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Chapter 1

General introduction

In this thesis we develop and analyze possible improvements for human mortality
models. The fact that people die, on average, at higher ages is well-known, and the
uncertainty surrounding this process is known as longevity risk. It has become a
major issue in financial risk management for insurance companies and pension funds.
This chapter gives a general introduction to longevity risk and introduces the topics
that are investigated in later chapters.

1.1 Longevity risk

Until the early nineties, pension funds and insurance companies valued their liabilities
using mortality tables that were based on an average of observed mortality over some
historical period (e.g. five years). Possible future developments were not taken into
account. As a result, insurance companies and pension funds recognized that mortal-
ity was improving, but they were lagging behind the most recent developments.

In 1992, a seminal mortality model was developed by Lee and Carter (1992). In
their article, mortality is modeled using a random walk with drift, and future mortal-
ity developments are explicitly taken into account. Around the same time, insurance
companies in the Netherlands noticed that their periodically updated mortality tables
suggested that mortality-linked products were profitable and longevity-linked prod-
ucts led to losses. They concluded that mortality projections which include a mortality
trend were needed. The Dutch Association of Insurers (Verbond van Verzekeraars)
set up a committee to investigate methods that could be used for the pricing of life
insurance products, and they came up with a model that shows similarities with the
Lee-Carter model (Tornij (2004)).

For a long time, having some losses due to mortality and longevity risk did not
pose problems for insurance companies and pension funds. Insurance companies gen-
erated large profits due to high stock returns, and pension funds showed high funding
ratios. In the Netherlands and in many other countries, some pension funds even
gave premium holidays. This meant that the boards of some pension funds decided

1
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1. General introduction

that members could accrue new pension rights without having to pay extra premiums
since the funding ratios were so high.

Then, in the beginning of the new millennium, stock markets crashed, while inter-
est rates had been decreasing since the early nineties. As a result, solvency ratios of
insurance companies and funding ratios of pension funds deteriorated substantially.
Further, it became widely accepted that even though developments in mortality had
been taken into account, previous predictions had underestimated the improvements
in mortality. Oeppen and Vaupel (2002) show that experts defined upper limits to
life expectancy which continued to be broken. For example, they illustrate how the
worldwide record for male life expectancy increased steadily over the past 160 years
by a quarter of a year per year (on average), which is much faster than was anticipated
by the experts.

In recent years, more empirical research has been performed on mortality projec-
tions for populations, and the methods used by public institutions seem to converge.
New mortality forecasts showed steeper mortality trends than before, which led to
higher liability values for pension funds.

January 1st 2016 Solvency II, the new legislative framework for European insur-
ance companies, has become effective. This is prudential legislation that prescribes
the amount of capital that insurance companies in the European Union have to hold
to reduce the risk of insolvency. The rules that are used to determine the required
solvency capital under Solvency II (the so-called Standard Formula) are more com-
plex than they were in Solvency I, though still so simple that they can easily be
implemented. The Standard Formula, however, does not always closely represent the
specific risks faced by an insurer. Insurance companies are therefore allowed to build
an Internal Model for risks, and they can use this Internal Model to determine their
required solvency capital. This option has stimulated large(r) insurers to look more
closely at the different risks that they face in their insurance products, and this is
specifically the case for longevity risk of life insurers.

1.2 Heterogeneity in populations

People with a different socioeconomic background and different life style experience
a different level of mortality. Pension funds may wish to account for this when valu-
ing their liabilities, e.g. by distinguishing different risk profiles when defining their
mortality assumptions.

Chetty et al. (2016) find, in a study on historically observed mortality in the USA,
that the difference in (period) life expectancy between the richest 1% and poorest 1%
of individuals was approximately 14.6 years, and that differences can be substantial
between different geographic locations. Villegas and Haberman (2014) construct five
socioeconomic classes based on seven characteristics such as income deprivation and

2
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education. They find that differences in socioeconomic classes may lead to differences
in annuity prices up to 20%.

Based on these results, it is clear that forecasts for the future survival rates of
policyholders in insurance companies and participants in pension funds will benefit if
both historical data on the level of the whole population as well as portfolio-specific
information is explicitly taken into account.

1.3 Contribution of this thesis

We provide an introduction to stochastic mortality modeling in Chapter 2, to provide
the reader with some background knowledge and to define the notation that is used
in the following chapters. We first introduce stochastic mortality models and show
how mortality forecasts can be obtained from datasets using time series methods. We
illustrate this by applying the Lee-Carter model to a dataset for the whole population
of Dutch males and females. We also analyze the impact of parameter uncertainty
in mortality forecasts using a Bayesian implementation of the same model. Finally,
we provide an overview of different approaches used to obtain forecasts of portfolio-
specific mortality rates.

To describe time-varying effects (usually called ‘period effects’ in the actuarial
literature), linear time series models are used. When applied to single population
models, the resulting forecasts do not always show an intuitive continuation of histor-
ical observations. In Chapter 3 we therefore propose an approach to detect whether
there are structural changes present in the observed period effects. If this is the case,
we use a different forecasting approach to ensure the forecasts are in line with the
historical observations. We show that the predictive performance of our approach
compares favorably with other approaches used in the literature.

In Chapter 4 we separate different sources of uncertainty in portfolio mortality:
parameter uncertainty, individual mortality risk, and uncertainty in future mortality
rates. We introduce a model to jointly estimate mortality in the England & Wales
population and in the CMI dataset on assured lives, which is a subset of that popula-
tion. We use a Bayesian approach to calibrate our combined model, which allows us
to separate parameter uncertainty from individual mortality risk. We also illustrate
the relative importance of different sources of uncertainty when projecting mortality
for a subpopulation. This allows us to characterize the impact of portfolio size on the
uncertainty of future mortality, and to conclude when modeling of subpopulations is
useful and when not.

Finally, in Chapter 5 we study observed mortality in a large Dutch pension fund.
We use Poisson regression in generalized additive models to estimate smooth effects
of risk factors (as opposed to only linear effects). We use information criteria and
proper scoring rules to determine how much the various risk factors contribute to the

3
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explanation of historically observed mortality. For a pension fund (or insurance com-
pany), however, it is even more relevant to accurately predict liabilities. Therefore,
we also investigate which risk factors contribute most to the accuracy of predictions
for future dynamics in a pension fund’s value of liabilities. We introduce a novel fi-
nancial backtest specifically for this purpose, and show that this may lead to different
conclusions than other, more classical, backtesting procedures.

4
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Chapter 2

Introduction to mortality modeling

In this chapter we provide a short introduction to stochastic mortality modeling and
introduce our notation.1 First, we discuss how mortality variables on the individual
and the aggregated level are constructed from raw mortality data in Section 2.1. In
Section 2.2 we introduce the seminal stochastic mortality model introduced by Lee and
Carter (1992) and extensions from that model that have been developed since then.
In Section 2.3 we discuss the different forecasting methods that have been proposed
in the literature and illustrate how mortality predictions can be obtained using the
Lee-Carter model. In Section 2.4 we formulate a Bayesian version of the Lee-Carter
model. We show how this allows us to characterize parameter uncertainty and its
effect on mortality forecasts. Finally, in Section 2.5, we discuss different approaches
to obtain mortality predictions for a specific pension fund or insurance portfolio.

2.1 Mortality observations

We introduce the following notation that will be used throughout this thesis unless
stated otherwise. We usually consider integer ages x ∈ X = {x1, x1 + 1 . . . , xX} and
integer calendar years t ∈ T = {t1, t1 + 1, . . . , tT }; we thus have X ages and T years.
A person aged x in calendar year t is said to be from cohort c = t−x; this is the year
of birth for that person.

2.1.1 Deaths and exposures

For a population we define the observed number of deaths with an age in [x, x + 1)

at death and time of death in [t, t + 1) (i.e. during calendar year t) as dt,x. The
corresponding exposure-to-risk of people aged x during calendar year t is Et,x. This
exposure is the total number of ‘person-years’ in a population over a calendar year,
and Pitacco et al. (2009) interpret it as the average number of individuals in the

1 Section 2.1 is largely based on Chapter 3 from Pitacco et al. (2009), sections 2.2 and 2.3 are
based on the introductory part from van Berkum et al. (2016), Section 2.4 is based on van Berkum
et al. (2017a), and Section 2.5 is based on van Berkum et al. (2017a) and van Berkum et al. (2017b).

5
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population over a calendar year, adjusted for the length of time they are in the
population. For an individual person j we denote the individual death observation
by δt,j,x and individual exposure by τt,j,x. Below we illustrate how these variables
are determined on the individual level, and we show how to construct aggregated
observations from the individual ones.

Individual level. We consider integer years t, integer and non-integer ages x and x̃
respectively.2 An individual aged x̃ = x+ ι at the beginning of year t with ι ∈ [0, 1),
celebrates his birthday at t+(1−ι). There are three possible outcomes with respect to
survival in year t, and the corresponding death and exposure observations are defined
as follows:

• Individual j survives year t:

t t + 1birthday

δt,j,x = 0

τt,j,x = birthday− t

δt,j,x+1 = 0

τt,j,x+1 = (t+1)−birthday

• Individual j dies during year t, before his birthday:

t t + 1birthdaydeath

δt,j,x = 1

τt,j,x = death− t

δt,j,x+1 = 0

τt,j,x+1 = 0

• Individual j dies during year t, at or after his birthday:

t t + 1birthday death

δt,j,x = 0

τt,j,x = birthday− t

δt,j,x+1 = 1

τt,j,x+1 = death−birthday

For individual j aged x̃ at the beginning of year t we thus obtain observations on
death counts δt,j,x and δt,j,x+1 and observations on exposures τt,j,x and τt,j,x+1. In
the figures above we see that if individual j survives year t, the contribution to
observed deaths is zero and the total contribution to the exposure-to-risk is one (=

2The distinction between integer and non-integer ages is only needed in this section. In the
remainder of this section we only consider integer ages.

6
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2.1. Mortality observations

τt,j,x + τt,j,x+1). If individual j dies during calendar year t, the total contribution to
the risk exposure is less than one, and either δt,j,x or δt,j,x+1 is one, depending on
when individual j died.

Aggregated level. Consider Lt,x individuals who are alive at the beginning of
year t with ages in [x, x + 1). Using the observations δt,j,x and τt,j,x for individual
j, the total number of observed deaths dt,x and the total exposure-to-risk Et,x in the
population are given by

dt,x =

Lt,x∑
j=1

δt,j,x and Et,x =

Lt,x∑
j=1

τt,j,x. (2.1)

For many countries these statistics can be downloaded from the Human Mortality
Database (HMD).3

In Chapter 5 we construct aggregated mortality statistics from individual mortality
data using the methods described above. In all other cases in the remainder of this
thesis we always use mortality data from HMD.

2.1.2 Mortality rates

Using the mortality statistics as defined in the previous section we define the central
death rate mt,x as

mt,x =
dt,x
Et,x

. (2.2)

The central death rate is not restricted to the interval [0, 1] as one might expect.
Consider the case where there is only one person aged x in calendar year t and
assume this person dies during year t. The observed number of deaths dt,x equals one
with a corresponding exposure-to-risk Et,x smaller than one, which leads to mt,x > 1.
The central death rate should therefore not be interpreted as a mortality probability
but rather as a frequency.

The mortality probability qt,x is restricted to the interval [0, 1]. This is the prob-
ability that someone aged exactly x at the beginning of calendar year t dies within
the next year. In a similar way, hqt,x is used to denote the probability that someone
aged exactly x at the beginning of calendar year t dies within a period h, i.e. before
reaching age x+ h at time t+ h.

3The Human Mortality Database is a joined project of the University of California at Berkeley
(USA) and the Max Planck Institute for Demographic Research (Germany). Data are available
at http://www.mortality.org, and see http://www.mortality.org/Public/Docs/MethodsProtocol.
pdf for a description of the methods that are used to construct the datasets.
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In a continuous time framework, we can also consider the force of mortality µt,x
with (t, x) ∈ (R+ × R+). This is an instantaneous rate of mortality, and it is defined
by

µt,x = lim
h↓0

hqt,x
h

. (2.3)

In survival analysis, this quantity is known as the hazard function. The cumulative
survival probability hpt,x is the probability that someone with exact age x at the
beginning of year t survives a period of length h. We can express the cumulative
survival probability as a function of the force of mortality:

hpt,x = exp

[
−
∫ h

0

µt+s,x+sds

]
, for h ≥ 0. (2.4)

In practice, we do not have mortality data available in continuous time. To facilitate
the development of continuous time models that can be estimated using data on
discrete intervals, we assume a piecewise constant force of mortality.

Assumption 2.1 (Piecewise constant force of mortality). Let x and t be inte-
gers. Then, the force of mortality µt+s,x+u satisfies µt+s,x+u = µt,x for all s and u in
[0, 1).

Under Assumption 2.1, the period h mortality probability for h ∈ [0, 1) is given by

hqt,x = 1− hpt,x = 1− exp

[
−
∫ h

0

µt+s,x+sds

]
Ass. 2.1

= 1− exp

[
−
∫ h

0

µt,xds

]
= 1− exp [−h · µt,x] . (2.5)

Now suppose we have available mortality data δt,j,x and τt,j,x for each individual
j ∈ {1, 2, . . . , Lt,x}. We can estimate µt,x under Assumption 2.1 using a likelihood
method, if no further modeling assumptions are made on the forces of mortality. The
contribution of individual j to the likelihood can then be written as

pt,x = 1− qt,x = exp[−µt,x] (2.6)

if he survives, and

τt,j,xpt,x · µt+τt,j,x,x+τt,j,x

(2.5)
= exp[−τt,j,xµt,x]µt,x. (2.7)

These two expressions can be combined into a single expression, and under the as-
sumption of independence for individual lifetimes given the forces of mortality we can

8
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then define the total likelihood as

L(µt,x) =

Lt,x∏
j=1

exp[−τt,j,xµt,x] · (µt,x)δt,j,x

= exp[−Et,xµt,x] · (µt,x)dt,x . (2.8)

The last expression is proportional to a Poissonian likelihood for a stochastic number
of deaths Dt,x ∼ Poisson(Et,xµt,x). This result is used in later chapters to justify
using the Poisson likelihood when modeling death counts.

The maximum likelihood estimate (MLE) for µt,x is obtained by maximizing
L(µt,x) with respect to µt,x, and the solution is given by

µ̂t,x =
dt,x
Et,x

= mt,x. (2.9)

In this section we have defined three different mortality-related quantities: the central
death rate mt,x, the mortality probability qt,x, and the force of mortality µt,x. When
we discuss mortality-related topics but the discussion is not specific to either one of
the quantities, we may refer to all these quantities in general as ‘mortality rates’.

2.2 Stochastic mortality models

In the previous section we have introduced definitions of mortality observations. Fig-
ure 2.1 shows the development of historical central death rates for Dutch males and
females. We observe that mortality is not constant through time, and that it develops
differently for different ages. This led Lee and Carter (1992) to define a new model to
explain observed mortality and predict future mortality. We now discuss this model
and several extensions.

2.2.1 The Lee-Carter model

Lee and Carter (1992) introduce the following mortality model to explain observed
death rates:

lnmt,x = αx + βxκt + ηt,x, (2.10)

with the ηt,x iid stochastic variables with mean zero. The variable αx represents some
baseline mortality level for age x, the variable κt captures the dynamics over time
in a general level of mortality in the population, and the variable βx represents the
sensitivity of age x for changes in this general level of mortality. The Lee-Carter
model is a single-factor model since it contains only one factor that evolves over time;
this implies that mortality improvements at all ages are perfectly correlated.

9



“Thesis_Frank_van_Berkum” — 2018/2/16 — 14:05 — page 10 — #26

2. Introduction to mortality modeling

0 20 40 60 80

−10

−8

−6

−4

−2

Age

ln mtx

Males

0 20 40 60 80

Age

Females

1950
1960
1970
1980
1990
2000
2010

Figure 2.1: Observed central death rates mt,x for Dutch males (left) and females (right)
aged 0-90 for selected years between 1950 and 2010.

Lee and Carter estimate this model using a Singular Value Decomposition (SVD),
and they model the period effect κt using a random walk with drift to generate
mortality projections:

κt = κt−1 + δ + εt, εt
iid∼ N(0, σ2

ε), (2.11)

with ηt,x and εt assumed independent.
Brouhns et al. (2002) explicitly take into account that the deaths dt,x contain two

sources of uncertainty: the uncertainty due to the dynamics in the force of mortality
µt,x, and the uncertainty in the deaths given this force of mortality. They model the
force of mortality instead of the death rate mt,x:

Dt,x|µt,x ∼ Poisson(Et,xµt,x), with lnµt,x = αx + βxκt. (2.12)

This model can be estimated by maximizing the likelihood of the observations dt,x of
Dt,x (and the exposures Et,x), using numerical optimization techniques such as the
Newton-Raphson algorithm.

The Lee-Carter model is not uniquely identified. Consider for example the follow-
ing two parameter sets:

αx
βx
κt

 and


α̃x
β̃x
κ̃t

 =


αx − cdβx

cβx
κt

c + d

 .

The log force of mortality for both parameter sets equals lnµt,x = αx + βxκt. Hence,
linear transformations of the parameters αx, βx and κt can lead to the same force of

10
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Figure 2.2: Parameter estimates for the Lee-Carter model applied to mortality data on
Dutch males and females aged 0-90 in the years 1950-2016.

mortality. The following parameter constraints are applied to avoid this identification
problem:∑

t

κt = 0, and
∑
x

β2
x = 1. (2.13)

Under these parameter constraints, we have that α̂x = 1
T

∑
t∈T lnµt,x, which means

that αx represents the average logarithmic force of mortality for age x during the
observed period.

Example 2.2 (Lee-Carter applied to Dutch mortality data). In Figure 2.2 we
show parameter estimates for the Lee-Carter model applied separately to Dutch males
(blue) and females (magenta) aged 0-90 in the years 1950-2000. These parameter es-
timates are obtained by maximizing the Poisson likelihood specification as in (2.12)
using the Newton-Raphson algorithm. In the left panel we note several commonly
observed characteristics in the pattern of αx (the mean log force of mortality). Mor-
tality for the first life year is relatively high, but decreases rapidly for youngsters.
After the age of 10, the logarithmic force of mortality increases almost linearly up to
the highest ages. Only for the ages around 20 years, we observe a ‘hump’ in mortality
which is often referred to as the ‘accident hump’. This hump is more pronounced for
males than for females, because males tend to live more dangerously than females at
this age.

The middle panel shows that – for the dataset considered – mortality for young
males improves at a faster rate than for older males (for the highest ages there is
actually almost no improvement in mortality). The pattern is different for females.
Improvements are highest for the youngest ages, but also for higher ages mortality
improvements are still substantial.

11
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Table 2.1: An overview of model specifications used in this thesis. The variables β(i)
x ,

κ
(i)
t and γt−x represent age, period and cohort effects respectively,

(x̄− x)+ = max{x̄− x, 0} and logit q = ln(q/(1− q)). Variables used in this
table but not defined before: x̄ is the average of the ages in X ,
b(x) =

(
(x− x̄)2 − 1

n

∑
xi∈X (xi − x̄)2

)
, c(x) = (x̄− x)+ + [(x̄− x)+]2, and xc

is a constant which can be chosen a priori or can be estimated. We estimate
the model for all possible xc ∈ X , and the value of xc is chosen such that the
likelihood is maximized.

Model Formula

M1 lnµt,x = β
(1)
x + β

(2)
x κ

(2)
t

M1A lnµt,x = β
(1)
x + β

(2)
x κ

(2)
t + β

(3)
x κ

(3)
t

M2 lnµt,x = β
(1)
x + β

(2)
x κ

(2)
t + β

(3)
x γt−x

M2A lnµt,x = β
(1)
x + β

(2)
x κ

(2)
t + β

(3)
x κ

(3)
t + γt−x

M3 lnµt,x = β
(1)
x + κ

(2)
t + γt−x

M5 logit qt,x = κ
(1)
t + (x− x̄)κ

(2)
t

M6 logit qt,x = κ
(1)
t + (x− x̄)κ

(2)
t + γt−x

M7 logit qt,x = κ
(1)
t + (x− x̄)κ

(2)
t + b(x)κ

(3)
t + γt−x

M8 logit qt,x = κ
(1)
t + (x− x̄)κ

(2)
t + (xc − x)γt−x

M9 lnµt,x = β
(1)
x + κ

(1)
t + (x̄− x)κ

(2)
t + (x̄− x)+κ

(3)
t + γt−x

M10 lnµt,x = β
(1)
x + κ

(1)
t + (x̄− x)κ

(2)
t + (x̄− x)+κ

(3)
t

M11 lnµt,x = β
(1)
x + κ

(1)
t + (x̄− x)κ

(2)
t + (x̄− x)+κ

(3)
t + b(x)κ

(4)
t + γt−x

M12 lnµt,x = β
(1)
x + κ

(1)
t + (x̄− x)κ

(2)
t + (x̄− x)+κ

(3)
t + (xc − x)γt−x

M13 lnµt,x = β
(1)
x + κ

(1)
t + (x̄− x)κ

(2)
t + c(x)κ

(3)
t + γt−x

Finally, the right panel shows the development in the general mortality trend over
all ages for Dutch males and females, as captured by the time series κt. For males
there seems to be a ‘kink’ in the time series around 2000, whereas for females it looks
more like a straight line since 1950.

2.2.2 Extensions of the Lee-Carter model

The Lee-Carter model introduced in the previous section is used in many papers
as the reference model since for many datasets it results in plausible mortality rate
projections (the projection of mortality rates is discussed in the next section), and
in general because of its simplicity. However, the Lee-Carter model also has some

12
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well-known limitations:

• The model contains a single period effect, and as a result, mortality improve-
ments are perfectly correlated over different ages. In Figure 2.1 however, we see
that historical mortality developments are different at different ages;

• From Figure 2.3 we observe that the model is not always able to fit the historical
observations equally well for all ages. Therefore, mortality forecasts may not
always connect nicely with recent observations;

• The model contains many parameters: two for each age included and one for
each calendar year included. A mortality calibration exercise therefore easily
requires more than 200 parameters.

Several extensions of the Lee-Carter model have been introduced to overcome these
limitations. All extensions of the Lee-Carter model contain more than one time-
dependent effect and therefore no longer result in mortality improvements that are
perfectly correlated over different ages. In Table 2.1 we list the extensions of the
Lee-Carter model that will be considered in Chapter 3, and we discuss the motivation
for some of these below.

Improving the model fit. Lee and Carter (1992) estimate their model using a
Singular Value Decomposition (SVD). In that model, the eigenvector corresponding
to the largest singular value is used to create a single factor (the period effect κt).
The rationale for this approach is that the first eigenvector explains a large part of
the observed variation. Renshaw and Haberman (2003) consider a natural extension
of the Lee-Carter model in which multiple eigenvectors are used, and they illustrate
their approach using two factors (this model is denoted M1A in Table 2.1).

Renshaw and Haberman (2006) observe that residuals from the Lee-Carter model
contain a ripple effect when considered over the year-of-birth-axis. They extend the
Lee-Carter model with a cohort effect γc with c = t−x to take care of this phenomenon
(model M2).4 Currie (2006) considers the Age-Period-Cohort model (APC, model M3
in Table 2.1) that is often used in the biostatistics literature. The APC model differs
from the other models considered, since it does not contain bilinear terms. With the
introduction of a cohort effect there is no longer a discernible pattern in the residuals.
However, the estimated cohort effect is often far from linear and recent cohorts contain
only a few datapoints. It is therefore difficult to generate plausible mortality forecasts
for future cohorts.

4The model introduced in Renshaw and Haberman (2006) has β(3)
x = 1 for all x, but the authors

generalized the model in Renshaw and Haberman (2006) by the introduction of an age-dependent
β
(3)
x .

13
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Table 2.2: Overview of the parameter constraints imposed on the models.

Model Constraints

M1
∑

x β
(2)
x = 1

∑
t κ

(2)
t = 0

M1A
∑

x β
(2)
x = 1

∑
t κ

(2)
t = 0

∑
x β

(3)
x = 1

∑
t κ

(3)
t = 0

M2
∑

x β
(2)
x = 1

∑
t κ

(2)
t = 0

∑
x β

(3)
x = 1

∑
t,x γt−x = 0

M2A
∑

x β
(2)
x = 1

∑
t κ

(2)
t = 0

∑
x β

(3)
x = 1

∑
t κ

(3)
t = 0

∑
t,x γt−x = 0

M3
∑

t κ
(2)
t = 0

∑
t,x γt−x = 0

M5 (no constraints needed)

M6
∑

c γc = 0
∑

c cγc = 0

M7
∑

c γc = 0
∑

c cγc = 0
∑

c c
2γc = 0

M8
∑

t,x γt−x = 0

M9
∑

c γc = 0
∑

c cγc = 0
∑

t κ
(3)
t = 0

M10
∑

t κ
(1)
t = 0

∑
t κ

(2)
t = 0

∑
t κ

(3)
t = 0

M11
∑

c γc = 0
∑

c cγc = 0
∑

c c
2γc = 0

∑
t κ

(3)
t = 0

M12
∑

t,x γt−x = 0

M13
∑

c γc = 0
∑

c cγc = 0
∑

t κ
(3)
t = 0

Reducing the number of parameters. Cairns et al. (2006) note that the force of
mortality for pensioners is approximately log linear. They use this property to define
a model with prescribed functional forms for the age effects so they only have to
estimate period effects (model M5). Cairns et al. (2009) generalize M5 by introducing
a cohort effect and other age effects (models M6-M8). However, since these models
are designed for mortality of pensioners, one should be careful when applying them
to other age ranges.

Improving the model fit while keeping the number of parameters limited.
Plat (2009a) defines a model that is appropriate for a wider age range. To capture dif-
ferent mortality dynamics at different ages, he introduces period effects for specific age
groups (model M9). To ensure that the number of parameters does not increase too
much, he multiplies the period effects for specific age groups by parametric functions
of age.

Haberman and Renshaw (2011) investigate several stochastic mortality models,
and they propose models in which characteristics from the models in Cairns et al.
(2009) and from M9 are combined (models M10-M12). O’Hare and Li (2011) define a
variant of M9 in which the age effect for specific groups is quadratic instead of linear
(model M13).

