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1Exact Expression For Information Distance
Paul M.B. Vitányi

Abstract

Information distance can be defined not only between two strings but also in a finite multiset of strings

of cardinality greater than two. We give an elementary prooffor expressing the information distance in

conditional Kolmogorov complexity. It is exact since the lower bound equals the upper bound up to a

constant additive term.

Index Terms— Information distance, multiset, Kolmogorov complexity,similarity, pattern recognition,

data mining.

I. INTRODUCTION

In pattern recognition, learning, and data mining the shortest binary program to compute from one object

to another object and vice versa expresses the amount of information that separates the objects. Normalized

in the appropriate manner it quantifies a similarity betweenobjects [3]. Extending this approach we can

ask how much the objects in a set of objects are alike, that is,the common information they share. All

objects we discuss are represented as finite binary strings.We use Kolmogorov complexity [2], Informally,

the Kolmogorov complexity of a string is the length of a shortest binary program from which the string

can be computed. Therefore it is a lower bound on the length ofa compressed version of that string for

any current or future computer. The text [5] introduces the notions, develops the theory, and presents

applications.

We write string to denote a finite binary string. Other finite objects, such aspairs of strings, may be

encoded into strings in natural ways. The length of a stringx is denoted by|x|. Let X be a finite multiset

(a set where each member can occur more than once) of strings ordered length-increasing lexicographic.

In this paper|X| ≥ 2. Examples areX = {x, x} andX = {x, y} with x 6= y.

Let U be a fixed universal prefix Turing machine for which the programs are binary. The prefix

property involved guaranties that set of programs is a prefixcode (no program is a proper prefix of
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another program). Since computability is involved, such a program is calledself-delimiting. The minimal

length of a self-delimiting program computing a stringx is the prefix Kolmogorov complexityK(x)

of that string. We can defineK(X) as the length of a shortest self-delimiting programp computing

all the members ofX and a means to tell them apart. Similarly we defineK(X|x). The quantity

ID(X) = min{|p| : U(p, x) = X for all x ∈ X}. (We also denoteID(X) by Emax(X).)

A. Related Work

In the seminal [1] the information distanceID(x, y) between pairs of stringsx andy was introduced

as the length of a shortest binary programp for the reference universal prefix Turing machineU

such thatU(p, x) = y and U(p, y) = x. It was shown thatID(x, y) = max{K(x|y),K(y|x)} +

O(logmax{K(x|y),K(y|x)}). In [6] it was shown how to reduce theO(logmax{K(x|y),K(y|x)})

additive term toO(1). In [4] the information distanceID(x1, . . . , xn) between a multiset of strings

(x1, . . . , xn) was introduced as the length of a shortest binary programp for U such thatU(p, xi, j) = xj

for all 1 ≤ i, j ≤ n. It was shown thatID(x1, . . . , xn) = max1≤i≤nK(x1, . . . , xn|xi) + O(log n).

Obviously,ID(x1, . . . , xn) equals|p| such thatU(p, xj) = (x1, . . . , xn) for any j (1 ≤ j ≤ n) but for

the added task of computing a member of(x1, . . . , xn) which takes at mostK(j)+O(1) bits extra. (The

proof ignores this quantity anyway.) Note that this also reduces theO(logmax{K(x|y),K(y|x)}) additive

term toO(1) for n = 2. In [10] information distance is made uniform by denotingX = (x1, . . . , xn)

and definingID(X) as the length of a shortest program to computeX from anyx ∈ X. If a program

computes from everyx ∈ X to anyy ∈ X then it must computeX on the way. We thus defineID(X)

as the length of a shortest binary program computingX from any x ∈ X. One can indicatey by its

index inX.

Related is the following. Themutual informationI(x, y) betweenx and y is defined byI(x : y) =

K(x) + K(y) −K(x, y). Let |X| = n. In all the above cases the shortest programspi to computeX

from xi ∈ X with |pi| = K(X|xi) can be made maximally overlapping in the sense that for alli 6= j

the mutual informationI(pi : pj) is maximal (1 ≤ i, j ≤ n). In [10] that maximum overlap of shortest

programs computingX from anyx ∈ X is determined. For|X| = 2 reference [1] asked whether we can

find shortest programs that are minimally overlapping in thesense that for alli 6= j it holds thatI(pi : pj)

is minimal (1 ≤ i, j ≤ n)? In [9] this question is resolved as follows. For all strings x, y there are binary

programsp, q such thatU(p, x) = y, U(q, y) = x, the length ofp is K(y|x), the length ofq is K(x|y),

andI(p : q) = 0 where the last three inequalities hold up to an additiveO(logK(x, y)) term. In contrast,
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for some stringsx, y this is not the case when we replaceO(K(x, y)) with O(log(K(x|y)+K(y|x))). In

[7] the surprising fact is shown that there is a shortestp to computex from y such thatK(p|x) = O(log n)

andK(x|p, y) = O(log n). That is, this shortest program depends only onx and almost nothing ony.

