexity we draw inspiration from the elegant convolu-
tional Scattering Network [30], [31], [32]. Scattering uses a multi-layer cascade
of a pre-defined wavelet filter bank with nonlinearity and pooling operators. It
computes a locally translation-invariant image representation, stable to defor-
mations while avoiding information loss by recovering wavelet coefficients in
successive layers. No learning is used in the image representation: all relevant
combinations of the filters are fed into an SVM-classifier yielding state-of-the-
art results on small dataset classification. Scattering is particularly well-suited
to small datasets because it refrains from feature learning. Since all filter com-
binations are pre-defined, their effectiveness is independent of dataset size. In
this paper, we also benefit from a fixed filter bank. In contrast to Scattering,
we learn linear combinations of a filter basis into effective filters and non-linear
combinations thereof.

The wavelet filterbank of Scattering is carefully designed to sample a range
of rotations and scales. These filters and their properties are grounded in
wavelet theory [9] and exhibit precisely formulated properties. By using in-
terpretable filters, Scattering can design invariance to finite groups such as
translation [30], scale and rotation [32]. Hard coding the invariance into the
network is effective when the problem and its invariants are known precisely,
but for many applications this is rarely the case. When the variability is un-
known, additional Scattering paths have to be computed, stored and processed
exhaustively before classification. This leads to a well-structured but very high
dimensional parameter space. In this paper, we use a Gaussian derivatives
basis as the filter bank, firmly grounded in scale-space theory [4], [25], [28].
Our approach incorporates learning effective filter combinations from the very
beginning, which allows for a compact representation of the problem at hand.
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3.2.4 Recent CNNs

Restriction of parameter spaces has led to some major advances in recent CNNs
performance. Network in Network [39] and GoogleNet [29] illustrate that fully
connected layers, which constitute most of Alexnet’s parameters, can be re-
placed by a global average pooling layer reducing the number of parameters in
the fully connected layers to virtually zero. The number of parameters in the
convolution layers is increased to enhance the expressiveness of each layers fea-
tures. Overall the total number of parameters is not necessarily decreased, but
the function space is restricted, allowing for bigger models while classification
accuracy improves [29], [39].

The VGG Network [40] improves over Alexnet in a different way. The convo-
lution layers parameter spaces are restricted by splitting each 5x5 convolution
layer into two 3x3 convolution layers. 5x5 convolutions and 2 subsequent 3x3
convolutions have the same effective receptive field size while each receptive
field has 18 instead of 25 trainable parameters. This regularization enables
learning larger models that are less prone to overfitting. In this paper, we
follow a different approach in restricting the free parameter space without re-
ducing filter size.

3.3 deep receptive field networks

3.3.1 Structured receptive fields

In our structured receptive field networks we make the relationship between
Scale-space and CNNs explicit. Whereas normal CNNs treat images and their
filters as pixel values, we aim for a CNN that treats images as functions in
Scale-space. Thus, the learned convolution kernels become functions as well.
We therefore approximate an arbitrary CNN filter F(x) with a Taylor expansion
around a up to order M

F(x) =
M

∑
m=0

Fm(a)
m!

(x − a)m. (18)

Scale-space allows us to use differential operators on images, due to linear-
ity of convolution we are able to compute the exact derivatives of the scaled
underlying function by convolution with derivatives of the Gaussian kernel

G(.; σ) ∗ F(x) =
N

∑
m=0

(Gm(.; σ) ∗ F)(a)
m!

(x − a)m, (19)

where ∗ denotes convolution, G(.; σ) is a Gaussian kernel with scale σ and
Gm(.; σ) is the mth order Gaussian derivative with respect to it’s spatial variable.
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Thus, a convolution with a basis of weighted Gaussian derivatives receptive
fields is the functional equivalent to pixel values in a standard CNN operating
on a scaled infinitely differentiable version of the image.

To construct the full basis set in practice, one can show that the Hermite poly-
nomials emerge from a sequence of Gaussian derivatives up to order M [41].
A Gaussian derivative of arbitrary order can be obtained from the orthogonal
Hermite polynomials Hm through pointwise multiplication with a Gaussian
envelope

Gm(.; σ) = (−1)m 1√
σ

m Hm(
x

σ
√

2
) ◦ G(x; σ). (20)

The resulting operators allow computation of an image’s local geometry at
scale σ and location x up to any order of precision M. This basis is thus a com-
plete set. Each derivative corresponds to an independent degree of freedom,
making it also a minimal set.
Thus, an RFNN is a general CNN when a complete polynomial up to infinite
order is considered. We restrict the basis based on the requirement that one
can construct quadrature pair filters as suggested by Scattering and by evi-
dence from Scale-space theory [27] that considers all orders up to a maximum
of 4, as it has been suggested that orders beyond that do not carry any infor-
mation meaningful to visual perception.

3.3.2 Transformation properties of the basis

The isotropic Gaussian derivatives exhibit multiple desirable properties. It is
possible to create complex multi-orientation pyramids that constitute wavelet
representations similar to the Morlet Wavelet pyramids used in Scattering Net-
works [30]. A complex multiresolution filterbank can be constructed from a
dilated and rotated Gaussian derivative quadrature. The exact dilated versions
of an arbitrary Gaussian derivative Gm can be obtained through convolution
with a Gaussian kernel of scale σ = n according to

Gm(.;
√

j2 + n2) = Gm(.; j) ∗ G(.; n). (21)

Arbitrary rotations of Gaussian derivative kernels can be obtained from a min-
imal set of basis filters without the need to rotate the basis itself. This property
is referred to as steerability [10]. Steerability is a property of all functions that
can be expressed in a polynomial in x and y times an isotropic Gaussian. This
certainly holds for the Gaussian derivatives according to equation 20. For ex-
ample a quadrature pair of 2nd and 3rd order Gaussian derivatives Gxx and
Gxxx rotated by an angle θ can be obtained from a minimal 3 and 4 x-y separa-
ble basis set.
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Algorithm 1 RFNN Learning - updating the parameters αl
ij between input map

indexed by i and output map indexed by j of layer l in the Mini-batch Gradient
Decent framework.

1: Input: input feature maps ol−1
i for each training sample (computed for the

previous layer, ol−1 is the input image when l = 1), corresponding ground-
truth labels {y1, y2, . . . , yK}, the basic kernels {φ1, φ2, . . . , φM}, previous
parameter αl

ij.

2: compute the convolution {ζ1, ζ2, . . . , ζm} of {ol−1
i} respect to the basic ker-

nels {φ1, φ2, . . . , φM}
3: obtain the output map ol

j = αl
ij1 · ζ1 + αl

ij2 · ζ2 + ... + αl
ijM · ζM

4: compute the δl
jn for each output neuron n of the output map ol

j

5: compute the derivative ψ′(tl
jn) of the activation function

6: compute the gradient ∂E
∂αl

ij
respect to the weights αl

ij

7: update parameter αl
ij = αl

ij − r · 1
K · ∑K

k=1[
∂E
∂αl

ij
]k, r is the learning rate

8: Output: αl
ij, the output feature maps ol

j

Given by:

Gxx
θ = cos2(θ)Gxx − 2 cos(θ) sin(θ)Gxy + sin2(θ)Gyy

Gxxx
θ = cos3(θ)Gxxx − 3 cos2(θ) sin(θ)Gxxy

+3 cos(θ) sin2(θ)Gxyy − sin3(θ)Gyyy

(22)

A general derivation of the minimal basis set necessary for steering arbitrary
orders can be found in [10]. Note that the anisotropic case can be constructed
in analogous manner according to [42]. This renders Scattering as a special
case of the RFNN for fixed angles and scales, given a proper choice of pooling
operations and possibly skip connections to closely resemble the architecture
described in [30]. In practice this allows for seamless integration of the Scatter-
ing concept into CNNs to achieve a variety of hybrid architectures.

3.3.3 Learning basis filter parameters

Learning a feature representation boils down to convolution kernel learning.
Where a classical CNN learns pixel values of the convolutional kernel, a RFNN
learns Gaussian derivative basis function weights that combine to a convolu-
tion kernel function. A 2D filter kernel function F(x, y) in all layers, is a linear
combination of i unique (non-symmetric) Gaussian derivative basis functions
φ

F(x, y) = α1φ1 + · · ·+ αnφi, (23)

where α1, ..., αi are the parameters being learned.
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Figure 4: An illustration of the basic building block in an RFNN network. A linear
comibination of a limited basis filter set φm yields an arbitrary number of effective
filters. The weights αij are learned by the network.

We learn the filter’s weights α by mini-batch stochastic gradient descent and
compute the derivatives of the loss function E with respect to the parameters
α through backpropagation. It is straightforward to show the independence
between the basis weights α and the actual basis (see Appendix for derivation).
Thus, we formulate the basis learning as a combination of a fixed basis layer
with a 1x1 convolution layer that has a kernel depth equal to the basis order.
Propagation through the 1x1 layer is done as in any CNN while propagation
through the basis layer is achieved by a convolution with flipped versions of
the Gaussian filters. This makes it straightforward to include into any existing
deep learning framework. The basic structured receptive field building block
is illustrated in figure 4, showing how each effective filter is composed out
of multiple basis filters. Note that the linearity of convolution allows us to
never actually compute the effective filters. Convolving with effective filters is
the same as convolving with the basis and then recombining the feature maps,
allowing for efficient implementation. Algorithm 1 shows how the parameters
are updated.

3.3.4 The network

In this work, we choose the Network in Network (NiN) architecture [39] as the
basis into which we integrate the structured receptive fields. It is particularly
suited for an analysis of the RFNN approach, as the absence of a fully con-
nected layer ensures all parameters to be fully concerned with re-combining
basis filter outcomes of the current layer. At the same time, it is powerful, simi-
lar in spirit to the state of the art Googlenet [29], while being comparably small
and fast to train.
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NiN alternates one spatial convolution layer with 1x1 convolutions and pool-
ing. The 1x1 layers form non-linear combinations of the spatial convolution
layers outputs. This procedure is repeated four times in 16 layers, with differ-
ent number of filters and kernel sizes for the spatial convolution layer. The
final pooling layer is a global average pooling layer. Each convolution layer is
followed by a rectifier nonlinearity. Details on the different NiNs for Cifar and
Imagenet can be found in the Caffe model zoo [43].

In the RFNN version of the Network in Network model, the basis layer in-
cluding the Gaussian derivatives set is replacing the spatial convolution layer
and corresponds to φm in equation 23. Thus, each basis convolution layer
has a number of filters depending on order and scale of the chosen basis set.
The basis set is fixed: no parameters are learned in this layer. The linear re-
combination of the filter basis is done by the subsequent 1x1 convolution layer,
corresponding to αij in equation 23. Note that there is no non-linearity between
φm and αij layer in the RFNN case, as the combinations of the filters are linear.
Thus the RFNN model is almost identical to the standard Network in Network.
We evaluate the model with and without multiple scales σs. When including
scale, we extract 4 scales, as the original model includes 3 pooling steps and
thus operates on 4 scales at least. In the first layer we directly compute 4 scales,
sampled continuously with σs = 2s where s = scale as done in [30]. In each
subsequent layer we discard the lowest scale. The dimensionality reduction by
max pooling renders it meaningless to insert the lowest scale of the previous
layer into the filter basis set as it is already covered by the pyramidal structure
of the network. This enables us to save on basis filters in the higher layers of the
network. In conclusion we reduce the total number of 2D filters in the network
from 520,000 in the standard Network in Network to between 12 and 144 in the
RF Network in Network (RFNiN), while retaining the models expressiveness
as shown in the experimental section.

3.4 experiments

The experiments are partitioned into four parts. i) We show insight in the
proposed model to investigate design choices; ii) we show that our model com-
bines the strengths of Scattering and CNNs; iii) we show structured receptive
fields improve classification performance when limiting training data; iv) we
show a 3D version of our model that outperforms the state-of-the-art, including
a 3D-CNN, on two brain MRI classification datasets where large pre-training
datasets are not available. We use the Caffe library [43] and Theano [44] where
we added RFNN as a separate module. Code is available on github1.

1 https://github.com/jhjacobsen/RFNN
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3.4.1 Experiment 1: Model insight

The RFNN used in this section is the structured receptive field version of the
Network in Network (RFNiN) introduced in section 3.3. We gain insight into
the model by evaluating the scale and order of the basis filters. In addition,
we analyze the performance compared to the standard Network in Network
(NiN) [39] and Alexnet [34] and show that our proposed model is not merely a
change in architecture. To allow overnight experiments we use the 100 largest
classes of the ILSVRC2012 ImageNet classification challenge [21]. Selection
is done by folder size, as more than 100 classes have 1,300 images in them,
yielding a dataset size of 130,000 images. This is a real-world medium sized
dataset in a domain where CNNs excel.

Experimental setup. The Network in Network (NiN) model and our Struc-
tured Receptive Field Network in Network (RFNiN) model are based on the
training definitions provided by the Caffe model zoo [43]. Training is done
with the standard procedure on Imagenet. We use stochastic gradient descent,
a momentum of 0.9, a weight decay of 0.0005. The images are re-sized to
256x256, mirrored during training and the dataset mean is subtracted. The
base learning rate was decreased by a factor of 10, according to the reduction
from 1,000 to 100 classes, to ensure proper scaling of the weight updates, NiN
didn’t converge with the original learning rate. We decreased it by a factor of
10 after 50,000 iterations and again by the same factor after 75,000 iterations.
The networks were trained for 100,000 iterations. Results are computed as the
mean Top-1 classification accuracy on the validation set.

Filter basis order. In table 1, the first four rows show the result of RFNiN ar-
chitectures with 1st to 4th order Gaussian derivative basis filter set comprised
of 12 to 60 individual Gaussian derivative filters in all layers of the network.
In these experiments the value of σ=1, fixed for all filters and all layers. Com-
paring first to fourth order filter basis in table 1, we conclude that third order
is sufficient, outperforming first and second order as predicted by Scale-space
theory [27]. The fourth order does not add any more gain.