14
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Nearly all extensions of the Lee-Carter model exhibit similar identification problems.
Unless stated otherwise, we apply the parameter constraints shown in Table 2.2 when
estimating these models. Note that for the models M2, M2A, M3, M8 and M12 the
parameter restriction is written as a summation over both t and x, whereas for the
models M6, M7, M9, M11 and M13 the parameter restriction is written as a summa-
tion over c = t− x. In the first case, the weighted average of the cohort effect should
be zero (weighted over the frequency of the cohorts in the dataset), and in the second
case the average of the cohort effect should be zero (each cohort counted once with
equal weight).

The fit on historical data is improved by the introduction of a cohort effect and pe-
riod effects for specific age groups. However, the introduction of extra time-dependent
parameters complicates mortality forecasting. Prediction of the cohort effect proves
to be especially difficult, and Haberman and Renshaw (2011) therefore even avoid
prediction of γc. In the next section we discuss the prediction of period and cohort
effects.

2.3 Forecasting mortality rates

The mortality models defined in the previous section contain one or multiple period
effects κ(i)

t and possibly a cohort effect γc. (If the model contains only a single period
effect we drop the superfluous superscript i.) If projections of mortality rates are
needed, one needs to project these time-dependent variables into the future. In this
section we first show the approach used most often to forecast mortality rates from
the Lee-Carter model, then we discuss other approaches used for forecasting of the
period effect(s) and the cohort effect in mortality models.

2.3.1 Forecasting LC model with a RWD process

Recall from Section 2.2.1 that Lee and Carter (1992) use a random walk with drift to
predict the variable κt:

κt = κt−1 + δ + εt, εt
iid∼ N(0, σ2

ε), (2.14)

with δ the drift parameter and σ2
ε the variance of the error terms. Define ∆κt =

κt − κt−1 for t ∈ {t1 + 1, . . . , tT }. The maximum likelihood estimates for these
parameters are given by

δ̂ =
1

T − 1

tT∑
t=t1+1

∆κt =
κtT − κt1
T − 1

and σ̂2
ε =

1

T − 1

tT∑
t=t1+1

(∆κt − δ̂)2.

(2.15)
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Figure 2.3: Top left panel: prediction for κt from Figure 2.2 (2.5th, 50th and 97.5th
percentiles are shown). Other panels: fitted and predicted mortality
intensities µt,x and observed death rates mt,x for Dutch males and females
for the ages 20, 50 and 80.

We observe that the estimate for the drift parameter depends only on the first and
last observation. As a result, the drift parameter can be highly dependent on the
calibration period chosen. Including or excluding one year from the calibration period
may sometimes lead to very different mortality forecasts.

Example 2.2 (Lee-Carter applied to Dutch mortality data – continued).
In the top-left panel of Figure 2.3 we show projections for the period effect κt in
Figure 2.2 for males and females. The dashed line is the expected value for the years
1951-1999 given the observations in 1950 and 2000. The slope for males is more
negative than for females, since mortality improved more for males than for females.

In the top-right, bottom-left and bottom-right panel we show observations lnmt,x

and fitted values lnµt,x during the calibration period, and predicted forces of mortality
for the ages 20, 50 and 80 respectively. For x = 20 the observations lnmt,x are the
most volatile. However, mortality at x = 20 is low, and therefore the expected number
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of deaths is low. Our explicit incorporation of Poisson noise in observed numbers of
deaths ensures that this part of the volatility does not end up in our predictions,
which forecast the force of mortality. For x = 50 and x = 80 the fitted values seem
to correspond more closely to the observed values. Two noteworthy observations:

1. Male mortality at x = 50 is predicted to become lower than female mortality.
Historically, female mortality has been lower than male mortality, and it is
generally assumed that this will continue to be the case in the future. Cairns
et al. (2011b) introduce a multiple population model in which such assumptions
can be imposed through the model specification.

2. At x = 80, male mortality hardly improved for many years, while female mor-
tality did improve steadily. This may be explained by differences in smoking
habits between males and females. Further, the sharp decrease in male and fe-
male mortality which starts around the year 2000 can be explained by increased
health care budgets provided by the Dutch government, see Stoeldraijer et al.
(2013). The uncertainty in male mortality predictions is almost twice as low as
in female mortality projections. This can be explained using Figure 2.2: β80

is close to zero for males but clearly positive for females. As a result, the pre-
diction of µt,80 for males is much less affected by the prediction of κt than the
prediction for females.

A life insurer can use the mean of the mortality scenarios shown in Figure 2.3 to assign
a single value to the liabilities, and stochastic scenarios can be used to determine the
uncertainty in this value.

The random walk with drift is a special case within the ARIMA time series frame-
work.5 In the next section we discuss this and other approaches used to forecast
mortality rates.

2.3.2 Other forecasting approaches

We give an overview of standard ARIMA time series models, extensions to these mod-
els, and other time series models and approaches that have been used for forecasting
both period and cohort effects in mortality models.

Standard ARIMA-models. Cairns et al. (2011a) fit the models M1 to M5, M7
and M8 to England and Wales data from the years 1961 to 2004. For the period
effects they fit a (single or multivariate) random walk with drift. For the cohort ef-
fects they estimate different ARIMA(p, d, q)-specifications. The specifications used in
backtesting are based on the BIC and on biological reasonableness of the projections.

5See Tsay (2010) for a thorough introduction to time series modeling.
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They define biological reasonableness as a concept that is intended to cover a wide
range of subjective criteria. The authors suggest that the following question can be
used to determine whether mortality projections are biologically reasonable: “What
mixture of biological factors, medical advances and environmental changes would have
to happen to cause a particular set of forecasts? ”. If this question is difficult to answer
for mortality forecasts produced by a certain model, the projections from that model
are said to be biologically unreasonable.

Cairns et al. (2011a) consider second order differencing of the cohort effect (d = 2),
but they find that this leads to large confidence intervals which the authors find less
plausible. For the data under consideration a mean reverting process (AR(1)) or an
ARIMA(1, 1, 0) process (both including a constant) is found to be most appropriate
for the cohort effects.

Plat (2009a) introduces M9 and includes it in a comparative study of mortality
models fitted to data from the United States (1961 to 2005), England & Wales (1961
to 2005), and the Netherlands (1951 to 2005). In his approach the first period effect
(κ(1)
t in Table 2.1) is the main effect, and a random walk with drift is used to project

this factor. For the other period effects (κ(2)
t and κ(3)

t in Table 2.1), a non-stationary
ARIMA process such as a random walk with drift is argued to be unsuitable for pro-
jection, because this may lead to biologically unreasonable projections. He therefore
assumes a mean reverting process with non-zero mean (AR(1) with a constant) to
project the other period effects. O’Hare and Li (2011) introduce M13 and apply it
to data from a whole range of developed countries from 1950 to 2006. The proposed
model is a modification of Plat’s model, and they therefore use the same ARIMA-
specifications for the period and cohort effects as in Plat (2009a).

Plat (2009a) considers two approaches for calibrating cohort effects: (i) estimate
the effect for all cohorts available, and (ii) estimate the effect only for cohorts older
than 1946. He argues that for cohort effects that are estimated only on younger
ages, it is not sure whether they will persist in the future, and that they therefore
should not be used to project mortality rates for the elderly. The cohort effect is then
projected using a mean reverting process with mean zero, so it contains no trend.
It is not included for younger ages when calibrating the model, while in projecting
mortality rates it is. A possible solution to this inconsistency is to multiply the cohort
effect with a parametric function of age. We do not investigate this in this thesis; we
set the cohort effects equal to zero for the models M9 and M13 when there are no
observations available related to age 60 or higher, corresponding to the choice in Plat
(2009a).

Haberman and Renshaw (2011) consider the models listed in Table 2.1, except for
M2A and M13, and they consider the Lee-Carter model extended with a cohort effect
instead of the M3 specification. The models are fitted on England and Wales data
from 1961 to 2007. To project mortality these authors fit a multivariate random walk
with drift for all period effects. They argue that extrapolation of the cohort effect
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should be avoided, because there is no justification to treat the cohort effect and
the period effect independently. Therefore, they focus on modeling life expectancy
and annuity values for existing cohorts. They conclude that the presence of a mild
degree of curvature in the main period effect poses projection problems for some of
the mortality models investigated.

Lovász (2011) considers several models for Finnish (1950 to 2009) and Swedish
(1950 to 2008) data. He models the period effects as in Cairns et al. (2011a) and
Haberman and Renshaw (2011) by assuming a multivariate random walk with drift.
For the cohort effects he chooses the ARIMA(p, d, q)-process that is optimal in terms
of BIC. He considers the combinations d ∈ {0, 1, 2} and (p, q) ∈ {0, 1, 2}, and for those
datasets the optimal ARIMA specifications are always integrated, possibly with a lag
included (ARIMA(p, 1, 0)); two times differencing is never found to be optimal.

Kleinow and Richards (2016) investigate different ARIMA-models for the period
effect in the Lee-Carter model. They select an ARIMA(p, d, q)-specification using the
AIC, and show that this leads to more plausible forecasts than when using a random
walk with drift. However, they further show that complex ARIMA-specifications may
lead to instable projections, and they therefore conclude that a simpler model may
be preferred if this results in more stable projections.

The papers mentioned above all use a random walk with constant drift for the
first period effect, and often also for the other period effects. However, different
calibration periods are used in different studies, and projections based on a random
walk with constant drift are potentially highly sensitive towards the calibration period
as reported in Booth et al. (2002) and Denuit and Goderniaux (2005). Furthermore,
factors like medical advances (Bots and Grobbee (1996)) and health system reforms
(Moreno-Serra and Wagstaff (2010)) have an impact on the speed of the mortality
improvements, and Yang et al. (2014) find a correlation between the economic factors
gross domestic product and unemployment rates on the one hand and life expectancy
and health prevalence rates on the other hand. Dropping the assumption that the
drift in the random walk must be constant may therefore be a way to improve model
performance, and several authors proposed different methods to reduce the sensitivity
with respect to the calibration period.

Optimal calibration period. Booth et al. (2002) note that a random walk with
constant drift may not be appropriate over the whole period of available mortality
data, so they propose to restrict the calibration period. The last year is determined
by the most recent data available, and the first year is chosen by optimizing the fit of
the random walk with drift model relative to the fit of the Lee-Carter model. They
note that age effects may change through time and that by optimizing the calibration
period, the age effects are chosen more appropriately for the purpose of projecting
mortality rates.

Denuit and Goderniaux (2005) approximate the period effect κt by a straight line
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which is fitted using OLS, and then choose the calibration period which optimizes
the corresponding adjusted R2 of the OLS fit. Li et al. (2015) include the length of
the calibration period in their parameter space in a Bayesian framework. Projections
resulting from different calibration periods are weighted by their posterior distribution
likelihoods, to arrive at one single projection.

Regime switching models. Milidonis et al. (2011) calibrate the Lee-Carter model
on US data for the ages 0-100 in the years 1901-2005. They propose a regime switching
model with two regimes for the differences of the κt. The two regimes are allowed to
have different means as well as different variances, and the estimation results reveal
that the variance differs substantially between the two regimes. Based on information
criteria and a likelihood ratio test they conclude that for the data set considered, the
regime switching model outperforms the random walk with drift.

Hainaut (2012) extends the regime switching model to model M1A and applies
it to French data for the ages 20-100 in the years 1946-2007. He concludes that
the improvement in log likelihood is significant compared to the standard Lee-Carter
model and the extension in Milidonis et al. (2011).

Structural changes in trend stationary models. Li et al. (2011) calibrate the
Lee-Carter model on England & Wales and US data for the ages 0-99 in the years
1950-2006 (males and females combined). They perform a unit root test on the time
series κt, which means that they test the null hypothesis of a random walk with con-
stant drift versus the alternative hypothesis of a broken-trend stationary model. The
broken-trend stationary model implies that the mortality trend κt fluctuates around
a deterministic trend. The deterministic trend is piecewise linear and is estimated by
regressing κt on t and an intercept. Dummy variables are used to allow the trend to
change once in the calibration period, but the trend does not have to be continuous.

The authors use the test introduced in Zivot and Andrews (1992) to determine
whether κt follows either a difference stationary process or a broken-trend stationary
process. For both data sets they conclude that a broken-trend stationary process is
preferred, and they use the latest trend for predictions. Since this is a trend stationary
process, predictions from this model do not lead to confidence intervals that become
wider over time.

Sweeting (2011) calibrates the original CBD-model (M5) on England & Wales
data for the ages 60-89 in the years 1841-2005. He assumes a broken-trend stationary
model as in Li et al. (2011), but allows for multiple structural changes and imposes
continuity on the trend. He then fits distributions for the frequency and the severity
of the changes in the trend, and uses these distributions for forecasting. Structural
changes are tested for significance using the Chow test (Chow (1960)). Since changes
in the mortality trend are included in forecasting, the prediction intervals for life
expectancies at age 65 are much wider than generally found in the literature.
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Structural change in difference stationary models. Coelho and Nunes (2011)
consider the Lee-Carter model for a variety of countries for the ages 0-99 in the years
after 1950.6 They perform a unit root test as suggested by Harvey et al. (2009)
and Harris et al. (2009) that allows for a single structural change both in the trend
stationary and in the difference stationary model, where Li et al. (2011) only allow for
a single structural change in the trend stationary model. They analyze 18 countries
for both males and females. For all these data sets, the trend stationary model with
a possible structural change is rejected 33 out of 36 times in favor of a difference
stationary model with a possible structural change. In 21 out of 36 data sets a
structural change is detected.

O’Hare and Li (2015) investigate the impact of a single structural change on
mortality models beyond Lee-Carter. They apply the methodology for difference
stationary time series to the models M1 (Lee-Carter), M5 (CBD), M9 (Plat) and
M13 (O’Hare and Li). They find that in mortality models other than the Lee-Carter
model, a structural change is often detected as well, and that allowing for a structural
change can substantially improve the quality of forecasts, if this quality is measured
in Mean Absolute Error or Root Mean Squared Error.

The papers above investigate the presence of structural changes in the period
effects, and the latest structural change is then used for projection purposes. Hári
et al. (2008a) define the Lee-Carter using a random walk with time-varying drift in
a state space framework. The drift term is allowed to change over time, but they
assume the drift parameter reverts back to a mean that is to be estimated from the
data. This approach differs from the previously mentioned approaches, since the drift
parameter is allowed to slightly change every year instead of changing sporadically as
a result of structural change. An effect of allowing for a time-varying drift is that the
prediction intervals become significantly wider. They find that their model performs
similar to the original Lee-Carter model in terms of the cumulative sum of squared
deviations of one period ahead in-sample forecasts.

Discussion of suggested forecasting approaches. When regime switching mod-
els are applied to mortality models, it is assumed that regimes observed in the past
will occur in the future. Changes in mortality dynamics may be a result of (among
others) changes in lifestyle and in health care systems. For example, in the Nether-
lands changes in smoking habits have been an important driver of changes in mortal-
ity, which contributed to increasing (1950-1970) and decreasing (from 1970 onwards)
mortality rates (Janssen et al. (2007)). Since it is difficult to predict whether the
same regimes of the past will occur again in the future, we prefer not to use regime
switching models for the prediction of period and cohort effects.

Optimization of the calibration period as in Booth et al. (2002) and Denuit and

6The dataset depends on the data availability per country.
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Goderniaux (2005) has appealing characteristics. Since older data points are excluded,
the age effects are based on more recent data and are therefore more appropriate for
forecasting than when all data is included. However, this approach may lead to short
calibration periods which gives more volatile parameter estimates and projections.
Further, by excluding data the researcher implicitly chooses not to explain part of the
available data. Finally, these methods have been applied to the Lee-Carter model,
but they are not easily transferable to multi-factor models, since different factors may
suggest different calibration periods.

In Chapter 3 we extend the work of Coelho and Nunes (2011). We will use
recent information on mortality dynamics, but we use the entire calibration period to
estimate the variability in the mortality dynamics. We allow for multiple structural
changes in the estimation of a random walk with drift, and we use the most recent
drift for prediction purposes.

2.4 Bayesian implementation of the LC-model

In the previous sections, we had to estimate two different sets of parameters before
we could create mortality forecasts for the Lee-Carter model. First we estimated
αx, βx and κt, and afterwards we estimated parameters for the time series model.
In that approach the κt are treated as parameters that need to be estimated in the
first step, whereas in the second step we consider them as observations for which we
estimate a model. However, the period effect κt is actually a latent effect with its
own distribution (specified through the time series model), and therefore both the
mortality model and the time series model should be estimated simultaneously.

It is possible to estimate the two parts simultaneously in a frequentist setting,
but in a full maximal likelihood method the latent variables κt should then not be
maximized over (as free parameters), but integrated out (over all their possible values).
Due to the high dimension of the latent time series, this is often not feasible in
practice. Therefore, it is more common to use a Bayesian implementation for the
joint estimation problem. A Bayesian approach has the additional advantage that
information on parameter uncertainty is also obtained after the model calibration, as
we will show later on.

We first provide an introduction on Bayesian inference and the Markov Chain
Monte Carlo methods that we use for this purpose. Then, we define the priors and
derive the posterior distributions for the Lee-Carter model in a Bayesian setting, and
we show the results when this model is applied to mortality data of Dutch males.
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2.4.1 Bayesian inference andMarkov Chain Monte Carlo meth-
ods.

Suppose that we have observed the data points x = (x1, . . . , xn), and the outcomes
of the random variables Xi are distributed as Xi ∼ p(xi|θ), so θ = (θ1, . . . , θp) are
the parameters that specify the distribution of Xi. We specify a prior distribution
on θ, p(θ|α), where α are hyperparameters needed to specify the prior distribution.
The prior distribution can be interpreted as the distribution of the parameter when
we have not seen the data.

For inference purposes, we need to determine the distribution of θ given the data,
p(θ|x,α), also called the posterior distribution. Using Bayes’ rule we find that this
can be represented as

p(θ|x,α) =
p(x|θ)p(θ|α)

p(x|α)
∝ p(x|θ)p(θ|α). (2.16)

The right-hand side of (2.16) does not involve complicated integrals, but we still
cannot easily sample from p(θ|x,α). However, we can use a method known as Markov
Chain Monte Carlo (MCMC) to construct a sequence of samples θ1,θ2, . . . ,θn, . . .

with a distribution that converges to the posterior distribution p(θ|x,α).

Markov Chain Monte Carlo. The following is based on Smith and Roberts
(1993). Suppose we want to sample from the distribution p(θ|x,α) with θ = (θ1, . . . , θp)

and θ ∈ Z ⊆ Rp but cannot do this directly. Instead, we can construct a Markov
chain with state space Z, which is straightforward to simulate and whose equilibrium
distribution is p(θ|x,α). If we run the chain for a long time, simulated values of the
chain can be used to study features of interest of p(θ|x,α). Such features can be the
expected value and quantiles of the distribution itself, but also of the distribution of
transformations of the parameters θ, which may be more relevant in practice.

Under suitable regularity conditions, asymptotic results exist which clarify how
the sample output from a chain with equilibrium distribution p(θ|x,α) can be used
to mimic a random sample from p(θ|x,α) or to estimate the expected value, with
respect to p(θ|x,α), of a function f(θ). Consider a realization θ1,θ2, . . . ,θn, . . . from
an appropriate chain. Typical asymptotic results include

θn
d−−−−→

n→∞
Θ ∼ p(θ|x,α), and

1

n

n∑
i=1

f(θi) −−−−→
n→∞

Ep(θ|x,α){f(θ)}.

We will therefore use MCMC to generate samples of the parameters with a distribution
that converges to the posterior distribution of the parameters. We now introduce two
algorithms that can generate realizations for the Markov chain: Gibbs sampling and
Metropolis(-Hastings) sampling.
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Gibbs sampling. For all parameters we have the posterior distribution p(θ|x,α)

based on (2.16). In some cases this will lead to an expression that is proportional to
a known distribution, and in that case we can directly sample from that distribution.
Define the posterior distribution for θi conditional on the observed data, the hyperpa-
rameters and all other parameters as p(θi|x,α,θ−i) with θ−i = (θ1, . . . , θi−1, θi+1 . . . , θp),
and suppose we pick some arbitrary starting values θ0 = (θ0

1, . . . , θ
0
p). We can then

successively generate samples from the full conditional distributions p(θi|x,α,θ−i)
for i = 1, . . . , p as follows:

sample θ1
1 from p(θ1|x,α, θ0

2, θ
0
3, . . . , θ

0
p);

sample θ1
2 from p(θ2|x,α, θ1

1, θ
0
3, . . . , θ

0
p);

...

sample θ1
p from p(θp|x,α, θ1

1, θ
1
2, . . . , θ

1
p−1).

At the end of this procedure, we have obtained a new realization for the parameter
vector θ.

Metropolis(-Hastings) sampling. If the posterior distribution p(θ|x,α) is not
proportional to a known distribution, we can use Metropolis-Hastings sampling (MH).
Again, we are ultimately interested in generating a Markov chain θ0,θ1, . . . ,θn, . . .

with state space Z ⊆ Rp and limiting distribution p(θ|x,α).
Suppose we have current values θ = (θ1, . . . , θp). The MH algorithm constructs

a transition probability from θn = θ to θn+1 as follows. Let g(θ,θ′) denote a tran-
sition probability function or candidate generating function, such that, if θn = θ is
the current value, θ′ a sample drawn from the distribution g(θ,θ′) is considered a
candidate for θn+1. However, the candidate θ′ is not accepted with probability 1 but
with probability φ(θ,θ′). If the candidate is accepted, we set θn+1 = θ′, otherwise
we reject the candidate and set θn+1 = θ.

There is much flexibility in what distribution to use as a candidate generating
function, as long as the state space Y of the candidate generating function contains
the state space Z of the parameter vector θ. In many cases, the random walk pro-
cess is used to generate candidates, which means that θ′ is drawn from a Gaussian
distribution with mean θ and some variance s.

In order for the sequence to be a Markov chain with limiting distribution p(θ|x,α),
the following should hold (Hastings (1970)):7

p(θ|x,α)p(θ,θ′) = p(θ′|x,α)p(θ′,θ). (2.17)

7Consider a Markov chain in a discrete state space with limiting distribution π and transition
matrix P. Then, the transition matrix P should satisfy the reversibility condition πipij = πjpji for
all i and j. This property ensures that πP = π holds (or equivalently

∑
i πipij = πj for all j).
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Here, p(θ,θ′) is a transition probability within the Markov chain defined by

p(θ,θ′) =

{
g(θ,θ′)φ(θ,θ′) if θ′ 6= θ

1−∑θ′′ g(θ,θ′′)φ(θ,θ′′) if θ′ = θ.

The relationship in (2.17) holds when the acceptance probability is set as

φ(θ,θ′) =

min

{
p(θ′|x,α)g(θ′,θ)

p(θ|x,α)g(θ,θ′)
, 1

}
if p(θ|x,α)g(θ,θ′) > 0,

1 if p(θ|x,α)g(θ,θ′) = 0.

This acceptance probability contains the expression p(θ|x,α). However, in (2.16) we
showed that this is proportional to p(x|θ,α)p(θ|α). Further, since the term p(θ|x,α)

appears both in the numerator and in the denominator, we can often simplify the
expression for the acceptance probability to a large extent. Finally, if the candidate
generating function is symmetric (i.e. g(θ,θ′) = g(θ′,θ)), the acceptance probability
simplifies to

φ(θ,θ′) =

min

{
p(θ′|x,α)

p(θ|x,α)
, 1

}
if p(θ|x,α)g(θ,θ′) > 0,

1 if p(θ|x,α)g(θ,θ′) = 0.

Using a symmetric candidate generating function is a special case of MH sampling,
which is called Metropolis sampling.

Implementation issues. In the previous paragraphs we provided the requirements
to use the MCMC method to approximate the posterior distribution p(θ|x,α). When
implementing the MCMC method in practice, there are several issues that need to be
dealt with.

Burn-in period: When starting the Markov chain, we have to choose some initial
values for the parameters. These values may be far outside the center of the
desired posterior distribution, and it may take some time before the sample
converges to the posterior distribution. Further, as we discuss below, some
parameters need to be calibrated to ensure that the chain performs efficiently.
Therefore, we disregard the first samples of the chain, which is referred to as
the burn-in period.

Thinning: In a Markov chain, successive values of θn will be correlated. If we need
independent samples for inference purposes, we cannot directly use the Markov
chain θ1,θ2, . . . ,θn, . . .. Instead, we can apply thinning to the Markov chain
by only taking every nth value, e.g. every 10th realization, in order to reduce
correlation.
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Candidate generating function: The candidate generating function should be chosen
in such a way that the entire parameter space Z can be explored within the
Markov chain. For parameters that are unrestricted, the random walk approach
often works well. However, if parameters are restricted (e.g. correlation pa-
rameters), then more attention should be paid to the choice of an appropriate
candidate generating function.

Spread of the candidate generating function: The current value in a Markov chain is
commonly used as the mean of the candidate generating function. The variance
of the candidate generating function is a parameter that needs to be calibrated
with care. If the variance is set too low, the Markov chain may take longer to
traverse the entire support of the density and low probability regions may be
undersampled, whereas if the variance is set too high samples may be generated
that have a high probability of being rejected. Both cases are likely to result in
high autocorrelation across the samples.

Acceptance probability: In order to ensure the Markov chain traverses the entire sup-
port of the density in an efficient manner, Roberts et al. (1997) show that the
acceptance probability should be approximately 25%, so we shall aim at an
acceptance probability between 20% en 30%.

Checking convergence: It is important to check whether the chain has converged and
whether the final samples (after thinning and disregarding the burn-in period)
are no longer autocorrelated. Different approaches are used for this purpose,
and we discuss some of these below.

1. We can check the autocorrelation function to check whether there is any
autocorrelation left within the chain. Also, if the sequence of samples is
plotted there should be no observable drift in the chain (such a plot is
referred to as a traceplot);

2. We can use multiple chains with different starting values and create a
number of Markov chains. Once the chains have converged, we can compare
the distribution of the different chains. The starting values should not
influence the final samples. Therefore, we shall compare the distribution
of the parameters from different chains, and these density plots should give
comparable results.

3. When we use different chains it is possible that one chain has already
covered the entire posterior distribution whereas another chain has not yet
explored a certain region. In that case, the variances within the different
chains will be different. Suppose we use M chains of length N , with θmn
the nth sample in themth chain, and let θ̂m and σ̂2

m be the sample posterior
mean and variance of the mth chain, and θ̂ the mean of the MN samples.
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Gelman and Rubin (1992) define the between-chains and within-chains
variances by

B =
N

M − 1

M∑
m=1

(θ̂m − θ̂)2 and W =
1

M

M∑
m=1

σ̂2
m.

