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Abstract. The social-scientific research process is usually considered to consist of
reviewing literature and theory, followed by the generation of research questions or
hypotheses, the collection of data, their analysis, and writing up the findings. In this
chapter, we argue that in the age of Big Data, social scientists have to increasingly

consider a step that can be located between the collection and analysis of data: the storage
of the data. Based on the notion of data architecture, we discuss how the choices made at
this stage impact the ways the data can be used and the research questions that can be

answered. In particular, we compare file dumps, relational databases, document stores, and
graph databases. We develop a scheme to make a choice for one of these approaches based
on four criteria: the need for preprocessing, the properties of the data, the research design,
the available infrastructure, and the available expertise. We conclude by summarizing their

strengths and weaknesses along two dimensions: ease-of-storage versus
reliability-of-retrieval and ease-of-use versus power-to-explore.

Introduction

Throughout the last decades, a large body of social-scientific methodological litera-
ture on both data collection and data analysis has been accumulated. With the emergence
of computational methods in the social sciences, both parts have been addressed and new
methods and techniques have been incorporated into the methodological toolbox of rel-
evant disciplines. For instance, there is literature on the different ways to collect (e.g.,
Trilling, 2014), clean (e.g., Günther & Scharkow, 2014) and analyze large-scale data sets
(e.g., Boumans & Trilling, 2016; Burscher, Odijk, Vliegenthart, de Rijke, & de Vreese, 2014;



Grimmer & Stewart, 2013; Günther & Quandt, 2016; Jacobi, van Atteveldt, & Welbers,
2016; Maireder, Ausserhofer, Schumann, & Taddicken, 2015). However, there is a lack of
attention to the step in between: the management and the architecture of the data. While
this step did not need much attention in the “old” paradigm of manual analysis (storing
printed newspaper copies is a trivial task), making the right choices in how to organize and
store the data has important implication in the “new” paradigm of computational analysis
of large-scale datasets (see also Kitchin, 2014).

In this chapter, we argue that for the computational social scientist – next to technical
skills for data collection and data analysis, such as data mining or machine learning tech-
niques –, being able to make informed decisions regarding the data architecture is equally
important: As a prerequisite to conduct analyses of these types, researchers need to be
able to organize and manage the underlying data. When working with large and complex
datasets, a priori choices have big implications and are hard to undo. Problems can include
lost data, overwhelming analysis times, and misleading analyses. We first introduce a model
that illustrates how considerations related to data architecture fit into the social-scientific
research process. We then discuss different criteria that have to be considered and how they
relate to different data models and paradigms.

A prototypical use case might help to illustrate the consequences of different choices
that can be made. Let us assume we want to conduct a large-scale analysis of (online)
news items. Only one or two years of coverage from the major news outlets of one single
country easily amounts to hundreds of thousands of news items, and it is not uncommon
to have millions of articles. But although the mere size of such a dataset requires new ways
of thinking about its storage, its structure is not fundamentally different from traditional
approaches. This changes when we combine data from different sources, when items are
nested in each other, or when different types of items are part of the dataset.

When dealing with online news articles, for instance, simple data models and storage
solutions become problematic when we want to add user comments to the data set. This
addition makes the data structure considerably more complicated, as it is no longer possi-
ble to model our data in a tabular format with columns that are the same for every entry.
Additionally, comments are nested within the articles (each entry features additional com-
ments in reply), meaning that we also need to consider the hierarchical relations between
the comments. Social media data often have a similar structure: They also consist of posts
written by users, and replies by others to these posts. If one does not want to loose this
information, one has to think of how to store these relations.

All of this is not an unusual setup for a social scientific research project, but managing
data of this size and structure certainly is – information with varying features and complex
relations need to be incorporated in a reliable infrastructure adequate for Big Data analyses:
So, how do we store it?

In this chapter, we take up the challenge to find a balance between providing hands-on
guidance for the social scientist on the one hand, and going into some necessary technical
details on the other hand. We decided to keep the most important technical terms in order
to enable the interested reader to look for further literature, and additionally provide a
table where these terms are defined and where examples are given.
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Data Architecture
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Aspects to consider:
• Data characteristics
• Research design
• Expertise
• Infrastructure

collect preprocess analyze

Figure 1 . Proposed model of the social-scientific process of data collection and analysis in
the age of Big Data. As the dotted arrows indicate, the results of preprocessing and analyis
are preferably fed back into the storage system for further re-use.

Data Architecture

Traditionally, data storage and data analysis are not explicitly addressed as elements
of the social-scientific research process. For instance, Bryman (2016) lists “literature review;
formulating concepts and theories; devising research questions; sampling; data collection;
data analysis; and writing up findings” (p. 2) as elements of the research process. Similarly,
Field (2016) presents a flow-chart, according to which the generation of a research question
is followed by a consulation of theory, the generation of hypotheses and predictions, the col-
lection of data, their analysis, and the generalization of the results (p. 15). We argue that
in the era of Big Data, these models have to be extended to include “data architecture” as
an additional and independent step located between “data collection” and “data analysis”
(see Fig. 1). Often, Big Data are described by the four Vs – high volume (i.e., they occupy
a lot of storage), high velocity (i.e., they change quickly), high variety (i.e., they may have
a heterogeneous structure), and unclear veracity (i.e., they may contain errors). Although
in many cases of big datasets, not all four Vs are present (Kitchin & McArdle, 2016), these
characteristics are directly relevant for a social scientist designing a data architecture: The
volume of data may require scalable storage, especially as the velocity of data additions and
data mutations increases. The variety of data can require flexible storage solutions or com-
plex relational models to leverage the interconnectedness of much new data. The veracity
may require additional provenance information above and beyond classical metadata.