Filter scale. The RFNiN-Scale entries of table 1 show the classification result
up to fourth order now with 4 different scales, σ=1, 2, 4, 8 for the lowest
layer, σ=1, 2, 4 for the second layer, σ=1, 2 for the third, and σ=1 for the
fourth. This implies that the basis filter set expands from 24 up to 144 filters in
total in the network. Comparing the use of single scale filters in the network
to dilated copies of the filters with varying scale indicates that a considerable
gain can be achieved by including filters with different scales. This observation
is supported by Scattering [30], showing that the multiple scales can directly
be extracted from the first layer on. In fact, normal CNNs are also capable
of similar behavior, as positive valued low-pass filter feature maps are not
affected by rectifier nonlinearities [32].
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ILSVRC2012-100 Subset

Method Top-1 2DFilters #Params

RFNiN 1st-order 44.83% 12 1.8M
RFNiN 2nd-order 61.24% 24 3.4M
RFNiN 3rd-order 63.64% 40 5.5M
RFNiN 4th-order 62.92% 60 8.1M
RFNiN-Scale 1st-order 57.21% 24 2.2M
RFNiN-Scale 2nd-order 67.56% 54 4.2M
RFNiN-Scale 3rd-order 69.65% 94 6.8M
RFNiN-Scale 4th-order 68.95% 144 10.1M

Network in Network 67.30% 520k 8.2M
Alexnet 54.86% 370k 60.0M

Table 1: Results on 100 Biggest ILSVRC2012 classes: The table shows RFNiN with
1st, 2nd, 3rd and 4th order filters in the whole network. Row 1-4 are applying basis
filters in all layers on a scale of σ=1. RFNiN-scale in row 5-8 applies basis filters on
4 scales, where σ=1,2,4,8. The results show that a 3rd order basis is sufficient while
incorporating scale into the network gives a big gain in performance. The RFNiN is
able to outperform the same Network in Network architecture.

Thus, scale can directly be computed from the first layer onwards, which
yields a much smaller set of basis filters and fewer convolutions needed in the
higher layers. Note that number of parameters is not directly correlated with
performance.

Analysis of network layers. For the network RFNiN 4th-order Figure 5
provides an overview of the range of basis weights per effective filters in all
layers, where the x-axis indexes the spatial derivative index and y-axis the
mean value plus standard deviation of weights per layer over all effective filter
kernels. The figure indicates that weights decrease towards higher orders as
expected. Furthermore zero order filters have relatively high weights in higher
layers, which hints to passing on scaled incoming features.

Comparison to Network in Network. The champion RFNiN in table 1
slightly outperforms the Network in Network with the same setting and train-
ing circumstances while only having 94 instead 520,000 spatial filters in the
network in total. Note that the number of parameters is relatively similar
though, as the scale component increases the number of basis functions per
filter significantly. The result shows that our basis representation is sufficient
for complex tasks like Imagenet.

Refactorize Network in Network. To illustrate that our proposed model is
not merely a change in architecture we compare to a third architecture.
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Figure 5: Mean of filter weights and variances per layer for 15 basis filters with no scale,
as trained on ILSVRC2012-100 subset. Note that the lower order filters have the highest
weights while zero-order filters are most effective in higher layers for combinations of
lower responses.

Model Basis #Params Top-1

NiN-refactor Layer 1 Free 7.47M 64.10%
RFNiN-refactor Layer 1 Gauss 7.47M 68.63%

NiN-refactor All Layers Free 6.87M 38.02%
RFNiN-Scale 3rd-order Gauss 6.83M 69.65%

Table 2: Classification on ILSVRC2012-100 to illustrate influence of factorization on
performance. The results show that the advantage of the Gaussian basis is substantial
and our results are not merely due to a change in architecture.

We remove the Gaussian basis and we re-factorize the NiN such that it be-
comes identical to RFNiN. Both have almost the same number of parameters,
but the NiN-factorize has a freely learnable basis. Re-factorizing only the first
layer and leaving the rest of the network as in the original NiN, in table 2 we
show that a Gaussian basis is superior to a learned basis. When re-factorizing
all layers, RFNiN-Scale 3rd-order results are superior by far to the identical
NiN-factorize All Layers.

3.4.2 Experiment 2: Scattering and RFNNs

Small simple domain. We compare an RFNN to Scattering in classification
on reduced training sizes of the MNIST dataset. This is the domain where
Scattering outperforms standard CNNs [30]. We reduce the number of training
samples when training on MNIST as done in [30]. The network architecture
and training parameters used in this section are the same as in [45].
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Figure 6: Classification performance of the Scattering Network on various subsets of
the MNIST dataset. In comparison the state of the art CNN-A from [46]. RFNN
denotes our receptive field network, with the same architecture as CNN-B. Both are
shown, to illustrate that good performance of the RFNN is not due to the CNN archi-
tecture, but due to RFNN decomposition. Our RFNN performs on par with Scattering,
substantially outperforming both CNNs.

The RFNN contains 3 layers with a third order basis on one scale as a mul-
tiscale basis didn’t provide any gain. Scale and order are determined on a
validation set. Each basis layer is followed by a layer of αN = 64 1x1 units that
linearly re-combine the basis filters outcomes. As comparison we re-implement
the same model as a plain CNN. The CNN and Scattering results on the task
are taken from [30], [46].

Results are shown in Figure 6, each number is averaged over 3 runs. For
the experiment on MNIST the gap between the CNNs and networks with pre-
defined filters increases when training data is reduced, while RFNN and Scat-
tering perform on par even at the smallest sample size. Large complex do-
main. We compare against Scattering on the Cifar-10 and Cifar-100 datasets,
as reported by the recently introduced Deep Roto-Translation Scattering ap-
proach [47], a powerful variant of Scattering networks explicitly modeling in-
variance under the action of small rotations. This is a domain where CNNs
excel and learning of complex image variabilities is key.

The RFNiN is again a variant of the standard NiN for Cifar-10. It is similar to
the model in experiment 1, just that it has one basis layer, two 1x1 convolution
layers and one pooling layer less and the units in the 1x1 convolution layers
are 192 in the whole network. Furthermore, we show performance of the state-
of-the-art recurrent convolutional networks (RCNNs) [48] for comparison.

The results in Table 3 show a considerable improvement on Cifar-10 and
Cifar-100 when comparing RFNiN to Roto-Translation Scattering [47], which
was designed specifically for this dataset. RCNNs performance is considerably
higher as they follow a different approach to which structured receptive fields
can also be applied if desired.
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Model Cifar-10 Cifar-100

Roto-Trans Scattering 82.30% 56.80%
RFNiN 86.31% 63.81%

RCNN 91.31% 68.25%

Table 3: Comparison against Scattering on a large complex domain. State-of-the-art
comparison is given by RCNN. RFNiN outperforms Scattering by large margins.

RFNNs are robust to dataset size. From these experiments, we conclude
that RFNNs combine the best of both worlds. We outperform CNNs and com-
pete with Scattering when training data is limited as exemplified on subsets
of MNIST. We capture complex image variabilities beyond the capabilities of
Scattering representations as exemplified on the datasets Cifar-10 and Cifar-
100 despite operating in a similarly smooth parameter space on a receptive
field level.

3.4.3 Experiment 3: Limiting datasize

To demonstrate the effectiveness of the RF variant compared to the Network
in Network, we reduce the number of classes in the ILSVRC2012-dataset from
1000 to 100 to 10, resulting in a reduction of the total number of images on
which the network was trained from 1.2M to 130k to 13k and subsequent de-
crease in visual variety to learn from. To demonstrate performance is not only
due to smaller number of learnable parameters, we evaluate two RFNiN ver-
sions. RFNiN-v1 is RFNiN-Scale 3rd-order from table1. RFNiN-v2 is one layer
deeper and wider [128/128/384/512/1000] version of the RFNiN-v1, resulting
in 3 million additional parameters, which is 2,5 million more than NiN.

The results in table 4 show that compared to CNNs the RFNiN performance
is better relatively speaking when the number of samples and thus the vi-
sual variety decreases. For the 13k ILSVRC2012-10 image dataset the gap be-
tween RFNiN and NiN increased to 8.0% from 2.4% for the 130k images in
ILSVRC2012-100 while the best RFNiN is inferior to NiN by 2.98% for the full
ILSVRC2012-1000. This supports our aim that RFNiN is effectively incorpo-
rating natural image priors, yielding a better performance compared to the
standard NiN when training data and variety is limited, even when having
more learnable parameters. Truly large datasets seem to contain information
not yet captured by our model.
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Model #Params 1000-class 100-class 10-class

NiN 7.5M 56.78% 67.30% 76.97%
RFNiN-v1 6.8M 50.08% 69.65% 85.00%
RFNiN-v2 10M 54.04% 70.78% 83.36%

Table 4: Three classification experiments on ILSVRC2012 subsets. Results show that
the bigger model (RFNiN-v2) performs better than RFNiN-Scale 3rd-order (RFNiN-v1)
on the 1000-classes while on 100-class and 10-class, v1 and v2 perform similar. The
gap between RFNiN and NiN increases for fewer classes.

3.4.4 Experiment 4: Small realistic data

We apply an RFNiN to 3D brain MRI classification for Alzheimer’s disease [49]
on two popular datasets. Neuroimaging is a domain where training data is no-
toriously small and high dimensional and no truly large open access databases
in a similar domain exist for pre-training.

We use a 3-layer RFNiN with filters sizes [128,96,96] with a third order ba-
sis in 3 scales σ ∈ {1, 4, 16}. This time wider spaced, as the brains are very
big objects and are centered due to normalization to MNI space with the FSL
library [50]. Each basis layer is followed by one 1x1 convolution layer. Global
average pooling is applied to the final feature maps. The network is imple-
mented in Theano [44] and trained with Adam [51].

3D MRI classification Accuracy TPR SPC

3D-RFNiN (ours) 97.79% 97.14% 98.78%
ICA [52] 80.70% 81.90% 79.50%
Voxel-Direct-D-gm [49] - 81.00% 95.00%

3D-CNN [53] 95.70% - -
NIB [54] 94.74% 95.24% 94.26%

Table 5: Alzheimer’s classification with 150 train and test 3D MRI images from the
widely used ADNI benchmark. RFNiN, ICA and Voxel-Direct-D-gm are trained on
the subset introduced in [49], 3D-CNN and NIB were trained on their own subset
of ADNI, using an order of magnitude more training data. RFNiN outperforms all
published results. Reported is accuracy, true positive rate and specificity.

The results are shown in table 5. Note that [53], [54] train on their own
subset and use an order of magnitude more training data. We follow standard
practice [49] and train on a smaller subset. Nevertheless we outperform all
published methods on the ADNI dataset.
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The same 3 layer NiN as our RFNiN model has 84.21% accuracy, more than
10% worse while being hard to train due to unstable convergence. On the
OASIS AD-126 Alzheimer’s dataset [55], we achieve an accuracy of 80.26%,
compared to 74.10% with a SIFT-based approach [56]. Thus, we show our
RFNiN can effectively learn comparably deep representations even when data
is scarce and exhibits stable convergence properties.

3.5 discussion

The experiments show that structuring convolutional layers with a filter basis
grounded on Scale-space principles improves performance when data is lim-
ited. The filter basis provides regularization especially suited for image data
by restricting the parameter space to smooth features up to fourth order. The
Gaussian derivative basis opens up a new perspective for reasoning in CNNs,
connecting them with a rich body of prior multiscale image analysis research
that can now be readily incorporated into the models. This is especially inter-
esting for applications where model insight and control is key.

We illustrated the effectiveness of RFNNs on multiple subsets of Imagenet,
Cifar-10, Cifar-100 and MNIST. The choice of a third order Gaussian basis is
sufficient to tackle all datasets which is in accordance with prior research [27],
[30]. While it remains an open problem to match the performance of CNNs on
very large datasets like the 1000-class ILSVRC2012, our results show that the
RFNN method outperforms CNNs by large margins when data are scarce. It
can also outperform CNNs on challenging medium sized datasets while being
superior to Scattering on large datasets despite having more parameters as the
pre-defined basis restriction allows the network to devote its full capacity to
a sensible feature spaces. As a small data real world example, we verify our
claims with 3D MRI Alzheimer’s disease classification on two datasets where
we consistently achieve competitive performance including the best results on
the widely used ADNI dataset.



4 dynamic steerable blocks in deep

residual networks

4.1 introduction

Deep Convolutional Neural Networks (CNNs) are the state-of-the-art solution
to many vision tasks [20]. However, they are known to be data-inefficient,
as they require up to millions of training samples to achieve their powerful
performance [58], [59]. In this work, we propose a formulation of CNNs that
more efficiently learns to exploit generic regularities known to be present in
the data a priori.

For images, as well as any other sensory data, CNNs typically learn filters
from individual pixel values. In this paper, we show that alternatives to the
pixel basis are more natural formulations for learning models on locally well-
understood data like images. We show increased classification performance
in state-of-the-art ResNets [60] and Densenets [61] on the highly competitive
Cifar-10 classification task by replacing the pixel basis with a basis more suit-
able for natural images. Further, we show that such a replacement naturally
leads to powerful extensions of residual blocks as dynamic steerable interpo-
lators that can steer their filters conditioned on the input with respect to pre-
defined continuous geometric transformations like rotations or scalings. The
proposed block allows the network to adaptively learn the degree of local in-
variance required for each filter, by decoupling filter learning and local geomet-
rical pose adaption. We show the effectiveness of this approach on the BSD500
boundary detection task, where precise and adaptive local invariances are key.
We outperform all competing non-pretrained methods with our approach.

Our contributions:

• We introduce the notion of frame bases to CNNs and show that classically
used frames from Computer Vision aid optimization, when compared to
the commonly used pixel basis. We illustrate this by improving clas-
sification performance on Cifar-10+ for multiple ResNet and Densenet
architectures, by mere substitution of the pixel basis with a frame only.

• Exploiting the steerability properties of frames further, we derive Dy-
namic Steerable Blocks that are able to continuously transform features
in a locally adaptive manner and illustrate the approach on a synthetic
tasks to highlight the advantages over competing approaches.

35
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1 Static Residual Block

+

2 Dynamic Steerable Block

xj-1 Wjxj-1xj xjWj  
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   j    j

Figure 7: Left is a classical residual block as used in vanilla ResNets [57]. Outputs
xj−1 of the previous block are combined additively with the output of a small stack
of convolutional layers Fj to form the final output xj. We augment this formulation
in two ways to achieve our dynamic block formulation on the right. First, we apply a
change to a steerable frame Φ on the input xj−1 and second we replace the addition
operation with a multiplication. This permits us to interpret Fj as a pose estimating
network, that directly outputs the linear projection coefficients, transforming the basis
and subsequently the effective filters adaptively in a dynamic and, if desired, location
dependent manner.

• To evaluate the practicality of our proposed approach, we apply Dynamic
Steerable Block networks on the BSDS-500 contour detection task [62]
where we achieve increased performance among competing methods that
do not utilize pre-training.

The paper is organized as follows. First, we review related literature of
alternative parametrizations and incorporation of prior geometrical knowledge
into CNNs. Secondly, we introduce the theoretical framework of frame-based
CNNs and steerable two-factor blocks, which our work rests upon. Third,
we show that careful reparametrization of CNNs can increase performance
on natural image classification. Lastly, we show how to extend frame-based
Resnet blocks to dynamic steerable blocks that have the ability to dynamically
adapt filters, with several advantages and promising results on the Berkeley
Contour Detection dataset.