Next, they define the pooled variance as

V̂ =
N − 1

N
W +

M + 1

MN
B,

and they show that this is an unbiased estimator for the posterior variance
of the parameters. The potential scale reduction factor (hereafter: Gelman-
Rubin statistic) is defined as the ratio of the pooled variance V̂ and the
within-chains varianceW , and if the chains have converged to the posterior
distribution this factor should be close to 1.

2.4.2 Bayesian estimation of the LC-model

We now define a possible approach to implement the Lee-Carter model in a Bayesian
framework using the MCMC algorithm as discussed above. We consider the Lee-
Carter model as specified in (2.12) and (2.14):

Dt,x|µt,x ∼ Poisson(Et,xµt,x), with lnµt,x = αx + βxκt,

and

κt = κt−1 + δ + εt, εt
iid∼ N(0, σ2

ε).

In most papers the parameter constraints applied to the Lee-Carter model are
∑
t κt =

0 and
∑
x βx = 1, see Table 2.2. However, if parameter constraints are defined in a

Bayesian setting (for example to facilitate convergence of the algorithm), then these
parameter constraints should be satisfied in the specification of the prior distributions.
In this section we use the same parameter constraints as those used in Example
2.2 (but different from those listed in Table 2.2), since these constraints are more
easily satisfied in prior distributions. Specifically, we use the constraints κt1 = 0 and∑
x β

2
x = 1.

We use the following prior distributions for the parameters in the Lee-Carter
model.

Prior distribution for αx. Following Czado et al. (2005) and Antonio et al. (2015)
we use the following prior for αx with x ∈ X := x1, . . . , xX :

ex := exp(αx)
iid∼ Gamma(ax, bx). (2.18)
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Prior distribution for β = (βx1
, . . . , βxX

). For the vector of parameters β =

(βx1
, . . . , βxX

) we choose a prior distribution that automatically satisfies the con-
straint

∑
x β

2
x = 1: the Von Mises-Fisher distribution, which has its origins in direc-

tional statistics (von Mises (1918) and Fisher (1953)). To the best of our knowledge,
Antoniadis et al. (2004) were the first to use this distribution as a prior in Bayesian
analysis. The prior distribution for β is denoted by

β ∼ vMF(µβ , cβ), (2.19)

for constants µβ (the mean direction vector) and cβ (the concentration parameter)
with ‖µβ‖ = 1 and cβ > 0. The probability density function is given by

fX(β|µβ , cβ) = CX(cβ) exp
(
cβµ

T
ββ
)
, (2.20)

where the normalization constant CX(c) equals

CX(c) =
cX/2−1

(2π)X/2IX/2−1(c)
, (2.21)

with Iv the modified Bessel function of the first kind with order v. See Hoff (2009)
for details on how to sample from this distribution.

Note that our approach differs from what is usually done in the actuarial literature
(see for example Czado et al. (2005); Li (2014); Antonio et al. (2015)), in the sense
that often transformations are applied in a Metropolis-Hastings step after a sample
has been accepted. In our approach, every sample already satisfies the necessary
constraints because of our choice of the priors.

Prior distribution for κt. We assume a random walk with drift for t ∈ T \{t1} =

t1 + 1, . . . , tT for the period effect κt:

κt = κt−1 + δ + εt, with εt
iid∼ N(0, σ2

ε) and κt1 = 0. (2.22)

The prior distributions for the drift and variance parameters are specified by

δ ∼ N(µδ, σ
2
δ ), (2.23)

σε ∼ Uniform(0, Aε). (2.24)

For variance hyperparameters, we follow Gelman (2006) who suggests the use of a
uniform prior on σ instead of an Inverse-Gamma(ς, ς) prior which is often proposed
for this parameter, because if the estimate of σ is close to zero, the posterior density
will then be less sensitive to the choice of ς.
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2.4. Bayesian implementation of the LC-model

2.4.3 Derivation of posterior distributions

We now derive the posterior distributions for the model specified above. When these
have been derived, we can implement the MCMC algorithm in 2.4.4. For convenience,
we define the following variables

D = (Dt1,x1 , . . . , DtT ,xX
), E = (Et1,x1 , . . . , EtT ,xX

),

e = (ex1
, . . . , exX

), β = (βx1
, . . . , βxX

), κ = (κt1 , . . . , κtT ),

and we define the collection Λ that contains both data and parameters:

Λ = {D,E, e,β,κ, δ, σ2
ε}.

Gibbs sampling for αx. The αx values are independent for different values of x.
Therefore, the posterior distribution for a single ex = exp(αx) with x ∈ X is given by

f(ex|Λ\{ex}) = P (Λ)/P (Λ\{ex}) ∝ P (Λ) (2.25)

∝ f(D|E, e,β,κ, δ, σ2
ε)f(ex)

∝
∏
t∈T

e−Et,xex exp[βxκt] (Et,xex exp[βxκt])
Dt,x

Dt,x!

× baxx
Γ(ax)

eax−1
x exp[−bxex]

∝ exp[−(bx + dx)ex] · eax+D•x−1
x ,

with dx =
∑
t∈T Et,x exp[βxκt] and D•x =

∑
t∈T Dt,x. The last line is proportional to

a Gamma(ax +D•x, bx +dx) distribution, with ax and bx as defined in (2.22). There-
fore, we can use Gibbs sampling to draw a new value of ex, which can subsequently
be transformed into a new value of αx.

Metropolis sampling for βx. The posterior distribution for β is given by

f(β|Λ\{β}) ∝ f(D|E, e,β,κ, δ, σ2
ε)f(β) (2.26)

∝
∏
x∈X

∏
t∈T

e−E
pop
t,x ex exp[βxκt] (Et,xex exp[βxκt])

Dt,x

Dt,x! × exp(cβµ
T
ββ).

Given a current value β̃ and scaling parameter dβ , we sample a proposal β̂ from the
distribution vMF(β̃, dβ). The proposal distribution is symmetric, and the acceptance
probability is thus given by:

φ = min

{
f(β̂|Λ\{β̂})
f(β̃|Λ\{β̃})

, 1

}
.
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Metropolis sampling for κt. Define κ−t = (κt1 , . . . , κt−1, κt+1, . . . , κtT ). The
posterior distribution of κt for t ∈ T \{t1} is given by

f(κt|Λ\{κt}) ∝ f(D|E, e,β,κ, δ, σ2
ε)f(κ, δ, σ2

ε) (2.27)

∝
∏
x∈X

exp (−Et,xex exp[βxκt]) exp (Dt,xβxκt)

× f(κt|κ−t, δ, σ2
ε).

The expression in the last line can be simplified:

• for t = t1 + 1, . . . , tT − 1:

f(κt|κ−t, δ, σ2
ε) = P (κ, δ, σ2

ε)/P (κ−t, δ, σ
2
ε) ∝ P (κ, δ, σ2

ε)

= f(κt2 |δ, σ2
ε) · · · f(κtT |κtT−1, δ, σ

2
ε) · p(δ, σ2

ε)

∝ f(κt|κt−1, δ, σ
2
ε)f(κt+1|κt, δ, σ2

ε)

=
1

2πσ2
ε

exp

[
− (κt − κt−1 − δ)2

2σ2
ε

]
· exp

[
− (κt+1 − κt − δ)2

2σ2
ε

]
∝ exp

[
−κ

2
t − 2κtκt−1 − 2κtδ

2σ2
ε

]
· exp

[
−κ

2
t − 2κtκt+1 + 2κtδ

2σ2
ε

]
∝ exp

[
− (κt − [ 1

2 (κt−1 + κt−1)])2

2( 1
2σ

2
ε)

]
.

This last line is proportional to the pdf of a random variable Y ∼ N
(

1
2 (κt−1 + κt+1), 1

2σ
2
ε

)
.

• for t = tT :

f(κt|κ−t, δ, σ2
ε) ∝ p(κt2 |δ, σ2

ε) · · · p(κtT |κtT−1, δ, σ
2
ε) · p(δ, σ2

ε)

∝ f(κt|κt−1, δ, σ
2
ε).

This last line is proportional to the pdf of a random variable Y ∼ N
(
κt−1 + δ, σ2

ε

)
.

Given a current value κ̃t and Metropolis sampling variance s2
κt
, we sample a proposal

κ̂t from the distribution N(κ̃t, s
2
κt

). This proposal distribution is symmetric, and the
acceptance probability is thus given by

φ = min

{
f(κ̂t|Λ\{κ̂t})
f(κ̃t|Λ\{κ̃t})

, 1

}
.
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2.4. Bayesian implementation of the LC-model

Gibbs sampling for δ. Define ∆κt = κt − κt−1. The posterior distribution of δ is
given by

f(δ|Λ\{δ}) ∝ f(κ|δ, σ2
ε)f(δ) (2.28)

∝ exp

[
− 1

2σ2
ε

tT∑
t=t1+1

(∆κt − δ)2

]
· exp

[
− 1

2σ2
δ

(δ − µδ)2

]

∝ exp

[
− 1

2σ2
ε

(
(T − 1)δ2 − 2δ

tT∑
t=t1+1

∆κt

)
− 1

2σ2
δ

(
δ2 − 2δµδ

)]

∝ exp

[
− 1

2σ2
εσ

2
δ

(
δ2
[
(T − 1)σ2

δ + σ2
ε

]
− 2δ

(
σ2
δ

tT∑
t=t1+1

∆κt + µδσ
2
ε

))]

∝ exp

[
− 1

2aδ
(δ − bδ)2

]
,

with

aδ =
σ2
εσ

2
δ

(T − 1)σ2
δ + σ2

ε

, and

bδ =
(T − 1)σ2

δ

(T − 1)σ2
δ + σ2

ε

·
(

1

(T − 1)

tT∑
t=t1+1

∆κt

)
+

σ2
ε

(T − 1)σ2
δ + σ2

ε

· µδ.

The last line in (2.28) is proportional to the pdf of a random variable Y ∼ N(bδ, aδ),
so we can use Gibbs sampling to draw a new sample for δ.

Gibbs sampling for σ2
ε . The prior distribution for σ2

ε is specified as σε ∼ Uniform(0, Aε).
Define X = σε and Y = σ2

ε = X2 = w−1(X). The pdf for σε is given by fX(x) =

A−1
ε ·1[0≤x≤Aε]. Using the transformation theorem, we derive the pdf for σ2

ε as follows:

fY (y) = fX(w(y)) · |w′(y)| = A−1
ε · 1[0≤√y≤Aε] · 1

2y
− 1

2 .

Substituting y = σ2
ε , we find that the pdf for σ2

ε is given by:

f(σ2
ε) = A−1

ε · 1[0≤σε≤Aε] · 1
2σ
−1
ε ∝ σ−1

ε · 1[0≤σε≤Aε].

The posterior distribution of σ2
ε is given by

f(σ2
ε |Λ\{σ2

ε}) ∝ f(κ|δ, σ2
ε)f(σ2

ε) (2.29)

=

[
tT∏

t=t1+1

1√
2πσ2

ε

exp

[
− [∆κt − δ]2

2σ2
ε

]]
× σ−1

ε · 1[0≤σε≤Aε]

∝ (σ−2
ε )

T
2 exp

[
−(σ−2

ε ) · 1

2

tT∑
t=t1+1

(∆κt − δ)2

]
.
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We again apply the transformation theorem, but this time using X = σ2
ε = w(Y ) and

Y = σ−2
ε , so w(y) = y−1 and |w′(y)| = y−2. Using the posterior distribution of σ2

ε we
derive that the posterior distribution of σ−2

ε is given by

f(σ−2
ε |Λ\{σ2

ε}) = f(σ2
ε |Λ\{σ2

ε}) · (σ−2
ε )−2 (2.30)

∝ (σ−2
ε )

T−2
2 −1 · exp

[
−(σ−2

ε ) · 1

2

tT∑
t=t1+1

(∆κt − δ)2

]
.

Since the last line in (2.30) is proportional to the pdf of a random variable Y ∼
Gamma

(
T−2

2 , 1
2

∑tT
t=t1+1(∆κt − δ)2

)
, we can use Gibbs sampling to draw new values

of σ−2
ε which can be transformed into values for σ2

ε .

2.4.4 Case study: Dutch males

We now apply the Bayesian setting of the Lee-Carter model for Dutch males aged
0-90 in the years 1950-2000. We compare the Bayesian estimates and projections with
those from a frequentist setting as illustrated in Section 2.2 and 2.3.

Details of the MCMC algorithm. We run four MCMC chains in parallel. For
the parameters αx, βx and κt we use the frequentist estimates α̂x, β̂x and κ̂t to define
starting samples. These estimates are obtained using Poisson maximum likelihood
estimation based on (2.12). However, for this calibration we used the restrictions∑
x β

2
x = 1 and κt1 = 0 to ensure the restrictions can be imposed on the specification

of the prior distribution. In each chain we add some random Gaussian noise to these
parameter estimates to obtain different starting values. Using the starting values
for βx and κt, we obtain maximum likelihood estimates in each chain for σ2

β , δ and
σ2
ε , and we use these as initial values for the sampling of the hyperparameters. The

constants that complete the specification of the prior distributions and the sampling
variances used in the Gibbs and Metropolis sampling algorithms are chosen as follows:

• To ensure the prior does not contain too much information, we use ax = bx ·
exp(α̂x) and bx = 0.01, see Antonio et al. (2015). This way, E[exp(αx)] =

exp(α̂x) with large variance.

• For β we use µβ = 1√
X
· 1X with 1X a vector with ones of length X, and

cβ = 0.01.

• We use µδ = δ̂ (the maximum likelihood estimate of the drift, as obtained from
the frequentist approach) and σ2

δ = 0.52. For the variance hyperparameter we
use Aε = 10.

• For the scale parameters used in the proposal densities, we start with dβ = 105

and s2
κt

= 0.052.
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Figure 2.4: Convergence diagnostics for selected variables. First column: traceplots for the complete sample from the MCMC
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autocorrelation function for the final sample from the first chain. Third column: density plots from the final sample for
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Figure 2.5: Parameter estimates for the Lee-Carter model applied to mortality data on
Dutch males aged 0-90 in the years 1950-2000. For the frequentist method
we show the maximum likelihood estimates, and for the Bayesian method we
show the 95% credible interval (equal-tailed) of the posterior distributions.

Convergence diagnostics. We run 1,100,000 iterations in each chain of the MCMC
algorithm. We save every 500th iteration, and during the first 100,000 iterations we
calibrate the scale parameters of the proposal distributions every 100th iteration.8

Our final sample size is 8,000. Our trace plots show good mixing properties, the cal-
culated Gelman and Rubin statistics converge rapidly towards one, and density plots
of the parameters in different chains overlap almost perfectly. Some convergence
statistics are shown in Figure 2.4.

Estimation results. Figure 2.5 shows the parameter estimates for the frequentist
and the Bayesian approach. The frequentist estimates are represented by black dashed

8The large number of required iterations is due to the high dimension of our model. However,
since our Metropolis-Hastings algorithm for β consists of only one step, instead of the usual loop
over all ages (see e.g. Czado et al. (2005) and Antonio et al. (2015)), using the Von Mises-Fisher
distribution as proposal density speeds up the algorithm considerably.
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lines, and for the Bayesian approach we show the 95% equal-tailed credible intervals.9

We observe that the parameter estimates for αx, βx and κt generated by the two
approaches are similar. Hence, estimating the mortality model and the time series
model simultaneously instead of using a two-step procedure has little impact on the
estimates in this case. Also, the frequentist estimate of δ is close to the median and
mean of the corresponding posterior distribution. However, the frequentist estimate
of σ2

ε is somewhat higher than the mean and median of the posterior distribution.

Forecasting results. In Figure 2.6 we show predictions of κt and lnµt,x for x =

{20, 50, 80}. In the frequentist case, we simulate 800,000 scenarios for future values
of κt using fixed parameter estimates but with random values of εt. In the Bayesian
case, we also take parameter uncertainty into account in the generation of future
mortality scenarios. This is achieved by generating 100 simulations for κt in each
MCMC sample, resulting in a total of 800,000 mortality scenarios.

In the top left graph in Figure 2.6 we see that for short prediction horizons the
uncertainty in future values of κt for t > T increases rapidly. While part of this
uncertainty originates from uncertainty in κT , most of the uncertainty in the short
term is caused by uncertainty in future values of εt. As a result, in the short term there
is little difference in the forecasts of κt between the frequentist and the Bayesian case.
Further, the posterior distribution for σ2

ε shows both smaller and larger values of σ2
ε ,

and the uncertainty in future values of εt can thus be smaller and larger. In the top
left graph in Figure 2.6 we observe that the uncertainty in σ2

ε has little impact on the
width of prediction intervals. For projections of mortality rates however, uncertainty
in the parameter βx results in wider Bayesian prediction intervals.

On the longer time horizon, the prediction intervals from the Bayesian approach
do become wider than in the frequentist case. This is caused by uncertainty in the
drift parameter δ. In the short term this parameter has little impact, but smaller or
larger values of δ have a cumulative effect that becomes apparent on the longer time
horizon.

In Chapter 4 we will investigate what the impact is of the different sources of
uncertainty on predicted numbers of deaths.

2.5 Portfolio-specific mortality

In Section 1.2 we mentioned that remaining life expectancy depends on factors such as
income, education and lifestyle. The participants in a pension fund (or policyholders

9The equal-tailed interval is defined in such a way that the probability of being below the interval
is as high as being above it. Another type of intervals often used in the Bayesian context is the
highest posterior density interval. This is defined as the narrowest interval that captures the required
probability mass of the posterior distribution. If a posterior distribution is symmetric, the equal-
tailed and highest posterior density intervals are the same.
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Figure 2.6: Estimates of and projections for κt and lnµt,x for x = {20, 50, 80} using the
results from Figure 2.5. For the frequentist method we show (in gray) the
maximum likelihood estimates and projections, taking into account
uncertainty in εt, and for the Bayesian method we show (in blue) the 95%

credible interval (equal-tailed) of the posterior distributions and projections,
taking into account uncertainty in all parameters. We show the 2.5th, 50th
and 97.5th percentile of the posterior distributions and prediction intervals.

in an insurance company) share several risk factors with other participants in the fund,
but there may be great differences with respect to the general population. Pension
funds should take these differences into account for pricing and reserving purposes.
This means that they cannot simply use population-wide mortality forecasts, but
they have to adjust these mortality forecasts to ensure they are appropriate for the
portfolio for which the mortality forecasts are used.

Historically, crude methods such as age-shifting were used, which means that the
mortality rate qx is replaced with qx+s with s either positive or negative, see Pitacco
et al. (2009). A different approach used in practice is to make mortality rates depend
on the time since inception of the contract, e.g. using q̃x = qx · ρ(x− s, s) with s the
time since inception of the contract and x− s the age at inception of the contract.
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Such crude methods were sufficiently accurate in the past, because funding ratios
were high and the focus in risk management was mainly on the best estimate of
liability values. Nowadays, with funding ratios closer to 100%, there is more attention
for the uncertainty in the liabilities. This requires information about the uncertainty
in portfolio-specific mortality rates, and statistically sound models are needed to
obtain it.

The methods that are suggested in the literature can be divided into two main
categories. In Section 2.5.1 we discuss the approach in which the single population
mortality models are extended to multiple populations, and in Section 2.5.2 we discuss
how historically observed portfolio mortality is explained using risk factors.

2.5.1 Multiple-population mortality models

Mortality developments in a population can be strongly time-varying. Periods of small
mortality improvements may be followed by periods of larger ones, and a rapidly
changing mortality trend is difficult to project. Therefore, models have been pro-
posed to incorporate information from different but comparable populations in the
estimation process. This can lead to a more stable, global mortality trend, which
also provides insight in population-specific deviations from the general pattern. A
disadvantage is that a sufficiently large historical data is needed to analyze such
population-specific deviations. If there is only a limited historical dataset available
for a portfolio, application of the multiple-population approach to portfolio data must
therefore contain a careful analysis of the uncertainty in the estimates.

The Lee-Carter model is designed for a single country, but this model can be
extended to multiple countries. For example, Li and Lee (2005) propose an augmented
common factor model for multiple populations (which are indexed by i)

lnmi
t,x = αix +BxKt + βixκ

i
t + εt,x,i, εt,x,i

iid∼ N(0, σ2
i ). (2.31)

Under the restriction that
∑
tKt =

∑
t κ

i
t = 0 for all i (similar to the original Lee-

Carter restriction), αix is the average logarithmic central death rate for age x in popu-
lation i over time. The term BxKt represents the common factor for all populations,
and the term βixκ

i
t is a population-specific, age-dependent mortality development. Li

and Lee (2005) estimate this model using Singular Value Decomposition, whereas
Antonio et al. (2015) use a Bayesian framework. For a related alternative, where dif-
ferent populations share a common age-effect for mortality improvements, see Kleinow
(2015). He finds that mortality forecasts are more accurate when the age-effect is the
same for all countries rather than estimated differently for all countries.

The model proposed by Li and Lee (2005) is intended for mortality of different
countries, and no country is assumed to be dominant in the mortality developments of
other countries. Dowd et al. (2011) investigate mortality for two populations where
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the populations are not necessarily considered equal. They propose the following
‘gravity’ model:

lnm
(i)
t,x = α(i)

x + κ
(i)
t + γ

(i)
t−x, i = 1, 2, (2.32)

with γ
(i)
t−x a term representing a cohort effect. The first population is assumed to

be the independent population, and mortality in the second population converges to
mortality in the first population. They impose that the period effects κ(i)

t gravitate
to one another, and the gravitational pull is characterized by the following time series
specification:

κ
(1)
t = κ

(1)
t−1 + µ(1) + C(11)Z

(1)
t ,

κ
(2)
t = κ

(2)
t−1 + φ(κ

(1)
t−1 − κ

(2)
t−1) + µ(2) + C(21)Z

(1)
t + C(22)Z

(2)
t .

The term φ represents the gravitational pull: the spread between the two period
effects, κ(1)

t−1−κ
(2)
t−1, reduces over time if 0 < φ < 1, and the pull is stronger for larger

φ. Cairns et al. (2011b) estimate parameters for a similar gravity model using a
Bayesian approach. By defining the dependence between the two populations slightly
differently, they arrive at a specification that can be used for a combination of a
dominant and a subordinate population, but also for a combination of two equal-
sized populations. This makes it suitable to model mortality in different countries
but also for mortality in a country and in a large pension fund.

The papers discussed above consider multiple-population models mainly to de-
scribe the evolution of mortality for a collection of countries. Villegas and Haberman
(2014) consider mortality in different groups within a single country. Specifically, they
consider five different socioeconomic classes in England. Mortality for the reference
population is described using an extension of the Lee-Carter model, and mortality for
different socioeconomic classes is defined relative to the population. Haberman et al.
(2014) use a similar approach for an insurance portfolio but consider a wide collection
of models. For portfolios with large exposures and sufficient historical observations,
the authors suggest to use M7 as defined in Table 2.1 for the general population and
M5 for the difference between the population and the portfolio.

All these approaches require that there is a sufficiently large dataset. Otherwise,
time-dependent effects may be difficult to forecast, and it may be more appropriate
to assume no time dynamics in the portfolio.

2.5.2 Explaining portfolio mortality using risk factors

As an alternative for the multiple-population approach, we may try to explain the
relative difference between the baseline mortality rate and mortality observed in the
portfolio using observable risk factors.
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Dutch life insurers and pension funds often define mortality rates as a function
of insured amounts or liabilities. The total value of the liabilities is determined as
the product of the insured amount or accrued rights and an appropriate annuity
factor (summed over all participants). As a result, the liabilities are more sensitive
to mortality among participants with large insured amounts. It is therefore more
relevant to accurately estimate the mortality rates for participants with large insured
amounts than for participants with smaller insured amounts.

The following example is borrowed from Koninklijk Actuarieel Genootschap (2012).
Consider an insurance portfolio with two types of policyholders: 100 of type A and
100 of type B. During year t, six policyholders of type A die and two of type B. Since
there are no risk factors to distinguish mortality between both types of policyholders,
the death ratio is estimated at 8/200 = 0.04.

Suppose now that we know that each policyholder of type A had a present value
of pension benefits equal to 1,000, and for each policyholder of type B the present
value equals 5,000. Then, the total liabilities at the beginning of the year equal
100 · 1, 000 + 100 · 5, 000 = 600, 000. Given an equal number of deaths for both
types of policyholders, the total release of provision (ignoring any benefit payments)
equals 6 · 1, 000 + 2 · 5, 000 = 16, 000. If we determine the mortality rate as the
fraction of the total provision released in a year, the death ratio in this example
equals 16, 000/600, 000 = 0.027.

The above example illustrates that death rates weighted by insured amounts can
be substantially different from death rates based on numbers of deaths. Therefore,
Plat (2009b) defines portfolio-specific factors as the ratio between mortality in the
population and mortality in a portfolio as

Pt,x =
mA
t,x

mpop
t,x

, (2.33)

where mA
t,x is the observed death rate in the portfolio based on insured amounts, and

mpop
t,x is the observed death rate in the population. As an example, he models realized

portfolio-specific factors assuming a linear effect in age:

Pt,x = at + btx+ εt,x, εt,x
iid∼ N(0, σ2

ε). (2.34)

The values of at and bt are estimated using regression techniques, and portfolio-specific
factors for future years are obtained by projecting at and bt using time series models.
For small portfolios, the observed portfolio-specific factors Pt,x may become volatile
due to individual mortality risk, which may complicate drawing conclusions on the
significance of parameters.

Richards et al. (2013) model the force of mortality using individual observations,
and therefore their model takes individual mortality risk into account in an appropri-
ate manner. They use a time-varying version of the Makeham-Beard law to specify
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the force of mortality:

µit,x =
eεi + eαi+βix+δ(t−2000)

1 + eαi+ρi+βix+δ(t−2000)
. (2.35)

The term eεi is a constant rate of mortality independent of age or time, and is referred
to as Makeham’s constant. Further, the term αi is the overall mortality level for
individual i, and βi is the rate of increase in mortality with age for individual i.
Finally, the term ρi is a heterogeneity parameter, and δ represents a constant rate
of change in overall mortality levels over time, normalized to the year 2000. They
estimate the parameters on five years of historical portfolio data for individual lives.
Since the model is based on observations of individual survival, their approach cannot
be used when only aggregated portfolio data are available.