In this chapter, we provide guidelines to allow researchers without a background in
IT to make informed decisions on how to deal with such data. A simplified model of the
social-scientific research process in the age of Big Data is illustrated in Figure 1: Data that
are collected have to be stored in some way before they can be preprocessed and analyzed.
In addition, as the dotted lines in Figure 1 indicate, it is often also desirable that the results
of the preprocessing and/or analysis steps can be fed back into the database for future use.
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By referring to these tasks in the social-scientific research process as problems of
“data architecture”, we follow the definiton by Comella-Dorda, Lewis, Place, Plakosh, and
Searcord (2001), who write: “Data architecture defines how data is stored, managed, and
used in a system” (p. 1). More specifically, according to Inmon and Linstedt (2014), the
“four most interesting aspects of data architecture are: 1. The pysical manifestation of data;
2. The logical linkage of data; 3. The internal format of data; 4. The file structure of data.”
(p. 199). To illustrate the importance of data architecture, Tupper (2011) compares it
with the role of architecture in the real world: learning how to create sustainable buildings
was a precondition for mankind to evolve. And, one might argue, a well-designed data
architecture is the precondition for insightful analysis and scientific research to evolve.

Not all of these aspects are equally important for a social scientist; and some of them
are mainly interesting from a technical standpoint. In the following section, we will zoom
in on those aspects in which social scientists typically have to make an informed choice in
order to get out most for their analyses.

Considerations and choices

We propose to distinguish five main factors guiding the design of the data architecture
for any given project (see Fig. 2): When designing a data architecure, social scientists have
to reflect on a number of questions regarding the characteristics of the data (I & II), the
research design (III), the available expertise (IV), and finally, the existing and/or available
infrastructure (V). The answers to these question cannot be given independently from each
other. For instance, if one of the goals of the project is the construction of a long-term
database to be used by multiple projects, the requirements regarding the cleaning and
preprocessing of the data will differ from a one-shot project (feedback loop between data
and research design); the research design is also interlinked with the project infrastructure,
most importantly since it outlines the requirements of the analysis operations carried out
in later stages of the project (feedback loop between research design and infrastructure). In
the design of the data architecture, project-specific interdependencies like these are equally
important to decide how the data in the storage should look like.

Different databases come with their own strengths and weaknesses, which have major
implications for the later steps in the research process. Strengths could be be ease-of-
storage, ease-of-retrieval, learning-curve and ability-to-scale. Weaknesses could be related
to the flexibility, reliability, effectiveness and compatibility of a system. In order to match
a research project with an adequate system, answering the questions described in Figure
2 helps us to a) define our project-specific needs and b) evaluate the relative importance
of the strengths and weaknesses of each system. To establish a basic knowledge on the
available options and their modes of operation, throughout this chapter, we focus on four
different types of systems:

1. File dumps

2. Relational Databases such as MySQL,

3. Document stores such as MongoDB,

4. Graph databases such as Neo4j.
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c) Future demands

a) Software compatibility
(technical interface)

b) Hardware scalability
(vertical vs. horizontal)

I
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Figure 2 . Central factors influencing the design of the data architecture.

File dumps are the most simple approach of storing data: in this approach, each unit
of observation (each article, page of comments, . . . ) is simply saved to a file. While they
can be cumbersome and inefficient to analyze, file dumps can be a useful additional fallback
option due to their simplicity. Relational Databases are databases that contain a set of
interlinked tables. Each table has a fixed number of columns, and each row as a so-called
key, which allows researchers to store and connect information with different features from
different tables. Document stores refer to databases that do not rely on such tables, which
is why they are also referred to as NoSQL databases. In contrast, each entry is seen as
a document, which has a set of keys with associated values. For instance, a key could be
’title’ or ’published_at’, and their values could be ’LinkedIn to get Banned in Russia’ and
’October 26, 2016’. In contrast to relational databases with their fixed column structure,
the keys do not necessarily have to be the same for each document in a document sore.
Graph databases are an extension of the previous type. Next to nodes, which are in fact
sets of key-value pairs just like in a document store, graph databases also store edges, i.e.
connections between the nodes. For example, node 1 might represent a specific article, and
node 2 might represent a person, with the link between the two indicating that the person
is mentioned in the article.

I. Prelude – Do you need preprocessing and cleaning?

The considerations and choices to be made regarding the data architecture typically
start with the question whether the data need to be processed in any way before being
stored (see Fig. 2, I). Often, a lot more data has been collected than what is actually
needed when crawled from online sources, meaning that relevant pieces of information are
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mixed with irrelevant content. One could argue that this is less of a problem nowadays,
because recent technological advances have made it possible to store and query enormous
quantities of unstructured data in an efficient manner. For example, tools like ElasticSearch
make it possible to use free-form text search of huge collections of texts. But while there is
a general trend towards such unstructured data stores, the underlying philosophy can be at
odds with the traditional social-scientific research process. In social-scientific research, one
typically wants to know why a certain outcome occurs. Therefore, rather than constructing
models with an extremely high number of features, one would typically focus on a smaller
number of theoretically interesting features, even if this goes at the expense of maximizing
the predictive value of the model. This means that in social-scientific research, there is an
inherent need for having structured data sets. Therefore, social scientists usually have clear
ideas, guided by theory, about which features need to be extracted from a dataset.