4.2 related work

Convolutional Networks with alternative bases have been proposed with var-
ious degrees of flexibility. A number of works utilizes change of basis to sta-
bilize training and increase convergence behavior [63], [64]. Another line of
research is concerned with complex-valued CNNs, either learned [65], or fully
designed like the Scattering networks [47], [66].
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Scattering, as well as the complex-valued networks, rest upon a direct con-
nection between the signal processing literature and CNNs.Inspired by the for-
mer, Structured Receptive Field Networks are learned from an overcomplete
multi-scale frame, effectively improving performance for small datasets due to
restricted feature spaces [67]. Closely related is another line of recent promis-
ing work on group-equivariant [68], [69] and steerable CNNs [7], [70]. The
latter build steerable representations via appropriately chosen basis functions,
illustrating that CNNs with well-chosen geometrical inductive biases consis-
tently outperform state-of-the-art approaches in multiple domains. However,
all of the former approaches rely on hand-engineered types of representations
and none considers locally adaptive filtering with learned degree of invariance,
we aim to bridge this gap. Inspired by CNNs learned from alternative bases,
we introduce the general principle of Frame-based convolutional networks that
allow for non-orthogonal, overcomplete and steerable feature spaces.

Steerable frames are a concept established early for signal processing. Ini-
tially introduced by [71], the concept was extended to the Steerable Pyramid
by [72] and to a Lie-group formulation by [11], [73]. Further, steerability has re-
cently been related to tight frames, presenting Simoncelli’s Steerable Pyramid
and multiple other Wavelets arising as a special case of the non-orthogonal
Riesz transform [74]. Steerable pyramids have been applied to CNNs as a pre-
processing step [75], but have not yet been learnable. We incorporate steerable
frames in CNNs to increase their de facto expressiveness and to allow them to
learn their configurations, rather than picking them a priori.

Another way to impose structure onto CNN representations and subsequently
increase their data-efficiency is by pre-defining the possible transformations,
as done in Transforming Autoencoders [76], which map their inputs from
the image to pose space through a neural network. The Spatial Transformer
Networks [77] learn global, and deformable convolutional networks [78] local
transformation parameters in a similar way while applying them to a nonlin-
ear co-registration of the feature stack to some estimated pose. Dynamic Filter
Networks [79] move one step further and estimate filters for each location, con-
ditioned on their input. These approaches are all dynamic in a sense that they
condition their parameters on the input appearance. Our proposed dynamic
residual block can be interpreted as a middle ground that combines the idea
of Dynamic Filter Networks with explicit pose prediction into blocks that can
locally estimate filter poses from a continuous input space. As such, we over-
come the difficulty of estimating local filter pose, while being able to separate
pose and feature learning globally without the need for differentiable samplers
or locally connected layers.
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Figure 8: a) Is an orthonormal basis in R2, u1 and u2 are linearly independent and span
the space of R2. A dot in this example represents a filter in a convolutional network
with coefficients {u1, u2}. b) A tight frame in R2. u1, u2 and u3 are linearly dependent.
A dot in this example represents a convolutional filter with coefficients {u1, u2, u3}.
The frame is an overcomplete representation, again spanning R2 and again preserving
the norm. Note that the set of filter coefficients as represented by the dot is not unique.
Thus even if one u is obstructed by noisy updates or measurements, the filter may still
be robust.

4.3 cnn bases beyond pixels

The most general set of viable bases to learn filters from are called Frames [80].
Frames are a natural generalization of orthogonal bases and are spanning sets
that span the same space of functions an orthogonal basis does, while allowing
for overcomplete representations and hence more densely sampled parameter
spaces.

Frames can be seen as a superset of orthogonal bases in the sense that every
basis is a frame, but not the reverse, see figure 8. Frames have three main ad-
vantages: 1) Frames can spell out signal properties more explicitly, facilitating
optimization when good frames for the type of data are known, as is the case
for many types of signals like images or video [80]. 2) Frames allow for over-
complete representations of the signal adding robustness and regularization
to the optimization procedure, as they are more stable when measurements or
updates are noisy. 3) Many frames are steerable and thus provide us with a
signal representation that can be dynamically steered by simple linear projec-
tions, i.e. they have the ability to linearize group actions. Properties 1) and
2) are illustrated in experiment 3.1, where we merely replace standard pixel
bases with alternative frames and evaluate the effect. Property 3) is illustrated
in experiments 3.2, where we leverage the steerability property of some frames
explicitly.

In a standard convolutional network, a filter kernel is a linear combination
over the standard (pixel) basis for l2(N). This pixel basis is composed of delta
functions for every dimension and Wi is the ith filter of the network with pa-
rameters wi

n.
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a) b) c) d)

Figure 9: An illustrative plot of multiple 3x3 spanning sets Φ: a) Pixel-basis, b) Gaus-
sian Derivatives (first 9 atoms), c) Non-orthogonal Framelet, d) Naive Frame. Note the
increased symmetries in the three latter.

Without loss of generalization the orthonormal standard basis can be re-
placed by a frame to include steerability, non-orthogonality, overcompleteness
and increased symmetries into the representation. Changing from the pixel to
an arbitrary frame is as simple as replacing the pixel basis en with a frame of
choice with elements φm as follows:

WjΦ(xj−1) =
N

∑
n=1

wj
nen � xj−1 ≡

M

∑
m=1

wj
mφm � xj−1, (24)

where wi
1, ..., wi

m are again the filter coefficients being learned. Note that after
optimization with an overcomplete frame is done, the resulting network can
be rewritten in terms of the standard pixel basis. Therefore frames only act
as a regularizer during training, they do not increase the effective parameter
cost of the network. In practice for CNNs working on images we investigate
four typical choices of frames: i) the vanilla orthogonal pixel basis, ii) Gaus-
sian derivatives, one of the most widely used overcomplete frames from the
computer vision literature (also used in SIFT) [5], [6], [27], [67], iii) Framelets,
a non-orthogonal but not overcomplete basis, designed for images [81] and iv)
A ”naive” frame of the form xpyq derived from steerability requirements [73]
but with no image properties in mind. See figure 9 for plots of these frames
and experiments in section 4.4.1 for their performance.

Many frames are steerable, which means equivariant with respect to some
group of transformation, they linearize the action of these transformation groups.
More formally, if W are the weights of a filter, g(τ) ∈ G is some transformation
of the input x and the basis Φ is steerable under this transformation, one can
find a linear mapping F (τ), such that:

WF (τ)Φ(xj−1) = WΦ(g(τ)xj−1). (25)

This means instead of steering the effective filters represented by WΦ(xj−1),
it is sufficient to steer the basis Φ and the effective filters will be transformed
accordingly. Thus, a change to a steerable basis Φ, makes it possible to dynam-
ically adapt filters via linear projections, while also opening new ways to learn
local and global invariants efficiently.
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We will show below, that this property permits to dynamically transform
filters and to directly learn the degree of invariance to variabilities like rotation,
scaling and others, depending on the type of basis used.

Steerability allows to separate a feature’s pose from its canonical appearance.
From equation 24 follows that a steerable version of an arbitrary filter Wi(x, y)
under a k-parameter Lie group can be expressed as:

g(τ)Wi(x, y) =
N

∑
n=1

wi
ng(τ)φi

n. (26)

And by substituting according to equation 25 it follows:

g(τ)Wi(x, y) =
N

∑
n=1

wi
n

M

∑
m=1

Fm(τ)φm(x). (27)

Thus it is sufficient to determine the group action on the fixed frame by steer-
ing it to separate the canonical feature itself from its k-parameter variants, i.e.
φi

n are the frame coefficients underlying each feature Wi(x, y) and F (τ)m are
the steering functions governing the transformation of g(τ) acting on Wi(x, y)
as a whole. In the following section, we will connect this insight to frame-based
static residual blocks and turn them into dynamic two-factor blocks, that per-
form geometrically regularized locally adaptive filtering.

To achieve precise geometrical regularization, one can further derive the
steering equations for the particular steerable frame at hand and use the re-
sulting trigonometric functions as activation functions, which is suitable for
learning in a CNN. While these activation functions can be omitted in more
general tasks like classification where the demand on local transformations is
not precisely defined, we will show below that they serve as important regu-
larizers in tasks where precise geometric adaption is needed, as examplified in
the boundary detection experiments. For brevity, we moved steering equation
derivation and steerability proofs to the supplementary material.

4.3.1 Dynamic Steerable Two-Factor Blocks

Deep Residual Networks (ResNets) are among the best performing current
approaches to convolutional networks. Instead of optimizing single layers, they
consist of convolutional blocks with skip connections, where the output of
block j is defined as xj = H(xj−1) = F (xj−1) + xj−1. F is typically a stack of
convolution layers, batch normalizations [82] and nonlinearities [57], [60]. Such
residual blocks overcome vanishing gradients and facilitate optimization [83],
leading to very simple, but very deep networks with no need for pooling and
fully connected layers.
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In the following sections, we introduce extensions of residual blocks as two-
factor models, that overcome the static nature of typical CNNs by leveraging
previously introduced steerable frames. A simple extension transforms static
residual blocks into dynamic modules, able to change the geometrical pose of
their filters conditioned on the input during training and inference time in a
locally adaptive fashion. The key perspective the steerable two-factor block
relies upon is to change the residual block from being an additive model of the
form:

H(x) = F (x) + Wx, (28)

where W is the shortcut projection introduced in a recent improvement [60], to
a multiplicative two-factor model of the form:

H(x) = F (Φ(x))Φ(x)W. (29)

Here, the factor Φ(x)W represents a canonical feature, while F (Φ(x)) repre-
sents its pose. The function F estimates the local pose. The space of possible
poses can be pre-conditioned by choosing a suitable frame Φ, that are steerable
under pre-defined sets of deformations and thus span an invariant subspace
of all transformed versions of the basis itself.

The advantage of our proposed dynamic steerable block over common meth-
ods achieving local invariance is that our method goes beyond maximum
search in local pose estimation and thus overcomes the inherent ambiguity
of local maximum search in many natural images. This is achieved by allow-
ing F to include context around the current filter location into the estimation,
enabling stable and task-dependent pose estimation. Figure 10 illustrates an
instance of this problem where the maximum response can not solve the task
and a learned pose estimation finding poses that are neither maxima nor min-
ima, is necessary. Note however, that if invariance is harmful for the task at
hand, our model can also learn to fall back to standard CNN representations
as well.

The blocks used in the boundary detection experiments are based on Gaus-
sian derivatives, steerable with respect to continuous rotations and small ranges
of isotropic scalings (σ =0.8-1.5). The Dynamic Two-Factor Block consists of
four processing steps. 1) Change from input to frame space by convolving
with frame, 2) The interpolator network F (Φ(x)) estimates local pose from
this invariant subspace, outputting a set of pose variables for each location in
the image and for each input/output channel (this can be changed depending
on application). For the interpolator network F we used a small network with
8-16 units and three layers with tanh nonlinearities as they seemed suitable
to approximate trigonometric steering equation solutions. For scalings, we
found softplus and relu nonlinearities to work well. Optional: 3) the steering
functions derived in section 2.4 are applied to the pose variable maps and effec-
tively act as nonlinear pose-parametrized activation functions that regularize
the interpolation network to output an explicitly interpretable pose space.
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Method ResNet110 ResNet164 DenseK12L40 DenseK12L100

Pixel Basis 6.70± 0.16% 5.88± 0.22% 5.26± 0.19% 4.16 ± 0.18%
Image Frame 6.11± 0.19% 5.33± 0.15% 4.97± 0.18% 3.78 ± 0.17%
Naive Frame 7.29± 0.31% 6.93± 0.29% 6.40± 0.21% 5.25 ± 0.20%

Table 6: Results of 3 frames on Cifar-10+, reported as average over 5 runs with stan-
dard deviation. We compare models with a standard pixel-basis, a steerable frame
basis designed for natural images and a naive steerable frame as an example of a
frame that does not take natural image statistics into account. The natural image
statistics based frame outperforms the pixel-basis consistently, while the naive frame
consistently performs about 1% worse than the baseline, highlighting the benefit of a
frame suitable for the type of input data.

4) A 1x1 convolution layer is applied to the already transformed frame out-
puts, this convolution represents the weights wi

j of each feature governing the
canonical appearance of the ith feature map in the jth layer.

4.4 experiments

The experimental section is organized in two parts. Experiment 4.4.1 illustrates
that mere replacement of the pixel basis with frames outperforms highly opti-
mized and flexible approaches like ResNets and Densenets, in domains where
they excel, given a good frame for the data at hand is known. Note that this
part does not explicitly make use of steerability, but focuses on illustrating
the effect of various frame choices according to equation 24. Experiment 4.4.2
makes explicit use of steerability, according to equation 27 & 29, illustrating our
dynamic steerable block mechanism and applying it on a difficult real-world
task of boundary detection, where we outperform all other non pre-trained
methods, among which one is rotation invariant.

4.4.1 Generalized Bases on Cifar-10+

To show the effect of replacing the commonly used pixel-basis with frames,
we compare different frames in multiple state-of-the-art deep Residual Net-
work [60] and Densenet [61] architectures on the Cifar-10 [84] dataset with
moderate data augmentation of crops and flips. We evaluated our approach
on two different network sizes that still comfortably train on one GPU over
night each. The setup used for the ResNet is as described in [60].
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The batch size is chosen to be 64 and we train for 164 epochs with the de-
scribed learning rate decrease. The ResNet architectures used are without
bottlenecks having 56 and 110 layers. For the Densenets we follow [61] and
evaluate on the K=12 and L=40, and the K=12 and L=100 models. We run our
experiments in Keras [85] and Tensorflow [86]. In the first experiment, we run
the models on the standard pixel basis to get a viable baseline. Results are in
line or better with the numbers reported by the authors. Secondly, we replace
the pixel-basis with widely-used frames that take natural image statistics into
account, namely non-orthogonal, overcomplete Gaussian derivatives [5] and
non-orthogonal framelets [81] in an alternating fashion, yielding superior per-
formance compared to the pixel-basis by replacement only. We also show that
the naively derived xpyq frame performs consistently worse than the other two
choices, as it does not take natural image properties into account.

The frames used, are shown in figure 9. The results are reported in ta-
ble 6. The fact that the pixel-basis can be replaced by steerable frames with
well-understood properties while performance improves is remarkable. Frame-
based CNNs run at approximately the same runtime as vanilla CNNs.

4.4.2 Dynamic Steerable Blocks for Boundary Detection

We evaluate our proposed dynamic steerable two-factor blocks on boundary
detection, a natural task for locally adaptive filtering. In the first part, we
illustrate properties of the proposed mechanism and in the second part we
apply it to a challenging real-world problem, where we outperform competing
approaches.