Gschlössl et al. (2011) use aggregated instead of individual mortality data. They
only have five years of historical data, and they therefore do not include time dy-
namics in their model for portfolio-specific mortality. First, they estimate a smooth
baseline force of mortality µbi on portfolio data which depends on age only. Remaining
heterogeneity is then captured by observable risk factors in a Poisson GLM framework:

Di ∼ Poisson(Eiµi), (2.36)

with

lnµi = β0 + β1 lnµbi +

r+1∑
j=2

βjxij . (2.37)

In this specification, individual mortality risk is also appropriately taken into account
through the Poisson specification. However, since the baseline mortality rate is esti-
mated on portfolio data without a time trend, mortality rate forecasts are not easily
obtained.

Olivieri (2011) view portfolio-specific mortality in a different perspective, namely
in a Bayesian setting of the form

Dt,x ∼ Poisson(Et,xq
∗
t,xZt,x). (2.38)

Here, q∗t,x is a best estimate mortality rate published by an independent institution,
and Zt,x ∼ Gamma(αt,x, βt,x) is a random adjustment. Starting with values for
α0,x and β0,x, subsequent values of αt,x and βt,x can be computed in closed form
when new mortality observations become available, since the Gamma distribution
is used, which is the conjugate of the Poisson distribution. Kan (2012) considers a
similar framework but uses the Lee-Carter model calibrated to the Dutch population
to specify the baseline mortality rate q∗t,x. This model provides insight in how the
distribution of the portfolio-specific factors may evolve over time if new observations
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become available. However, it is not trivial to extend this framework to incorporate
other risk factors.

The papers discussed above often take population mortality rates as given or do
not consider time dynamics. But when population mortality and portfolio-specific
mortality are not modeled simultaneously, it is unclear how portfolio-specific mortal-
ity forecasts should be constructed and how uncertainty in those forecasts has to be
evaluated. In Chapter 4 we combine the ideas from this section with the multiple-
population approach and introduce a new method to simultaneously estimate popu-
lation and portfolio-specific mortality. Further, in Chapter 5 we use the regression
approach as introduced below to explain mortality in a Dutch pension fund.
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Chapter 3

The impact of multiple structural changes on
mortality predictions

This chapter is based on F. van Berkum, K. Antonio, and M. Vellekoop. The impact of
multiple structural changes on mortality predictions. Scandinavian Actuarial Journal,
7:581 – 603, 2016.

3.1 Introduction

Mortality rates have improved substantially during the last century as has been shown
in, for example, Cairns et al. (2008), Barrieu et al. (2012) and Antonio et al. (2017).
Life insurance companies and pension funds therefore need to monitor and predict
mortality improvements for proper pricing and reserving. It is also important for
them to quantify the uncertainty in future mortality rates for regulatory purposes
such as Solvency II.

Constructing mortality rate projections consists of two steps, namely (i) calibrat-
ing a mortality model on historical data, and (ii) forecasting future values for the time
dependent parameters obtained in (i). The seminal paper by Lee and Carter (1992)
introduced a stochastic mortality model that describes mortality improvements. This
is a single factor model with age and period effects, but in Section 2.2 we discussed
different extensions to the Lee-Carter model.

The projection of time-dependent effects in mortality models receives relatively
little attention in the recent literature. The period and cohort effects are often pro-
jected using ARIMA-models, see Section 2.3.2. However, when structural changes are
present, the time-dependent effects cannot be captured by standard ARIMA-models.
The resulting mortality forecasts are also highly sensitive to the calibration period.

Alternatives have been proposed to tackle this problem, e.g. Booth et al. (2002)
and Denuit and Goderniaux (2005) use a frequentist approach and Li et al. (2015) a
Bayesian approach to choose an optimal calibration period, Milidonis et al. (2011) in-
troduce regime switching models to mortality modeling, and Li et al. (2011), Sweeting
(2011) and Coelho and Nunes (2011) introduce structural changes in trend stationary
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and difference stationary processes.
In this chapter we extend the approach of Coelho and Nunes (2011). They allow

for a single structural change in period effects. However, multiple structural changes
may have occurred, as has been suggested for trend stationary processes by Sweet-
ing (2011). We focus on the class of difference stationary processes and extend the
approach of Coelho and Nunes (2011) by allowing for multiple structural changes in
the period effects. We determine the structural changes in an objective manner (Bai
and Perron (1998)) using the Bayesian Information Criterion. To evaluate the per-
formance of this approach, we compare the projections using our approach to those
obtained when no structural changes or a single structural change is allowed using the
Dawid-Sebastiani scoring rule (Riebler et al. (2012)). Whereas the aforementioned
papers often focus on a specific mortality model, we show results for Dutch and Bel-
gian mortality data that are calibrated to a wide variety of mortality models. We
include both models with and without cohort effects since recent results by Coelho
and Nunes (2013) show that evidence of structural changes in models without cohort
effects may disappear once cohort effects have been included.

The chapter is organized as follows. In Section 3.2 we present our approach for
mortality forecasting when allowing for multiple structural changes in the period
effects. We investigate the estimation and backtesting results in Section 3.3, and
Section 3.4 concludes.

3.2 Proposed forecasting method

3.2.1 Forecasting period effects

In Section 2.3 we discussed a variety of approaches to forecasting mortality. When
using regime switching models, it is assumed that mortality dynamics observed in
the past will occur in the future. Consider for example the effect of smoking which
severely affected mortality improvements in the Netherlands for many years. People
are smoking less frequently nowadays than they did in the past, and therefore we do
not expect smoking to have a similar impact on future mortality developments, so we
will not use regime switching models. Optimization of the calibration period as in
Booth et al. (2002) and Denuit and Goderniaux (2005) has appealing characteristics.
For example, only the most recent data is used for calibration, and ‘old’ data which
may not be appropriate for projection of future mortality, is disregarded. However,
this method is not easily transferable to multi-factor models because for two period
effects different calibration periods may be optimal, so we will not optimize the cali-
bration period. Instead, we will use recent information on mortality dynamics, and we
use the entire calibration period to estimate the variability in the mortality dynamics.

Following the findings from Coelho and Nunes (2011) and the fact that a random
walk with drift seems to provide the best calibration results in the mortality literature,
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we focus on the difference stationary process. However, we extend the approach of
Coelho and Nunes (2011) and the work of O’Hare and Li (2015) in such a way that
multiple structural changes can be detected, as multiple events in the past may have
affected the speed of mortality improvements.

We assume a multivariate random walk with drift for the period effects. Each
univariate series may experience multiple structural changes during the calibration
period. We determine the optimal number of structural changes separately for each
time series using an optimization criterion. The period effects are then projected
using the latest drift parameters and the estimated covariance structure.

To determine the number of structural changes and their corresponding dates, we
follow the methodology introduced in Bai and Perron (2003). Suppose we have at
our disposal different period effects (indexed by i) κ(i)

t (t = t1, . . . , tT ) and define the
first-order differences ∆κ

(i)
t = κ

(i)
t − κ(i)

t−1 for t = t2, . . . , tT . We estimate a random
walk with a piecewise constant drift:

∆κ
(i)
t =



β1 + εt, t ≤ c1
. . .

βj + εt cj−1 < t ≤ cj
. . .

βm+1 + εt, cm < t

(3.1)

where εt ∼ N(0, σ2
ε) are independent over time. We estimate this model using OLS,

hence, we minimize the sum of squared residuals (SSR):

SSR(c1, . . . , cm) =

m+1∑
j=1

cj∑
t=cj−1+1

[∆κ
(i)
t − βj ]2, (3.2)

where c0 = t1 and cm+1 = tT . In the model specification above, we distinguish m

break points that divide the time series into m+ 1 periods with different drifts. Both
the number of break points (m) and the dates of the break points (c1, . . . , cm) are
unknown.

Let β(Cm) denote the estimates {β1, . . . , βm+1} based on a given m-partition
(c1, . . . , cm) denoted Cm. If we substitute β(Cm) into (3.2), the estimated break points
(ĉ1, . . . , ĉm) are chosen in such a way that (ĉ1, . . . , ĉm) = argminc1,...,cm SSR(c1, . . . , cm),
where the minimization is taken over all partitions (c1, . . . , cm) for which cj−cj−1 ≥ h.
The parameter h corresponds to the minimum period that a regime should last, and
is to be chosen up front. Bai and Perron (2003) describe an efficient algorithm to
determine the optimal break points for a given m.

If we set h too low it is possible that spurious effects are picked up, which is
undesirable. On the other hand, if we set h too high, it is possible that we miss break
points. We take h = 5 which is in line with Zeileis et al. (2003) and Harvey et al.
(2009), who suggest to set h equal to 10% of the sample size.
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Using the method described above, we can determine the optimal break points
(c1, . . . , cm) for an a priori given number of break points m. We then have to deter-
mine what the optimal number of break points, say m∗, is. In general there are two
ways to choose the optimal number of break points: (i) using an information criterion
like the BIC, and (ii) performing F -tests to test the significance of the improvement
in fit when adding one or multiple break points.

If the information criterion is used, one determines the BIC for all m ∈ {0, . . . , 5},
see Zeileis et al. (2003).1 Denote BIC(m) as the BIC corresponding to the optimal
break points for a given m. The optimal number of break points is then defined by
m∗ = arg max BIC(m).

As in Bai and Perron (1998, 2003), we could also consider two F -tests. The first
is the test of m = l versus m = l+1 break points. This is a sequential procedure: one
starts with the null hypothesis of m = 0 versus the alternative hypothesis of m = 1

break points. If the null hypothesis of no break points is rejected, one continues testing
for the significance of two break points versus the null hypothesis of one break point,
and so on. The F -statistic is a function of the restricted sum of squared residuals
(RSSR) and the unrestricted sum of squared residuals (USSR):

F =
(RSSR−USSR) /(p1 − p0)

USSR/(n− p1)
, (3.3)

where p0 is the number of parameters in the model under the null hypothesis, p1

the number of parameters in the model under the alternative hypothesis, and n is
the number of observations. Since the dates of the structural changes are unknown,
we cannot use the standard critical values of the F -distribution as used in Sweet-
ing (2011), but critical values have to be obtained through simulation (see Andrews
(1992)). If a break point is significant, this break point is fixed and one searches
for a new break point. The old break point is not allowed to move, which may be
suboptimal when searching for more than one break point. Therefore, we shall not
use the sequential F -test.

The second F -test is based on the null hypothesis of no break point (m = 0) versus
the alternative hypothesis of m = k break points. To determine the optimal number
of break points, we determine the F -statistic as defined in (3.3) for all k ∈ {1, . . . , 5}
which we denote by F (k). We define the UDmax test statistic as the maximum value
of those F -statistics:

UDmax = max
k

F (k) (3.4)

Since the number and dates of the break points are unknown, critical values have
to be obtained through simulation. If the observed UDmax test statistic is larger

1We consider at most five structural changes. In exploratory analysis we allowed for more than
five structural changes, but the optimal number of structural changes never exceeded three.
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than the critical value, the number of break points is equal to k∗ = arg maxF (k).
If the test statistic is smaller than the critical value, there is insufficient proof for a
structural change.

The latter F -test is close to using the BIC, because an optimal model is chosen
while considering all model specifications. Yao (1988) shows that the number of
break points that follows from optimizing the BIC is a consistent estimator of the
true number of break points, and Bai and Perron (2003) note that the BIC performs
well in the absence of serial correlation. We will therefore use the BIC to choose the
number of break points. In the following paragraph we apply the method to Dutch
male mortality data.

Illustration - the Lee-Carter model. We consider the period effect of the Lee-
Carter model, estimated on Dutch male mortality data for the period 1960 to 2008, for
the ages 60 to 89. We also show results of the optimal calibration period strategy of
Denuit and Goderniaux (2005). The top left graph in Figure 3.1 shows the parameter
estimates for κ(2)

t . A random walk with constant drift does not seem appropriate,
because of apparent structural changes around 1972 and 2000. This is confirmed in
the bottom left graph. The black lines correspond to projections from a random walk
with constant drift and these projections do not seem consistent with the observations.
The blue lines correspond to projections when one structural change is allowed; the
break point is dated at 1993. These projections are not unreasonable, but the drift of
the period effect does not appear to be piecewise constant before and after the break
point. We obtain the projections represented by the red lines if we allow for multiple
structural changes. The break points are estimated to occur at 1972 and 2002. The
projections look reasonable, because the drift of the period effect is piecewise constant
between the different break points.

The graphs on the right-hand side of Figure 3.1 show the projections for the period
effects from the Lee-Carter model calibrated on different periods. We compare sce-
narios without structural changes, with a single structural change and with multiple
structural changes. Allowing for a single structural change leads to more robust pro-
jections with respect to the calibration period, and if we allow for multiple structural
changes, projections become even more robust.

Figure 3.2 shows the first order differences of the estimated period effect from
Figure 3.1 (top left). In the upper right graph we observe that the first break point is
accurately estimated, since the confidence interval (shown by the red line) is narrow.2

The lower left graph in Figure 3.2 shows the confidence intervals for the case of two
break points. The second break point (around the year 2002) is estimated accurately,
but the confidence interval corresponding to the first break point is wide. This can

2See Bai and Perron (1998) for a description how these confidence intervals are derived. Our
algorithm for detecting structural changes makes use of the R-package strucchange (Zeileis et al.
(2002)).
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Figure 3.1: Top left: parameter estimates of κ(2)
t in the Lee-Carter model, calibrated on

data from Dutch males aged 60-89 in the period 1960-2008. Bottom left:
projections for the period effect using different projection methods. Top
right through bottom right: projections of the period effect for different
calibration periods without allowing for structural changes, allowing for one
structural change and allowing for multiple structural changes. Dots are
estimated parameters, solid lines are the 50th percentiles and dashed lines
are the 5th and 95th percentiles of the projections.
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Figure 3.2: Confidence intervals for estimated break points for κ(2)
t in the Lee-Carter

model, calibrated on Dutch males aged 60-89 in the years 1960-2008. In the
plots (i) BP’s vs. (i+ 1) BP’s the green lines represent the mean of ∆κ

(2)
t

for the different periods when (i) BP’s are allowed, and the blue lines
represent the mean of ∆κ

(2)
t when (i+ 1) BP’s are allowed. The red lines

represent the confidence intervals corresponding to the break points.
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Figure 3.3: Parameter estimates of the Lee-Carter model, calibrated on data from
Dutch males aged 60-89 using the large calibration period 1960-2008, and
the optimal calibration period 1998-2008 according to the method of Denuit
and Goderniaux (2005).
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be explained by the values before and after the year 1972. However, allowing for the
second break point leads to an improvement in fit over the whole observation period.
This is illustrated by the differences between the green and blue lines in Figure 3.2.
The bottom right graph shows the confidence intervals for the case of three break
points. The confidence intervals overlap and they are much larger than for the case
of two break points.

Figure 3.1 (bottom left) also shows the estimated period effect if the calibration
period is chosen according to the procedure proposed in Denuit and Goderniaux
(2005). We calibrate the Lee-Carter model to the entire calibration period, and then
estimate OLS on different subsets of the period effect while keeping the end date
fixed. The optimal calibration period is chosen where the adjusted R2 is maximal.
Using that calibration period we recalibrate the Lee-Carter model, and the result is
plotted here in gray.3 In line with Denuit and Goderniaux (2005) we enforce that the
calibration period must be larger than ten years, and in this example the optimized
calibration period turns out to be of minimal length, in contrast to the findings of
Denuit and Goderniaux (2005) for Belgian data.

In this recent calibration period the period effect shows little variability which is
translated into narrower confidence intervals than when we would have required the
model to explain the entire dataset. Figure 3.3 shows the parameter estimates of
the Lee-Carter model based on the entire and the optimal calibration period. Given
the parameter restrictions, β(1)

x is the mean mortality rate, which explains the down-
ward shift. The estimates for β(2)

x differ substantially and those for the optimal (and
shorter) calibration period are less smooth.

3.2.2 Forecasting cohort effects

Section 2.3.2 contains an overview of different approaches to project the cohort ef-
fect. Imposing an ARIMA-specification up front can lead to biologically unreasonable
forecasts. Therefore, we use the BIC to select the optimal specification, but we only
consider ARIMA(p, d, q)-specifications for d ∈ {0, 1} and (p, q) ∈ {0, 1, 2}. We do not
consider the case d = 2, because from Cairns et al. (2011a) we conclude that using a
second order differencing model leads to implausibly large confidence intervals.

3.3 Results

In this section we calibrate the mortality models from Table 2.1 to Dutch and Belgian
mortality data, and we use the parameter constraints listed in Table 2.2 to uniquely
identify the models. As in Brouhns et al. (2002), we assume a Poisson distribution
for the number of deaths within a year, i.e. Dt,x ∼ Poisson(Et,xµt,x).

3The estimated period effect on the optimal calibration period is shifted upwards due to the
parameter restrictions.
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The models M5 to M8 assume linearity for the age effects for pensioner ages. That
linearity does not hold for lower and higher ages, and as a result these models are
appropriate for pensioner ages only (60-89). Therefore, we calibrate the models M5-
M8 only on the ages 60-89, whereas the other models are calibrated both for the ages
20-89 and the ages 60-89.

After having calibrated the models, we perform out-of-sample backtests to inves-
tigate the predictive qualities of the models while allowing for no, a single or multiple
structural change(s).

3.3.1 Model fit

We calibrate the models on male and female mortality data from the Netherlands and
Belgium for the years 1950 to 2008.4 Earlier data is excluded so there are no world
wars in the data set. We consider the ages 20-89, because mortality rates for younger
ages are not relevant for insurers and pension funds, and mortality rates for ages
above 89 are less reliable and are therefore excluded. If mortality rates are needed for
higher ages, techniques are available to close mortality tables; see e.g. Vaupel (1990),
Lindbergson (2001) and Denuit and Goderniaux (2005).

We present the estimation results for Dutch and Belgian males for ages 20-89 in
Table 3.1 and for ages 60-89 in Table 3.2. These tables show the effective number
of parameters that is estimated in each of the models, and the corresponding AIC
and BIC that we define as AIC = lnL − k and BIC = lnL − 1

2k · lnn, where lnL is
the log likelihood, n is the number of observations, and k is the effective number of
parameters.5 A higher AIC or BIC means that the model is better able to explain
the data. The difference between the AIC and the BIC is that the BIC imposes a
higher penalty for the number of parameters used. Mortality models contain many
parameters and we therefore believe the BIC to be a more appropriate information
criterion. However, the ranking based on a fit on historical data does not predict
whether a model will produce good mortality projections.

For the age range 20-89, the models with a cohort effect and interaction between
age and period effects have the highest AIC and BIC. As expected, models that score
well on AIC but which have many parameters, score worse on BIC; M11 is the clearest
example of this. The ranking of the models for Dutch males is similar to the ranking
for Belgian males. However, some models that score well on the age range 20-89 score
worse for the age range 60-89 (M9, M11, M12 and M13) and vice versa (M2 and M3).
The ranking of the models for the age range 60-89 is again similar for the Dutch and
Belgian males.

4Mortality data is downloaded from the Human Mortality Database, which is a joined project of
the University of California, Berkeley (USA) and Max Planck Institute for Demographic Research
(Germany). Data are available at http://www.mortality.org.

5The effective number of parameters is the total number of parameters that is included in the
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Table 3.1: Results of estimated models on Dutch and Belgian male mortality data for
the ages 20-89 and the years 1950-2008. The numbers in brackets represent
the ranking of the models for a specific dataset. The top three models are
shown in blue boldface.

The Netherlands Belgium

Model Pars AIC BIC AIC BIC

M1 197 -22,000 (10) -22,623 (10) -22,332 (10) -22,955 (10)
M1A 324 -19,535 (8) -20,559 (8) -20,122 (8) -21,146 (8)
M2 385 -18,425 (5) -19,642 (5) -19,129 (6) -20,345 (6)
M2A 513 -18,438 (6) -20,060 (7) -18,994 (5) -20,616 (7)
M3 246 -18,947 (7) -19,724 (6) -19,538 (7) -20,315 (5)

M9 327 -18,359 (4) -19,392 (2) -18,885 (4) -19,919 (2)
M10 244 -19,905 (9) -20,676 (9) -21,419 (9) -22,190 (9)
M11 422 -18,258 (1) -19,591 (4) -18,810 (1) -20,144 (4)
M12 364 -18,289 (2) -19,439 (3) -18,840 (2) -19,990 (3)
M13 327 -18,358 (3) -19,392 (1) -18,873 (3) -19,907 (1)

Table 3.2: Results of estimated models on Dutch and Belgian male mortality data for
the ages 20-89 and the years 1950-2008. Notes as in Table 3.1.

The Netherlands Belgium

Model Pars AIC BIC AIC BIC

M1 117 -11,035 (14) -11,355 (14) -10,421 (14) -10,741 (14)
M1A 204 -9,204 (12) -9,762 (13) -9,665 (12) -10,223 (12)
M2 225 -8,797 (8) -9,412 (4) -8,991 (6) -9,606 (4)
M2A 313 -8,820 (9) -9,675 (11) -8,995 (7) -9,850 (9)
M3 166 -8,941 (11) -9,395 (3) -9,101 (10) -9,555 (2)

M5 118 -9,345 (13) -9,668 (10) -9,912 (13) -10,235 (13)
M6 196 -8,732 (1) -9,268 (1) -8,935 (1) -9,471 (1)
M7 254 -8,735 (2) -9,429 (5) -8,938 (2) -9,632 (5)
M8 198 -8,792 (7) -9,333 (2) -9,031 (9) -9,572 (3)

M9 284 -8,752 (4) -9,528 (8) -8,942 (4) -9,719 (7)
M10 204 -8,908 (10) -9,465 (6) -9,347 (11) -9,905 (11)
M11 342 -8,771 (5) -9,706 (12) -8,965 (5) -9,900 (10)
M12 284 -8,783 (6) -9,560 (9) -9,002 (8) -9,778 (8)
M13 284 -8,748 (3) -9,524 (7) -8,939 (3) -9,716 (6)
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Figure 3.4: The first five panels show the parameter estimates for M2 calibrated on
Dutch male mortality in the years 1950 to 2008 on the ages 20-89 and 60-89.
The last four panels show realized mortality rates (dots) and fitted mortality
rates for x = {25, 45, 65, 85} (calibrated on ages 20-89 and ages 60-89)
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Table 3.3: Optimal values for xc in M8 and M12 when xc ∈ {60, . . . , 89} or
xc ∈ {20, . . . , 89}, based on the calibration period 1950-2008.

The Netherlands Belgium

Model Ages Males Females Males Females

M8 60-89 60 60 60 60
M12 60-89 60 89 89 89
M12 20-89 20 89 20 26

For the models M8 and M12 the impact of the cohort effect on the mortality rates
for age x depends on the parameter xc. The cohort effect γt−x is multiplied with
(xc − x), so it has a larger impact on mortality rates for ages farther away from xc.
From Table 3.3 we conclude that, for the datasets considered, 4 out of 12 times the
cohort effect mainly affects younger ages (xc = 89), and 8 out of 12 times the cohort
effect mainly affects the elderly.

We present the parameter estimates for M2 estimated on Dutch male mortality
data in Figure 3.4 since this model fits the data well for both age ranges. The
parameter estimates for the two age ranges are similar and the fitted mortality rates
differ only marginally. In order to forecast mortality, the parameter κ(2)

t needs to be
projected into the future, and for new cohorts we also have to project the cohort effect
γt−x. Since the time-dependent parameters are different, it is possible and even likely
that mortality projections resulting from the two different age ranges are different,
regardless of the similar in-sample fit.

3.3.2 Out-of-sample performance

We now evaluate the predictive power of the models under consideration. We calibrate
the models using data from 1950 to 2000 and then simulate forces of mortality for the
years 2001 to 2008. This leads to a predictive distribution for the forces of mortality
µt,x with x = x1, . . . , xX and t = tT+1, . . . , tT+S ; there are thus mortality rates
for X ages and S years in the future. As in Riebler et al. (2012), we obtain the
mean E(µt,x) and variance Var(µt,x) of future forces of mortality from the simulated
predictive distribution. With Dt,x ∼ Poisson(Et,xµt,x) and using the law of total
expectation it follows that for t > T the expected death counts are

d̂t,x = E(Dt,x) = Et,xE(µt,x) (3.5)

model minus the number of parameter constraints that are used to identify the model.
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and the variance of the death counts is

σ2
t,x = Var(Dt,x) = E(Var(Dt,x|µt,x)) + Var(E(Dt,x|µt,x)) (3.6)

= E(Et,xµt,x) + Var(Et,xµt,x)

= Et,xE(µt,x) + E2
t,xVar(µt,x),

since we assume the exposure Et,x is given.6 In the evaluation of the out-of-sample
performance we consider the differences between observations and projections (here-
after: calibration of the projections) and the width of the confidence intervals of the
projections (hereafter: sharpness of the projections), see also Gneiting and Raftery
(2007). We compare the calibration of the mortality models using the root mean
squared error (RMSE), both with and without the possibility of structural changes:

RMSE =

√
1

X · S
∑
t,x

(
dt,x − d̂t,x

)2

. (3.7)

The RMSE only accounts for differences between observations and predictions, but
not for differences in scale. A typical problem for mortality data is summarizing
the quality of the forecasts for different ages and years in a single statistic. The
death counts under consideration differ in scale for different ages and years due to
different forces of mortality and exposures. The Dawid-Sebastiani scoring rule (DSS)
introduced by Gneiting and Raftery (2007) is a statistic that evaluates the calibration
and the sharpness of the projections, and also takes the scale of the observations into
account. We compute the average DSS (DSS) as introduced by Riebler et al. (2012),
which allows us to summarize the quality of all forecast death counts into a single
statistic:

DSS =
1

X · S
∑
t,x

[(
dt,x−d̂t,x
σt,x

)2

+ log σ2
t,x

]
. (3.8)

Table 3.4 and 3.6 show the backtesting results for Dutch and Belgian females for the
ages 20-89 and 60-89 respectively7, and Table 3.5 and 3.7 show similar results for
Dutch and Belgian males. For some models the statistics are lower when structural
changes are incorporated (the bold figures in the tables), which means that allowing
for structural changes has improved the quality of the mortality forecasts; especially
the decrease in RMSE can be large. For other models however, the statistics are
higher (the red figures), which means that the quality of the forecasts has worsened.
Allowing for structural changes has little effect on the ranking of the models based
on RMSE or DSS, but the ranking of the models based on the backtest is markedly
different from the ranking based on the fit on historical data in Table 3.1 and 3.2:

6We shall not simulate the population size, because then assumptions must be made on immigra-
tion and emigration.