Considerations regarding data cleaning first and foremost depend on the objective
of the research project (see Fig. 2, III): If the goal is to set up an archive as a basis for
various, maybe not yet known analyses, it might be preferable to store as much information
as possible and take care about extracting relevant information in later steps of the research
process. If the research interest is more specific, unneeded data can be discarded early on
to allow for a more efficient data structure.

In case data cleaning is included in the process, there are two ways to look at it: One
is to extract relevant parts of the news website, the other to remove irrelevant information.
Typically, we need a combination of both, starting with the noise caused by the HTML
page structure and advertisements. This so-called boilerplate content makes up a major
part of most web pages and is irrelevant to most social-scientific research projects.

There are several strategies that can be applied (e.g., Günther & Scharkow, 2014;
Pomikálek, 2011): First, relevant content – in our example, the article text, reader com-
ments, and metadata – can be targeted based on HTML-tags, XPATHs, and CSS selectors
that guide the appearance of a website. Exploiting this structure, website-specific regular
expressions and/or libraries such as Python’s Beautiful Soup (Richardson, 2015) and lxml
(Behnel, Faassen, & Bicking, 2016) can be used to extract relevant content. Another strat-
egy is to make use of available print versions, which are often supplied by a website as a
service to its users. Lastly, there are several algorithmic solutions that, e. g. in the case
of the Boilerpipe library, make use of the ratio of hyperlink- to non-hyperlink-words in a
paragraph (for more information, see Kohlschütter, Fankhauser, & Nejdl, 2010).

Preprocessing steps can refer to the stemming of words, the extraction of hyperlinks,
or the detection of named entities that are mentioned in the news articles. When working
with large datasets, deciding which preprocessing steps to take during the data storage is an
important consideration: While this slows down the process during these initial stages, the
performance of further analyses will benefit if they can build upon a preprocessed version of
the collected data. In other cases, preprocessing might even be essential to enable further
steps of the data collection. External sources such as Wikipedia can be used to augment
information on people or organizations that were detected as named entities. Another
research interest might target extracted hyperlinks to expand the sample in a snowball
approach (e.g. Waldherr, Maier, Miltner, & Günther, 2016).

Figure 3 illustrates a possible preprocessing workflow. When analyzing web data such
as online news and comments, they are often retrieved as HTML pages (1.). This data is
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1. Retrieved 2. Structured 3. Cleaned 4. Enriched
<div>
<span id=‘author’
class=‘big’>
Author: John
Doe </span>
<span id=‘viewed’>
seen 42 times
</span>
</div>

{
“author”:
“ Author: John Doe ”,
“viewed”:
“ seen 42 times ”
}

{
“author”:
“ john doe ”,
“viewed”:
42 ,
}

{
“author”:
“ john doe ”,
“author_gender”:
“ M ”,
“viewed”:
42 ,
}

Figure 3 . Data processing flow. Data types are indicated by a frame for strings of text
and a shade for integer numbers.

then structured by mapping keys to values from the HTML (2.). Data cleaning entails
getting the data types right and removing noise such as uninformative capitalization and
converting strings that contain numbers to numbers (3.). Data can then be enriched by
adding properties that can be deduced, but are not included in, original fields, such as
the gender of a name by looking at external resources that map names to genders (4.).
Depending on the goals of the project (Fig. 2, III), data storage can happen at any stage
in this process.

II. Data – What’s your input?

There is no one right way to store large datasets – the data architecture always needs
to be tailored to the specific data at hand. There are, however, some recurring considerations
that guide the process towards finding the right data structure for a project. As described
in Figure 2, this depends on various properties of the data, starting on a technical level
with the most basic choices regarding data types (see Fig. 2, IIa).

Data types. While there is no consensus on what exactly defines Big Data (see,
e.g., Kitchin & McArdle, 2016), one characteristic of many such datasets is that they are
pooled from many different sources and may contain a fair amount of noise or “messiness”
(e.g., Kitchin, 2014). As we have seen in the previous section, data initially often are
unstructured or semi-structured rather than structured. In addition, the information can
be encoded and represented in many different ways. Structured data can be distinguished
into different data types, most commonly textual data, numeric data, and date/time-specific
data. While this seems like a simple step, there are some pitfalls to be aware of in order to
set up a reliable system.

First, a very basic and yet important note on character encodings: Textual data is
always represented with a specific encoding, defining how every character of the text is tech-
nically stored as a sequence of bits. Historically, a variety of character encodings have been
developed. ASCII, for example, is an early encoding standard, but only supports the 256
different characters essential to English textual data. In order to support special characters
and different languages, Unicode (and the standard UTF-8 encoding in particular) has been
introduced and is today dominant for online content such as news websites. When collecting
data from various sources, however, it is still not uncommon to encounter deviations from
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this standard; before the data is stored it is therefore important to double-check the char-
acter encoding and for non-UTF-8 data to be transformed. Otherwise, special characters
will break and will not be displayed appropriately, or worse: queries may overlook words
that contain special characters.

For numeric data, there are different data types with implications for precision and
storage size. At a basic level, integer types allow for numbers without decimal places and
floating point types allow for numbers with decimal places. Each data type has a specific
value range and precision, i.e. the maximum value and number of decimal places that can
be stored. The higher the value range and the precision, the more space is required to
store each number. A data type should be chosen carefully in order to efficiently store all
possible input data. For instance, if we have a dataset of online news articles, we might
want to enrich this data with information about the author of each article. The journalist’s
age can, for example, be restricted to a 256-value range, which equals one byte. For the
number of comments on the same news article, however, 65,536 values might be needed,
while article length sometimes requires an even larger type. Note that leading zeroes are
not supported by numeric data types; some data such as postal codes or other IDs therefore
may be needed to be stored as textual data, although they seem to be numeric in the first
place.