Evaluating Boundary Detection Properties on Textured Blobs

In this experiment we empirically validate the effectiveness of our approach
with a single dynamic steerable block by showing that it indeed learns adaptive
and non-trivial invariants, that are conditioned on local neighborhoods in the
image. To show this, we create an artificial dataset of random blobs, whose
boundaries have to be detected by a dynamic steerable block as pixel-wise
classification task. The dataset is infinite and created on the fly. In the first case,
where blob and background are binary, this task can be solved with a simple
gradient magnitude invariant and presents no challenge to our algorithm.

A fully convolutional network baseline of the same size achieves almost the
same performance. In the second and third example we sample textures from
the KTH TIPS dataset [87] and fill blobs as well as background with different
textures each. Here, gradient magnitude either only gives weak clues, or in
many cases is unable to find any outline given by the target. In both cases, the
fully convolutional baseline fails to converge.
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I.

II.

III.

Input Prediction PoseMagnitude Target

Figure 10: Results of boundary detection experiment to illustrate the workings of
our proposed mechanism and its ability to find solutions that go well beyond sim-
ple maximum-guided pose invariance, that overcomes the inherent ambiguity present
in natural textures. From left to right: Input x to the network; Gradient magnitude of x,
as equivalent to max pooling over all rotations of the filter at each location; Pixel-wise
predictions of the network H(x); Pose variables discovered by pose estimation net-
work F (Φ(x)); Pixel-wise targets. I) Perfectly discovers the simple maximum-guided
invariance rule to recover the target. II) More complex local relationships that can not
be solved with simple invariants are recovered. Note, the two small blobs on the right,
barely visible in input and gradient magnitude map, but still correctly segmented. III)
Most challenging scenario, blobs and backgrounds can hardly be distinguished and
the gradient magnitude does not contain much useful visible information for the task
either. Note, that F (Φ(x)) learns an alternating pattern of rotation, that overcomes
the irregular local gradients and recovers most of the targets successfully.
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Remarkably, even though the dynamic steerable block does only receive two
Gaussian derivative gradient filters as an input, it still manages to find highly
non-linear steering patterns to recover the boundaries. The results are shown
in figure 10. We show some unseen inputs alongside the manually calculated
gradient magnitude, predictions and associated pose maps (only rotation vari-
able shown) as estimated by the dynamic steerable block. Even in very hard
cases, the dynamic block manages to largely recover the labeled boundaries.
Results are evidence of the ability of our proposed method to learn adaptive
invariants conditioned on the local context in the image in ways that go way
beyond simple maximum response guided steering.

Boundary Detection on BSD500

In this experiment we apply the dynamic steerable blocks on a real task in
which adaptive invariance is desirable. Recently, a fully equivariant CNN engi-
neered to output locally rotation invariant predictions [7] performed very well
on this task. We aim to show, that learned adaptive invariance is even more
powerful, as even though final edge prediction is rotation invariant, interme-
diate processing benefits from a context dependent degree of invariance. We
evaluate our method on the contour detection task of the Berkeley Segmenta-
tion Dataset. The dataset consists of 500 images divided in a train/val/test
split. We tune hyperparameters on the validation set and report results on the
test set, following the protocol in [62]. Each image is labelled by 5-7 human
annotators, resulting in multiple ground truth maps per image. We follow [7]
and merge the different labels by majority vote into one. We minimize the
pixelwise binary cross-entropy loss between ground truth and prediction and
use class balancing because the classes are heavily imbalanced (many more
background pixels than contour pixels).

We use a ResNet model designed for segmentation [91] and reduce its size
drastically, due to the limited data-scenario we face. Eventually we use a net-
work with the following structure:
Conv2d[64]→ 2×(DynResBlock[128]→StatResBlock[128]) → Conv2D[256]
Thus, we alternate static and dynamic blocks as we found that this setup stabi-
lizes training considerably on the validation set. The dynamic blocks are based
on Gaussian derivatives and their exact setup is described in the appendix. We
report OIS and ODS metrics as in [62], based on F-scores. Due to the subjective
aspect of the contour segmentation, the task is ambiguous and the network im-
plicitly has to estimate the level of detail at which to segment the boundaries.
While in most cases the network’s prediction agrees with at least one of the hu-
man annotators (first two rows of figure 5), it sometimes segments boundaries
at a too high level of detail (last row of figure 5).
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Method ODS OIS

DynResNet (Ours) 0.732 0.751
H-Net [7] 0.726 0.742
ResNet (Ours-Static) 0.720 0.733
Kivininen [7] 0.702 0.715
HED [7] 0.697 0.709

DCNN Pre-trained [88] 0.813 0.831

Figure 11: Results of non pre-trained state-of-the-art models alongside the currently
best performing approach with pre-training on BSD500. We show results from our
dynResNet, from left to right: Input image; Prediction and 4 different ground truth
labels. Our dynamic steerable ResNet outperforms all other methods, including the
same model with static blocks, when no pre-training is performed. We also outper-
form the fully rotation invariant H-Net in accordance to our findings from the tex-
ture experiments, where we found that stable, non-maximum guided invariance is
likely superior in ambiguous cases. Note, that Kivinen and HED are non-pretrained
re-implementations of [89, 90] reported in [7]. When pre-trained, HED and DCNN
outperform non-pretrained approaches. For brevity we only report the state-of-the-art
pre-trained DCNN.
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Our results show that we outperform state-of-the-art approaches when they
are not pre-trained on Imagenet, according to re-implementations from [7],
including our static ResNet baseline and the explicitly rotation invariant Har-
monic Networks approach [7]. However, when pre-trained on Imagenet, DCNN
(ODS: 0.813, OIS: 0.831) [88] and Holistically Nested Edge Detection (ODS:
0.782, OIS: 0.804) [90] clearly outperform the non-pre-trained approaches.

In conclusion, we show that a learned piece-wise invariance is superior com-
pared to a hand-crafted maximum response invariance as applied in the Har-
monic Networks, supporting our findings from the texture experiments. How-
ever, semantic high-level knowledge other models acquire through Imagenet
pre-training still seems to include forms of knowledge our geometrical regular-
ization can not overcome, making our results especially interesting in domains
where no large datasets for pre-training are available (e.g. medical imaging).

4.5 conclusion

In summary, we have introduced a framework that opens up a range of novel
and efficient ways to incorporate geometrical priors and regularization into
deep networks, without restricting their theoretical expressiveness.

We introduced the notion of frame-based CNNs and derived dynamic steer-
able blocks from frame-based residual networks. In summary, we have shown
that CNNs based on frames specifically designed for the data at hand facilitate
optimization consistently even when data is abundant. On the other hand, our
proposed Dynamic Steerable Blocks achieve superior performance when data
is limited and are superior when filters that precisely and dynamically adapt
to local patterns in non-trivial ways are needed.
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5.1 introduction

Deep convolutional neural networks have demonstrated impressive performance
for classification and regression tasks over a wide range of generic problems
including images, audio signals, but also for game strategy, biological, medical,
chemical and physics data [1]. However, their mathematical properties remain
mysterious and we are currently not able to relate their performance to the
properties of the classification problem.

Classifying signals in high dimension requires to eliminate non-informative
variables, and hence contract and reduce space dimensionality in appropriate
directions. Convolutional Neural Networks (CNN) discover these directions
via backpropagation algorithms [92]. Several studies show numerically that
linearization increases with depth [58], but we do not know what type of infor-
mation is preserved or eliminated. The variabilities which can be eliminated
are mathematically defined as the group of symmetries of the classification
function [3]. It is the group of transformations which preserves the labels of
the classification problem. Translations usually belong to the symmetry group,
and invariants to translations are computed with spatial convolutions, followed
by a final averaging. Understanding a deep neural network classifier requires
specifying its symmetry group and invariants beyond translations, especially
of non-geometrical nature.

To achieve this goal, we study highly structured Hierarchical Attribute Con-
volution Networks (HCNNs) based on mathematical concepts introduced in
[3]. Hierarchical Attribute CNNs give explicit information on invariants by
disentangling progressively more signal attributes as the depth increases. The
deep network operators are multidimensional convolutions along attribute in-
dices. Invariants are obtained by averaging network layers along these at-
tributes. Such a deep network can thus be interpreted as a non-linear mapping
of the classification symmetry group into a multidimensional translation group
along attributes. Signals are mapped into manifolds which are progressively
more flat as depth increases, eventually allowing a simple linear classifier to
estimate the class.

49
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Figure 12: An illustration of the difference between a vanilla CNN (left) and a HCNN
layer (right). A CNN computes convolution along u and mixes feature maps via a
linear combination along the channel index v. A HCNN performs joint convolution
along (u, vj). This gives rise to an ordering of the feature maps along vj, leading to se-
mantically meaningful neighborhood relationships as contrasted to arbitrary ordering
in a vanilla CNN layer.

Section 5.2 reviews important properties of generic CNN architectures [1].
Section 5.3 describes Hierarchical Attribute CNNs, which are particular CNNs
in which linear operators are multidimensional convolutions along progres-
sively more attributes that give rise to an ordering of the channel dimension,
see figure 12 for an illustration. Section 5.4 describes an efficient implemen-
tation, which reduces inner layers dimensions by computing invariants with
an averaging along attributes. Numerical experiments on the CIFAR database
show that this hierarchical network obtains comparable performances to state
of the art CNN architectures, with a reduced number of parameters. Hierar-
chical Attribute CNNs are the first type of CNN that generically orders the
channel domain and explicitly disentangles attributes of the data. Section 5.5
studies the organization obtained by this deep network. Our proposed archi-
tecture provides a mathematical and experimental framework to understand
deep neural network classification properties. The numerical results are repro-
ducible and code is available online 1.

5.2 deep convolutional networks and group

invariants

A classification problem associates a class y = f (x) to any vector x ∈ RN of N
parameters. Deep convolutional networks transforms x into multiple layers xj
of coefficients at depths j, whose dimensions are progressively reduced after a
certain depth [93]. We briefly review their properties.

1 https://github.com/jhjacobsen/HierarchicalCNN
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We shall numerically concentrate on color images x(u, v) where u = (u1, u2)
are the spatial coordinates and 1 ≤ v ≤ 3 is the index of a color channel.
The input x(u, v) may, however, correspond to any other type of signals. For
sounds, u = u1 is time and v may be the index of audio channels recorded at
different spatial locations.

Each layer is an array of signals xj(u, v) where u is the native index of x,
and v is a 1-dimensional channel parameter. A deep convolutional network
iteratively computes xj+1 = ρ Wj+1 xj with x0 = x. Each Wj+1 computes sums
over v of convolutions along u, with filters of small support. It usually also
incorporates a batch normalization [82]. The resolution of xj(u, v) along u is
progressively reduced by a subsampling as j increases until an averaging in the
final output layer. The operator ρ(z) is a pointwise non-linearity In this work,
we shall use exponential linear units ELU [94]. It transforms each coefficient
z(t) plus a bias c = z(t) + b into c if c < 0 and ec − 1 if c < 0.

As the depth increases, the discriminative variations of x along u are progres-
sively transferred to the channel index v. At the last layer xJ , v stands for the
class index and u has disappeared. An estimation ỹ of the signal class y = f (x)
is computed by applying a soft-max to xJ(v). It is difficult to understand the
meaning of this channel index v whose size and properties changes with depth.
It mixes multiple unknown signal attributes with an arbitrary ordering. Hi-
erarchical Attribute CNNs address this issue by imposing a high-dimensional
hierarchical structure on v, with an ordering specified by the translation group.

In standard CNN, each xj = Φjx is computed with a cascade of convolutions
and non-linearities

Φj = ρ Wj ... ρ W1,

whose supports along u increase with the depth j. These operators replace x
by the variables xj to estimate the class y = f (x). To avoid errors, this change
of variable must be discriminative, despite the dimensionality reduction, in the
sense that

∀(x, x′) ∈ R2N Φj(x) = Φj(x′) ⇒ f (x) = f (x′) . (30)

This is necessary and sufficient to guarantee that there exists a classification
function f j such that f = f j Φj and hence

∀x ∈ RN , fj(xj) = f (x).

The function f (x) can be characterized by its groups of symmetries. A group of
symmetries of f is a group of operators g which transforms any x into x′ = g.x
which belong to the same class: f (x) = f (g.x). The discriminative property
(30) implies that if Φj(x) = Φj(g.x) then f (x) = f (g.x). The discrimination
property (30) is thus equivalent to impose that groups of symmetries of Φj are
groups of symmetries of f . Learning appropriate change of variables can thus
be interpreted as learning progressively more symmetries of f [3].



52 hierarchical attribute cnns

The network must be sufficiently flexible to compute change of variables Φj
whose symmetries approximate the symmetries of f .

Deep convolutional networks are cascading convolutions along the spatial
variable u so that Φj is covariant to spatial translations. If x is translated along
u then xj = Φjx is also translated along u. This covariance implies that for
all v, ∑u xj(u, v) is invariant to translations of x. Next section explains how to
extend this property to higher dimensional attributes with multidimensional
convolutions.

5.3 hierachical attribute convolution networks

Hierarchical attribute convolution networks are highly structured convolutional
networks. The one-dimensional index v is replaced by a multidimensional vec-
tor of attributes v = (v1, ..., vj) and all linear operators Wj are convolutions
over (u, v). We explain their construction and a specific architecture adapted
to an efficient learning procedure.

Each layer xj(u, v) is indexed by a vector of multidimensional parameters
v = (v1, ..., vj) of dimension j. Each vk is an “attribute” of x which is learned
to discriminate classes y = f (x). The operators Wj are defined as convolutions
along a group which is a parallel transport in the index space (u, v). With no
loss of generality, in this implementation, the transport is a multidimensional
translation along (u, v). The operators Wj are therefore multidimensional con-
volutions, which are covariant to translations along (u, v). As previously ex-
plained, this covariance to translations implies that the sum ∑vk

xj(u, v0, ..., vj)
is invariant to translations of previous layers along vk. A convolution of z(u, v)
by a filter w(u, v) of support S is written

z � w(u, v) = ∑
(u′ ,v′)∈S

z(u − u′, v − v′)w(u′, v′) . (31)

Since z(u, v) is defined in a finite domain of (u, v), boundary issues can be
solved by extending z with zeros or as a periodic signal. We use zero-padding
extensions for the next sections, except for the last section, where we use peri-
odic convolutions. Both cases give similar accurcies.

The network takes as input a color image x(u, v0), or any type of multichan-
nel signal indexed by v0. The first layer computes a sum of convolutions of
x(u, v0) along u, with filters w1,v0,v1(u)

x1(u, v1) = ρ
(

∑
v0

x(·, v0) � w1,v0,v1(u)
)

. (32)
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Figure 13: Implementation of a Hierarchical Attribute convolutional network as a cas-
cade of 5D convolutions Wj. The figure gives the size of the intermediate layers stored
in 5D arrays. Dashed dotted lines indicate the parametrization of a layer xj and its
dimension. We only represent dimensions when the output has a different size from
the input.