7In Table 3.4, the results for M2 applied to Belgian females are implausible due to unrealistic
cohort projections and are therefore not included in the table.
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• For the age range 20-89 the models M2A and M11 perform well in the backtest,
whereas the models M11, M12 and M13 explain the historical data well;

• For the age range 60-89 the models M1A, M2 and M2A perform well in the
backtest, whereas the models M6 and M7 explain the historical data well.

Figure 3.5a shows projections of the period effects for M12 applied to Dutch fe-
males aged 20-89 and Figure 3.5b shows resulting mortality projections. The non-
monotone behavior observed in the red and gray projections is due to the estimated
cohort effect. This effect is not visible for q80 because for Dutch females aged 20-89
we found xc = 89, which implies that the cohort effect hardly affects the highest
ages. From Figure 3.5a we observe that the projections of κ(1)

t are more convincing
if we allow for structural changes, and in Figure 3.5b the mortality projections with
structural changes are more convincing as well. This is confirmed in Table 3.4 as both
the RMSE and the DSS have improved substantially.

Similar results are shown in Figure 3.6a and 3.6b for model M9 applied to Dutch fe-
males aged 20-89. The projections for κ(2)

t are more plausible when structural changes
are allowed, but the projections for κ(3)

t are still implausible. The last fitted cohort
effect is the cohort 19358, and later cohort effects are projected using an appropriate
ARIMA-process. The cohort effect needed for projections for x = 30 are therefore
projected over 35 years into the future9, while for x = 60 the cohort effect is projected
only few years into the future and for x = 80 it is available from the model calibra-
tion. This explains the relatively large confidence interval for q30 in Figure 3.6b. The
projections for q80 including the structural change in κ(2)

t do not follow the realized
mortality improvements, while the projections without structural changes do follow
the realized mortality rates closely. Hence, even though the projected period effect
is more plausible when structural changes are accounted for, the resulting mortality
projections can be implausible for certain ages leading to worse backtesting results in
Table 3.4.

The most interesting example is M7 applied to Dutch females aged 60-89. In Table
3.6 we see that both the RMSE and DSS worsen if we allow for a single structural
change, but the statistics improve if we allow for multiple structural changes. Figure
3.7 shows the projections for the period effects while allowing for no, one or multiple
structural changes. The projections for κ(1)

t with a single structural change are less
convincing than when no structural changes are allowed, because the last structural
change has not been identified. When we allow for multiple structural changes we

8For M9 and M13 the cohort effect is set equal to zero if there are no observations related to the
age 60 or higher. For the age range 20-89 and the calibration period 1950-2000 this means that the
last estimated cohort is 2000 − 65 = 1935.

9The cohort effect needed in 2001 for x = 30 is for the cohort 1971. The last estimated cohort
effect is for the cohort 1935. Hence, the cohort effect for the cohort 1971 is projected 36 years from
the last estimated cohort effect.
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Figure 3.5: Illustration of modeling approach for the period effects of M12 applied to
Dutch females aged 20-89 in the period 1950-2000.
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(b) Mortality projections for x = {30, 60, 80}. Notes: see Figure 3.5b.

Figure 3.6: Illustration of modeling approach for the period effects of M9 applied to
Dutch females aged 20-89 in the period 1950-2000.
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Figure 3.7: Projections for the period effects κ(i)
t of M7 applied to Dutch females aged

60-89 in the period 1950-2000.

detect two structural changes, and the projections for the period effects are more
plausible. The projections for κ(2)

t are also most convincing if we allow for multiple
structural changes. This example illustrates the added value when allowing multiple
structural changes.

3.4 Conclusion

In this chapter we calibrate a selection of stochastic mortality models on historical
mortality data from the Netherlands and Belgium. To create mortality projections,
we project the period and the cohort effects. The cohort effects are projected using an
ARIMA(p, d, q)-specification, where (p, d, q) are chosen such that the BIC is optimal.
The period effect is projected using a modeling strategy that allows for objective
detection of multiple structural changes in the difference stationary process. We
observe that projections of the period effects are more robust with respect to the
calibration period if we allow for multiple structural changes.

We compare the impact of allowing a single or multiple structural changes. We
often find evidence for one structural change, and sometimes even multiple structural
changes are estimated. We also find that allowing for structural changes can lead
to improved backtesting results. But this is not always the case, because apparent
structural changes may not be identified until sufficient evidence for their existence
has accumulated, i.e. the improvement in fit from including a structural change may
not be sufficient yet to to overcome the penalty in the BIC caused by the extra
parameter. Another explanation for why backtesting results may not have improved,
is that changes in age effects have not been accounted for.

The model we propose relaxes the assumption that all parameter values remain
constant over the considered time period. We check for different mortality trends
in the period effects and use the latest trend to project mortality. In that sense it
resembles methods in which the calibration period is restricted to a particular subset
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of recent data points which is chosen to provide the best model fit. Such alternative
methods also allow that other, age-dependent, parameters are only fitted for this
restricted period and this may improve fit for the most recent observations.

Our approach has the advantage that it can still be used when one requires that a
model structure describes the entire collection of data points. This would for example
be the case if we want to compare the performance of different model structures for
a given dataset. If such structures involve more than one stochastic factor, we do
not have to exclude the possibility that one of the multiple time series undergoes a
structural change while the others remain the same as before and we do not need to
adjust the overall calibration period as a result of such a change.

Each approach therefore has its advantages and disadvantages, but it is reassuring
that our numerical example for a single factor model suggests that estimates generated
by the two methods will differ in their fit over the most recent years, but not too
substantially.
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Table 3.4: Results for Dutch and Belgian female mortality rates for the ages 20-89
calibrated on the years 1950-2000, backtested on the years 2001-2008.

RMSE DSS

Country Model 0 1 > 1 0 1 > 1

NL M1 67.7 67.7 67.7 7.79 7.79 7.79
M1A 75.9 75.9 75.9 7.76 7.76 7.76
M2 71.7 71.7 71.7 8.73 8.73 8.73
M2A 79.7 82.1 82.1 7.62 7.69 7.69
M3 118.1 118.1 118.1 8.69 8.69 8.69

M9 81.9 166.9 166.9 8.50 9.34 9.34
M10 92.5 92.5 92.5 8.71 8.71 8.71
M11 64.6 64.6 64.6 8.19 8.19 8.19
M12 121.9 76.2 76.2 9.06 8.21 8.21
M13 91.7 91.7 91.7 8.54 8.54 8.54

BE M1 56.1 56.1 56.1 7.36 7.36 7.36
M1A 57.7 57.7 57.7 7.46 7.46 7.46
M2♣ - - - - - -
M2A 39.0 36.8 36.8 7.24 7.31 7.31
M3 82.2 82.2 82.2 7.72 7.72 7.72

M9 61.4 81.0 81.0 8.31 8.62 8.62
M10 86.9 86.9 86.9 9.62 9.62 9.62
M11 38.0 38.0 38.0 7.05 7.05 7.05
M12 72.9 72.9 72.9 7.32 7.32 7.32
M13 60.8 61.2 61.2 8.04 8.16 8.16

Note: Mortality forecasts are backtested for the years 2001-2008 using different fore-
casting methods for the period effects. “0", “1" or “> 1" means we allow for no,
a single or multiple structural changes, respectively. Bold numbers indicate im-
proved backtesting results with respect to no structural changes; red numbers
indicate worsened results with respect to no structural changes.
♣: Projections of the cohort effect for M2 for Belgian females lead to unreliable
predictions. For this model, the results are therefore not included in this table.
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3.4. Conclusion

Table 3.5: Results for Dutch and Belgian male mortality rates for the ages 20-89
calibrated on the years 1950-2000, backtested on the years 2001-2008.

RMSE DSS

Country Model 0 1 > 1 0 1 > 1

NL M1 266.4 243.4 243.4 22.01 21.43 21.43
M1A 222.9 222.9 222.9 14.35 14.35 14.35
M2 105.2 105.2 105.2 9.41 9.41 9.41
M2A 164.9 164.9 164.9 10.76 10.76 10.76
M3 145.4 145.4 145.4 10.06 10.06 10.06

M9 176.7 120.3 120.3 9.71 8.99 8.99
M10 193.7 159.4 159.4 10.55 9.87 9.87
M11 187.2 187.2 187.2 10.25 10.25 10.25
M12 178.1 118.2 118.2 12.69 11.31 11.31
M13 164.4 111.8 111.8 9.59 8.96 8.96

BE M1 147.2 147.2 147.2 10.56 10.56 10.56
M1A 124.1 113.3 113.3 9.52 9.42 9.42
M2 84.7 84.7 84.7 8.79 8.79 8.79
M2A 87.3 61.7 61.7 8.46 8.25 8.25
M3 71.8 71.8 71.8 8.77 8.77 8.77

M9 79.7 79.7 79.7 8.61 8.61 8.61
M10 117.1 83.4 83.4 9.32 9.45 9.45
M11 93.3 93.3 93.3 8.38 8.38 8.38
M12 45.3 45.3 45.3 8.58 8.58 8.58
M13 72.3 72.3 72.3 8.67 8.67 8.67

Note: See Table 3.4
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3. The impact of multiple structural changes on mortality predictions

Table 3.6: Results for Dutch and Belgian female mortality rates for the ages 60-89
calibrated on the years 1950-2000, backtested on the years 2001-2008.

RMSE DSS

Country Model 0 1 > 1 0 1 > 1

NL M1 128.2 128.2 128.2 10.38 10.38 10.38
M1A 112.8 112.8 112.8 9.71 9.71 9.71
M2 102.5 102.5 102.5 10.03 10.03 10.03
M2A 201.8 124.7 124.7 10.06 9.83 9.83
M3 160.7 160.7 160.7 11.32 11.32 11.32

M5 134.1 134.1 134.1 12.75 12.75 12.75
M6 339.5 412.0 412.0 15.22 15.36 15.36
M7 517.3 719.3 421.9 19.88 23.39 16.77
M8 141.2 88.6 88.6 10.03 10.38 10.38

M9 114.4 114.4 114.4 10.08 10.08 10.08
M10 113.1 113.1 113.1 9.93 9.93 9.93
M11 137.0 137.0 137.0 10.06 10.06 10.06
M12 151.5 151.5 151.5 10.51 10.51 10.51
M13 135.5 218.6 218.6 10.16 11.66 11.66

BE M1 78.2 78.2 78.2 9.36 9.36 9.36
M1A 87.8 87.8 87.8 9.58 9.58 9.58
M2 61.8 61.8 61.8 9.49 9.49 9.49
M2A 154.7 84.4 84.4 9.95 9.68 9.68
M3 111.4 111.4 111.4 9.97 9.97 9.97

M5 101.9 101.9 101.9 13.28 13.28 13.28
M6 177.8 177.8 177.8 10.92 10.92 10.92
M7 399.8 500.7 470.5 15.33 15.54 14.17
M8 149.1 149.1 149.1 10.49 10.49 10.49

M9 86.6 86.6 86.6 9.55 9.55 9.55
M10 86.0 86.0 86.0 9.56 9.56 9.56
M11 83.3 83.3 83.3 9.40 9.40 9.40
M12 98.5 98.5 98.5 9.66 9.66 9.66
M13 87.8 87.8 87.8 9.40 9.40 9.40

Note: See Table 3.4

62



“Thesis_Frank_van_Berkum” — 2018/2/16 — 14:05 — page 63 — #79

3.4. Conclusion

Table 3.7: Results for Dutch and Belgian male mortality rates for the ages 60-89
calibrated on the years 1950-2000, backtested on the years 2001-2008.

RMSE DSS

Country Model 0 1 > 1 0 1 > 1

NL M1 296.9 296.9 296.9 16.30 16.30 16.30
M1A 297.0 297.0 297.0 15.53 15.53 15.53
M2 120.2 120.2 120.2 10.58 10.58 10.58
M2A 166.9 166.9 166.9 10.97 10.97 10.97
M3 200.2 200.2 200.2 11.63 11.63 11.63

M5 286.5 286.5 286.5 13.86 13.86 13.86
M6 232.3 232.3 232.3 13.59 13.59 13.59
M7 202.4 202.4 202.4 12.53 12.53 12.53
M8 386.6 284.7 284.7 15.47 14.14 14.14

M9 207.9 207.9 207.9 12.00 12.00 12.00
M10 283.4 283.4 283.4 13.61 13.61 13.61
M11 283.2 283.2 283.2 13.42 13.42 13.42
M12 343.7 227.5 227.5 14.09 12.41 12.41
M13 233.1 233.1 233.1 12.56 12.56 12.56

BE M1 160.6 160.6 160.6 10.99 10.99 10.99
M1A 173.3 173.3 173.3 11.19 11.19 11.19
M2 77.3 77.3 77.3 10.11 10.11 10.11
M2A 112.1 80.5 80.5 10.17 10.15 10.15
M3 91.7 91.7 91.7 9.81 9.81 9.81

M5 166.6 166.6 166.6 10.68 10.68 10.68
M6 163.1 163.1 163.1 10.63 10.63 10.63
M7 132.3 132.3 132.3 10.23 10.23 10.23
M8 209.4 209.4 209.4 11.35 11.35 11.35

M9 148.3 148.3 148.3 10.41 10.41 10.41
M10 161.5 161.5 161.5 10.62 10.62 10.62
M11 174.5 174.5 174.5 10.99 10.99 10.99
M12 154.6 154.6 154.6 10.51 10.51 10.51
M13 198.8 198.8 198.8 11.65 11.65 11.65

Note: See Table 3.4
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Chapter 4

A Bayesian joint model for population and
portfolio-specific mortality

This chapter is based on F. van Berkum, K. Antonio, and M. Vellekoop. A Bayesian
joint model for population and portfolio-specific mortality. ASTIN Bulletin, 47(3):
681 – 713, 2017a.

4.1 Introduction

Earlier in this thesis, we stressed that life insurance companies and pension funds
need to value their liabilities using mortality rates appropriate for their portfolio.
For many countries projections of mortality rates are available for the entire pop-
ulation, but substantial heterogeneity in mortality rates exists between individuals
within a population. This is caused, amongst others, by differences in socioeconomic
classes, see Villegas and Haberman (2014). Lantz et al. (1998) argue that individuals
with a higher education tend to live more healthily, which may help to explain these
differences in mortality.

Heterogeneity in mortality also occurs between individuals when they have differ-
ent motivations to buy insurance. Finkelstein and Poterba (2002) show that substan-
tial differences in mortality even exist between individuals with voluntary annuities,
compulsory annuities or without annuities. Pitacco et al. (2009) discuss the presence
of select mortality when individuals are subject to medical tests when starting a life
insurance policy. Policyholders with a longer duration since the test will on average
experience higher mortality than policyholders that have been accepted more recently.
Therefore, an insurance company or pension fund cannot use mortality projections
for the whole population without making any adjustments. The difference between
mortality in a population and a portfolio is often called basis risk, see for example
Barrieu et al. (2012).

In practice, portfolio-specific mortality rates are often constructed by multiply-
ing projections of country-wide mortality rates with portfolio-specific factors. These
portfolio-specific factors, also called experience factors, thus represent the relative
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difference between the mortality rates of the population and the portfolio under con-
sideration. In Solvency II, insurance companies are obliged to derive portfolio-specific
mortality rate projections and analyze the uncertainty in these projections.

We propose a model to estimate population and portfolio-specific mortality si-
multaneously. To account for yearly fluctuations in small portfolios we use a Poisson
distribution to model individual deaths for a given realization of hazard rates, as in
Brouhns et al. (2002). We view the portfolio as part of the population and use a
baseline mortality trend for the population. The larger dataset for the population
allows us to generate reliable estimates for its dynamics of mortality. The relative dif-
ference between the population and the portfolio is modeled using a portfolio-specific
and age-dependent random effect. Such random effects reflect the remaining hetero-
geneity among policyholders which is not captured by the observable risk factors. See
Denuit et al. (2007) and Antonio and Zhang (2014) for similar examples in pricing
models for non-life insurance, where policy(holder)-specific behavior is captured by
such a random effect.

We use the Lee-Carter model for population mortality. In our Bayesian setting,
we consider two prior distributions for the portfolio-specific factors. The first prior
distribution assumes independent factors for different ages and independence between
groups (the portfolio and the rest). The second prior distribution is an autoregressive
smoothing prior which implies dependence between ages but independence between
the factor for our own portfolio and the factor for the rest of the population.

We describe population mortality and portfolio-specific mortality simultaneously,
in contrast to the multi-step method that is required in a frequentist approach. This
helps to distinguish between volatility in the time series for the population, param-
eter uncertainty in the model for the population, and parameter uncertainty in the
portfolio-specific factors.

To illustrate this point, Figure 4.1 shows observed portfolio-specific factors for the
CMI dataset on assured lives in England & Wales.1 These factors are the ratio of
death rates in the CMI portfolio and death rates in the whole of England and Wales,
for different years and ages. The observations are very volatile when considered
as a function of age and they can fluctuate wildly over consecutive years. These
fluctuations are mainly due to the randomness in the number of individual deaths for
a given fixed mortality rate. In order to take this into account, we will explicitly model
the noise in the outcomes that we can actually observe (the number of deaths), by
specifying that these follow a Poisson distribution when conditioned on the unobserved
hazard rates that contain the unknown portfolio-specific factors that we are ultimately
interested in. In a case study based on this dataset for England and Wales, we will
show that parameter uncertainty in portfolio-specific factors can be substantial but
that its impact on mortality projections is relatively small compared to the impact of

1See Section 4.3 for a description of the CMI dataset on assured lives.
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Figure 4.1: Observed portfolio-specific factors (the ratio of death rates in a portfolio and
death rates in the whole country) for the CMI portfolio of assured male lives
in England & Wales.

the Poisson noise in individual deaths.
In Section 4.2 we introduce our method and describe the prior distributions that

are used in our Bayesian setting. Section 4.3 contains the illustration of our ap-
proach using the dataset on assured male lives from England & Wales, and Section
4.4 concludes.

4.2 Bayesian portfolio-specific mortality

In Section 2.5 we discussed different approaches to modeling portfolio-specific factors,
which are suitable for different types of datasets. We consider the situation where
only limited historical portfolio data is available, which hinders reliable estimation
of mortality developments if only portfolio data would be used. We therefore simul-
taneously estimate mortality in the population and the portfolio-specific factors in a
Bayesian setting.

Let the observed number of deaths for group i during calendar year t for ages
in [x, x + 1) be dit,x, and denote the exposure in this group for that period by Eit,x.
The groups we consider are the entire population of a country (‘pop’), the portfolio
under investigation (‘pf’), and the part of the population which is not included in the
portfolio under consideration (hereafter referred to as the ‘rest’), so i ∈ {pop, pf, rest}.
The observed portfolio and the rest thus form the total population and we have that
dpf
t,x+drest

t,x = dpop
t,x and Epf

t,x+Erest
t,x = Epop

t,x . We need to define the rest group explicitly,
to ensure that we always consider all information available in the population.

To estimate parameters, we extend the portfolio dataset with observations of the
total population. In the dataset of the portfolio we consider X ages and S years, and
in the population X ages and T years. We define the set of cells (t, x) for which we
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Figure 4.2: Illustration of Opf and Opop.

have observations from both our portfolio and the rest (the light gray cells in Figure
4.2) as Opf = S × X with S = {s1, s1 + 1, . . . , sS} and X = {x1, x1 + 1 . . . , xX}.
We can only measure the differences between the portfolio and the rest on this set
of observations. The set for which we have observations from the population but not
from our portfolio (the dark gray cells in Figure 4.2) is defined by Opop = T × X ,
with T = {t1, t1 + 1 . . . , tT } and t1 ≤ tT < tT + 1 = s1 ≤ sS , and by construction
Opop ∩ Opf = ∅.2 In total, T ∗ = T + S years are included in the dataset.

We introduce indicator variables that will turn out to be useful when working with
likelihoods:

Ipf
t,x = Irest

t,x =

{
1 if (t, x) ∈ Opf

0 otherwise,
Ipop
t,x =

{
1 if (t, x) ∈ Opop

0 otherwise.
(4.1)

4.2.1 Model formulation and implementation

We assume that people in our own portfolio and the rest of the population share a
baseline force of mortality which is denoted by µt,x. Heterogeneity between groups is
captured by a random effect Θi

x which depends on age. This leads to the following
specification:

Dpop
t,x |µt,x ∼ Poisson(Epop

t,x µt,x), for (t, x) ∈ Opop (4.2)

2We could use a wider age range for the population, but we choose to use the same set of ages in
the population as we have available for the portfolio. This way, we ensure that the parameters αx,
βx and κt are most appropriate for projection of mortality for the portfolio.
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and

Dpf
t,x|(µt,x,Θpf

x ) ∼ Poisson(Epf
t,xµt,xΘpf

x ), for (t, x) ∈ Opf (4.3)

Drest
t,x |(µt,x,Θrest

x ) ∼ Poisson(Erest
t,x µt,xΘrest

x ), (4.4)

with the Lee-Carter model for the baseline

lnµt,x = αx + βxκt. (4.5)

This implies that we consider all deaths in the population for every cell (t, x), by
either using Dpop

t,x or both Dpf
t,x and Drest

t,x .3

The random effects Θi
x are independent between groups i, but there may be de-

pendence for different ages x.4 In Section 4.2.2 we consider two prior specifications for
Θi
x, a Gamma prior and a lognormal prior. In the first one, we assume independence

between ages x and between groups i, but in the second one we assume dependence
between ages and independence between groups. Given the baseline force of mortality
µt,x and the portfolio-specific factors Θi

x, the Poisson distributed numbers of deaths
are independent between ages, calendar years and groups.

To project mortality into the future, we need to impose a time series model on
the period effect κt. Two time series specifications that are often used for projecting
the period effect in the Lee-Carter model are a trend stationary and a difference
stationary model (also known as a random walk with possibly a drift). As discussed
in Chapter 3 we believe a difference stationary model to be more appropriate to model
the period effect for a single country so that is what we will use in this chapter.

In order to generate samples of posterior distributions, we use the Markov chain
Monte Carlo method (MCMC) with a burn-in period which allows the chain to
move towards the desired distribution before we start taking samples, see Section 2.4
for an introduction on the MCMC method. Since the MCMC algorithm requires
Metropolis(-Hastings) sampling for our model, the burn-in period is also used to cal-
ibrate scale parameters for the distribution to propose new samples. We calibrate
the scale parameters in such a way that the acceptance probabilities are within the
interval [20%, 30%]. Only samples that are found after the burn-in period are used
for inference on parameters and for prediction purposes.

3We use the Lee-Carter model to specify the baseline mortality, but our model can easily be
extended to include e.g. a cohort effect as in Renshaw and Haberman (2006). Also note that our
model differs from the augmented common-factor model as in (2.31) since we do not include an extra
dynamic factor when modeling subpopulations. The absence of such a term makes our model similar
to the common factor model also discussed in Li and Lee (2005).

4We use time-independent portfolio factors, because estimating time dynamics on a few historical
years can lead to spurious forecasting results. As a result, mortality improvements are perfectly
correlated between groups, and this makes our model less appropriate for assessing basis risk in
longevity hedging as in Haberman et al. (2014).
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In a frequentist setting, parameter constraints are needed to uniquely identify
the Lee-Carter model, since linear transformations can be applied which change the
value of the parameters αx, βx and κt without changing the forces of mortality. In
a Bayesian framework, parameters are random variables so there is no identifiability
problem due to the introduction of priors. However, the presence of identification
problems in a frequentist setting suggests that we may also encounter convergence
problems for the MCMC algorithm in a Bayesian implementation of the same model.
We therefore apply two parameter constraints:

κt1 = 0 and ‖β‖2 =
∑
x∈X

β2
x = 1, (4.6)

that are implemented through the specification of the prior distributions. Further,
for t ≥ s1 we have more information: two observations per cell (t, x). As a result, in
a frequentist setting the forces of mortality for the portfolio and the rest group are
invariant under the following transformation:

Θpf
x → Θpf

x · exp(cβx), Θrest
x → Θrest

x · exp(cβx) and κt → κt − cI[t∈S].

We observed that we may encounter convergence problems in κt and Θi
x if no addi-

tional constraint is imposed, and therefore we impose

κs1 = κtT . (4.7)

With this constraint we further ensure that the parameters αx and βx can be used
for both Opop and Opf. The parameter constraint in (4.7) is appropriately taken into
account in the prior specification and in the derivation of the posterior distributions.

4.2.2 Prior distributions

We will now describe the prior distributions for parameters and hyperparameters, to
complete the Bayesian specification of the model.

Population mortality parameters

Prior distribution for αx. In line with Section 2.4 we use the following prior for
αx with x = x1, . . . , xX :

ex = exp(αx)
iid∼ Gamma(ax, bx). (4.8)

Prior distribution for βx. In line with Section 2.4 we use the following prior for
the vector of parameters β = (βx1 , . . . , βxX

):

β ∼ vMF(µβ , cβ), (4.9)

where vMF(µ, c) is a Von Mises-Fisher distribution with constants µ (the mean di-
rection vector) and c (the concentration parameter) with ‖µ‖ = 1 and c > 0.
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Prior specification for κt. In line with Section 2.4 and Chapter 3 we assume a
random walk with drift for the period effect κt. The prior distribution is specified by

δ ∼ N(µδ, σ
2
δ ) (4.10)

σε ∼ Uniform(0, Aε) (4.11)

κt = κt−1 + δ + εt, with εt
iid∼ N(0, σ2

ε) for t > t1 and t 6= s1

and κt1 = 0, κs1 = κtT . (4.12)

Note that we have included the constraint defined in (4.7).

Portfolio-specific factors. The portfolio-specific factor Θi
x represents the ratio

between the hazard rate for group i at age x and the hazard rate for the whole popu-
lation at age x, where i ∈ {pf, rest}. We do not want to make a priori assumptions on
whether mortality in a group is on average higher or lower than the baseline mortality,
and therefore we impose E(Θi

x) = 1 (∀x,∀i). We consider two prior distributions for
Θi
x, an independent (Gamma) prior and a lognormal prior.

Gamma prior. The Gamma prior on the age-dependent factors for group i is given
by

Θi
x ∼ Gamma(cix, c

i
x), for x1 ≤ x ≤ xX . (4.13)

The factors are independent over ages x and between groups i. By choosing equal
values for the two parameters in the Gamma distribution we ensure that E(Θi

x) = 1

for all x and i, and the variance of the prior can be controlled by the choice of cix.

