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Exact Expression For Information Distance

Paul M.B. Vitanyi

Abstract

Information distance can be defined not only between twogsrbut also in a finite multiset of strings
of cardinality greater than two. We give an elementary prfoofexpressing the information distance in
conditional Kolmogorov complexity. It is exact since thevkr bound equals the upper bound up to a
constant additive term.

Index Terms— Information distance, multiset, Kolmogorov complexgimilarity, pattern recognition,

data mining.

. INTRODUCTION

In pattern recognition, learning, and data mining the sfstifbinary program to compute from one object
to another object and vice versa expresses the amount ofiafion that separates the objects. Normalized
in the appropriate manner it quantifies a similarity betwebjects [3]. Extending this approach we can
ask how much the objects in a set of objects are alike, thahéscommon information they share. All
objects we discuss are represented as finite binary stiifigsise Kolmogorov complexity [2], Informally,
the Kolmogorov complexity of a string is the length of a shettbinary program from which the string
can be computed. Therefore it is a lower bound on the length @impressed version of that string for
any current or future computer. The tekt [5] introduces tloiams, develops the theory, and presents
applications.

We write string to denote a finite binary string. Other finite objects, suclpaiss of strings, may be
encoded into strings in natural ways. The length of a strig denoted byz|. Let X be a finite multiset
(a set where each member can occur more than once) of stidgeed length-increasing lexicographic.
In this paper X | > 2. Examples areX = {z,z} and X = {z,y} with = # y.

Let U be a fixed universal prefix Turing machine for which the proggaare binary. The prefix
property involved guaranties that set of programs is a predide (no program is a proper prefix of
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another program). Since computability is involved, such@gpam is calledself-delimiting The minimal
length of a self-delimiting program computing a stringis the prefix Kolmogorov complexitys (x)
of that string. We can definé&’(X) as the length of a shortest self-delimiting prograntomputing
all the members ofX and a means to tell them apart. Similarly we defii€éX|z). The quantity
ID(X) = min{|p| : U(p,z) = X for all z € X}. (We also denotd D(X) by Epax(X).)

A. Related Work

In the seminall[1] the information distandeé (z,y) between pairs of strings andy was introduced
as the length of a shortest binary programfor the reference universal prefix Turing machibe
such thatU(p,z) = y and U(p,y) = =z. It was shown that/D(z,y) = max{K (x|y), K(y|z)} +
O(log max{ K (z|y), K (y|x)}). In [6] it was shown how to reduce th@(log max{K (z|y), K(y|z)})
additive term toO(1). In [4] the information distancd D(z1,...,z,) between a multiset of strings
(x1,...,z,) was introduced as the length of a shortest binary progrdon U such that/ (p, z;, j) = x;
for all 1 < 4,5 < n. It was shown tha’ D(xz1,...,z,) = maxi<i<p K(x1,...,2,]z;) + O(logn).
Obviously,ID(x1,...,z,) equals|p| such thatU(p,z;) = (z1,...,z,) for anyj (1 < j < n) but for
the added task of computing a member(ef, ..., z,) which takes at mosk'(j) + O(1) bits extra. (The
proof ignores this quantity anyway.) Note that this alsaues the) (log max{ K (z|y), K (y|z)}) additive
term to O(1) for n = 2. In [10] information distance is made uniform by denotixg= (z1,...,z,)
and defining/ D(X) as the length of a shortest program to compbitédrom anyz € X. If a program
computes from every € X to anyy € X then it must computeX on the way. We thus defineD(X)
as the length of a shortest binary program computihgrom anyx € X. One can indicatg by its
index in X.

Related is the following. Thenutual informationl(x,y) betweenz andy is defined byl (z : y) =
K(z)+ K(y) — K(z,y). Let | X| = n. In all the above cases the shortest programt computeX
from z; € X with |p;| = K(X|z;) can be made maximally overlapping in the sense that fof &ll;j
the mutual information/ (p; : p;) is maximal ( < ¢, < n). In [10] that maximum overlap of shortest
programs computind( from anyz € X is determined. FofX| = 2 referencel[1l] asked whether we can
find shortest programs that are minimally overlapping indtese that for all # j it holds that/(p; : p;)
is minimal (1 <i,7 < n)? In [9] this question is resolved as follows. For all stsngy there are binary
programsp, g such thatU (p, z) =y, U(q,y) = z, the length ofp is K (y|x), the length ofg is K (x|y),
andI(p : ¢) = 0 where the last three inequalities hold up to an additNég K (z,y)) term. In contrast,



for some strings:, y this is not the case when we repla@éK (z,y)) with O(log(K (z|y) + K (y|z))). In
[7] the surprising fact is shown that there is a shortest computer from y such thati (p|z) = O(logn)
and K (z|p,y) = O(logn). That is, this shortest program depends onlyzoand almost nothing on.