Another common type is date and time-related data. There are data types for date
only, time of day only, and timestamps, i.e. a combination of both. Besides the plain
value of a date and/or time, a timestamp can also contain information about the time zone.
While the latter requires more storage space, it is crucial when a research project includes
international data (or plans to do so in the future); e.g. to detect that two news articles
were at first glance published at the same time, but one at 3pm CET in Berlin and another
one at 3pm BST in London. Depending on the dataset and the later analysis, opting for
a larger data type is the safe bet to ensure a reliable information retrieval in the analysis
phase.

Database schemas. The degree of certainty with which the researcher knows the
expected data types (such as strings, integers, floats, and dates) varies depending on the
messiness (e.g., Kitchin, 2014) as well as the static or dynamic nature of the data (see
Fig. 2, IIb and c). For instance, three of the “Big Data Vs” – volume, velocity, and variety
– explicitly refer to large amount of different forms Big Data can take. To take a simple
example, there are hundreds of different ways of representing date and time. Thus, the more
different data sources and data points we have to consider for our study, and the more our
data is collected over time, the higher the chance that different schemes are used and that
inconsistencies occur. In very diverse datasets, it is also quite likely that not all attributes
are known for all cases, meaning that we have to deal with missing data. In a Big Data
context, researchers have to carefully consider at which stage in their research process (as
outlined in Figure 1) they want to deal with such problems.

A first approach would be to situate the handling of values that do not conform to
the expected data structure as early in the chain as possible, that is before even storing
them. For example, when using a SQL database, each column of the table has a clearly
defined data type. If, for instance, a column expects a date in a specific format, and it
receive a string that contains a date in a format that is not understood, the database can
reject inserting the record (see Figure 3 for an example of the preprocessing steps necessary
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in such a case).
The key concept here is called a schema. The schema defines which properties a given

object has and what kind of information these properties contain. Think of an object as
an entry in the database, such as a news item. The schema would define what properties
such a news item would have and of which types these properties are. A news item can
have properties such as the text, a headline, an author, a date at which it was published
and the number of times it was read. The schema would ensure that a news item has these
properties and that the text is always a (long) character-string, the headline and author are
(smaller) character-strings, the date is a date/time-object and the number of times it was
read is an integer.

In other cases, it can be of advantage to deliberately decide against enforcing a specific
data structure at the storage stage. A schema-free NoSQL database, for instance, might
accept the insertion of values of any data type for a given key, no matter if the same key
in another case refers to a value of another type: One article might contain a key called
“date” with as value “2016-09-26”, while the next one might have a key “date” with the
value “26 sept 2016” or even 1474840800, which is the number of seconds elapsed since 1
January, 1970 – in fact a common format for representing dates. In this case, the handling of
inconsistencies would have to be handled at the preprocessing or analysis stage (see Fig. 1).

Not enforcing a specific schema at storage time has a number of advantages. In
particular, if data are collected on-the-fly, like in the case of continuous scraping of news
sites, such an approach is more robust. If the data does not come in the expected format or
if parsing fails for whatever reason, then at least some information is stored and the error
might be restored later. This is arguably better than storing nothing. Next to this, with
high-variety data, it might be hard or impossible to devise a schema beforehand, that really
fits all data that are to be collected.

The downside, however, is that the later steps in the analysis pipeline have to take
into consideration the possible inconsistencies in the data. This means that the researcher
has to devise a system of sanity checks and fallback routines to specify how to proceed in
such cases. In any event, they have to be much more cautious in interpreting the results
of their analysis. The reliability of the analysis is at stake if, for instance, the researcher
claims that no article was found for a specific point in time, but this was only due to the
timestamp not being recognized correctly.

An interesting case in this regard is the case of social-media data. When retrieved
via a an API, they usually come as an JSON object, which can directly be inserted into
common NoSQL databases, which saves the researcher the effort to deal with the potentially
complicated nested structure of these data: For instance, the tweets of a given user can
contain a reply to another user, who in turn has some properties that are returned as
well. On the other hand, especially if one is only interested in a subset of the wealth of
information, one can with limited effort extract well-structured and relational information,
which one could store in a schema-enforcing relational database. If one has an analysis in
mind that heavily relies on the network structure of the data, one might also consider graph
databases.

Taken together, in an architecture that relies on the relational database model (e.g.,
SQL), researchers first have to find a table structure that allows for efficient information
retrieval in later phases of the research process. This means they have to consider the
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expected dimensions of individual tables and the combination of information across tables
in advance. Conversely, database models that rely on key-value pairs instead of tables (e.g.,
NoSQL) have a higher flexibility and a much better scalability. Being schema-free (i.e.,
not enforcing a specific data structure), however, also introduces the risk that many more
exceptions have to be handled in the later analysis phase, as assumptions about the data
structure might not hold.