For any j ≥ 2, Wj computes convolutions of xj−1(u, v) for v = (v1, ..., vj−1) with
a family of filters {wvj}vj indexed by the new attribute vj:

xj(u, v, vj) = ρ
(

xj−1 � wvj(u, v)
)

. (33)

As explained in [3], Wj has two roles. First, these convolutions indexed by vj
prepares the discriminability (30) of the next layer xj+1, despite local or global
summations along (u, v1, ..., vj−1) implemented at this next layer. It thus prop-
agates discriminative variations of xj−1 from (u, v1, ..., vj−1) into vj. Second,
each convolution with wvj computes local or global invariants by summations
along (u, v1, ..., vj−2), in order to reduce dimensionality. This dimensionality
reduction is implemented by a subsampling of (u, v) at the output (33), which
we omitted here for simplicity. Since vk is the index of multidimensional filters,
a translation along vk is a shift along an ordered set of multidimensional filters.
For any k < j − 1, ∑vk

xj−1(u, v1, ..., vk, ..., vj−1) is invariant to any such shift.
The final operator WJ computes invariants over u and all attributes vk but

the last one:
xJ(vJ−1) = ∑

u,v1,...,vJ−1

xJ−1(u, v1, ..., vJ−1) . (34)

The last attribute vJ−1 corresponds to the class index, and its size is the number
of classes. The class y = f (x) is estimated by applying a soft-max operator on
xJ(vJ−1).

Proposition 5.3.1. The last layer xJ is invariant to translations of xj(u, v1, ..., vj)
along (u, v1, ..., vj), for any j < J − 1.

Proof: Observe that xJ = WJ ρ WJ−1 ...ρ Wj xj. Each Wk for j < k < J is
a convolution along (u, v0, ..., vj, ..., vk) and hence covariant to translations of
(u, v0, ..., vj). Since ρ is a pointwise operator, it is also covariant to translations.
Translating xj along (u, v1, ..., vj) thus translates xJ−1. Since (36) computes a
sum over these indices, it is invariant to these translations. �
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This proposition proves that the soft-max of xJ approximates the classifica-
tion function f j(xj) = f (x) by an operator which is invariant to translations
along the high-dimensional index (u, v) = (u, v1, ..., vj). The change of vari-
able xj thus aims at mapping the symmetry group of f into a high-dimensional
translation group, which is a flat symmetry group with no curvature. It means
that classes of xj where fj(xj) is constant define surfaces which are progres-
sively more flat as j increases. However, this requires an important word of
caution. A translation of xj(u, v1, ..., vj) along u corresponds to a translation of
x(u, v0) along u. On the contrary, a translation along the attributes (v1, ..., vj)
usually does not correspond to transformations on x. Translations of xj along
(v1, ..., vj) is a group of symmetries of fj but do not define transformations of x
and hence do not correspond to a symmetry group of f . Next sections analyze
the properties of translations along attributes computed numerically.

Let us give examples over images or audio signals x(u) having a single
channel. The first layer (32) computes convolutions along u: x1(u, v1) =
ρ(x � wv1(u)). For audio signals, u is time. This first layer usually computes
a wavelet spectrogram, with wavelet filters wv1 indexed by a log-frequency in-
dex v1. A frequency transposition corresponds to a log-frequency translation
x1(u, v1 − τ) along v1. If x is a sinusoidal wave then this translation corre-
sponds to a shift of its frequency and hence to a transformation of x. How-
ever, for more general signals x, there exists no x′ such that ρ(x′ � wv1(u)) =
x1(u, v1 − τ). It is indeed well known that a frequency transposition does not
define an exact signal transformation. Other audio attributes such as timber
are not either well defined transformations on x although important attributes
to classify sounds.

For images, u = (u1, u2) is a spatial index. If wv1 = w(r−1
v1

u) is a rotation of
a filter w(u) by an angle v1 then

x1(u, v1 − τ) = ρ(xτ � wv1(rτu)) with xτ(u) = x(r−1
τ u).

However, there exists no x′ such that ρ(x � wv1(u)) = x1(u, v1 − τ) because
of the missing spatial rotation rτu. These examples show that translation
xj(u, v1, .., vj) along the attributes (v1, ..., vj) usually do not correspond to a
transformation of x.



5.4 fast low-dimensional architecture 55

5.4 fast low-dimensional architecture

5.4.1 Dimensionality Reduction

Hierarchical Attribute CNN layers are indexed by two-dimensional spatial
indices u = (u1, u2) and progressively higher dimensional attributes v =
(v1, ..., vj). To avoid computing high-dimensional vectors and convolutions,
we introduce an image classification architecture which eliminates the depen-
dency relatively to all attributes but the last three (vj−2, vj−1, vj), for j > 2.
Since u = (u1, u2), all layers are stored in five dimensional arrays.

The network takes as an input a color image x(u, v0), with three color chan-
nels 1 ≤ v0 ≤ 3 and u = (u1, u2). Applying (32) and (33) up to j = 3 computes
a five-dimensional layer x3(u, v1, v2, v3). For j > 3, xj is computed as a linear
combination of marginal sums of xj−1 along vj−3. Thus, it does not depend
anymore on vj−3 and can be stored in a five-dimensional array indexed by
(u, vj−2, vj−1, vj). This is done by convolving xj−1 with a a filter wvj which
does not depend upon vj−3:

wvj(u, vj−3, vj−2, vj−1) = wvj(u, vj−2, vj−1) . (35)

We indeed verify that this convolution is a linear combination of sums over vj−3,
so xj depends only upon (u, vj−2, vj−1, vj). The convolution is subsampled by
2sj with sj ∈ {0, 1} along u, and a factor 2 along vj−1 and vj

xj(u, vj−2, vj−1, vj) = xj−1 � wvj(2
sj u, 2vj−2, 2vj−1) ,

At depth j, the array of attributes v = (vj−2, vj−1, vj) is of size K/4 × K/2 ×
K. The parameters K and spatial subsmapling factors sj are adjusted with a
trade-off between computations, memory and classification accuracy. The final
layer is computed with a sum (36) over all parameters but the last one, which
corresponds to the class index:

xJ(vJ−1) = ∑
u,vJ−3,vJ−2

xJ−1(u, vJ−3, vJ−2, vJ−1) . (36)

This architecture is illustrated in Figure 13.

5.4.2 Filter Factorization for Training

Our newly introduced Hierarchical Attribute Convolution Networks (HCNN)
have been tested on CIFAR10 and CIFAR100 image databases. CIFAR10 has 10
classes, while CIFAR100 has 100 classes, which makes it more challenging. The
train and test sets have 50k and 10k colored images of 32 × 32 pixels. Images
are preprocessed via a standardization along the RGB channels. No whitening
is applied as we did not observe any improvement.
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Our HCNN is trained in the same way as a classical CNN. We train it by
minimizing a neg-log entropy loss, via SGD with momentum 0.9 for 240 epochs.
An initial learning rate of 0.25 is chosen while being reduced by a factor 10
every 40 epochs. Each minibatch is of size 50. The learning is regularized by a
weight decay of 2 10−4 [95]. We incorporate a data augmentation with random
translations of 6 pixels and flips [96].

Just as in any other CNNs, the gradient descent is badly conditioned because
of the large number of parameters [97]. We precondition and regularize the
4 dimensional filters wvj , by normalizing a factorization of these filters. We
factorize wvj(u, vj−3, vj−2, vj−1) into a sum of Q separable filters:

wvj(u, vj−3, vj−2, vj−1) =
Q

∑
q=1

hj,q(u) gvj ,q(vj−2, vj−1) , (37)

and introduce an intermediate normalization before the sum. Let us write
hj,q(u, v) = δ(u) hj,q(u) and gvj ,q(u, v) = δ(u) gvj ,q(v). The batch normalization
is applied to xj−1 � hj,q and substracts a mean array mj,q while normalizing the
standard deviations of all coefficients σj,q:

x̃j,q(u, v) =
xj−1 � hj,q − mj,q

σj,q
.

This normalized output is retransformed according to (37) by a sum over q and
a subsampling:

xj(u, v) = ρ
( Q

∑
q=1

x̃j,q � gvj ,q(2
sj u, 2v)

)
.

The convolution operator Wj is thus subdivided into a first operator Wh
j which

computes standardized convolutions along u cascaded with Wg
j which sums

Q convolutions along v. Since the tensor rank of Wj cannot be larger than
9, using Q ≥ 9 does not restrict the rank of the operators Wj. However, as
reported in [98], increasing the value of Q introduces an overparametrization
which regularizes the optimization. Increasing Q from 9 to 16 and then from
16 to 32 brings a relative increase of the classification accuracy of 4.2% and then
of 1.1%.

We also report a modification of our network (denoted by (+) ) which incor-
porates an intermediate non-linearity:

xj(u, v) = ρ(Wg
j ρ(Wh

j xj−1)) .

Observe that in this case, xj is still covariant with the actions of the trans-
lations along (u, v), yet the factorization of wvj into (hj,q, gvj ,q) does not hold
anymore.
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For classification of CIFAR images, the total depth is J = 12 and a downsam-
pling by 2 along u is applied at depth j = 5, 9. Figure 13 describes our model
architecture as a cascade of Wj and ρ, and gives the size of each layer. Each
attribute can take at most K = 16 values.

The number of free parameters of the original architecture is the number
of parameters of the convolution kernels wvj for 1 ≤ vj ≤ K and 2 < j < J,
although they are factorized into separable filters hj,q(u) and gvj ,q(vj−2, vj−1)
which involve more parameters. The filters wvj have less parameters for j =
2, 3 because they are lower-dimensional convolution kernels. In CIFAR-10, for
3 < j < J, each wvj has a spatial support of size 32 and a support of 7× 11 along
(vj−2, vj−1). If we add the 10 filters which output the last layer, the resulting
total number of network parameters is approximately 0.098M. In CIFAR-100,
the filters rather have a support of 11 × 11 along (vj−2, vj−1) but the last layer
has a size 100 which considerable increases the number of parameters which
is approximatively 0.25M.

The second implementation (+) introduces a non-linearity ρ between each
separable filter, so the overall computations can not be reduced to equivalent
filters wvj . There are Q = 32 spatial filters hj,q(u) of support 3 × 3 and Q K
filters gvj ,q(vj−2, vj−1) of support 7 × 11. The total number of coefficients re-
quired to parametrize hj,q, gvj ,q is approximatively 0.34M. In CIFAR-100, the
number of parameters becomes 0.89M. The total number of parameters of
the implementation (+) is thus much bigger than the original implementation
which does not add intermediate non-linearities. Next section compares these
number of parameters with architectures that have similar numerical perfor-
mances.

5.5 an explicit structuration

This section shows that Hierarchical Attribute CNNs have comparable clas-
sification accuracies on the CIFAR image dataset than state-of-the-art archi-
tectures, with much fewer parameters. We also investigate the properties of
translations along the attributes vj learned on CIFAR.

5.5.1 Classification Performance

We evaluate our Hierarchical CNN on CIFAR-10 (table 7) and CIFAR-100 (ta-
ble 8) in the setting explained above. Our network achieves an error of 8.6%
on CIFAR-10, which is comparable to recent state-of-the-art architectures. On
CIFAR-100 we achieve an error rate of 38%, which is about 4% worse than the
closely related all-convolutional network baseline, but our architecture has an
order of magnitude fewer parameters.
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Model # Parameters % Accuracy
Hiearchical CNN 0.098M 91.43
Hiearchical CNN (+) 0.34M 92.50
All-CNN 1.3M 92.75
ResNet 20 0.27M 91.25
Network in Network 0.98M 91.20
WRN-student 0.17M 91.23
FitNet 2.5M 91.61

Table 7: Classification accuracy on CIFAR10 dataset.

Classification algorithms using a priori defined representations or repre-
sentations computed with unsupervised algorithms have an accuracy which
barely goes above 80% on CIFAR-10 [47]. On the contrary, supervised CNN
have an accuracy above 90% as shown by Table 7. This is also the case for our
structured hierarchical network which has an accuracy above 91%. Improving
these results may be done with larger K and Q which could be done with
faster GPU implementation of multidimensional convolutions, although it is a
technical challenge [99]. Our proposed architecture is based on “plain vanilla”
CNN architectures to which we compare our results in Table 7. Applying resid-
ual connections [57], densely connected layers [61], or similar improvements,
might overcome the 4% accuracy gap with the best existing architectures. In
the following, we study the properties resulting from the hierarchical structura-
tion of our network, compared with classical CNN.

5.5.2 Reducing the number of parameters

The structuration of a Deep neural network aims at reducing the number of
parameters and making them easier to interpret in relation to signal models.
Reducing the number of parameters means characterizing better the structures
which govern the classification.

This section compares Hierarchical Attribute CNNs to other structured ar-
chitectures and algorithms which reduce the number of parameters of a CNN
during, and after training. We show that Hierarchical Attribute CNNs involves
less parameters during and after training than other architectures in the litera-
ture.

We review various strategies to reduce the number of parameters of a CNN
and compare them with our Hierarchical Attribute CNN. Several studies show
that one can factorize CNN filters [100], [101] a posteriori. A reduction of pa-
rameters is obtained by computing low-rank factorized approximations of the
filters calculated by a trained CNN. It leads to more efficient computations
with operators defined by fewer parameters.
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Model # Parameters % Accuracy
Hiearchical CNN 0.25M 62.01
Hiearchical CNN (+) 0.89M 63.19
All-CNN 1.3M 66.29
Network in Network 0.98M 64.32
FitNet 2.5M 64.96

Table 8: Classification accuracy on CIFAR100 dataset.

Another strategy to reduce the number of network weights is to use teacher
and student networks [102], [103], which optimize a CNN defined by fewer
parameters. The student network adapts a reduced number of parameters for
data classification via the teacher network.

A parameter redundancy has also been observed in the final fully connected
layers used by number of neural network architectures, which contain most
of the CNN parameters [104], [105]. This last layer is replaced by a circulant
matrix during the CNN training, with no loss in accuracy, which indicates that
last layer can indeed be structured. Other approaches [98] represent the filters
with few parameters in different bases, instead of imposing tha they have a
small spatial support. These filters are represented as linear combinations of a
given family of filters, for example, computed with derivatives Gaussians. This
approach is structuring jointly the channel and spatial dimensions. Finally, Hy-
perNetworks [106] permits to drastically reducing the number of parameters
used during the training step, to 0.097M and obtaining 91.98% accuracy. How-
ever, we do not report them as 0.97M corresponds to a non-linear number of
parameters for the network.