This is an analogue of the Slepian-Wolf result [8] in infotioa theory.

B. Results

Let X be a multiset of strings of finite cardinality greater or dgweo. The information distance
of X is ID(X) and can be viewed as a diameter ®¥f For |X| = 2 it is a conventional distance
between the two members &f. Since the 1990s it was perceived as a nuisance and a flawghalitg
between/ D(X) andmax,cx{K(X|z)} held only up to a (possibly) logarithmic additive term. Weeyi

an elementary proof that for ak’ holds /D(X) = max,cx{K(X|z)} plus a constant additive term.

Il. THE EXACT EXPRESSION

Theorem 2.1:Let X be a finite multiset of strings an& | > 2. ThenI D(X) = max,ex{K (X|z)} +

O(1).
Proof:

(<) Let zp € X be a fixed member ok, for examplez, is the first member ofX in lexicographic
length-increasing order. Defile= max,cx{K (X|z)}. ThenK (X|zo) < k. Computably enumerate all
Y such thatzyg € Y and K(Y'|z9) < k. That is, there is a self-delimiting prograpy- of at mostk bits
such thatpy with input 2y computes outpuY’. Denote the set of sucH by Y, and the set opy by P.
By constructionX € ), andpy # pz for Y, Z € Y andY # Z. Define a bipartite graply = (V, E)
with V' the vertices andv' the edges by

Vi={Y:Y ey},
Vo={y:yeY e},
vV=n{JW,
E={(Y,y):Y eV, y€Va}.
We label the edges i& by strings with substrings if®. The labeling satisfies (i) all edges incident with

the same vertex ifv; are labeled with strings with the second self-delimitindpsttings identical, and

(i) different vertices inV; are labeled with strings of which the second self-delingitsubstrings are



different. Conditions (i) and (ii) together imply that altiges incident with the same vertex ¥ are
labeled with strings of which the second self-delimitindsinings are different.

For eachY € Y prefix py associated with each edd&’y) € E (y € Y) with an O(1)-length
self-delimiting programr that makes the universal Turing machibeinterpretpy as the program to
computeY from y. In this way |rpy| < k4 O(1). Padrpy with nonsignificant 0’'s ending with a 1 to
make a total of 3 concatenated self-delimiting programs @bncatenation isy = rpy 0F~I"PvI—1+c1
wherec (|c| = O(1)) is a positive constant such that-| — k is as small as possible but nonnegative. A
self-delimiting description ot: is included inr. Programr also tellsU that sy is the concatenation of
three self-delimiting programs, to ignore the final paddafighonsignificant O's ending with a 1, and to
retrievek from |sy|. Labeling each edgéY, y) with sy satisfies conditions (i) and (ii).

The length ofsx is an upper bound odD(X). The programsx computes outputX on inputs
consisting ofany x € X. The programsx works as follows. The universal prefix Turing machitie
unpacks the first self-delimiting programfrom sx. This r first retrievesk from |sx| and generatey
andG and labels the edges 6f until it labels an edge byx and incident on vertex. Since the second
self-delimiting substringx of sx is unique for edge$X,y) with y € X the programr usingzx finds
edge(X,z) and thereforeX. Since|sx| = k + O(1), this implies the< side.

(>) By definition. |

Corollary 2.2: For | X| = 2 the theorem shows the result of [1, Theorem 3.3] with erranté&(1)
instead ofO(log max,ex{K (X|z)}). That is, settingX = {z,y} the theorem computes from y and
y from z with the same program of lengthax,c x { K (X|z)} + O(1) instead ofmax,c x{K (X|z)} +
O(maxgzex {K(X|z)}). (One simply adds to program “the other one” inO(1) bits.) This result can
also be derived fron [4][[6]. Admittedly the maximal ovegrlaverlap property may cause the logarithmic
additive term above. But for a long time it was thought that tierm was necessary also without maximal
overlap.

Corollary 2.3: For | X| = n > 2 (but less than infinity) the theorem shows that(ih [4, Theo@m
the O(log n) additive term can be replaced I6)(1). (Incidentally, the maximal overlap property in [10,
Theorem 3.1] seems to require an additive termOg¢fog max,cx{K (X|z)}).) To return ay € X we
have to give its position in at most an additive; n bits (we knowX and therefore:). In the proof of

[4, Theorem 2] theD(logn) additive term does not include this quantity.
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