This is an analogue of the Slepian-Wolf result [8] in information theory.

B. Results

Let X be a multiset of strings of finite cardinality greater or equal two. The information distance

of X is ID(X) and can be viewed as a diameter ofX. For |X| = 2 it is a conventional distance

between the two members ofX. Since the 1990s it was perceived as a nuisance and a flaw that equality

betweenID(X) andmaxx∈X{K(X|x)} held only up to a (possibly) logarithmic additive term. We give

an elementary proof that for allX holdsID(X) = maxx∈X{K(X|x)} plus a constant additive term.

II. T HE EXACT EXPRESSION

Theorem 2.1:Let X be a finite multiset of strings and|X| ≥ 2. ThenID(X) = maxx∈X{K(X|x)}+

O(1).

Proof:

(≤) Let x0 ∈ X be a fixed member ofX, for examplex0 is the first member ofX in lexicographic

length-increasing order. Definek = maxx∈X{K(X|x)}. ThenK(X|x0) ≤ k. Computably enumerate all

Y such thatx0 ∈ Y andK(Y |x0) ≤ k. That is, there is a self-delimiting programpY of at mostk bits

such thatpY with input x0 computes outputY . Denote the set of suchY by Y, and the set ofpY by P .

By constructionX ∈ Y, andpY 6= pZ for Y,Z ∈ Y andY 6= Z. Define a bipartite graphG = (V,E)

with V the vertices andE the edges by

V1 = {Y : Y ∈ Y},

V2 = {y : y ∈ Y ∈ Y},

V = V1

⋃
V2,

E = {(Y, y) : Y ∈ V1, y ∈ V2}.

We label the edges inE by strings with substrings inP . The labeling satisfies (i) all edges incident with

the same vertex inV1 are labeled with strings with the second self-delimiting substrings identical, and

(ii) different vertices inV1 are labeled with strings of which the second self-delimiting substrings are
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different. Conditions (i) and (ii) together imply that all edges incident with the same vertex inV2 are

labeled with strings of which the second self-delimiting substrings are different.

For eachY ∈ Y prefix pY associated with each edge(Y, y) ∈ E (y ∈ Y ) with an O(1)-length

self-delimiting programr that makes the universal Turing machineU interpret pY as the program to

computeY from y. In this way |rpY | ≤ k + O(1). PadrpY with nonsignificant 0’s ending with a 1 to

make a total of 3 concatenated self-delimiting programs. The concatenation issY = rpY 0
k−|rpY |−1+c1

wherec (|c| = O(1)) is a positive constant such that|sY | − k is as small as possible but nonnegative. A

self-delimiting description ofc is included inr. Programr also tellsU that sY is the concatenation of

three self-delimiting programs, to ignore the final paddingof nonsignificant 0’s ending with a 1, and to

retrievek from |sY |. Labeling each edge(Y, y) with sY satisfies conditions (i) and (ii).

The length ofsX is an upper bound onID(X). The programsX computes outputX on inputs

consisting ofany x ∈ X. The programsX works as follows. The universal prefix Turing machineU

unpacks the first self-delimiting programr from sX . This r first retrievesk from |sX | and generatesY

andG and labels the edges ofG until it labels an edge bysX and incident on vertexx. Since the second

self-delimiting substringpX of sX is unique for edges(X, y) with y ∈ X the programr usingx finds

edge(X,x) and thereforeX. Since|sX | = k +O(1), this implies the≤ side.

(≥) By definition.

Corollary 2.2: For |X| = 2 the theorem shows the result of [1, Theorem 3.3] with error term O(1)

instead ofO(logmaxx∈X{K(X|x)}). That is, settingX = {x, y} the theorem computesx from y and

y from x with the same program of lengthmaxx∈X{K(X|x)}+O(1) instead ofmaxx∈X{K(X|x)}+

O(maxx∈X{K(X|x)}). (One simply adds to programr “the other one” inO(1) bits.) This result can

also be derived from [4], [6]. Admittedly the maximal overlap overlap property may cause the logarithmic

additive term above. But for a long time it was thought that that term was necessary also without maximal

overlap.

Corollary 2.3: For |X| = n ≥ 2 (but less than infinity) the theorem shows that in [4, Theorem2]

theO(log n) additive term can be replaced byO(1). (Incidentally, the maximal overlap property in [10,

Theorem 3.1] seems to require an additive term ofO(logmaxx∈X{K(X|x)}).) To return ay ∈ X we

have to give its position in at most an additivelog n bits (we knowX and thereforen). In the proof of

[4, Theorem 2] theO(log n) additive term does not include this quantity.
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