Table 7 and 8 give the performance of different CNN architectures with their
number of parameters, for the CIFAR10 and CIFAR100 datasets. For hierarchi-
cal networks, the convolution filters are invariant to translations along u and
v which reduces the number of parameters by an important factor compared
to other architectures. All-CNN [107] is an architecture based only on sums
of spatial convolutions and ReLU non-linearities, which has a total of 1.3M
parameters, and a similar accuracy to ours. Its architecture is similar to our hi-
erarchical architecture, but it has much more parameters because filters are not
translation invariant along v. Interestingly, a ResNet [57] has more parameters
and performs similarly whereas it is a more complex architecture, due to the
shortcut connexions. WRN-student is a student resnet [102] with 0.2M parame-
ters trained via a teacher using 0.6M parameters and which gets an accuracy of
93.42% on CIFAR10. FitNet networks [103] also use compression methods but
need at least 2.5M parameters, which is much larger than our network. Our ar-
chitecture brings an important parameter reduction on CIFAR10 for accuracies
around 90% There is also a drastic reduction of parameters on CIFAR100.
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Bird 2

Bird 1

Figure 14: The first images of the first and third rows are the two input image x. Their
invariant attribute array x̄j(vj−1, vj) is shown below for j = J − 1, with high amplitude
coefficients appearing as white points. Vertical and horizontal axes correspond respec-
tively to vj−1 and vj, so translations of vj−1 by τ are vertical translations. An image xτ

in a column τ + 1 has an invariant attribute x̄τ
j which is shown below. It is the closest

to x̄j(vj−1 − τ, vj) in the databasis.

5.5.3 Interpreting the translation

The structure of Hierarchical Attribute CNNs opens up the possibility of in-
terpreting inner network coefficients, which is usually not possible for CNNs.
A major mathematical challenge is to understand the type of invariants com-
puted by deeper layers of a CNN. Hierarchical networks computes invariants
to translations relatively to learned attributes vj, which are indices of the fil-
ters wvj . One can try to relate these attributes translations to modifications of
image properties. As explained in Section 5.3, a translation of xj along vj usu-
ally does not correspond to a well-defined transformation of the input signal
x but it produces a translation of the next layers. Translating xj along vj by τ

translates xj+1(u, vj−1, vj, vj+1) along vj by τ.
To analyze the effect of this translation, we eliminate variability along vj−2

and define an invariant attribute array by choosing the central spatial position
u0:

x̄j(vj−1, vj) = ∑
vj−2

xj(u0, vj−2, vj−1, vj). (38)

We relate this translation to an image in the training dataset by finding the
image xτ in the dataset which minimizes ‖x̄j(vj−1 − τ, vj) − x̄τ

j (vj−1, vj)‖2, if
this minimum Euclidean distance is sufficiently small. To compute accurately
a translation by τ we eliminate the high frequency variations of xj and xτ

j along
vj−1 with an averaging filter, before computing their translation.
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Figure 15: The first columns give the input image x, from which we compute the
invariant array x̄j at a depth 3 ≤ j ≤ 11 which increases with the row. The next
images in the same row are the images xτ whose invariant arrays x̄τ

j are the closest to
x̄j translated by 1 ≤ τ ≤ 7, among all other images in the databasis. The value of τ is
the column index minus 1.

The network used in this experiment is implemented with circular convolu-
tions to avoid border effects, which have nearly the same classification perfor-
mance. Figure 14 shows the sequence of xτ obtained with a translation by τ of
x̄j at depth j = J − 1, for two images x in the “bird” class. Since we are close to
the ouptut, we expect that translated images belong to the same class. This is
not the case for the second image of the first ”Bird 1”. It is a ”car” instead of a
”bird”. This corresponds to a classification error but observe that x̄τ

J−1 is quite
different from x̄J−1 translated. We otherwise observe that in these final layers,
translations of x̄J−1 defines images in the same class.

Figure 15 gives sequences of translated attribute images xτ, computed by
translating x̄j by τ at different depth j and for different input x. As expected, at
small depth j, translating an attribute vj−1 does not define images in the same
class. These attribute rather correspond to low-level image properties which
depend upon fine scale image properties. However, these low-level properties
can not be identified just by looking at these images. Indeed, the closer images
xτ identified in the databasis are obtained with a distance over coefficients
which are invariant relatively to all other attributes.
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These images are thus very different and involve variabilities relative to all
other attributes. To identify the nature of an attribute vj, a possible approach is
to correlate the images xτ over a large set of images, while modifying known
properties of x.

At deep layers j, translations of x̄j define images xr which have a progres-
sively higher probability to belong to the same class as x. These attribute trans-
formations correspond to large scale image pattern related to modifications of
the filters wvj−1 . In this case, the attribute indices could be interpreted as ad-
dresses in organized arrays. The translation group would then correspond to
translations of addresses. Understanding better the properties of attributes at
different depth is an issue that will be explored in the future.

5.6 conclusion

Hierarchical Attribute CNNs give a mathematical framework to study invari-
ants computed by deep neural networks. Layers are parameterized in progres-
sively higher dimensional spaces of hierarchical attributes, which are learned
from training data. All network operators are multidimensional convolutions
along attribute indices, so that invariants can be computed by summations
along these attributes.

This paper gives image classification results with an efficient implementation
computed with a cascade of 5D convolutions and intermediate non-linearities.
Invariant are progressively calculated as depth increases. Good classification
accuracies are obtained with a reduced number of parameters compared to
other CNN.

Translations along attributes at shallow depth correspond to low-level image
properties at fine scales like color, whereas attributes at deep layers correspond
to modifications of large scale pattern structures like faces. Understanding bet-
ter the multiscale properties of these attributes and their relations to the sym-
metry group of f is an important issue, which can lead to a better mathematical
understanding of CNN learning algorithms.

As we did not consistently observe localized coefficients along the channeld
domain for all layers at once, the results have to be interpreted with care. We
leave further analysis in this direction for future work.
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6.1 introduction

A CNN may be very effective in classifying images of all sorts [57, 95], but the
cascade of linear and nonlinear operators reveals little about the contribution
of the internal representation to the classification. The learning process is char-
acterized by a steady reduction of large amounts of uninformative variability
in the images while simultaneously revealing the essence of the visual class. It
is widely believed that this process is based on progressively discarding unin-
formative variability about the input with respect to the problem at hand [12–
15]. However, the extent to which information is discarded is lost somewhere
in the intermediate non-linear processing steps. In this paper, we aim to pro-
vide insight into the variability reduction process by proposing an invertible
convolutional network, that does not discard any information about the input.

The difficulty to recover images from their hidden representations is found in
many commonly used network architectures [14, 15]. This poses the question
if a substantial loss of information is necessary for successful classification. We
show information does not have to be discarded. By using homeomorphic
layers, the invariance can be built only at the very last layer via a projection.

In [12], minimal sufficient statistics are proposed as a candidate to explain
the reduction of variability. [108] introduces the information bottleneck princi-
ple which states that an optimal representation must reduce the mutual infor-
mation between an input and its representation to reduce as much uninforma-
tive variability as possible. At the same time, the network should maximize
the mutual information between the desired output and its representation to
effectively preserve each class from collapsing onto other classes. The effect of
the information bottleneck was demonstrated on small datasets in [12], [13].

However, in this work, we show it is not a necessary condition and we build
a cascade of homeomorphic layers, which preserves the mutual information be-
tween input and hidden representation and shows that the loss of information
can only occur at the final layer. This way we demonstrate that a loss of infor-
mation can be avoided while maintaining discriminability, even for large-scale
problems like ImageNet. One way to reduce variability is progressive contrac-
tion with respect to a meaningful �2 metric in the intermediate representations.

63
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Several works [58, 109] observed a phenomenon of progressive separation
and contraction in non-invertible networks on limited datasets. Those progres-
sive improvements can be interpreted as the creation of progressively stronger
invariants for classification. Ideally, the contraction should not be too brutal
to avoid removing important information from the intermediate signal. This
shows that a good trade-off between discriminability and invariance has to be
progressively built. In this paper, we extend some findings of [58], [109] to
ImageNet [110] and, most importantly, show that a loss of information is not
necessary for observing a progressive contraction.

The duality between invariance and separation of the classes is discussed
in [3]. Here, intra-class variabilities are modeled as Lie groups that are pro-
cessed by performing a parallel transport along those symmetries. Filters are
adapted through learning to the specific bias of the dataset and avoid to con-
tract along discriminative directions. However, using groups beyond the Eu-
clidean case for image classification is hard. Mainly because groups associated
with abstract variabilities are difficult to estimate due to their high-dimensional
nature, as well as the appropriate degree of invariance required. An illus-
tration of this framework on the Euclidean group is given by the scattering
transform [111], which builds invariance to small translations while being re-
coverable to a certain extent. In this work, we introduce a network that can-
not discard any information except at the final classification stage, while we
demonstrate numerically progressive contraction and separation of the signal
classes.

We introduce the i-RevNet, an invertible deep network.1 i-RevNets retain all
information about the input signal in any of their intermediate representations
up until the last layer. Our architecture builds upon the recently introduced
RevNet [17], where we replace the non-invertible components of the original
RevNets by invertible ones. i-RevNets achieve the same performance on Ima-
genet compared to similar non-invertible RevNet and ResNet architectures [17,
57].
To shed light on the mechanism underlying the generalization-ability of the
learned representation, we show that i-RevNets progressively separate and
contract signals with depth. Our results are evidence for an effective reduction
of variability through a contraction with a recoverable input obtained from a
series of one-to-one mappings.

1 Code is available at: https://github.com/jhjacobsen/pytorch-i-revnet
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6.2 related work

Several recent works show that significant information about the input im-
ages is lost with depth in successful Imagenet classification CNNs [14, 15]. To
understand the loss of information, the references propose to invert the repre-
sentations by means of learned or hand-engineered priors. The approximate
inversions indicate increased geometric and photometric invariance with depth.
Multiple other works report progressive properties of deep networks that may
be linked to discarded information in the representations as well, such as lin-
earization [112], linear separability [58], contraction [109] and low-dimensional
embeddings [113]. However, it is not clear from above observations if the loss
of information is a necessity for the observed progressive phenomena. In this
work, we show that progressive separation and contraction can be obtained
while at the same time allowing an exact reconstruction of the signal.

Multiple frameworks have been introduced that permit to learn invertible
representations under certain conditions. Parseval networks [114] have been
introduced to increase the robustness of learned representations with respect to
adversarial attacks. In this framework, the spectrum of convolutional operators
is constrained to norm 1 during learning. The linear operator is thus injective.

As a consequence, the input of Parseval networks can be recovered if but
only if the built-in non-linearities are invertible as well, which is typically not
the case. [16] derive conditions under which pooling representations are, but
our method directly overcomes this issue. The Scattering transform [111] is an
example of predefined deep representation, approximately invariant to trans-
lations, that can be reconstructed when the degree of invariance specified is
small. Yet, it requires a gradient descent optimization and no guarantee of con-
vergences are known. In summary, the references make clear that invertibility
requires special care in designing the architecture or special care in design-
ing the optimization procedure. In this paper, we introduce a network, that
overcomes these issues and has an exact inverse by construction.

Our main inspiration for this work is the recent reversible residual network
(RevNet), introduced in [17]. RevNets are in turn closely related to NICE and
Real-NVP architectures [18, 19], which make use of constrained Jacobian deter-
minants for generative modeling. All these architectures are similar to the lift-
ing scheme [115] and Feistel cipher diagrams [116], as we will show. RevNets
illustrate how to build invertible ResNet-type blocks that avoid storing inter-
mediate activations necessary for the backward pass. However, RevNets still
employ multiple non-invertible operators like max-pooling and downsampling
operators as part of the network. As such, RevNets are not invertible by con-
struction. In this paper, we show how to build an invertible type of RevNet
architecture that performs competitively with RevNets on Imagenet, which we
call i-RevNet for invertible RevNet.
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6.3 the i-revnet

This section introduces the general framework of the i-RevNet architecture and
explains how to explicitly build an inverse or a left-inverse to an i-RevNet. Its
practical implementation is discussed, and we demonstrate competitive numer-
ical results.

6.3.1 An invertible architecture
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Figure 16: The main component of the i-RevNet and its inverse. RevNet blocks are
interleaved with convolutional bottlenecks Fj and reshuffling operations Sj to ensure
invertibility of the architecture and computational efficiency. The input is processed
through a splitting operator S̃ , and output is merged through M̃. Observe that the
inverse network is obtained with minimal adaptations.

We describe i-RevNets in their general setting. Their foundations are largely
grounded in the recent RevNet architecture [17]. In an i-RevNet, an initial
input is split into two sublayers (x0, x̃0) of equal size, thanks to a splitting op-
erator S̃x � (x0, x̃0), in this paper we choose to split the channel dimension as
is done in RevNets. The operator S̃ is linear, injective, reduces the spatial res-
olution of the coefficients and can potentially increase the layer size, as wider
layers usually improve the classification performance [117]. We can thus build
a pseudo inverse S̃+ that will be used for the inversion. Recall that if S̃ is
invertible, then S̃+ = S̃−1.

The number of coefficients of the next block is maintained, and at each depth
j, the representation Φjx is again decoupled into two variables Φjx � (xj, x̃j)
that play interlaced roles.

The strategy implemented by an i-RevNet consists in an alternation between
additions, and non-linear operators Fj, while progressively down-sampling the
signal thanks to the operators Sj. Here, Fj consists of convolutions and non-
linearity on x̃j. The pair of the final layer is concatenated through a merging
operator M̃. We will omit M̃, M̃−1, S̃+ and S̃ for the sake of simplicity, when
not necessary.
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Ψ

Figure 17: Illustration of the invertible down-sampling

Figure 16 describes the blocks of an i-RevNet. The design is similar to the
Feistel cipher diagrams [116] or a lifting scheme [115], which are invertible
and efficient implementations of complex transforms like second generation
wavelets.

In this way, we avoid the non-invertible modules of a RevNet (e.g. max-
pooling or strides) which are necessary to train them in a reasonable time
and are designed to build invariance w.r.t. translation variability. Our method
shows we can replace them by linear and invertible modules Sj, that can reduce
the spatial resolution (we refer to it as a spatial down-sampling for the sake
of simplicity) while maintaining the layer’s size by increasing the number of
channels.