Lognormal prior. In this specification we assume a mean reverting process (AR(1))
for the logarithm of the age-dependent factors. This ensures that the factors are non-
negative. The lognormal prior on the age-dependent factors for group i is given by

logit (ρi) ∼ N(µρi , σ
2
ρi) (4.14)

σi ∼ Uniform(0, Ai) (4.15)

ln Θi
x = µi + ρi ln Θi

x−1 + ηix, (4.16)

with ηix
iid∼ N(0, σ2

i (1− ρ2
i )) for x1 < x ≤ xX , (4.17)

and ln Θi
x1

iid∼ N(− 1
2σ

2
i , σ

2
i ), (4.18)

and all the ln Θi
x1

and ηix are independent. Note that this implies that there may be
dependence between group-specific mortality factors for different ages x, while factors
for different groups i are independent. Due to the autoregressive structure in (4.17)
this prior is also often referred to as an autoregressive smoothing prior.
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The prior for ρi is chosen in such a way that it is restricted to the interval (−1, 1),
and the prior for σi is taken in line with the other variance prior specifications. The
mean parameter equals µi = − 1

2 (1 − ρi)σ2
i and we again make sure that E(Θi

x) = 1

for all x and i, see Denuit et al. (2005).
In the next section we specify the constants that are needed to finalize the speci-

fication of the prior distributions for the parameters and hyperparameters. With the
definition of the prior distributions our model is completely specified, and all posterior
distributions can thus be calculated. They can be found in Appendix 4.A.

4.3 Empirical study

In this section we apply our model to data from the Continuous Mortality Investi-
gation (CMI), which contains mortality statistics of assured male lives in England
& Wales. We use the years s ∈ S = {s1 = 1990, . . . , sS = 2000} and the ages
x ∈ X = {x1 = 40, . . . , xX = 90}. Dowd et al. (2011) also use the CMI dataset when
estimating a two-population mortality model, but they use the years 1961-2005 and
the ages 60-84.

We extend the dataset with mortality data on the England & Wales population
for the years t ∈ T = {t1 = 1950, . . . , tT = 1989} and the same ages x ∈ X to ensure
we obtain mortality forecasts consistent with population mortality forecasts.5 We
use population mortality data for t ∈ S to construct the rest group by subtracting
portfolio deaths and exposures from the population deaths and exposures in those
cells (t, x) for which portfolio data are available.

The size of the portfolio as a portion of the population, measured in observed
deaths and observed exposures, is shown in Figure 4.3. In total there were around 28.5
million years of exposure and 159,029 observed deaths. If mortality in the portfolio
were similar to that in the population we would expect the ratio of observed deaths
and observed exposures to be of similar size. However, the ratios of observed deaths
and observed exposures clearly differ, and we see that mortality in the portfolio is
lower than in the population as whole.

We estimate four different models:6

1. The Lee-Carter model is used for population mortality for the England & Wales
population for t ∈ {T ,S} and x ∈ X , and parameters are estimated using
maximum likelihood. This method is referred to as POP(f);

5Population mortality data are obtained from the Human Mortality Database. The Human Mor-
tality Database is a joint project of the University of California, Berkeley (USA) and the Max Planck
Institute for Demographic Research (Germany). Data are available at http://www.mortality.org.

6For POP(f) and POP(B) we only apply the parameter restrictions in (4.6), and for PF(B-G) and
PF(B-logN) we apply the parameter restrictions in (4.6) and (4.7).
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Figure 4.3: The relative size of the portfolio in terms of observed deaths and observed
exposures. For each age the relative size is computed as

∑
t d

pf
t,x/

∑
t d

pop
t,x

and
∑

tE
pf
t,x/

∑
tE

pop
t,x , where each summation is over t ∈ S.

2. The Lee-Carter model is used for population mortality for the England & Wales
population for t ∈ {T ,S} and x ∈ X , and parameters are estimated in a
Bayesian framework. This method is referred to as POP(B);

3. The model described in Section 4.2.1 is used, with a Gamma prior for Θi
x. Pop-

ulation and group-specific mortality are estimated simultaneously in a Bayesian
framework. This method is referred to as PF(B-G);

4. The model described in Section 4.2.1 is used, with a lognormal prior for Θi
x. Pop-

ulation and group-specific mortality are estimated simultaneously in a Bayesian
framework. This method is referred to as PF(B-logN).

4.3.1 CMI assured lives - original dataset

In this section we consider the original CMI dataset, and we use the ages and years
as described above. In the next section we will artificially reduce the size of the CMI
dataset, to investigate the effect of portfolio size on the posterior distribution of the
parameters.

Prior distributions. To complete the specifications of the prior distributions, we
have to choose the constants that are used in these specifications. We do this in such
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a way that the priors contain little information about our prior beliefs, i.e. such that
the prior variance is large.

We run four MCMC chains in parallel. For the population mortality parameters
αx, βx and κt we use frequentist estimates α̂x, β̂x and κ̂t as starting points, but in
each chain we add some Gaussian noise to obtain different starting values. Using the
starting values for βx and κt, we obtain maximum likelihood estimates in each chain
for σ2

β , δ and σ2
ε , and we use these as initial values for the hyperparameters. For

the portfolio-specific factors Θi
x we take the initial sample of the MCMC simulations

equal to one. For the hyperparameters of Θi
x we start with ρi = 0.8 and σ2

i = 1. The
constants that complete the specification of the prior distributions and the sampling
variances used in the Gibbs and Metropolis(-Hastings) sampling algorithms are chosen
as follows:

• To ensure that the prior does not contain much information, we use ax = bx ·
exp(α̂x) and bx = 0.01. This way, E[exp(αx)] = exp(α̂x) with large variance.

• For β we use µβ = 1√
X
· 1X with 1X a vector with ones of length X, and

cβ = 0.01.

• We use µδ = δ̂ (the maximum likelihood estimate of the drift, as obtained
from the frequentist estimates of the κt) and σ2

δ = 0.52. For the variance
hyperparameter we use Aε = 10.

• For the Gamma prior on the portfolio-specific factors we use cix = 1 for all x
and for i ∈ {pf, rest}. As a result, the prior 95% confidence interval for Θi

x is
approximately (0, 4).

• For the lognormal prior on the portfolio-specific factors we use µρi = 0 and
σ2
ρi = 1, and for the variance hyperparameter we use Ai = 10 for i ∈ {pf, rest}.

• For the scale parameters used in the proposal densities, we start with dβ = 105,
s2
κt

= 0.052, s2
Θi

x
= 22, s2

ρi = 0.052 and s2
σ2
i

= 0.52. For the definition of other
scale parameters, we refer to Appendix 4.A.

Convergence diagnostics. We run 1,100,000 iterations in each chain of the MCMC
algorithm. We save every 500th iteration, and during the first 100,000 iterations we
calibrate the scale parameters of the proposal distributions every 100th iteration.7

Our final sample size is 8,000. Our trace plots show good mixing properties, the

7The large number of required iterations is due to the high dimension of our model. However,
using the Von Mises-Fisher distribution as proposal density speeds up the algorithm considerably,
since our Metropolis-Hastings algorithm for β consists of only one step, instead of the usual loop
over all ages (see e.g. Czado et al. (2005) and Antonio et al. (2015)).
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Figure 4.4: Parameter estimates for the CMI and England & Wales datasets using
portfolio data for 1990-2000 and ages 40-90. For the frequentist method
(POP(f)) we show the maximum likelihood estimates, and for the Bayesian
methods (POP(B), PF(B-G) and PF(B-logN)) we show the 95% credible
interval (equal-tailed) of the posterior distributions.

Gelman and Rubin statistics converge rapidly towards one, and density plots of the
parameters in different chains overlap almost perfectly.8

Estimation results. Figure 4.4 shows frequentist and Bayesian estimation results
for the population mortality parameters. The parameter estimates for POP(f) are
represented by dashed black lines, and the median and the 95% equal-tailed credible
intervals derived from the posterior distributions for POP(B), PF(B-G) and PF(B-
logN) by respectively green, blue and red lines and areas.

The estimates for POP(f) and POP(B) overlap which means that estimating the
Lee-Carter model and the time series model simultaneously gives practically the same
best estimates as a two-step frequentist approach. The specification of the hyperpa-

8Convergence diagnostics are available in an online appendix, see http://dx.doi.org/10.1017/
asb.2017.17.
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Figure 4.5: Parameter estimates for Θpf
x and Θrest

x using the original CMI portfolio.
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Figure 4.6: Parameter estimates for Θpf
x and Θrest

x when the CMI portfolio is reduced by
a factor of 100.

rameters therefore seems to have a limited effect on the posterior distributions of the
parameters. In models PF(B-G) and PF(B-logN) we also include portfolio data. The
credible intervals for αx and κt are similar to the ones found for POP(B). For βx,
however, we observe differences for all ages. The prior specification for Θi

x (Gamma
versus lognormal) does not have a large effect on the credible interval for βx. The
posterior distributions for the hyperparameters δ and σ2

ε are also similar for all model
specifications.

Figure 4.5 shows estimates for the portfolio-specific factors using the different
methods. The dashed black line represents a frequentist method that corresponds
to the method that is most often used in practice. First, the Lee-Carter model is
estimated on population mortality. A Poisson GLM with age-dependent factors is
then estimated, in which the deaths in the portfolio are explained using the portfolio
exposure and the fitted population mortality rate as offset:

Di
t,x ∼ Poisson(Eit,xµ̂

LC
t,x ·Θi

x) (4.19)
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The blue and red areas again correspond to the 95% equal-tailed credible intervals
for PF(B-G) and PF(B-logN).

The factors for the portfolio are all below one, implying that mortality in the
portfolio is lower than the baseline mortality rate, and in the rest group the factors
are generally above one. The baseline mortality rate µt,x in our model is estimated
using Opop ∪ Opf. Therefore, Θpf

x < 1 does not automatically imply Θrest
x > 1 or

vice versa, since both Θpf
x and Θrest

x apply only to Opf. Estimated portfolio factors
below one are in line with the results in Dowd et al. (2011) where estimates for the
CMI dataset are shown to be significantly lower than for the England and Wales
population.

The estimated factors from PF(B-G) show equally irregular behavior as the fre-
quentist estimates for the factors. We find different estimated Lee-Carter parameters
for POP(f) on the one hand and PF(B-G) or PF(B-logN) on the other hand. This leads
to different baseline hazard rates µt,x which explains why the frequentist portfolio-
specific factor estimates differ slightly from their Bayesian counterparts. The esti-
mated factors for PF(B-logN), which incorporate dependence between ages within a
group, are much smoother than the ones for PF(B-G), where we assume independence.

The posterior means of the mean reversion coefficients for the lognormal prior
specification of Θi

x are ρθpf = 0.997 and ρθrest = 0.999.9 We see in Figure 4.5 that
the posterior distributions of Θpf

x have smaller credible intervals than the posterior
distributions of Θrest

x for most ages. This can be explained by the fact that the
portfolio is apparently more homogeneous than the remainder of the population for
those ages.

We have investigated what happens if we take different constants for the prior
distributions, but the estimated effects are hardly affected. Therefore, we conclude
that any differences in parameter estimates are caused by differences in the model
and the prior specification instead of the prior constants.

Forecasting mortality. Figure 4.7a shows projections of mortality rates from 1) a
combination of POP(f) and frequentist estimates of portfolio-specific factors (hereafter
indicated by PF(f)), 2) PF(B-G), and 3) PF(B-logN). These mortality projections are
constructed as follows. For each MCMC sample, we generate 100 scenarios for future
κt’s using κT , δ and σ2

ε . The mortality rates are then constructed using the other
parameters αx, βx and Θi

x from that sample. Hence, a total of 800,000 scenarios are
used to construct the prediction intervals in Figure 4.7a.

In these graphs we only show fitted mortality rates for observations that are in-
cluded in the likelihood, which means we consider the population for t < 1990 and the

9Parameters ρi close to 1 imply that a random walk (with drift) model might be more appropriate
for log Θi

x. For this alternative approach, see Congdon (2009). However, since the estimates of the
parameters ρi are already close to one, we expect that the posterior distributions for other parameters
would not differ significantly when we would use a random walk specification.
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portfolio and the rest group for t ≥ 1990. Projected mortality rates for the portfolio
are less uncertain than the ones for the rest group in absolute terms, but not when
the uncertainty is expressed as a percentage of the best estimate.

Projections of mortality rates in a Bayesian setting using the two different prior
distributions for Θi

x show little difference; both the medians and standard deviations
of the projections are similar.

We further observe that the prediction intervals from PF(B-G) and PF(B-logN)
are similar to those from PF(f), though only the first two include parameter un-
certainty. Our projections include uncertainty in the variance parameter σ2

ε in the
time series model, and a higher variance leads to wider prediction intervals whereas
a lower variance leads to narrower prediction intervals. Including the uncertainty in
the variance parameter therefore does not necessarily lead to wider prediction inter-
vals. The slightly wider prediction intervals further in the future are mainly caused
by uncertainty in the drift parameter δ.

4.3.2 CMI assured lives - reduced portfolio size

The CMI dataset is much larger than any portfolio for a single insurance company.
Haberman et al. (2014) consider a minimum annual exposure of 25,000 life years and
a minimum of eight years of observations sufficient to estimate a mortality model on
the portfolio book itself. Chen et al. (2017) investigate the impact of population size
on parameter uncertainty and the resulting mortality forecasts, and they find that
prediction intervals become wider if the population size decreases. To investigate
how these results change if population and portfolio-specific mortality are modeled
simultaneously, and to assess how well our model performs on smaller datasets, we
artificially reduce the size of the CMI portfolio. We divide observed deaths and
exposures by a factor of 100, and the resulting deaths are subsequently rounded to the
nearest integer. This ensures that the crude portfolio-specific factors remain largely
the same as in the original dataset, which facilitates a comparison of the outcomes.
The resulting dataset has on average 25,000 life years annually. We have again defined
the rest group in such a way that the population is the disjoint union of the portfolio
and the rest group for (t, x) ∈ Opf.

We use the same constants to define the prior distributions, and the same initial
values and settings in the MCMC algorithm, as in the previous subsection. Conver-
gence diagnostics again show good behavior; they are available in an online appendix.

Estimation results. The posterior distributions for the Lee-Carter parameters are
similar to those in Figure 4.4, so we do not show these. Figure 4.6 shows the portfolio-
specific factors when estimated for the reduced portfolio. Since there are now fewer
lives in our dataset, the observed portfolio death rates show more irregular behavior
over the years.
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Figure 4.7: Estimated and projected mortality rates from POP(f) in combination with
frequentist estimates of group-specific factors (black lines and gray areas),
and from PF(B-G) and PF(B-logN) (blue and red areas respectively). Top
panel is for the original CMI portfolio, and the bottom panel for the reduced
CMI portfolio.
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Table 4.1: Predictive mean and standard deviation for future numbers of deaths for
different projection horizons, selected ages and for the sum over all ages, for
different models that include different sources of uncertainty.

(a) Original CMI portfolio.

Year
PF(f) PF(f) PF(B-G) PF(B-logN)
TS TS + Pois TS + Pois + PU TS + Pois + PU

x = 45 2001 (58.1 ; 1.9) (58.1 ; 7.9) (54.4 ; 7.8) (54.6 ; 7.8)
2010 (51.4 ; 5.4) (51.4 ; 9.0) (47.2 ; 9.5) (47.3 ; 9.6)
2025 (41.9 ; 7.0) (41.9 ; 9.5) (37.4 ; 11.1) (37.4 ; 11.2)

x = 65 2001 (277.5 ; 9.2) (277.5 ; 19.0) (270.7 ; 19.5) (274.1 ; 19.4)
2010 (245.4 ; 25.8) (245.4 ; 30.2) (238.5 ; 32.8) (241.7 ; 33.2)
2025 (199.9 ; 33.4) (199.9 ; 36.2) (194.1 ; 44.0) (196.6 ; 44.8)

x = 85 2001 (190.4 ; 3.6) (190.4 ; 14.3) (187.7 ; 14.8) (189.6 ; 14.6)
2010 (177.1 ; 10.7) (177.1 ; 17.1) (174.0 ; 18.4) (175.6 ; 18.5)
2025 (157.0 ; 15.1) (157.0 ; 19.6) (153.7 ; 23.1) (154.8 ; 23.5)

40 − 90 2001 (10302.8 ; 307.8) (10302.9 ; 324.1) (10077.4 ; 334.0) (10077.1 ; 332.7)
2010 (9225.2 ; 868.2) (9225.2 ; 873.5) (8995.6 ; 970.7) (9002.3 ; 972.8)
2025 (7682.1 ; 1134.5) (7682.1 ; 1137.9) (7484.7 ; 1416.9) (7493.6 ; 1425.5)

(b) Reduced portfolio size.

Year
PF(f) PF(f) PF(B-G) PF(B-logN)
TS TS + Pois TS + Pois + PU TS + Pois + PU

x = 45 2001 (0.6 ; 0.0) (0.6 ; 0.8) (0.6 ; 0.8) (0.6 ; 0.8)
2010 (0.6 ; 0.1) (0.6 ; 0.7) (0.6 ; 0.8) (0.5 ; 0.7)
2025 (0.4 ; 0.1) (0.4 ; 0.7) (0.5 ; 0.7) (0.4 ; 0.6)

x = 65 2001 (2.7 ; 0.1) (2.7 ; 1.7) (2.7 ; 1.7) (2.9 ; 1.7)
2010 (2.4 ; 0.3) (2.4 ; 1.6) (2.4 ; 1.6) (2.5 ; 1.6)
2025 (2.0 ; 0.3) (2.0 ; 1.4) (2.0 ; 1.5) (2.1 ; 1.5)

x = 85 2001 (2.1 ; 0.0) (2.1 ; 1.4) (2.1 ; 1.5) (1.7 ; 1.3)
2010 (1.9 ; 0.1) (1.9 ; 1.4) (1.9 ; 1.5) (1.6 ; 1.3)
2025 (1.7 ; 0.2) (1.7 ; 1.3) (1.7 ; 1.4) (1.4 ; 1.2)

40 − 90 2001 (103.2 ; 3.1) (103.2 ; 10.6) (104.7 ; 11.1) (102.3 ; 10.9)
2010 (92.4 ; 8.7) (92.4 ; 12.9) (94.3 ; 14.2) (92.0 ; 14.0)
2025 (77.0 ; 11.3) (77.0 ; 14.3) (79.3 ; 17.5) (77.5 ; 17.4)
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The right graph of Figure 4.6 shows the estimated factors for the rest group, Θrest
x .

Now that the portfolio has become smaller, this group constitutes a larger part of the
general population. As a result, the posterior means are in general closer to one and
the posterior credible intervals are slightly smaller. In the left graph, we observe how
this results in frequentist estimates for Θpf

x which fluctuate more over the years (see
the black line). The estimates for Θpf

x are also more irregular in the PF(B-G) model
(in blue) when compared with the original portfolio, and the corresponding posterior
credible interval is much wider. In the PF(B-logN) model (in red), the estimates are
smoother than in Figure 4.5 while the posterior credible interval is again wider than
before, but much less so than for PF(B-G). This is due to the smoothing characteristic
of PF(B-logN): information from ages near x influences the estimates for Θi

x. The
PF(B-logN) prior is more parsimonious than the one for PF(B-G) (it is a ‘shrinkage
prior’) and the effect of the prior specification on the posterior distribution is stronger
if less data is available. We believe it is reasonable to assume that portfolio-specific
factors for ages close to each other are related, which makes the posterior credible
intervals from PF(B-logN) more plausible than those from PF(B-G).

Forecasting mortality. Figure 4.7b shows projections of mortality rates from
PF(f), PF(B-G) and PF(B-logN) using the reduced CMI portfolio, which can be com-
pared to the mortality rate projections in Figure 4.7a where the whole CMI portfolio
is used.

The credible intervals and prediction intervals from PF(B-G) for mortality rates
in the reduced CMI portfolio are much wider, which is caused by the wider credible
intervals for Θpf

x , see Figure 4.6. The intervals for mortality rates for PF(B-logN) are
a bit wider when the smaller CMI portfolio is used, but much less so than the ones for
PF(B-G). Based on Figure 4.6 and 4.7b we thus conclude that parameter uncertainty
in portfolio-specific factors can be substantial for small portfolios, and that the level
of uncertainty may strongly depend on the prior specification for the portfolio-specific
factors.

Hoem (1973) already identified different sources of uncertainty in mortality pre-
dictions but no quantification was given for the relative impact of these differences.
In Table 4.1 we investigate the relative impacts by showing the mean and standard
deviation of the predicted numbers of deaths for future times t ∈ {2001, 2010, 2025}
based on observations until sS = 2000, for x = {45, 65, 85} and for all ages combined.
To get the appropriate comparison, we use the exposures at time sS for later times as
well, so we take Epf

t,x = Epf
sS ,x for t ≥ sS . The mortality scenarios correspond to the

ones used in Figure 4.7a and 4.7b, and the figures presented in Table 4.1a and 4.1b
are constructed using four different methods:

• Using PF(f) we predict mortality rates µpf
t,x, taking into account uncertainty in

the projection of the time series κt, but we do not include parameter uncertainty.
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These mortality rates are then multiplied by the exposures Epf
t,x = Epf

T,x to
generate the expected number of deaths given the scenario for mortality rates,
i.e. E[Dpf

t,x | µpf
t,x] (first column with intervals);

• Using PF(f) we predict mortality rates µpf
t,x, taking into account uncertainty

in the projection of κt. We still do not include parameter uncertainty but for
each generated mortality scenario, we include Poisson randomness10 by drawing
random numbers of deaths Dpf

t,x ∼ Poisson(Epf
t,xµ

pf
t,x) (second column);

• Using PF(B-G) we predict mortality rates µpf
t,x, taking into account uncertainty

in the projection of κt. Parameter uncertainty is now included, since we use
the MCMC samples. For each generated mortality scenario, we draw random
numbers of deaths Dpf

t,x ∼ Poisson(Epf
t,xµ

pf
t,x) (third column);

• For PF(B-logN) our approach is similar to that for PF(B-G) (fourth column).

If only uncertainty in the evolution of the time series κt is taken into account, the
uncertainty in the conditional expectation ofDpf

t,x given µ
pf
t,x can be very small for small

portfolios, see the first column in Table 4.1b. For larger portfolios the uncertainty is
much larger due to the higher exposures, as shown in Table 4.1a. The uncertainty
also becomes larger if uncertainty in the individual number of deaths (Poisson noise)
is added. This is shown in the second column, and the effect is of course stronger for
the smaller portfolio.

If we compare the results with parameter uncertainty (third and fourth column)
and without parameter uncertainty (second column), we conclude that the impact on
the predicted numbers of deaths is negligible compared to the impact of the Poisson
noise due to individual deaths. The mortality prediction intervals for the smaller
portfolio size with the Gamma prior are very wide, as shown in Figure 4.7b. However,
the uncertainty in the future numbers of deaths is similar to the cases where we only
include time series and Poisson uncertainty. Therefore, we conclude that for the time
horizons considered here, the Poisson noise due to individual deaths is more important
than parameter uncertainty in the portfolio-specific factors, and this turns out to be
true for the smaller but also for the larger portfolio.

Given fixed mortality rates, death numbers at different ages are independent (but
of course not identically distributed). Therefore, one might expect that the relevance
of Poisson randomness disappears if we consider a whole insurance portfolio and thus
look at the sum of random death numbers over all ages. Predicted means and standard
deviations for this sum over all ages are shown in the bottom rows in Table 4.1a
and 4.1b. We observe that for the small portfolio, including Poisson uncertainty

10When sampling the individual deaths in practice (e.g. for portfolio valuation purposes), one may
prefer to use the Bernoulli distribution. Here we use the Poisson distribution to remain consistent
with the approach used for estimation.

82



“Thesis_Frank_van_Berkum” — 2018/2/16 — 14:05 — page 83 — #99

4.4. Conclusion

leads to larger uncertainty even at the portfolio level, but this is not true for large
portfolios. Comparing the second to the third and fourth column, we further see
that parameter uncertainty has little impact on the short horizon, but the effect of
parameter uncertainty increases with the projection horizon, regardless of portfolio
size. This is explained by the uncertainty in the mortality trend parameter δ which
has an effect on mortality rates that cumulates over time. We conclude:

• For large portfolios, individual mortality risk (modeled through Poisson noise)
is important for individual ages, but not at the portfolio level. For small port-
folios, individual mortality risk is important both for individual ages and at the
portfolio level;

• For both large and small portfolios, parameter uncertainty in portfolio-specific
factors is not relevant since it is overshadowed by Poisson noise;

• For both large and small portfolios, parameter uncertainty in the mortality trend
is not relevant in the short term, but of increasing importance if the projection
horizon increases.

The results regarding trend uncertainty are in line with the results for small portfolios
in Haberman et al. (2014). Further, Hári et al. (2008b) conclude that individual mor-
tality risk (which we capture through Poisson uncertainty) may be just as important
for small portfolios as time series uncertainty and parameter uncertainty, whereas
individual mortality risk is relatively small for large portfolios. Our results indicate
that even at the portfolio level Poisson and trend uncertainty cannot be ignored.

4.4 Conclusion

Proper risk management for portfolios in life insurance companies or pension funds
requires a reliable method to estimate the distribution of future deaths in such port-
folios. This involves the modeling of population-wide mortality trends, a specification
of portfolio-specific deviations from this trend, and the conditional distribution for
the individual deaths in a portfolio given its mortality rates. In this chapter we use
Bayesian inference to analyze these three sources of uncertainty in life insurance port-
folio data. This may help to generate scenarios for survival in a portfolio in which
these three different components in the predictions can be explicitly distinguished.

The law of large numbers implies that the last component will be relatively small
for very large portfolios. But when the portfolio under consideration is small or
when observations have only been available for a limited number of years, it may be
difficult to know a priori what part of the fluctuations in the observations over age
and time should be assigned to genuine changes in mortality over time, to noise in
the observations and to parameter uncertainty. For those cases, we believe that our
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method may turn out to be a useful alternative to what has been proposed in the
actuarial literature so far.

By using both the CMI dataset of assured male lives and a scaled version of
that dataset, we show that estimates of the difference between country-wide and
portfolio-specific hazard rates strongly depend on a priori assumptions about the age-
dependence of that difference. Assuming that there is no dependence for different ages
can give unrealistically large posterior credible intervals for portfolio-specific factors
in small portfolios, while an alternative based on an autoregressive smoothing prior
gives much more satisfactory results.