Units of data. Finally, one has to decide on what to consider a “unit” of data. This
can be a file for a file-dump, a row for a relational database, a document for a document
store, or a triple (a node-edge-node combination) for a graph database – all of these are
databases which we will discuss in detail in a later section. For social scientists, units of
data traditionally correspond to observations, typically stored as rows in a table. When
analyzing news articles, tweets, or other textual data, the unit of data can also, for instance,
be a document. But when questions take a different unit of analysis, such as Twitter users
rather than individual tweets, or newspapers rather than articles, the unit of analysis is
no longer the same as the unit being stored. Traditionally, databases excelled mainly by
leveraging information about relations in data to allow these shifts to be rapidly processed.

Consider this example: We have all newspaper articles for 2016, but we are interested
in the sentiment expressed toward Hillary Clinton and Donald Trump per newspaper. If we
have this data stored simply as one article per file (or one big file with consecutive articles),
we must go through each of these files to check whether they mention either Clinton or
Trump. If they do, we then need to evaluate the sentiment expressed in the article, and
figure out which outlet it belongs to. Lastly, we can update the sentiment score for the
respective newspaper. As the collection of articles increases, this becomes increasingly
expensive in terms of the time it takes to compute these metrics. The solution for many
databases is to normalize the data.

Normalization implies splitting data into related units. For news articles stored in
a relational database (such as MySQL), this may imply there are four tables: table 1 that
stores an article’s ID, source, headline, content, and sentiment; table 2 that contains all
named entities (each with an ID) that have been detected, among them Hillary Clinton
and Donald Trump, possibly also including external information on their party affiliation
or political position; table 3 that relates named entity IDs to article IDs; and table 4 that
contains information on the news outlets, such as their political position. One benefit is
that updating Hillary Clinton’s status from presidential candidate to nominee can be done
by changing only one entry in table 2 (the ‘entities’ table), instead of changing this status
for each document separately. By using this structure, a relational database can simply
select the IDs of all articles that mention either Clinton or Trump without having to search
through all article texts; then use this information from table 3 to select all relevant rows
in table 1 – a so-called join-operation – and calculate the mean sentiments aggregated by
source-IDs; results might lastly be added as new columns to table 4 (‘news outlets’ table).

Graph databases go even further. All information is split into small units of ID-value
and ID-relation-ID pieces, so that virtually every query “joins” data. This structure is ideal
for quickly sorting the information based on the relations that are relevant to a given query.
This can be illustrated with the example from above: Due to the high level of abstraction
that is enforced by graph databases, results can be retrieved in a single operation: We simply
calculate the average of ‘sentiment-in’ related to all IDs where either ‘Hillary Clinton’ or
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‘Donald Trump’ have the relation ‘occurs-in’, grouped by values of ‘news-outlet’. Because
relations are stored explicitly, there is no need to look up and remember all IDs that relate
information from one table to a given row in another table – we can simply look at the IDs
in the ‘ID-relation-ID’ store.

If operations on the data for pre-processing or analysis require subsetting, then nor-
malization can have significant speed gains. For instance, we might only be interested
in user comments on articles from liberal news outlets. As the amount of join operation
(i.e. getting data from different “units” together) grows, the relative advantage of a graph
database’s flexible structure play out, making the system a good choice for the analysis. In
the given example, this makes sense if we are interested to add information on the authors
of these comments, and also analyze the ratio to which they exclusively comment within
liberal news outlets.

In other cases, it can make sense to keep data together in larger units of observation
(i.e de-normalized). In particular, as the number of joins as the ones described above drop,
document stores become a better suited alternative. In systems of this type, documents
are generally stored in their entirety, i.e. de-normalized. This makes data retrieval fast for
different fields within the document, although it also means that there is much redundant
information due to duplication (because shared information is stored separately in each
document). For instance, the name, age, and gender of an author will be reflected in each
of his articles, rather than a simple ID that refers to this information in an external table, as
one single row per author. This is fast, because queries related to documents and others do
not have to look them up separately and then join them: they are already contained in the
same unit. However, this comes at the cost of having potentially inconsistent information:
One author’s age might be recorded as 42 in the document containing one article he wrote,
and as 43 in the document of another article. In contrast to a relational database, we do
not have a “single point of truth”.

Comparing the different approaches to normalization by relational databases, doc-
ument stores, and graph databases, Robinson, Webber, and Eifrem (2015) point to some
interesting implications for dealing with very large datasets of connected data. One of
them is the flexibility: In contrast to a normalized SQL database, graph database users do
not have to think in advance about possible relationships, but can just “draw” new edges
between their nodes as the research project progresses, just as they would draw new rela-
tionships on a whiteboard. The other one is the efficiency for some types of analyses in
very large datasets. If, in our example of sentiment towards candidates, a large amount of
irrelevant nodes are somewhere else in the graph, this doesn’t have a negative impact on
performance: “In contrast to relational databases, where join-intensive query performance
deteriorates as the dataset gets bigger, with a graph database performance tends to remain
relatively constant, even as the dataset grows. [. . . ] [T]he execution time for each query is
proportional only to the size of the part of the graph traversed to satisfy that query, rather
than the size of the overall graph.” (Robinson et al., 2015, p. 8)

III. Research design – What’s your goal?

Previous sections have already touched upon the various ways in which the research
design guides our choice for an adequate data structure, so far mainly in an indirect manner
via its obvious interconnection with a project’s data and infrastructure (see Fig. 2, III and
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V). Next to this, the research design informs some considerations on a more general level,
and in this way also directly impacts the choice for some database systems over others. In
the following, we address some of these considerations, concerning the overall project setup,
project priorities, sustainability, and data sharing.