We keep the computational cost manageable by tightly coupling downsam-
pling and increase in width of the network. Reducing the spatial resolution can
be undesirable, so Sj can potentially be the identity. We refer to such networks
as i-RevNets. This leads to the following equations:{

xj+1 = Sj+1x̃j

x̃j+1 = xj +Fj+1x̃j
⇐⇒

{
x̃j = S−1

j+1xj+1

xj = x̃j+1 −Fj+1x̃j
(39)

Our downsampling layer can be written for u the spatial variable and λ the
channel index:

Sjx(u, λ) = x(Ψ(u, λ))

where Ψ is some invertible mapping. In principle, any invertible downsam-
pling operation like e.g. dilated convolutions [118] can be considered here. We
use the inverse of the operation described in [119] as illustrated in Figure 17,
since it preserves roughly the spatial ordering, and thus permits to avoid mix-
ing different neighborhoods via the next convolution. S̃ is similar, but also
linearly increases the channel dimensionality, for example by concatenating 0.

The final layer Φx � ΦJx = (xJ , x̃J) is then averaged along the spatial dimen-
sion, followed by a ReLU non-linearity and finally a linear projection on the
class probes, which are fed to a supervised training algorithm. From a given
i-RevNet, it is possible to define a left-inverse Φ+, i.e. Φ+Φx = x or even an
inverse Φ−1, i.e. Φ−1Φx = Φ−1Φx = x if S̃ is invertible. In these cases, the
convolutional sections are as well some i-RevNets.
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Architecture Injective Bijective Top-1 error Parameters

ResNet - - 24.7 26M
RevNet - - 25.2 28M

i-RevNet (a) yes - 24.7 181M
i-RevNet (b) yes yes 26.7 29M

Table 9: Comparison of different architectures trained on ILSVRC-2012, in terms of
classification accuracy and number of parameters

An i-RevNet is the dual of its inverse, in the sense that it requires to replace
(Sj,Fj) by (S−1

j ,−Fj) at each depth j, and to apply S̃+ on the output. In
consequence, its implementation is simple and specified by Equation (39). In
Subsection 6.4.2, we discuss that the inverse of Φ does not suffer from signif-
icant round-off errors, while however being very sensitive to small variations
of an input on a large subspace, as shown in Subsection 6.4.1.

6.3.2 Architecture, training and performances

In this subsection, we describe two models that we trained: an injective i-
RevNet (a) and a bijective i-RevNet (b), with fewer parameters. The hyper-
parameters were selected to be either close to the ResNet and RevNet baselines
in terms of the number of layers (a) or parameters (b) while keeping perfor-
mance competitive. For the same reasons as in [17], our scheme also allows
avoiding storing any intermediate activations at training time, making mem-
ory consumption for very deep i-RevNets not an issue in practice. We com-
pare our implementation with a RevNet with 56 layers corresponding to 28M
parameters, as provided in the open source release of [17], and with a standard
ResNet of 50 layers, with 26M parameters [57].

Each block Fj is a bottleneck block, which consists of a succession of 3 con-
volutional operators, each preceded by Batchnormalization [82] and ReLU non-
linearity. The second layer has four times fewer channels than the other two,
while their corresponding kernel sizes are respectively 1 × 1, 3 × 3, 1 × 1.

The final representation is spatially averaged and projected onto the 1000
classes after a ReLU non-linearity. We now discuss how we progressively de-
crease the spatial resolution, while increasing the number of channels per layer
by use of the operators Sj.

We first describe the model (a), that consists of 56 layers which have been
optimized to match the performances of a RevNet or a ResNet with approxi-
matively the same number of layers. In particular, we explain how we progres-
sively decrease the spatial resolution, while increasing the number of channels
per block by use of the operators Sj.
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Figure 18: Training loss of the i-RevNet (b), compared to the ResNet, on ImageNet.

The splitting operator S̃ consists in a linear and injective embedding that
downsamples by a factor 42 the spatial resolution by increasing the number
of output channels from 48 to 96 by simply adding 0. The latter permits to
increase the initial layer size, and consequently, the size of the next layers
as performed in [17]; it is thus not a bijective yet an injective i-RevNet. At
depth j, Sj allows us to reduce the number of computations while maintain-
ing good classification performance. It will correspond to a downsampling
operator respectively at the depth 3j = 15, 27, 45 (3j as one block corresponds
to three layers), similar to a normal RevNet. The spatial resolution of these
layers is reduced by a factor 22 while increasing the number of channels by a
factor of 4 respectively to 48, 192, 768 and 3072. Furthermore, it means that
the corresponding spatial resolutions for an input of size 2242 are respectively
1122, 562, 282, 142, 72. The total number of coefficients at each layer is then about
0.3M. All the remaining blocks Sj are kept fix to the identity as explained in
the section above.

Architecture (b) is bijective, it consists of 300 layers (100 blocks), whose total
numbers of parameters have been optimized to match those of a RevNet with
56 layers. Initially, the input is split via S̃ , which corresponds to an invertible
spatial downsampling of 22 that increases the number of channels from 3 to 12.
It thus keeps the dimension constant and permits building a bijective i-RevNet.
Then, at depth 3j = 3, 21, 69, 285, the spatial resolution is reduced by 22 via Sj.
Contrary to the architecture (a), the dimensionality of each layer is constantly
equal to 3 × 2242, until the final layer, with channel sizes of 24, 96, 384, 1536.

For both networks, the training on Imagenet follows the same setup as [17].
We train with SGD and momentum of 0.9. We regularized the model with a
�2 weight decay of 10−4 and batch normalization. The dataset is processed for
600k iterations on a batch size of 256, distributed on 4GPUs.
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The initial learning rate is 0.1, dropped by a factor of ten every 160k itera-
tions. The dataset was augmented according to [17]. The images values are
mapped to [0, 1] while following geometric transformations were applied: ran-
dom scaling, random horizontal flipping, random cropping of size 2242, and
finally color distortions. No other regularizations were incorporated into the
classification pipeline. At test time, we rescale the image size to 2562 and per-
form a center crop of size 2242.

We report the training loss (i.e. Cross entropy) curves in Figure 18 of our
i-RevNet (b) and the ResNet baseline, displayed is a moving average over 100
iterations. Observe that the decrease of both training-losses are very similar
which indicates that the constraint of invertibility does not interfere negatively
with the learning process. However, we observed one third longer wall-clock
times for i-RevNets compared to plain RevNets because the channel size be-
comes larger. The Table ?? reports the performances of our i-RevNets, with
comparable RevNet and ResNet. First, we compare the i-RevNet (a) with the
RevNet and ResNet. Indeed, those CNNs have the same number of layers, and
the i-RevNet (a) increases the channel width of the initial layer as done in [17].
The drawback of this technique is that the kernel sizes will be larger for all
subsequent layers.

The i-RevNet (a) has about 6 times more parameters than a RevNet and a
ResNet but leads to a similar accuracy on the validation set of ImageNet. On
the contrary, the i-RevNet (b) is designed to have roughly the same number
of parameters as the RevNet and ResNet, while being bijective. Its accuracy
decreases by 1.5% absolute percent on ImageNet compared to the RevNet base-
line, which is not surprising because the number of channels was not drasti-
cally increased in the earlier layers as done in the baselines [17, 57, 95]; we did
not explore wide ranges of hyper-parameters, thus the gap between (a) and (b)
can likely be reduced with additional engineering.

6.4 analysis of the inverse

We now analyze the representation Φ built by our bijective neural network i-
RevNet (b) and its inverse Φ−1, as trained on ILSVRC-2012. We first explain
why obtaining Φ−1 is challenging, even locally. We then discuss the recon-
struction, while displaying in the image space linear interpolations between
representations.

6.4.1 An ill-conditioned inversion

In the previous section, we have described the i-RevNet architecture, that per-
mits defining a deep network with an explicit inverse.
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Figure 19: Normalized sorted singular values of ∂Φx.

We explain now why this is normally difficult, by studying its local inversion.
We study the local stability of a network Φ and its inverse Φ−1 w.r.t. to its
input, which means that we will quantify locally the variations of the network
and its inverse w.r.t. to small variations of an input. As Φ is differentiable
(and its inverse as well), an equivalent way to perform this study is to analyze
the singular values of the differential ∂Φ at some point, as for (a, b) close the
following holds:

Φa ≈ Φb + ∂Φb(a − b).

Ideally, a well-conditioned operator has all its singular values constant equal
to 1, for instance as achieved by the isometric operators of [114].

In our numerical application to an image x, ∂Φx corresponds to a very large
matrix (square of the number of coefficients of the image at least) whose com-
putations are expensive. Figure 19 corresponds to the singular values of the
differential (i.e. the square roots of the eigen values of ∂Φ∗∂Φ), in decreasing
order, for a given natural image from ImageNet. The example we plot is typi-
cal of the behavior of ∂Φ. Observe there is a fast decay: numerically, the first
103 and 104 singular values are responsible respectively for 80% and 97% of
the cumulated energy (i.e. sum of squared singular values). This indicates Φ
linearizes the space locally in a considerably smaller space in comparison to
the original input dimension. However, the dimensionality is still quite large
(i.e. > 10) and thus we can not infer that Φ lays locally in a low-dimensional
manifold. It also proves that inversing Φ is difficult and is an ill-conditioned
problem. Thus obtaining implicitly this inverse would be a challenging task
that we avoided, thanks to the formal reconstruction algorithm provided by
Subsection 6.3.1.
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6.4.2 Linear interpolation and reconstruction

Visualizing or understanding the important directions in the representation of
inner layers of a CNN, and in particular, the final layer is complex because
typically the cascade is either not invertible or unstable. One approach to re-
construct from an output layer consists in finding the input image that matches
the activation through via gradient descent. However, this technique leads only
to a partial or informal reconstruction [120].

Another method consists in embedding the representation in a lower dimen-
sional space and comparing the common attributes of nearest neighbors [121].
It is also possible to train a CNN to reconstruct the representation [14]. Yet
these methods require a priori knowledge in order to find the appropriate em-
beddings or training sets. We now discuss the improvements achieved by the
i-RevNet.

Our main claim is that while the local inversion is ill-conditioned, the inverse
Φ−1 computations do not involve significant round-off errors. The forward
pass of the network does not seem to suffer from significant instabilities, thus
it seems coherent to assume that this will hold for Φ−1 as well. For example,
adding constraints beyond vanishing moments in the case of a Lifting scheme
is difficult [9, 115], and this is a weakness of this method. We validate our
claim by computing the empirical relative error on several subsets X of data:

ε(X ) =
1
|X | ∑

x∈X

‖x − Φ−1Φx‖
‖x‖

We evaluate this measure on a subset X1 of |X1| = 104 independent uniform
noises and on the validation set X2 of ImageNet. We report ε(X1) = 5 × 10−6

and ε(X2) = 3 × 10−6 respectively, which are close to the machine error and
indicates that the inversion does not suffer from significant round-off errors.

Given a pair of images {x0, x1}, we propose to study linear interpolations
between the pair of representations {Φx0, Φx1}, in the feature domain. Those
interpolations correspond to existing images as Φ−1 is an exact inverse. We
reconstruct a convex path between two input points; it means that if:

φt = tΦx0 + (1 − t)Φx1,

then:
xt = Φ−1φt

is a signal that corresponds to an image.
We discretized [0, 1] into {t1, ..., tk}, adapt the step size manually and re-

construct the sequence of {xt1 , ..., xtk}. Results are displayed in the Figure
20. We selected images from the basel face dataset [122], describable texture
dataset [123] and imagenet.
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Figure 20: This graphic displays several reconstructed sequences {xt}t. The left image
corresponds to x0 and the right image to x1.

We now interpret the results. First, observe that a linear interpolation in the
feature space is not a linear interpolation in the image space and that interme-
diary images are noisy, even for small deformations, yet they mostly remain
recognizable. However, some geometric transformations such as a 3D-rotation
seem to have been linearized, as suggested in [113]. In the next section, we
thus investigate how the linear separation progresses with depth.

6.5 a contraction

In this section, we study again the bijective i-RevNet. We first show that a
localized or linear classifier progressively improves with depth. Then, we de-
scribe the linear subspace spanned by Φ, namely the feature space, showing that
the classification can be performed on a much smaller subspace, which can be
built via a PCA.

6.5.1 Progressive linear separation and contraction

We show that both a ResNet and an i-RevNet build a progressively more lin-
early separable and contracted representation as measured in [109]. Observe
this property holds for the i-RevNet despite the fact that it can not discard any
information.
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(a) ResNet (b) i-RevNet

Figure 21: Accuracy at depth j for a linear SVM and a 1-nearest neighbor classifier
applied to the spatially averaged Φj.

We investigate these properties in each block, with the following experimen-
tal protocol. To reduce the computational burden we used a subset of 100
randomly selected imagenet classes, that consist of N = 120k images, and keep
the same subset during all our following experiments. At each depth j, we
extract the features {Φjxn}n≤N of the training set, we average them along the
spatial variable and standardize them in order to avoid any ill-conditioning ef-
fects. We used both a nearest neighbor classifier and a linear SVM. The former
is a localized classifier that indicates that the �2 metric is progressively more
important for classification, while a linear SVM measures the linear separation
of the different classes. The parameters of the linear SVM are cross-validated
on a small subset of the training set, prior to training on the 100 classes. We
evaluate both classifiers for each model on the validation set of ImageNet and
report the Top-1 accuracy in Figure 21.

We observe that both classifiers progressively improve similarly with depth
for each model, the linear SVM performing slightly better than the nearest
neighbor classifier because it is the more robust and discriminative classifier of
the two. In the case of the i-RevNet, the classification performed by the CNN
leads to 77%, and the linear SVM performs slightly better because we did not
fine-tune the model to 100 classes. Observe that there is a more intense jump of
performance on the 3 last layers, which seems to indicate that the former layers
have prepared the representation to be more contracted and linearly separated
for the final layers.

The results suggest a low-dimensional embedding of the data, but this is
difficult to validate as estimating local dimensionality in high dimensions is an
open problem. However, in the next section, we try to compute the dimension
of the discriminative part of the representation built by an i-RevNet.
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Figure 22: Accuracy of a linear SVM and nearest neighbor against the number of
principal components retained.

6.5.2 Dimensionality analysis of the feature space

In this section, we investigate if we can refine the dimensionality of informa-
tive variabilities in the final layer of an i-RevNet. Indeed, the cascade of con-
volutional operators has been trained on the training set to separate the 1000
different classes while being a homeomorphism on its feature space. Thus, the
dimensionality of the feature space is potentially large.

As shown in the previous subsection, the final layer is progressively pre-
pared to be projected on the final probes corresponding to the classes. This in-
dicates that the non-informative variabilities for classification can be removed
via a linear projection on the final layer Φ, which lie in a space of dimen-
sion 1000, at most. However, this projection has been built via supervision,
which can still retain directions that have been contracted and thus will not
be selected by an algorithm such as PCA. We show in fact a PCA retains the
necessary information for classification in a small subspace.