However, the impact of uncertainty in the portfolio-specific factors on the predic-
tive distributions of future number of deaths in the portfolio is negligible compared
to the Poisson noise that is added by individual deaths, regardless of the projection
horizon. As the projection horizon increases, the effect of parameter uncertainty on
predictive distributions becomes increasingly relevant, which is solely caused by un-
certainty in the mortality trend. This reinforces our conclusion that a full analysis
for small portfolios must always be based on an explicit description of the different
sources of uncertainty in the predictive distributions of future deaths.
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Appendix

4.A Posterior distributions

We derive the posterior distribution for all parameters in the model. For convenience,
we define the following variables

D = {Dpop,Dpf,Drest}, E = {Epop,Epf,Erest},
α = {αx1

, . . . , αxX
}, β = {βx1

, . . . , βxX
}, κ = {κt1 , . . . , κtT },

Θ = {Θpf,Θrest}, ρθ = {ρpf, ρrest}, σ2
θ = {σ2

pf, σ
2
rest},

with (Dpop
t,x , E

pop
t,x ) defined on (t, x) ∈ Opop and (Di

t,x, E
i
t,x) defined on (t, x) ∈ Opf for

i ∈ {pf, rest}. See Section 4.2.1 for the definition of Opop and Opf.
We further define the set Λ that contains both data and parameters:

Λ = {D,E,α,β,κ, δ, σ2
ε ,Θ,ρθ,σ

2
θ},

and remark that ρθ and σ2
θ are not needed when we use a Gamma prior for the

portfolio-specific factors.

4.A.1 Age parameters for population mortality

Gibbs sampling for αx

The individual αx’s are independent. Therefore, the posterior distribution for a single
ex = exp(αx) with x1 ≤ x ≤ xX is given by

f(ex|Λ\{ex}) ∝ f(D|E, e,β,κ,Θpf,Θrest)f(ex) (4.20)

∝
∏
t∈T

(
e−E

pf
t,xex exp[βxκt]Θ

pf
x

(Epf
t,xex exp[βxκt]Θ

pf
x )

D
pf
t,x

Dpf
t,x!

)Ipf
t,x

×
∏
t∈T

(
e−E

rest
t,x ex exp[βxκt]Θ

rest
x

(Erest
t,x ex exp[βxκt]Θ

rest
x )

Drest
t,x

Drest
t,x !

)Irestt,x
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×
∏
t∈T

(
e−E

pop
t,x ex exp[βxκt] (Epop

t,x ex exp[βxκt])
D

pop
t,x

Dpop
t,x !

)Ipop
t,x

× baxx
Γ(ax)

eax−1
x exp[−bxex]

∝ exp[−(bx + dx)ex] · eax+D•x−1
x ,

with

dx =
∑
t∈T

{
Ipf
t,x

(
Epf
t,x exp[βxκt]Θ

pf
x

)
+ Irest

t,x

(
Erest
t,x exp[βxκt]Θ

rest
x

)
+ Ipop

t,x

(
Epop
t,x exp[βxκt]

)}
and

D•x =
∑
t∈T

{
Ipf
t,x ·Dpf

t,x + Irest
t,x ·Drest

t,x + Ipop
t,x ·Dpop

t,x

}
=
∑
t∈T

Dpop
t,x .

The last line in (4.20) is proportional to a Gamma(ax + D•x, bx + dx) distribution.
Therefore, we can use Gibbs sampling to draw a new value of ex, which can subse-
quently be transformed into a new value of αx.

Metropolis sampling for βx

The posterior distribution for β is given by

f(β|Λ\{β}) ∝ f(D|E,α,β,κ,Θpf,Θrest)f(β) (4.21)

∝
∏
x∈X

∏
t∈T

(
e−E

pf
t,x exp[αx+βxκt]Θ

pf
x

(Epf
t,x exp[αx+βxκt]Θ

pf
x )

D
pf
t,x

Dpf
t,x!

)Ipf
t,x

×
∏
x∈X

∏
t∈T

(
e−E

rest
t,x exp[αx+βxκt]Θ

rest
x

(Erest
t,x exp[αx+βxκt]Θ

rest
x )

Drest
t,x

Drest
t,x !

)Irestt,x

×
∏
x∈X

∏
t∈T

(
e−E

pop
t,x exp[αx+βxκt] (Epop

t,x exp[αx+βxκt])
D

pop
t,x

Dpop
t,x !

)Ipop
t,x

× exp(cβµ
T
ββ).

Given a current value β̃ and scaling parameter dβ , we sample a proposal β̂ from the
distribution vMF(β̃, dβ). The proposal distribution is symmetric, and the acceptance
probability is thus given by:

φ = min

{
f(β̂|Λ\{β̂})
f(β̃|Λ\{β̃})

; 1

}
.
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4.A.2 Period parameters for population mortality

Metropolis sampling for κt

Define κ−t = {κt1 , . . . , κt−1, κt+1, . . . , κsS}. The posterior distribution of κt for t1 <
t < tT and s1 < t ≤ sS is given by

f(κt|Λ\{κt}) ∝ f(D|E,α,β,κ,Θpf,Θrest)f(κ|κt1 , δ, σ2
ε) (4.22)

∝
∏
x∈X

[
exp

(
−Epf

t,x exp[αx + βxκt]Θ
pf
x

)
exp

(
Dpf
t,xβxκt

)]Ipf
t,x

×
∏
x∈X

[
exp

(
−Erest

t,x exp[αx + βxκt]Θ
rest
x

)
exp

(
Drest
t,x βxκt

)]Irestt,x

×
∏
x∈X

[
exp

(
−Epop

t,x exp[αx + βxκt]
)

exp
(
Dpop
t,x βxκt

)]Ipop
t,x

× f(κt|κ−t, δ, σ2
ε),

and the expression in the last line can be simplified:

• for t1 < t < tT and s1 < t < sS :

f(κt|κ−t, δ, σ2
ε) ∝ f(κt|κt−1, δ, σ

2
ε)f(κt+1|κt, δ, σ2

ε)

∼ N
(

1
2 (κt−1 + κt+1), 1

2σ
2
ε

)
,

• for t = sS :

f(κt|κ−t, δ, σ2
ε) ∝ f(κt|κt−1, δ, σ

2
ε)

∼ N
(
κt−1 + δ, σ2

ε

)
.

For κtT and κs1 we derive the joint posterior distribution, since we have applied the
restriction κtT = κs1 . It is given by

f(κtT , κs1 |Λ\{κtT , κs1}) ∝ f(D|E,α,β,κ,Θpf,Θrest)f(κ|κt1 , δ, σ2
ε) (4.23)

∝
s1∏
t=tT

∏
x∈X

[
exp

(
−Epf

t,x exp[αx + βxκt]Θ
pf
x

)
exp

(
Dpf
t,xβxκt

)]Ipf
t,x

×
s1∏
t=tT

∏
x∈X

[
exp

(
−Erest

t,x exp[αx + βxκt]Θ
rest
x

)
exp

(
Drest
t,x βxκt

)]Irestt,x

×
s1∏
t=tT

∏
x∈X

[
exp

(
−Epop

t,x exp[αx + βxκt]
)

exp
(
Dpop
t,x βxκt

)]Ipop
t,x

× f(κtT , κs1 |κ−{tT ,s1}, δ, σ2
ε),
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and the expression in the last line can be simplified:

f(κtT , κs1 |κ−{tT ,s1}, δ, σ2
ε) = f(κtT |κ−{tT ,s1}, δ, σ2

ε)

∝ f(κtT |κtT−1, δ, σ
2
ε)f(κs1+1|κs1 , δ, σ2

ε)

∼ N
(

1
2 (κtT−1 + κs1+1), 1

2σ
2
ε

)
,

Given a current value κ̃t and Metropolis sampling variance s2
κt
, we sample a proposal

κ̂t from the distribution N(κ̃t, s
2
κt

). This proposal distribution is symmetric, and the
acceptance probability is thus given by

φ = min

{
f(κ̂t|Λ\{κ̂t})
f(κ̃t|Λ\{κ̃t})

; 1

}
.

Gibbs sampling for δ

Define ∆κt = κt−κt−1. Note that we have applied the restriction κs1 := κs1−1 = κtT ,
and that summations are therefore not simply over all t. The posterior distribution
of δ is given by

f(δ|Λ\{δ}) ∝ f(κ|κ1, δ, σ
2
ε)f(δ) (4.24)

∝ exp

[
−

tT∑
t=t1+1

[∆κt − δ]2
2σ2

ε

−
sS∑

t=s1+1

[∆κt − δ]2
2σ2

ε

]
· exp

[
− [δ − µδ]2

2σ2
δ

]
∝ exp

[
− 1

2aδ

(
δ2 − 2δbδ

)]
∼ N (bδ, aδ) ,

with

aδ =
σ2
ε

(T ∗ − 2) + σ2
ε/σ

2
δ

,

and

bδ =
(T ∗ − 2)

(T ∗ − 2) + σ2
ε/σ

2
δ

·
(

1

(T ∗ − 2)

{
tT∑

t=t1+1

∆κt +

sS∑
t=s1+1

∆κt

})

+
σ2
ε/σ

2
δ

(T ∗ − 2) + σ2
ε/σ

2
δ

· µδ.

We can use Gibbs sampling to draw a new value for δ.

88



“Thesis_Frank_van_Berkum” — 2018/2/16 — 14:05 — page 89 — #105

4.A. Posterior distributions

Gibbs sampling for σ2
ε

The posterior distribution of σ2
ε is given by

f(σ2
ε |Λ\{σ2

ε}) ∝ f(κ|κ1, δ, σ
2
ε)f(σ2

ε) (4.25)

=

tT∏
t=t1+1

1√
2πσ2

ε

exp

[
− [∆κt − δ]2

2σ2
ε

]
·

sS∏
t=s1+1

1√
2πσ2

ε

exp

[
− [∆κt − δ]2

2σ2
ε

]
× σ−1

ε · 1[0≤σε≤Aε]

∝ (σ−2
ε )

T∗−1
2 exp

[
−(σ−2

ε ) · 1

2

(
tT∑

t=t1+1

(∆κt − δ)2 +

sS∑
t=s1+1

(∆κt − δ)2

)]
.

Therefore, we know that the posterior distribution of σ−2
ε is

f(σ−2
ε |Λ\{σ2

ε})

∝ (σ−2
ε )

T∗−1
2 −1−1 · exp

[
−(σ−2

ε ) · 1

2

(
tT∑

t=t1+1

(∆κt − δ)2 +

sS∑
t=s1+1

(∆κt − δ)2

)]

∼ Gamma

(
T ∗ − 3

2
,

1

2

{
tT∑

t=t1+1

(∆κt − δ)2 +

sS∑
t=s1+1

(∆κt − δ)2

})
.

We can use Gibbs sampling to draw new values of σ−2
ε which can be transformed into

σ2
ε .

4.A.3 Portfolio-specific mortality - Gamma prior

The posterior distribution of Θi
x for i ∈ {pf, rest} and y1 ≤ x ≤ yY is given by

f(Θi
x|Λ\{Θi

x}) ∝ f(D|E,Θpf,Θrest,α,β,κ)f(Θi
x) (4.26)

∝
∏
t∈S

(
e−E

i
t,x exp[αx+βxκt]Θ

i
x

(Ei
t,x exp[αx+βxκt]Θ

i
x)

Di
t,x

Di
t,x!

)Iit,x
× (cix)c

i
x

Γ(cix)
(Θi

x)c
i
x−1 exp[−cixΘi

x]

∝ exp[−(cix + f ix)Θi
x] · (Θi

x)c
i
x+Di

•x−1,

with

f ix =
∑
t∈S

Iit,x · Eit,x exp[αx + βxκt] and Di
•x =

∑
t∈S

Iit,x ·Di
t,x.

The last line in (4.26) is proportional to a Gamma(cix + Di
•x, c

i
x + f ix) distribution

and we can therefore use Gibbs sampling to obtain new values for Θi
x. Note that the
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posterior mean can be written as

cix
cix +

∑
t∈S I

i
t,x · Eit,xµt,x

· 1 +

∑
t∈S I

i
t,x · Eit,xµt,x

cix +
∑
t∈S I

i
t,x · Eit,xµt,x

·
∑
t∈S I

i
t,x ·Di

t,x∑
t∈S I

i
t,x · Eit,xµt,x

.

If cix is chosen small relative to
∑
t∈S I

i
t,x · Eit,xµt,x, the posterior mean is close to∑

t∈S I
i
t,x·D

i
t,x∑

t∈S I
i
t,x·Ei

t,xµt,x
which is often used in practice to determine portfolio-specific factors.

4.A.4 Portfolio-specific mortality - lognormal prior

Define Θi = {Θi
y1 , . . . ,Θ

i
yY }. The distribution generated by the mean reverting

process for the logarithm of the portfolio-specific factors in (4.17) can also be written
as a multivariate lognormal distribution (Purcaru et al., 2004, Section 3.3.2):

Θi ∼ lognormal(µ̃i,Σi), (4.27)

with µ̃i = − 1
2σ

2
i 1Y where 1Y is a column vector of ones of length Y and (Σi)xy =

ρ
|x−y|
i σ2

i . Before we derive the posterior distribution for Θi
x and the hyperparameters,

we define the following variables and relations:

Σi = σ2
i · Γ(ρi)

Σ−1
i = 1

σ2
i
· Γ−1(ρi) = 1

σ2
i

1
1−ρ2i

· Γ̃−1
(ρi)

|Σi| =
∣∣σ2
i · Γ(ρi)

∣∣ = (σ2
i )Y · (1− ρ2

i )
Y−1

Ψi = ln Θi − µ̃i = ln Θi + 1
2σ

2
i 1Y ,

with

Γ(ρ) =



1 ρ · · · ρY−2 ρY−1

ρ 1 · · · ρY−3 ρY−2

...
...

. . .
...

...
ρY−2 ρY−3 · · · 1 ρ

ρY−1 ρY−2 · · · ρ 1

 , Γ̃
−1

(ρ) =



1 −ρ 0 . . . 0

−ρ 1 + ρ2 −ρ
. . . 0

0 −ρ
. . .

. . . 0

...
...

. . . 1 + ρ2 −ρ
0 0 · · · −ρ 1


.

Metropolis-Hastings sampling for Θi
x

Define Θi
−j = {Θi

y1 , . . . ,Θ
i
j−1,Θ

i
j+1, . . . ,Θ

i
yY }. The posterior distribution of Θi

x for
i ∈ {pf, rest} and y1 ≤ x ≤ yY is given by

f(Θi
x|Λ\{Θi

x}) ∝ f(D|E,Θpf,Θrest,α,β,κ)f(Θi|ρi, σ2
i ) (4.28)

∝
∏
t∈S

(
e−E

i
t,x exp[αx+βxκt]Θ

i
x(Θi

x)D
i
t,x

)Iit,x
× f(Θi

x|Θi
−x, ρi, σ

2
i ).

In this last equation, we can simplify f(Θi
x|Θi

−x, ρi, σ
2
i ) for different x:
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• for x = y1:

f(Θi
x|Θi

−x, ρi, σ
2
i ) ∝ f(Θi

x|ρi, σ2
i ) · f(Θi

x+1|Θi
x, ρi, σ

2
i )

=
1

Θi
x

√
2πσ2

i

· exp

[
− (ln Θi

x + 1
2σ

2
i )2

2σ2
i

]
× 1

Θi
x+1

√
2πσ2

i (1− ρ2
i )
· exp

[
− (ln Θi

x+1 + 1
2σ

2
i (1− ρi)− ρi ln Θi

x)2

2σ2
i (1− ρ2

i )

]
∝ 1

Θi
x

√
2πσ2

i (1− ρ2
i )
· exp

[
− 1

2σ2
i (1− ρ2

i )

(
ln Θi

x + 1
2σ

2
i − ρi(ln Θi

x+1 + 1
2σ

2
i )
)2]

∼ logN
(
− 1

2σ
2
i + ρi(ln Θi

x+1 + 1
2σ

2
i ), σ2

i (1− ρ2
i )
)
,

• for y1 < x < yY :

f(Θi
x|Θi

−x, ρi, σ
2
i ) ∝ f(Θi

x|Θi
x−1, ρi, σ

2
i ) · f(Θi

x+1|Θi
x, ρi, σ

2
i )

∼ logN
(
−1

2
σ2
i +

ρi
1 + ρ2

i

(
ln Θi

x−1 + ln Θi
x+1 + σ2

i

)
, σ2
i

(1− ρ2
i )

(1 + ρ2
i )

)
,

• for x = yY :

f(Θi
x|Θi

−x, ρi, σ
2
i ) ∝ f(Θi

x|Θi
x−1, ρi, σ

2
i )

∼ logN
(
− 1

2σ
2
i + ρi(ln Θi

x−1 + 1
2σ

2
i ), σ2

i (1− ρ2
i )
)
.

Given a current Θ̃i
x and Metropolis-Hastings sampling variance s2

Θi
x
, we draw a pro-

posal Θ̂i
x from the distribution ln Θ̂i

x ∼ N(ln Θ̃i
x − 1

2s
2
Θi

x
, s2

Θi
x
). Using this proposal

distribution ensures that E[Θ̂i
x] = exp

[
ln Θ̃i

x − 1
2s

2
Θi

x
+ 1

2s
2
Θi

x

]
= Θ̃i

x. The proposal
distribution is not symmetric and the acceptance probability is thus given by

φ = min

{
f(Θ̂i

x|Λ\{Θ̂i
x})

f(Θ̃i
x|Λ\{Θ̃i

x})
· g(Θ̃i

x|Θ̂i
x)

g(Θ̂i
x|Θ̃i

x)
; 1

}
.

Here, g(.|Θx) is the lognormal density which gives the logarithm of the stochastic
variable mean ln Θx − 1

2s
2
Θx

and variance s2
Θx

.

Metropolis-Hastings sampling for ρi

The posterior distribution of ρi for i ∈ {pf, rest} is given by

f(ρi|Λ\{ρi}) ∝ f(Θi|σ2
i , ρi) · f(ρi) (4.29)

=
1

(2π)Y/2Θi
y1 · · ·Θi

yY · |Σi|1/2
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× exp

[
−1

2
(ln Θi − µi)Σ−1

i (ln Θi − µi)′
]

× 1√
2πσ2

ρi

· exp

[
− (logit (ρi)− µρi)2

2σ2
ρi

]
· 1

ρi(1− ρi)

∝ 1

ρi(1− ρi)(1− ρ2
i )
Y−1

2

× exp

− aiρ
2σ2

i (1− ρ2
i )

(
ρi −

biρ
aiρ

)2
 · exp

[
− (logit (ρi)− µρi)2

2σ2
ρi

]
,

with aiρ =
∑yY −1
x=y1+1(Ψi

x)2 and biρ =
∑yY
x=y1+1 Ψi

x−1Ψi
x. This final expression will

be used in the Metropolis-Hastings sampling algorithm. For a given current value
ρ̃i and Metropolis-Hastings sampling variance s2

ρi , we draw a proposal ρ̂i from the
distribution ρ̂i ∼ TN(ρ̃i, s

2
ρi |0, 1), with TN(a, b|c, d) a truncated normal distribution

with mean a, variance b, lower and upper bound c and d respectively. We use the
truncated normal distribution to ensure the proposal is between 0 and 1. The proposal
distribution is not symmetric and the acceptance probability is thus given by

φ = min

{
f(ρ̂2

i |Λ\{ρ̂2
i })

f(ρ̃2
i |Λ\{ρ̃2

i })
· g(ρ̃2

i |ρ̂2
i )

g(ρ̂2
i |ρ̃2

i )
; 1

}
,

where g is the density for the truncated normal distribution as described above.

Metropolis-Hastings sampling for σ2
i

The posterior distribution of σ2
i is given by

f(σ2
i |Λ\{σ2

i }) ∝ f(Θi|σ2
i , ρi) · f(σ2

i ) (4.30)

=
1

(2π)Y/2Θi
y1 · · ·Θi

yY |Σi|1/2
· exp

[
− 1

2 (ln Θi − µi)′Σ−1
i (ln Θi − µi)

]
× σ−1

i

∝ 1

σY+1
i

· exp
[
−σ−2

i
1
2 (ln Θi − µi)′Γ−1(ρi)(ln Θi − µi)

]
.

We use the final expression for the Metropolis-Hastings sampling algorithm. Given
a current value σ̃2

i and Metropolis-Hastings sampling variance s2
σ2
i
, we draw a new

candidate σ̂2
i from the proposal distribution ln σ̂2

i ∼ N(ln σ̃2
i − 1

2s
2
σ2
i
, s2
σ2
i
). The proposal

distribution is not symmetric and the acceptance probability is thus given by

φ = min

{
f(σ̂2

i |Λ\{σ̂2
i })

f(σ̃2
i |Λ\{σ̃2

i })
· g(σ̃2

i |σ̂2
i )

g(σ̂2
i |σ̃2

i )
; 1

}
.

Here, g(.|σ2
i ) is the lognormal density which gives the logarithm of the stochastic

variable mean lnσ2
i − 1

2s
2
σ2
i
and variance s2

σ2
i
.
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Chapter 5

Unraveling relevant risk factors explaining
pension fund mortality

This chapter is based on F. van Berkum, K. Antonio, and M. Vellekoop. Unraveling
relevant risk factors explaining pension fund mortality: a case study in the Nether-
lands. Working paper, 2017b.

5.1 Introduction

People with different socioeconomic characteristics and different life styles experience
a different level of mortality. Pension funds should account for this when valuing their
liabilities, e.g. by distinguishing different risk profiles.

Brown and McDaid (2003) review 45 research papers that consider a variety of
risk factors to explain differences in mortality. Relevant factors are (besides age and
gender) education, income, tobacco and alcohol consumption, and marital status.
They find that the reported impacts for the risk factors differ among the studies
analyzed, and the estimated effects may differ between males and females or for
different ages. Elo and Preston (1996) study adult US mortality in the period 1975-
1985. They find that the probability of dying in a five-year period of individuals with
many years of education (more than 16 years) is about 40% lower than mortality
of individuals with no or a few years of education (less than 8 years), even after
correcting for factors like income and race. Chetty et al. (2016) reveal a gap in the
remaining period life expectancy at age 40 between the 1% richest and 1% poorest
individuals in the US of about 14.6 years for males and 10.1 years for females, based
on observations over the period 2001-2014.

Pension funds use adjustments on population mortality forecasts, which can only
be based on information about participants that is directly available in their adminis-
tration. Historically, crude methods such as age-shifting were used, which means that
the probability qx is replaced by qx+s where s can be either positive or negative, see
Pitacco et al. (2009). Such approaches are easy to implement, but potentially highly
inaccurate.
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In actuarial practice, observed mortality in the portfolio is sometimes expressed
in terms of accrued rights. Mortality is then characterized by the fraction of the
total accrued rights that has been released in a year, see e.g Plat (2009b). Using this
alternative definition, the death rates (also referred to as insured amount weighted
death rates) can be very volatile over the years due to individual mortality risk.1

When defining a parametric regression model to explain mortality, it is difficult to
appropriately account for this source of uncertainty, see van Berkum et al. (2017a).

By using this alternative definition, more weight is given to members with high
accrued rights when explaining historical portfolio mortality. Since the liabilities of
a pension fund are a function of accrued rights, this approach leads to more accu-
rate predictions than when the accrued rights are neglected. However, if the level of
mortality is dependent on the accrued rights, then it is also possible to include ac-
crued rights (or some related risk factor) directly in a regression analysis. This way,
the dependence is explicitly modeled, and it is possible to account appropriately for
individual mortality risk, for example by using Poisson regression or survival analysis.

Richards et al. (2013) investigate the mortality in a German multi-employer pen-
sion scheme using survival models. The survival probabilities are modeled using a
variant of the Makeham-Beard mortality law which includes a deterministic, linear
mortality trend, and they use risk factors such as scheme size and the health status
of members to explain remaining heterogeneity. They conclude that survival models
based on individual observations are more flexible than models based on grouped ob-
servations, since they argue that those survival models can include a wider variety of
risk factors. Gschlössl et al. (2011) use Poisson regression on observed deaths in a
German insurance portfolio. Their dataset contains risk factors such as product type,
policy duration and insured amount. First, they estimate a baseline mortality rate
in the portfolio without time dynamics, then they explain remaining heterogeneity in
the portfolio using categorical risk factors in a generalized linear model (GLM). When
we compare the approach of Richards et al. (2013) to that of Gschlössl et al. (2011)
we notice that survival models are not the only approach in which a wide variety of
risk factors can be used to explain historical mortality.

Gschlössl et al. (2011) and Richards et al. (2013) have continuous risk factors
available, but they discretize and group these variables to construct risk cells. As
an example, Gschlössl et al. (2011) divide the continuous variable duration of the
policy into the groups ‘0-2 years’, ‘3-4 years’ and ‘5+ years’, and use this categorical
risk factor in regression analysis instead of the continuous risk factor. The grouping
of continuous risk factors often involves subjective decisions, and the outcomes are
sensitive towards these choices.

With generalized additive models (GAMs) continuous variables can be included in

1Individual mortality risk is the uncertainty associated with the binary outcome of survival given
a fixed mortality rate.
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a more direct way. Semi-parametric smooth functions of the continuous variables are
added to the linear predictor, and these are estimated, for example, using thin plate
regression splines (Hastie and Tibshirani (1986); Wood (2006)). GAMs have been used
successfully in the non-life actuarial field to predict claim frequencies for automobile
insurance, see e.g. Denuit and Lang (2004), Klein et al. (2014) and Verbelen et al.
(2016). We explore the use of this statistical modeling approach to construct better
mortality risk profiles.

A different type of models that are often used to model pension fund mortality
are multiple population mortality models. Villegas and Haberman (2014) investigate
several multiple population extensions of the Lee and Carter (1992) model to predict
mortality for five socioeconomic classes within England. These socioeconomic classes
are based on characteristics such as income and education. The investigated speci-
fications share a common mortality trend but differ in how mortality evolves within
the socioeconomic classes relative to this common trend. Cairns et al. (2016) ana-
lyze mortality of Danish males for ten socioeconomic groups which are constructed
using an affluence index which is based on wealth and reported income. They use
an extension of the gravity model from Dowd et al. (2011) to model mortality in
the different affluence groups, and they make the interesting observation that when
they used affluence-based deciles they find greater levels of inequality than when they
would use, for example, income quartiles.

However, both approaches are based on datasets which contain over 20 years
of observations, and they consider separate time dynamics for each group. Such
models are no longer feasible if the dataset has only a few years of data available.
Moreover, socioeconomic classes are taken as exogenously given, while we would like
to investigate which of the variables that can be combined in the definition of such
classes are relevant and which are not.