A first consideration refers to the overall setup of the project. Research projects with
a clear aim, scope and timeframe can opt for more rigid but powerful systems. Projects
with a focus on data gathering and either no or less specific aim and scope may simply
write their data to files. The priority in these cases is to first collect as much information
as possible, and then later switch to a structured database when more specific research
questions have come up. Projects with a shorter timeframe that need to quickly iterate
over different approaches are likely to require flexible systems such as document stores.
Such systems require less a priori specification and support quick modification of data-
structure due to their schema-less nature. Other projects will face a self-contained dataset
that can be stored in one go. In those cases, the flexibility of systems may have lower priority
than the reliability and speed of retrieval that come with schema-based systems. In cases
with an ongoing data collection, however, these priorities can change, as researchers need to
make allowances for possible changes: When third-party datasources change their structure,
schema-based systems may reject these new observations whereas schema-less systems may
accept or partially-accept them. For such projects involving long-term ongoing collection of
data from potentially changing sources, flexibility in storage afforded by schema-less systems
may be more important than reliability concerns when analyzing data.

It should also be considered that the broader the scope of the project, and the more
the data will be used in follow-up research or even for unrelated studies, the more one
has to think about the sustainability of the data architecture. This includes issues of
documentation, backup strategies, and keeping raw data – but also choosing an architecture
that can be extended for new types of data whose collection might become necessary in the
future. First of all, it should go without saying that regular backups – kept at different
locations – are imperative. It is less clear, though, what exactly is to be backed up. Next
to a dump of the database itself, it is very advisable to also keep a copy of all unprocessed
raw data. For example, in a system that continuously scrapes articles or comments from
an online platform, next to parsing the content and storing it in a database, it is a safe way
to always also keep an independent copy of the unprocessed HTML code – maybe as a file
with an incrementing number or a timestamp as filename. If, even after years, errors in the
database are discovered, one can still go back to these files and still process them.

It is a good practice to always assume that others will need to access the data in the
future, regardless whether data sharing is already a part of the project setup or not. This
means that the structure of the data should be well-documented, as should be all code that
is written to store and structure the data. In addition, it is very advisable to use a version
control system such as git. On a related note, one should not assume that the data format
of the database backend can be used by others in the future. Therefore, next to creating
regular database dumps in the internal format the database uses, one should additionally
export data to a format that might lack some of the features the database uses, but that
can be read with very limited means. For instance, even though CSV files sometimes can
be a pain to work with, their extremely simple structure and the fact that they are, in fact,
human readable, guarantee that it will be possible to access and work with these files even in
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the distant future. In general, this is also true for JSON or XML files, which can be parsed
relatively easily – even if their use would become uncommon. As none of these formats –
CSV, JSON, XML – includes meta-information on the structure of the data, it is important
to write an accompanying manual, a comprehensive readme-file, with explanations on how
the data file has to be handled.

At several places before, we discussed the difference between schema-free and schema-
enforcing databases. When thinking about making a database future-proof, this is also
something to take into account: In the future, values might be outside of a range specified
today, or it might become necessary to store additional data unavailable today. While it
is difficult to analyze non-textual content today, for instance, researchers will no doubt at
some point have the means to extend the Big Data analysis of news content to images or
even videos.

IV. Expertise – What are your skills?

To some extent, the expertise required for different systems is a subjective matter: Ex-
isting expertise with systems may override concerns about system flexibility and speed; and
lacking expertise may push adoption considerations towards easy-to-run systems. When
building the expertise yourself is a concern, and external support such as academic col-
laboration or IT contracting is not available, ease-of-use becomes an important weighing
factor.

The first intuition might be to save all files to disk – clearly the easiest storage
solution, although it makes data exploration hard. The relational database model is superior
in providing a solid and reliable structure. Prior to storing the documents, however, a
certain expertise in designing schemas and working with relation-markup is required. Due
to the fact that some a-priori decisions on the data structure cannot be reversed, relational
databases are an unlikely choice for users with little to no experience and/or support. Here,
the simple document-oriented nature of document stores shine, as they allow users to start
uploading data with little to no pre-processing or structuring. The flexibility of NoSQL
systems, such as document stores and graph databases, allows for easy changes in the data
structure throughout the process, and thus requires less expertise upfront. This is especially
beneficial in the trial-and-error process of learning how to best structure the data.

V. Infrastructure – What else do you (plan to) use?

Infrastructure concerns a project’s interoperability with existing and future systems,
including hardware and software concerns (see Fig. 2, V). When scaling is required, as is
typical for Big Data projects, hardware becomes a concern. In the planning of the data
structure, researchers should therefore already have an understanding about whether verti-
cal or horizontal scaling is the better option based on their access to few high-power or many
low/medium power machines, respectively. In simple terms, vertical scaling means getting
a better computer (faster, more storage, . . . ), while horizontal scaling means combining the
power and storage of more simpler computers. This needs to be taken into account when
designing the data architecture: Some databases are better suited for the one approach,
others for the other. Especially if one cannot foresee the growth of the system in the future,
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having access to an infrastructure that allows for horizontal scaling can be of great value,
and in the end be a key factor in deciding for one system over the other.

Regarding software, each of the database families comes with good, freely available so-
lutions such as MySQL and Postgress for relational databases, MongoDB and Elasticsearch
for document stores, and Neo4j or OrientDB for graph databases. What matters more
is the interface between the database system and other software that is available and/or
preferred by researchers. Over time, relational databases have built broad support among
software packages, enabling most statistical environments to directly access and query the
database. When working with document stores, interactivity is generally provided through
the use of web-standards in their interface, such as JSON and, to a lesser extent, XML.
Graph databases are relatively under-supported, which may mean that there are no inter-
faces available for specific software packages. If researchers decide for this system based on
the many other advantages it offers, it is advisable to ensure beforehand that data access
will not become a problem.