To do so, we build the linear projectors πd on the subspace of the d first
principal components, and we propose to measure the classification power of
the projected representation with a supervised classifier, e.g. nearest neighbor
or a linear SVM, on the previous 100 class task. Again, the feature represen-
tation {Φxn}n≤N are spatially averaged to remove the translation variability,
and standardized on the training set. We apply both classifiers, and we report
the classification accuracy of {πdΦxn}n≤N w.r.t. to d on the Figure 22. A lin-
ear projection removes some information that can not be recovered by a linear
classifier, therefore we observe that the classification accuracy only decreases
significantly for d ≤ 200.
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This shows that the signal indeed lies in a subspace much lower dimensional
than the original feature dimensions that can be extracted simply with a PCA
that only considers directions of largest variances, illustrating a successful con-
traction of the representation.

6.6 conclusion

Invertible representations and their relationship to loss of information are on
the agenda of deep learning for some time. Understanding how transforma-
tions in feature space are related to the corresponding input is an important
step towards interpretable deep networks, invertible deep networks may play
an important role in such analysis since, for example, one could potentially
back-track a property from the feature space to the input space. To the best
of our knowledge, this work provides the first empirical evidence that learn-
ing invertible representations that do not discard any information about their
input on large-scale supervised problems is possible.

To achieve this we introduce the i-RevNet class of CNN which is fully invert-
ible and permits to exactly recover the input from its last convolutional layer.
i-RevNets achieve the same classification accuracy in the classification of com-
plex datasets as illustrated on ILSVRC-2012, when compared to the RevNet [17]
and ResNet [57] architectures with a similar number of layers. Furthermore,
the inverse network is obtained for free when training an i-RevNet, requiring
only minimal adaption to recover inputs from the hidden representations.

The absence of loss of information is surprising, given the wide believe, that
discarding information is essential for learning representations that generalize
well to unseen data. We show that this is not the case and propose to explain
the generalization property with empirical evidence of progressive separation
and contraction with depth, on ImageNet.



7 conclusion

7.1 summary of contributions

Deep convolutional networks are a core ingredient of modern artificial intelli-
gence systems and the workhorse of computer vision. Their shortcomings are,
however, their lack of transparency and hunger for data. To overcome these
issues, it is important to understand how they achieve their impressive perfor-
mance and what the underlying core principles they exploit are. This work
magnifies, structures and analyzes various aspects of learned representations,
including low-level, mid-level and global properties and associated invariants.
In the search for principles underlying good generalization, we have intro-
duced various types of structured CNNs.

In chapter 3 we focus on the fact that learning powerful feature representa-
tions with CNNs is hard when training data are limited. Pre-training is one
way to overcome this, but it requires large datasets sufficiently similar to the
target domain. Another option is to design priors into the model, which can
range from tuned hyperparameters to fully engineered representations like
Scattering Networks. We combine these ideas into structured receptive field
networks, a model which has a fixed filter basis and yet retains the flexibility
of CNNs. This flexibility is achieved by expressing receptive fields in CNNs as
a weighted sum over a fixed basis which is similar in spirit to Scattering Net-
works. The key difference is that we learn arbitrary effective filter sets from
the basis rather than modeling the filters. This approach explicitly connects
classical multiscale image analysis with general CNNs and answers research
question 1. With structured receptive field networks, we improve considerably
over unstructured CNNs for small and medium dataset scenarios as well as
over Scattering for large datasets. We validate our findings on ILSVRC2012,
Cifar-10, Cifar-100 and MNIST. As a realistic small dataset example, we show
state-of-the-art classification results on popular 3D MRI brain-disease datasets
where pre-training is difficult due to a lack of large public datasets in a similar
domain.

In chapter 4 we generalize and extend the ideas of 3 and investigate the
generalized notion of frames designed with image properties in mind, as alter-
natives to this parametrization.
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We show that frame-based ResNets and Densenets can improve performance
on Cifar-10+ consistently while having additional pleasant properties like steer-
ability. By exploiting these transformation properties explicitly, we arrive at dy-
namic steerable blocks. They are an extension of residual blocks, that are able
to seamlessly transform filters under pre-defined transformations, conditioned
on the input at training and inference time. Dynamic steerable blocks learn the
degree of invariance from data and locally adapt filters, allowing them to apply
a different geometrical variant of the same filter to each location of the feature
map. When evaluated on the Berkeley Segmentation contour detection dataset,
our approach outperforms all competing approaches that do not utilize pre-
training. Our results highlight the benefits of image-based regularization to
deep networks and answer research question 2.

Chapter 3 and chapter 4 focused on the spatial structure of filters and as-
sociated symmetries. In chapter 5, we introduce structure into deep neural
network algorithms that sheds light on the channel domain. We introduce a
new class of convolutional networks, called Hierarchical Attribute CNNs, to
answer research question 3. They are the first type of CNN that generically
orders the channel dimension of each layer. This is done by formulating layers
as a cascade of multi dimensional convolutions. Convolution not only along
space but along channels as well, permits to build a hierarchical ordering of
the channel axes of each layer, which we call attribute indexes. Constraining
channels to be organized highly regularizes the network. First, our Hierar-
chical Attribute CNNs require a reduced number of parameters compared to
vanilla CNNs to achieve comparable performance. Secondly, we show that one
can investigate intermediate layers features and define notions of proximity
that corresponds to semantic meaning of increasing complexity as depth in-
creases. Our results present first steps towards organizing the memory of deep
networks to increase our understanding of their properties and the invariants
they compute. We release code to reproduce our experiments, with good per-
formance on CIFAR10 and CIFAR100.

In the final chapter 6 we question the wide believe that the success of deep
convolutional networks is based on progressively discarding uninformative
variability about the input with respect to the problem at hand. This has been
supported empirically by the difficulty of recovering images from their hidden
representations, in most commonly used network architectures. To answer
research question 4, we show via a one-to-one mapping that this loss of in-
formation is not a necessary condition to learn representations that generalize
well to complicated problems, such as ImageNet. Via a cascade of homeomor-
phic layers, we build the i-RevNet, a network that can be fully inverted up to
the final projection onto the classes, i.e. no information is discarded.
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Building an invertible architecture is difficult, for one, because the local in-
version is ill-conditioned, we overcome this by providing an explicit inverse.
An analysis of i-RevNets learned representations suggests an alternative ex-
planation for the success of deep networks by a progressive contraction and
linear separation with depth. To shed light on the nature of the model learned
by the i-RevNet we reconstruct linear interpolations between natural image
representations.

7.2 concluding remarks

The current work has expanded the boundaries of the understandable struc-
ture that can be introduced into discriminative deep networks while keeping
them general enough to tackle realistic and large-scale computer vision prob-
lems. Our work is one step on the way to a point where deep networks are not
merely a ”black art”, but become principled architectures that can be tested and
designed more rigorously. We have shown how incorporating well-understood
mathematical structure can aid small and large data performance, as well as
interpretability of deep networks.

Despite the fact that there has been much progress in understanding and
structuring deep networks, it is still a long way to go before these algorithms
can be truly understood. Beyond the many benefits of incorporating well-
known structure into deep CNNs, our work suggests, that low-dimensional
geometry and concepts like loss of information and invariance are not suffi-
cient to explain generalization in deep networks. There is currently no theory
available that can reliably explain the success of these models on complex prob-
lems. Understanding the mathematical structure of the contraction and separa-
tion that occurs throughout the succession of layers remains an unsolved prob-
lem. But it is an important challenge, as understanding how such a system can
create a notion of proximity even between exorbitantly different instances of
the same object class, will enable us to have algorithms that can not only learn
but also reveal their powerful heuristics to us. Beyond the mere insight into
how deep networks learn, such an understanding would have a wide impact
on many application they struggle with. In the mid-term, this understand-
ing will allow leveraging unlabeled data for semi-supervised learning, to have
models that can learn from less annotated data. Further, it will make it possible
to learn more well-behaved representations, that have quantifiable robustness
and failure-modes. In the long-term, it might give science as a whole a pow-
erful tool to understand how experience can be efficiently organized to reveal
hidden regularities of the data that can be extracted from these models as a
learned analog to scientific hypotheses or theories.
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8 samenvatting - summary in dutch

Diepe Convolutionale Neurale Netwerken (CNN) zijn belangrijke ingredient
gebruikt in veel moderne AI-systemen en het werkpaard van computervisie.
Hun tekortkomingen zijn echter hun gebrek aan transparantie en honger naar
data. Om deze problemen op te lossen, is het belangrijk om te begrijpen hoe
zij hun indrukwekkende prestaties bereiken en wat de onderliggende kern-
principes zijn die zij gebruiken. Dit werk vergroot, structureert en analyseert
verschillende aspecten van geleerde representaties, inclusief low-level, mid-
level en global eigenschappen en geassocieerde invarianten. Bij het zoeken
naar principes die ten grondslag liggen aan een goede generalisatie, hebben
we verschillende soorten gestructureerde CNNs geı̈ntroduceerd.

In hoofdstuk 3 concentreren we ons op het feit dat het leren van krachtige
functie-representaties met CNNs moeilijk is wanneer de hoeveelheid training
data beperkt is. Pre-training is een manier om dit te ondervangen, maar
het vereist grote datasets die vergelijkbaar zijn met het doeldomein. Een an-
dere optie is om priors in het model te verwerken. Deze kunnen variren van
getunede hyperparameters tot volledig ontworpen representaties zoals Scatter-
ing Networks. We combineren deze ideen in een gestructureerde receptieve
veldnetwerk. Het is een model dat een vaste filterbasis heeft en toch de flex-
ibiliteit van CNNs behoudt. Deze flexibiliteit wordt bereikt door receptieve
velden in CNNs uit te drukken als een gewogen som over een vaste basis die
vergelijkbaar is met het concept van Scattering Networks. Het belangrijkste
verschil is dat we arbitraire effectieve filtersets van de basis leren in plaats van
de filters te modelleren. Deze benadering verbindt expliciet de klassieke ’mul-
tiscale image-analysis’ met algemene CNNs. Met structured receptive field
networks doen we het aanzienlijk beter ten opzichte van ongestructureerde
CNNs voor scenario’s van kleine en middelgrote datasets, evenals over Scatter-
ing voor grote datasets. We hebben onze resultaten op ILSVRC2012, Cifar-10,
Cifar-100 en MNIST gevalideerd. Als een realistisch voorbeeld van een kleine
dataset, laten we de resultaten van een state-of-the-art classificatie op een 3D
MRI-hersenscan datasets zien. Hierbij is pre-training moeilijk vanwege een ge-
brek aan grote openbare datasets in een vergelijkbaar domein.
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In hoofdstuk 4 generaliseren we de ideen van 3 en breiden ze uit. We onder-
zoeken de algemene notie van frames die rekening houden met de afbeelding-
seigenschappen als alternatieven voor deze parametrisering. We laten zien dat
frame-based ResNets en Densenets de prestaties op Cifar-10+ consequent kun-
nen verbeteren, terwijl ze tegelijkertijd extra aangename eigenschappen zoals
’steerability’ hebben. Door deze transformatie-eigenschappen expliciet te ge-
bruiken in ons model, komen we tot ’dynamic steerable blocks’. Ze zijn een
uitbreiding van ’residual blocks’ (zoals in ResNets), die naadloos in staat zijn
om filters te transformeren onder vooraf gedefinieerde transformaties, gecon-
ditioneerd op de invoer tijdens de training en inferentietijd. Dynamic steer-
able blocks leren de mate van invariantie in data en passen de filters lokaal
aan, waardoor ze een andere geometrische variant van hetzelfde filter op elke
locatie van de featuremap kunnen toepassen. Bij evaluatie op de Berkeley
Segmentation contour detection dataset, overtreft onze aanpak alle concur-
rerende benaderingen die geen gebruik maken van pre-training. Onze resul-
taten benadrukken de voordelen van ’image-based regularization’ voor diepe
netwerken.

Hoofdstuk 3 en hoofdstuk 4 richten zich op de ruimtelijke structuur van fil-
ters en bijbehorende symmetrien. In hoofdstuk 5 introduceren we structuur
in deep neural network algoritmen die het licht werpen op het kanaaldomein.
We introduceren een nieuwe klasse van convolutionele netwerken, genaamd
Hiearchical Attribute CNNs. Dit zijn het eerste type van CNNs dat op een
generieke manier de kanaaldimensie van elke laag sorteert. Dit wordt gedaan
door lagen te formuleren als cascade van multi-dimensionale convoluties. Een
convolutie, niet alleen in de ruimte, maar ook langs de kanalen, maakt het
mogelijk om een hirarchische structuur van de kanaalassen van elke laag te
maken, die we ’attribute indexes’ noemen. Beperkende kanalen die georgan-
iseerd moeten worden zorgen voor een grote regularisatie van het netwerk.
Ten eerste vereisen onze hirarchische kenmerkende CNNs een kleiner aantal
parameters in vergelijking met standaard CNNs om vergelijkbare prestaties te
bereiken. Ten tweede laten we zien dat we intermediaire lagen kunnen onder-
zoeken en begrippen van nabijheid kunnen definiren die overeenkomen met
de algemene semantische betekenis van toenemende complexiteit naarmate de
diepte toeneemt. Onze resultaten laten zien hoe het organiseren van geheugen
in diepe netwerken ons een beter inzicht kunnen geven in hun eigenschappen
en de invarianten die berekend worden.

In het laatste hoofdstuk zetten we vraagtekens bij de breed-gedragen over-
tuiging dat het succes van diepe convolutionele netwerken gebaseerd is op het
geleidelijk wegnemen van niet-informatieve variaties over de input. Dit wordt
empirisch ondersteund door de moeilijkheid om afbeeldingen te herstellen van
hun verborgen representaties, in de meest gebruikte netwerkarchitecturen.
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In dit artikel laten we via een n-op-n-toewijzing zien dat dit informatiev-
erlies geen noodzakelijke voorwaarde is om representaties te leren die goed
zijn voor gecompliceerde problemen, zoals ImageNet. Via een cascade van
homeomorfe lagen bouwen we het i-RevNet, een netwerk dat volledig inver-
teerbaar is tot de uiteindelijke projectie op de klassen, d.w.z. geen informatie
wordt weggegooid. Het bouwen van een inverteerbare architectuur is moeilijk,
omdat de lokale inversie slecht is geconditioneerd, en dit wordt overwonnen
door een expliciete inverse te gebruiken. Een analyse van geleerde represen-
taties van i-RevNet suggereert een alternatieve verklaring voor het succes van
diepe netwerken, namelijk door een progressieve contractie en lineaire schei-
ding met diepte. Om licht te werpen op de aard van het door het i-RevNet
geleerde model reconstrueren we lineaire interpolaties tussen natuurlijke beel-
drepresentaties.
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