Another consideration is in how far the infrastructure supports larger cooperations.
In many cases, the same dataset might be re-used for a lot of different purposes, often
beyond what was foreseen at the collection stage. Next to the management of access rights
within and beyond a given project, this also requires researchers to be mindful of scientific
standards for data accessibility and sustainability throughout the process (see Fig. 2, III),
and raises issues of privacy and data security.

Testing and assessing different data architectures

Before setting up the data architecture for a bigger project, it can be advisable to
test and compare the different approaches we presented. To this end, it makes sense to
use a publicly available dataset and perform a set of operations on it that are similar to
what one anticipates for the own project. Such a testing necessarily depends a lot on the
characteristics of the project in question, which makes it difficult to give specific instructions.
A good approach is to use a publicly available datasets – like, for instance, Google’s Hacker
News dataset1. This dataset contains articles as well as comments on these articles from
thehackernews.com, spanning ten years of coverage. After installing different databases
of the three types discussed in this chapter and running some operations on them that
resemble their specific interests, researchers can get first-hand experience in working with
the dataset and compare the performance.

Conclusion and Outlook

We have shown that for many social-scientific purposes, there are no clearly ‘right’ or
‘wrong’ systems, but depending on the project at hand, the one can be more suitable then
the other. Some of the most important criteria to consider are summarized in Table 1.2

The consequences of the choice for one system over another play out in the daily
work of the social scientist and influence all other steps in the social-scientific workflow (see
Fig. 1). Trade-offs can be described along two dimensions: consequences along the lines of

1https://cloud.google.com/bigquery/public-data/hacker-news
2Because file dumps are, as we have explained, mainly a useful as additional strategy and are very

ineffective for performing actual analyses, we did not include them in the table.
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Table 1
Databases and project considerations

Project consid-
erations

Relational database Document store Graph database

Data homogenous data w.
little pre-processing

heterogenous data w.
much pre-processing

semi-structured data

Research
design

clear, narrow ques-
tions with fixed
datasets or data with
fixed structure

exploring but unit-
centered, ongoing
third-party datasets

broad, relation-
focused with varying
data

Expertise legacy software re-
quires training prior
to data collection

quick development
with low barriers to
entry

specific skills but rela-
tively simple model

Infrastructure broad existing support
in software libraries for
inter-operability

easy integration in
modern packages
and machines based
on web-standards
(JSON); easy horizon-
tal scaling

may require custom in-
tegrations and adapta-
tions

ease-of-storage versus reliability-of-retrieval on the one hand, and consequences along the
lines of ease-of-use versus power-to-explore on the other.

Ease-of-storage vs. reliability-of-retrieval. Ease-of-storage is strongest in doc-
ument store-systems such as MongoDB. These databases do not enforce a schema and will
accept new units of data even when the data-types contradict earlier data-types. Similarly,
graph databases generally do not enforce a schema, so that added nodes and edges can
have keys with values of varying datatypes. The flexibility of these systems comes at the
expense of the reliability of retrieval. Take the case of ten documents with a field called
“created_at”, of which six are stored as date/time-data types and four as strings (e. g. “29
feb 2016”). A query that looks for all documents in a specific time range will only retrieve
the six entries with the correct format and most likely silently ignore the four that come in
another, as they cannot be processed. The same problem occurs with arithmetic operation
on data where a string is stored but an integer or float is expected. With such schema-less
systems, researchers must be careful to check their assumptions about data types.

Reliability of retrieval is highest in relational databases such as MySQL. By enforcing
a schema, these databases ensure that queries provide an appropriate response over all
data. The downside of enforcing a schema is that the ease-of-storage suffers. For instance,
when data is actively gathered by means of a web scraper, an inconsistent date string (e.g.,
“02/29/2017” where “29-2-2017” is expected) might mean it is no longer accepted by the
database. The database might throw an error, or simply not store any information. Some
common problems that must be handled by the researcher are data extraction from strings
(such as “#10” to 10), recoding of missing values (“none” to Null) and unexpected new
fields. It is important to understand that such observations – albeit not schema-conformant
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and therefore in need of pre-processing – are still valid and important in terms of research
purposes. Researchers opting for schema-based systems need to keep this in mind and be
careful to avoid the loss of information. A reliable workflow therefore starts by creating a
backup in parallel, e.g. by gathering the data into file-dumps. From there, the information
still can be transferred into the database, allowing researchers to later restore otherwise lost
information.

Ease-of-use vs. power-to-explore. Another difference in the consequences for
the researchers’ daily work may lie in the focus on easy-to-use systems over power-to-explore.
Document stores are generally oriented towards storing data with little to no preparation
of the system, whereas graph databases are pointless without the definition of relations and
relational-databases even require careful planning and specification of a schema before in-
serting any data. The costs of these pre-storage decisions comes in both the training needed
to understand the choices and their repercussions, as well as in designing and applying these
data-models to the database in the context of a given project. The upside of using systems
with an explicit data-model go beyond the assurances about reliability-of-retrieval. As a
trade-off for requiring more expertise and planning, researchers are awarded with a gener-
ally more powerful system in terms of exploration-affordances. Relational databases shine
in their ability to aggregate at different units-of-analysis due to the normalized nature of
the data. By spreading observations in different units of storage, relational databases can
quickly examine relationships in the data. Another advantage is that computations and
enrichment can be added efficiently; for instance, to add the gender of a journalist to the
database, only the respective entry in the author table needs to be edited, rather than going
through all news articles to add the information there. Graph databases provide even more
support for exploring a dataset by fully reducing data to node-edge-node triples: By linking
individual values through relations, queries such as “how many articles do which authors
write about the elections?” are easy to compute – provided that the articles have previously
been enriched with a key that stores information on their topic.

Naturally, the considerations presented in this article are not exhaustive. In partic-
ular, we did not discuss the possibility of scaling up an infrastructure using frameworks
such as Hadoop, in which both calculation and storage of large data sets are distributed
across multiple machines in a cluster. The strength of MapReduce based solutions such as
Hadoop is that they distribute a task across several machines. This is mainly interesting
for the analysis of Big Data, as it greatly speeds up the analysis. But it also implies the
distribution of data using a distributed file system. In that sense, the choice for a framework
like Hadoop is related to data architecture as well. However, this does not necessarily have
to result in fundamentally different choices: Databases like MongoDB and Elasticsearch
can simply be run on top of Hadoop. Horizontal scaling using such frameworks works very
well for most document stores, which means one can easily add additional machines to the
system if necessary. Scaling up a relational database system can be more tricky. For many
social-scientific questions, systems that run on just one machine are sufficient, especially for
applications in which performance plays a role or in which a lot of data is created dynami-
cally. If horizontal scaling is needed, however, the general decision framework we presented
here (see Fig. 2) is applicable to such contexts as well.

In this chapter, we outlined how the amount and characteristics of data often used
in computational social science influence the traditional social-scientific research process.
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In particular, we challenged the implicit assumption that data storage is mere logistics,
without any meaningful considerations for researchers to make at this stage. We state
that, in computational social science, the choice for a specific data architecture has become
an independent step in the research process. Although mundane, its significance can be
compared to the way the sampling or the choice for specific instruments and levels of
measurement shape the (traditional) research process in terms of the analysis that can
be conducted later on. Similarly, Vis (2013) argued that when collecting online data, the
researchers’ choices and the characteristics of the techniques used (e.g., APIs) “make” the
data. She writes: “Researchers should aim to make themselves more aware and reflect more
on the process through which they have collected data and make this as transparent as
possible.” We want to extend this line of reasoning to the data architecture and the choices
researchers make around the storage of the data. The misperception of this stage as a mere
technical problem reflects an outdated research logic that is no longer sufficient in the age
of Big Data.

Considering this, we proposed four dimensions that need to be addressed in Big Data
projects to assist researchers in their choice for an adequate system: the data, the research
design, the expertise, and the infrastructure. We hope that the proposed guidelines help to
spark a sound methodological discussion about the research process in our field, that does
not see questions of data storage as a merely technical problem, but as an integral part of
the computational social science.
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Appendix: Overview of Technical Terms

Term What is it? Example

HTML tag Building block of web pages auch as
title, heading, paragraph, hyperlink,
image, list, table

<a href=“http://www.nytimes.com/”>The
New York Times</a>

CSS Cascading Style Sheets; language to
describe the presentation of a web
page; e. g. attributes style classes to
HTML tags that indicate presenta-
tion such as blue color

<a href=“http://www.nytimes.com/”
class=“link_to_source”>The New
York Times</a>

CSS selector Rule to find and extract a specific
part of a web page, looking for a tag
with a specific CSS class

class=“link_to_source” could be
targeted to extract all blue hyper-
links in a web page

XPATH Rule to find and extract a specific
part of a web page, similar to CSS
selectors
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(Information) Re-
trieval

Describes the activity of providing
access to unstructured information
in various data storage systems

Data-related

Data A collection of observations newspaper articles, posts on Hacker
News, etc.

Unit of data / unit
of observation

a set of data-points, generally about
one object, such as a newspaper arti-
cle, which includes data points such
as the headline, the content, the
author, the number of times read
etcetera.

A newspaper article, a post on
Hacker News

Data points a specific value associated with a
unit of data, such as the name of an
author of the number of times an ar-
ticle is read

10 (times read), "John Doe" (author)

Data model An implicit, but preferably explicit
understanding of data including the
format and relations. Not to be
confused with the schema, which
is a specific formatting requirement
based on the more abstract data-
model

Database-related

Schema Describes the structure of a
database, i.e. which tables ex-
ist with with columns and how they
are related to each other, often
represented as a diagram

SQL Structured Query Language; lan-
guage to interact with a relational
database; typically used to insert,
modify, query, and delete data

SQL query is an operation based on the SQL
language

Find the titles of all articles from
the source with id 5: SELECT title
FROM articles WHERE source_id
= 5;
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SQL join Combination of two tables in an SQL
query based on a common field be-
tween them

Find the titles of all articles includ-
ing URLs from the source with name
“The New York Times”: SELECT
title, url FROM articles JOIN
source ON articles.source_id =
source.id WHERE source.name =
‘The New York Times’;

Document Unit-of-storage for document-stores,
often a variant of JSON

(see JSON)

JSON JavaScript Object Notation, a com-
mon web-format for data inter-
change

{"headline":"How to store
data", "author":"John Doe",
"tags":["databases","tutorial"],
"times_read":10}

Triple a value-relation-value set stored in a
graph database / triplestore

"John Doe"–"author of"–"How to use
databases"
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