We work on a unique dataset from a large Dutch pension fund covering the period
2006-2011. In this dataset individuals in the fund are followed over time, and their
risk characteristics such as age, gender, salary, disability status and postal code are
recorded on a yearly basis. This dataset contains too few years to estimate dynamics
over time, but we will show how to construct mortality forecasts for individual risk
profiles using this dataset. First, we estimate a multiple population mortality model
(Koninklijk Actuarieel Genootschap (2014)) which provides us with an appropriate
baseline mortality level and at the same time allows us to construct mortality forecasts
for the Dutch population. Then, using the baseline, we explain remaining heterogene-
ity in the portfolio using Poisson regression, as suggested by Gschlössl et al. (2011).
We consider a wide variety of possible risk factors (including continuous and spatial
variables) in a GAM framework to ensure that all information in these variables is
adequately captured in our model.

As a second contribution, we provide a complete framework on how to determine
which risk factors should be used to explain historical portfolio mortality data. Our
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final contribution is the design of a novel type of backtest to evaluate the performance
of mortality models, which is driven by the impact of such models on the valuation
of liabilities. As we will see later in this chapter, the (number of) risk factors used to
explain portfolio mortality depends on the criteria used.

The remainder of this chapter is organized as follows. We discuss the dataset
used in this chapter in Section 5.2. In Section 5.3 we introduce the generalized
additive models that we will use to explain observed portfolio mortality, and we discuss
how we assess in-sample and out-of-sample performance. We present estimation and
backtesting results in Section 5.4 and we conclude in Section 5.5.

5.2 Data

We use a large dataset from a Dutch pension fund which follows individuals during
the period 2006 to 2011. At the end of each year it is recorded whether a participant
is still alive and the observable risk factors of the participant are updated. In our
analysis we include information from active participants2, pensioners, and people who
are fully or partially disabled.

Table 5.1 lists the variables that we constructed from the dataset and Figure 5.1
shows the empirical distribution of these variables. We include the ages 20 to 90;
we exclude lower ages because they are not relevant for the liabilities of the pension
fund, and higher ages are excluded because their exposure turned out to be neg-
ligible in our dataset (less than 0.1% of the total exposure). The dataset contains
11,325,511 individual observations on 2,162,899 unique individuals resulting in a total
of 11,304,448 years lived, and during the observed period 41,622 deaths were recorded
(see Section 5.3.1 for a description of how we define the death and exposure observa-
tions).3 When participants celebrate their birthday, the risk factor Age changes. We
split the individual observations into observations before and after the birthday of the
participants, which results in 22,632,277 observations with constant risk factors.

As discussed in the introduction, we expect that salary influences the level of
mortality. There are several variables available in the dataset that can be used to
include this effect: salary earned during a year, the fraction of the year the participant
worked (hereafter: parttime factor), and the amount of salary that is earned from

2Inactive participants no longer work at a company linked to the pension fund, and these members
therefore no longer pay premium and no longer accrue new pension rights.

3These numbers are in line with the assumption of a uniform distribution of deaths (UDD) (see
Pitacco et al. (2009)). If the UDD assumption holds, then the members who died in the observed
period will have contributed on average approximately half a year to the exposure in the year of
their death. The total number of individual observations minus half of the total number of observed
deaths is therefore approximately equal to the total exposure measured in years lived.
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Table 5.1: A description of the mortality observations and risk factors. The percentage
on the right shows for which fraction of the observations the information is
available.

Mortality information

D 1 if the participant died at the current age, 0 if the
participant survived

(100.0%)

E The fraction of the year lived by the participant at the
current age

(100.0%)

Risk factors

Year Year of the observation (100.0%)
Age Age of the participant (100.0%)
Gender Gender of the participant (100.0%)
Sal Logarithm of FTE salary on annual basis, normalized

per year per age per gender (if applicable: including an
allowance for working at irregular hours)

(88.8%)

IA The percentage of the FTE salary earned through an
allowance for working at irregular hours

(44.6%)

DisTime The cumulative disability spell of the participant,
adjusted for partial disability

(96.0%)

DisPerc The time spent in disability as a percentage of total
service years registered

(96.0%)

AFPP The age at which the participant received his first
pension payment

(11.6%)

(Long, Lat) The longitude and latitude that correspond to the
center of the four-digit postal code of the participant

(99.9%)

Edu Average education level at the postal code where the
participant resides (obtained from Statistics
Netherlands)

(95.3%)

working at irregular hours. We define full time equivalent salary as

FTE salary =
parttime salary earned in a year

parttime factor
+ irregularity allowance.

Salaries tend to increase with age and as a result of inflation. Therefore, salaries at
different ages and in different years cannot be compared directly, and we believe the
full time equivalent salary should not directly be used as a risk factor. Instead, we
construct the variable Sal which is a normalized version of the logarithm of the FTE
salary earned. For each participant, we subtract the mean from the logarithm of the
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Figure 5.1: Empirical distribution of the observations and variables in the dataset.
Missing records are excluded, and for DisTime and DisPer we also do not
show observations equal to zero.

FTE salary and divide the result by its standard deviation, where mean and vari-
ance of the log transformed FTE salary are determined per year per age per gender.
For most pensioners salary information is not available, and when this information is
available for pensioners it corresponds to the latest salary earned as an active partic-
ipant.

Participants with irregular working hours are more likely to have an irregular
sleeping pattern, so participants who earn a larger fraction of their total salary through
an irregularity allowance may have a higher mortality rate, see Costa (1996). We
define the variable IA to include this effect, and it is computed as the irregularity
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allowance divided by FTE salary.4 This variable is available for participants with an
irregularity allowance (44.6% of the exposure), and this variable is missing for other
participants.

The dataset also contains information on disability. In the Netherlands, people
can be classified as being partially disabled. Someone who has been partially disabled
at 40% for three years will have a cumulative disability spell of 1.2 years, and the
years of service at the company will have increased by 1.8 years. The variable DisTime
represents the cumulative disability spell for a participant, and DisPerc represents the
fraction of working years spent in disability. The latter is defined as the cumulative
disability spell divided by the sum of the number of service years and the cumulative
disability spell.

Both the number of service years and the cumulative disability spell relate only to
the active period at the pension fund; if a participant was active at another pension
fund before joining this pension fund, that information is not available in this dataset.
For the active participants and the fully or partially disabled participants, we either
have a positive disability spell (8.8% of the exposure) or a disability spell equal to
zero (87.2%). For retired members, information on disability is often missing (4.0%).
We will estimate different effects for these three groups (unknown disability status,
disability spell or percentage equal to zero, and positive disability spell or percentage).

The official retirement age in the Netherlands during the observed period was 65
years, but many participants received pension payments before the age of 65. To
stimulate the inflow of younger workers, many older workers close to the retirement
age have had the opportunity to retire early (either fully or partially). We define the
variable AFPP as the age at which the first pension payment is received, and we use
this variable to investigate whether early retirement affects mortality.

In the Netherlands an address is completely specified by a six-digit postal code and
a number that specifies the house. Our dataset contains for nearly all participants
a four-digit postal code (PC), which corresponds to a district in a city. Using the
longitude (Long) and latitude (Lat) of the center of the four-digit postal code we can
estimate spatial heterogeneity in mortality rates.

Many studies have shown a link between education and mortality. Our dataset
does not contain information on the education level of the participant, but from the
website of Statistics Netherlands a dataset is available that contains information on
education per four-digit postal code.5 This dataset shows the fraction (ic) of residents
that has obtained education level c, where c ∈ {Low,Medium,High}. From this we
construct the variable Edu = −1 · iLow + 0 · iMedium + 1 · iHigh, which is a weighted

4We divide by FTE salary because we believe that, for example, someone who works only one
day a week at irregular hours should be treated differently from someone who works five days a week
at irregular hours.

5https://www.cbs.nl/-/media/imported/documents/2013/49/131203-opleiding-regelingen-
verdachten-pc4-mw.xls
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average of the education attained by the residents in a postal code. The variable
ranges from −1 (if every resident is classified as having Low education) to +1 (if
every resident is classified as having High education). The information on education
is not provided in full for all postal codes, and this variable is therefore not available
for all postal codes.

Not all variables are applicable to, or available for, all participants. For example,
participants who do not work at irregular hours do not have an irregularity allowance,
and for those participants the variable is considered missing. Table 5.1 shows that
some variables are available for (nearly) all participants (Year, Age, Gender, Sal,
DisTime, DisPerc, PC and Edu), and some variables are rather scarce (IA and AFPP).

5.3 A framework for statistical modeling of portfolio
mortality

In this section we introduce our framework for explaining observed portfolio mortality
using risk factors. We specify the likelihood function for our model and discuss how
we will optimize this likelihood. We also introduce criteria to assess the performance
of estimated models, both in-sample and out-of-sample.

5.3.1 Distributional assumptions and model estimation

For integer t and x, we assume a constant force of mortality µtx on the interval
[t, t+ 1)× [x, x+ 1), and we consider Ltx participants who are alive at the beginning
of year t and for now, we assume they all have the exact age x. We will consider other
ages in [x, x+ 1) later. Using the method described in Section 2.1.1 we construct the
death and exposure observations for all participants. For each participant j we define
τtjx as the fraction of the year lived by participant j in calender year t at age x and
define the corresponding indicator variable δtjx which equals 1 if the participant died
at age x and 0 otherwise. The total number of observed deaths dtx and the total
exposure-to-risk Etx in the pension fund are then given by

dtx =

Ltx∑
j=1

δtjx and Etx =

Ltx∑
j=1

τtjx. (5.1)

From Section 2.1.2 we recall that the total survival likelihood for all participants is
defined by

Ltx∏
j=1

exp[−τtjxµtx] · (µtx)δtjx = exp[−Etxµtx] · (µtx)dtx , (5.2)
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where µtx is an unknown parameter that should be estimated. The right-hand side
is proportional to a Poisson likelihood for µtx. Therefore, if we want to estimate µtx
we can consider the model specification Dtx ∼ Poisson(Etxµtx).

Likelihood of the model. We define the force of mortality for participant j at
time t and age x by µtjx = µpop

tjx ηtjx. We assume that in calendar year t the baseline
population force of mortality µpop

tjx = µ
pop,g(j)
tx is given for participant j aged x during

calendar year t with gender g(j) ∈ {M,F}. The portfolio factor ηtjx represents
the ratio between the population force of mortality and the force of mortality of
participant j in calendar year t at age x, and this factor must be estimated from the
data.

In the previous paragraph we were not explicit regarding the age of participants
at the beginning of calendar year t since we assumed they were all born on January
1st. In the likelihood that we define below, we explicitly take into account that
participant j has his birthday at t + (1 − ιj). For the following derivation we define
ηtjx as the portfolio factors for participant j in calendar year t with x = x(j, t) before
and x = x(j, t) + 1 after his birthday in calendar year t, and these subscripts have the
same meaning for τtjx, δtjx and µpop

tjx .
6 The likelihood then depends on all portfolio

factors ηtjx, and using the yearly information from all individuals in the fund it is
given by:

L =

2011∏
t=2006

Lt∏
j=1

x(j,t)+1∏
x=x(j,t)

exp[−τtjxµpop
tjx ηtjx](µpop

tjx ηtjx)δtjx (5.3)

with Lt the number of participants in year t. In total, there are 11,325,511 observa-
tions from participants in the different years (summed over t and j), and the likelihood
is built up from 22,632,277 contributions from participants in the portfolio (summed
over t, j and x).

We use the subscript j to refer to participants and introduce a subscript i to refer
to risk profiles, i.e. groups of individuals who share the same values of the risk factors.
The likelihood in (5.3) is proportional to a Poisson likelihood, and we aggregate the
observed death counts and exposures over all times t and over participants j with the
same risk profile i:

D̃i ∼ Poisson(Ẽi · η̃i), (5.4)

with D̃i the random death counts for risk profile i, and corresponding observed death

6Note that the factors ηt,j,x(j,t) and ηt,j,x(j,t)+1 are the same if age is not included as an ex-
planatory variable.
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counts d̃i and exposures Ẽi that are defined by:

d̃i =

2011∑
t=2006

Lt∑
j=1

x(j,t)+1∑
x=x(j,t)

δtjx · I(i, t, j, x), (5.5)

Ẽi =

2011∑
t=2006

Lt∑
j=1

x(j,t)+1∑
x=x(j,t)

τtjxµ
pop
tjx · I(i, t, j, x), (5.6)

with I(i, t, j, x) = 1{ηtjx=η̃i} an indicator variable that is 1 if participant j aged x

has risk profile i in calendar year t, and 0 otherwise. We use Ẽi to denote exposure
adjusted for population mortality. 7 With the above result we can estimate the
portfolio factors η̃i using Poisson regression.

Estimation of the model. In practice, the population force of mortality µpop
tjx

is unknown. Most pension funds and insurance companies in the Netherlands use
mortality rates and forecasts published by the Royal Dutch Actuarial Society. For
population mortality estimation and forecasting we use the model described in Konin-
klijk Actuarieel Genootschap (2014) (hereafter referred to as the AG model). The AG
model is a variant of the Li and Lee (2005) model, which we use to estimate µ̂AG,g

t,x on
population mortality data from 1970-2011, where the starting year (1970) of the cal-
ibration period is in line with Koninklijk Actuarieel Genootschap (2014) and the end
year (2011) is in line with the endpoint of our dataset. When estimating the model in
(5.4), we use the fitted force of mortality from the AG model µ̂AG,g

t,x for the unknown
µpop
tjx . This way, we use an appropriate baseline mortality to explain historical portfo-

lio mortality. If we are willing to assume that the portfolio factors do not evolve over
time, we can use estimates for η̃i in combination with population mortality forecasts
µ̂AG,g
t,x for t > 2011 for pricing and valuation.8 We use µpop

tjx = µ̂
AG,g(j)
t,x and τtjx to

construct the aggregated exposures Ẽi using (5.6).
The factor η̃i is estimated using generalized additive models (GAMs), introduced

by Hastie and Tibshirani (1986) and popularized by Wood (2006). We include p
categorical variables xdik such as gender (k = 1, . . . , p)9, q smooth functions fl(·) of
one-dimensional continuous variables xcil such as age or salary (l = 1, . . . , q), and a
smooth function g(·, ·) of a two-dimensional variable (xlong

i , xlat
i ) for postal code based

longitude and latitude coordinates. The model is specified as D̃i ∼ Poisson(Ẽi · η̃i)

7This can also be interpreted as the expected number of deaths given the exposure of the consid-
ered risk cell within the pension fund and the population mortality rate.

8We describe the AG model in Appendix 5.A. In the appendix, the final year used for calibration
is 2010, but that is specific to the financial backtest that is described there. For general model
estimation we use the AG model calibrated on data until 2011.

9We use the superscript d to emphasize that we use dummy coding of the categorical variables.

102



“Thesis_Frank_van_Berkum” — 2018/2/16 — 14:05 — page 103 — #119

5.3. A framework for statistical modeling of portfolio mortality

for which the additive predictor is given by:

ln(E(D̃i))− ln(Ẽi) = ln η̃i = β0 +

p∑
k=1

βkx
d
ik +

q∑
l=1

fl(x
c
il) + g(xlong

i , xlat
i ), (5.7)

and we define ln L̃(β) as the corresponding log likelihood on aggregated data, where
β represents the parameter vector of the unknown parameters β for the categorical
variables and for the smooth functions of the continuous variables. We use thin plate
regression splines to estimate the smooth functions f and g. This means that a func-
tion f(x) is represented as

∑M
m=1 βmbm(x) and a function g(x, y) as

∑N
n=1 βnb̃n(x, y),

for fixed M and N and known basis functions bm(x) and b̃n(x, y). Through this rep-
resentation the model is reduced to a GLM. To avoid overfitting a wiggliness penalty
is added to the log likelihood, resulting in a penalized log likelihood. The wiggliness
penalty is the product of the wiggliness of a function f or g and a corresponding
smoothing parameter λ:

lnLPen. = ln L̃(β) +

q∑
l=1

λl

∫
[f ′′l (x)]2dx (5.8)

+ λg

∫∫ (
∂2g

(∂xlong)2

)2

+ 2

(
∂2g

∂xlong∂xlat

)2

+

(
∂2g

(∂xlat)2

)2

dxlongdxlat.

The unknown parameters β are estimated by optimizing the penalized log likelihood
in (5.8). The generalized cross-validation (GCV) and the Akaike information crite-
rion (AIC) are often used to select the smoothing parameters λl and λg. However,
these methods are extremely sensitive to misspecification of the correlation structure
in the error terms which may result in over- or underfitting of the data, see e.g.
Krivobokova and Kauermann (2007) and Reiss and Ogden (2009). An alternative
approach is to treat the smooth functions as random effects, which means that the λl
can be estimated by maximum marginal likelihood or restricted maximum likelihood
(REML), see Wood (2011). We explored both methods and found that REML results
in more robust parameter estimates. Therefore, we use REML to select the smoothing
parameters.

The estimation of a Poisson GAM is complicated by the presence of missing ob-
servations (see Table 5.1). If records for a variable are missing, the smooth effect for
that variable is multiplied with a dummy variable that indicates whether the variable
is available or not. For example, a model with Age and Sal is specified as

ln(E(Di)) = ln(Ẽi) + β0 + fAge(Agei) + I[Sali is available] · fSal(Sali),

with I[Sali is available] = 1 if salary is known for risk category i and 0 otherwise. In
the remainder of this chapter we suppress this indicator function in our notation.

Identification problems exist for risk factors that are available for all participants.
The smooth function for such a risk factor can be shifted with a constant c and
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the intercept can be shifted by −c without affecting the model fit. Therefore, for
risk factors that are available for all participants the smooth functions are centered
around zero. This constraint is not necessary to identify the smooth function for risk
factors that are not available for all participants.

For the categorical variables we quantify the uncertainty in the estimates by con-
structing confidence intervals based on assumed large sample normality of these es-
timators. For the smooth components of the GAM we construct component-wise
Bayesian confidence intervals (the confidence intervals include the uncertainty in the
intercept, see Marra and Wood (2012)).

5.3.2 A strategy for working with large datasets

Even though GAM software exists for very large datasets (the function bam), it is
impossible to estimate GAMs on datasets with millions of observations such as our
dataset. Using (5.3)-(5.6) we therefore aggregate death counts and exposures for
participants in the same risk cell, which decreases the number of observations. We
discretize the continuous variables to facilitate model estimation. The variables re-
lated to time (Year, Age, DisTime and AFPP) are divided into 6, 71, 42 and 23 classes
of width 1, the variables Sal and Edu are divided into 10 and 13 buckets of width 0.1,
and the variables DisPerc and IA are divided into 10 and 11 buckets of width 10%
and 2.5% respectively. For each bucket the middle value of that bucket is taken as
the representative value.

As mentioned before, our dataset contains 22,632,277 observations with constant
risk factors. After discretizing and aggregating where possible, and if we continue
to consider Year as a risk factor the dataset has 16,914,481 different risk profiles. If
we disregard Year as a risk factor, the number of risk profiles decreases to 8,428,419,
and if we disregard postal code the number of risk profiles decreases even further to
852,382.10 Since incorporating a spatial effect creates a number of risk profiles that
is too high to process with the gam routine, we will cluster similar postal codes to
reduce the number of risk categories even further. We will not cluster other variables
such as age or salary, because these have fewer classes and the gain from clustering is
smaller (and it is not necessary in this chapter).

We use the Fisher-Jenks method to cluster similar postal codes, which minimizes
the variance within a cluster, see Fisher (1958) and Henckaerts et al. (2017). Suppose
we have an estimated spatial effect η̂pc

i , and we wish to group these into m clusters.
The numerical values of the estimated effect are then ordered, and for each admissible
grouping the variance within a cluster is calculated. The optimal grouping is found
using a dynamic programming approach.

10One might expect that disregarding Year would reduce the dataset by a factor of 6. However,
for all participants at least one risk factor changes every year. Therefore, the reduction in the size
of the dataset is less than 6.

104



“Thesis_Frank_van_Berkum” — 2018/2/16 — 14:05 — page 105 — #121

5.3. A framework for statistical modeling of portfolio mortality

Similar to (5.7) we define the effect for all risk factors excluding postal code η̃−pc
i

and the effect for postal code η̃pc
i as

η̃−pc
i = exp[β0 +

p∑
k=1

βkx
d
ik +

q∑
k=1

fk(xcik)] and η̃pc
i = exp[g(xlong

i , xlat
i )],

(5.9)

so η̃i = η̃−pc
i · η̃pc

i . Then, we use the following steps to estimate η̃i when postal code
is included as a risk factor in the model:

1. Estimate the effects for all risk factors except postal code. Since
postal code is not included as a risk factor in this step, we can aggregate deaths
and exposures over the different postal codes using (5.6), thereby decreasing the
size of the dataset. From the model estimation we obtain an estimate for η̃−pc

i ;

2. Estimate a spatial effect for postal code using the longitude and lat-
itude information, taking the estimate of η̃−pc

i as given. We aggregate
deaths and exposures over all risk factors except postal code using a slightly
adjusted version of (5.6), and the resulting dataset has only 4019 observations.
Each observation corresponds to a four-digit postal code in the Netherlands for
which there is positive exposure. Estimating the spatial effect on this aggregated
dataset yields an estimate for η̃pc

i ;

3. Cluster similar postal codes using the Fisher-Jenks method applied
to the estimate of η̃pc

i . We consider n ∈ N = {2, . . . , 9} clusters, and for
each n ∈ N we determine the optimal clusters where a cluster is a group of
similar postal codes, see Henckaerts et al. (2017). Then, we estimate a Poisson
GLM using the categorical postal code with n+ 1 levels and with the estimate
of η̃−pc

i given. We determine the optimal number of clusters n∗ by comparing
these GLMs using the Bayesian Information Criterion (Schwarz (1978)).

4. Estimate a GAM including all risk factors and the clustered postal
codes. Note that we use n∗+1 levels for clustered postal codes, since the postal
code is missing for some observations.

This approach greatly reduces the dimensionality of our parameter space. Instead of
4018 different postal codes, we now have n∗ parameters for the clustered postal codes.
We take the cluster with the lowest estimated effect as the reference cluster, and this
is thus included in the intercept. We perform this procedure for all specifications
considered, and different numbers of postal code clusters are allowed for different
specifications.
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5.3.3 Model assessment

First, we introduce several statistical measures to determine the added value of the
inclusion of a risk factor when explaining observed mortality. However, for a pension
fund it is more relevant to accurately predict the value of its future liabilities than
to predict the future numbers of deaths. Therefore, we also introduce a novel back-
test based on prediction of the value of the liabilities. This has, to the best of our
knowledge, not been used before when testing models for portfolio-specific mortality.

For most model assessments discussed below, we use a point estimate for the
portfolio factors η̃i, but when we investigate the robustness of the portfolio factors,
we will explicitly take uncertainty in the estimated effect of risk factors into account.

In-sample model fit. We investigate how well different models are able to explain
the observations. When models are estimated on the complete dataset, we compute
the log likelihood (lnL) on individual observations as defined in (5.3). Since we view
the smooth effects as random effects, we calculate the conditional Akaike information
criterion (cAIC) which is defined as

cAIC = −2 lnL+ 2k. (5.10)

If no smooth effect is included, k equals the number of parameters, and if smooth
effects are included k equals the estimated degrees of freedom (EDF) adjusted for
smoothing parameter uncertainty, see Wood et al. (2016) for details. We also calculate
the Bayesian information criterion (BIC) defined as:

BIC = −2 lnL+ k lnn, (5.11)

with n the number of observations included in the likelihood function (i.e. n =

22, 632, 277), and we use the same estimated degrees of freedom k as in the calculation
of the cAIC.

Cross-validation statistics and robustness analysis. Czado et al. (2009) dis-
cuss different proper scoring rules that can be used to evaluate out-of-sample perfor-
mance of models for count data. We focus on the log score which can be interpreted
as an out-of-sample log likelihood statistic. Denote by F−t all observations in the
dataset excluding observations from year t. For all t ∈ T = {2006, . . . , 2011} we
estimate the model using F−t which yields an estimate η̂−tj,x for participant j in year
t at age x.

Similar to (2.6) and (2.7), define ptj as the likelihood of observed death or survival
for participant j = 1, . . . , Lt in calendar year t given the predictive distribution that
follows from F−t. If τtjx represents the fraction of year t that participant j was alive
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at age x (assuming he was alive at the start of that year), ptj is computed as follows:

ptj =

x(j,t)+1∏
x=x(j,t)

exp[−τtjxµpop
tjx η̂

−t
j,x]
(
τtjxµ

pop
tjx η̂

−t
j,x

)δtjx
. (5.12)

The log score for year t is then defined by:

lnSt = − 1

Lt

Lt∑
j=1

ln ptj , (5.13)

with
∑2011
t=2006 Lt = 11, 325, 511, and we summarize this for the different years into the

time-averaged value ln S = 1
6

∑2011
t=2006 lnSt.

We also investigate the robustness of estimated effects. For risk factor l, define
f̂−tl (xl) as the effect estimated using F−t. We compare the estimated effects f̂−tl (xl)

with the 80% confidence interval for f̂l(xl) estimated on the complete dataset. If the
estimated effect is robust (i.e. consistent through time), the estimates f̂−tl are close
to (and show a similar pattern as) f̂l(xl).

Predicted life expectancies. We further investigate the impact of different risk
factors on remaining life expectancies. We compute remaining life expectancies for
different ages and for males and females separately. This means we consider a risk
profile as a combination of all risk factors except age and gender and it is therefore
represented by k instead of i.11 We define the remaining cohort life expectancy for
risk profile k with age x at the beginning of calendar year t and for gender g as

LEg(k, t, x) ≈ 1

2
+

∞∑
y=x+1

Sg(k, t, x, y) (5.14)

with cumulative survival probabilities

Sg(k, t, x, y) = exp

[
−
y−x+1∑
s=0

µ̂
AG,g(k)
t+s,x(k)+s · η̂k

]
. (5.15)

Although Age and Gender are not included in k, these risk factors may be included
in the regression model.

Financial backtest. For this backtest, we assume that the management of the
pension fund at the beginning of the year 2011 wants to predict the value of the lia-
bilities at the end of the year.12 We use data from the years 2006-2010 as the training

11The difference between risk profile i and risk profile k is that the risk factors Age and Gender are
fixed.

12For simplicity we ignore any cash flows during the year 2011, but this will not materially af-
fect the results since the liabilities are mostly determined by cash flows further in the future. See
Appendix 5.A for a detailed description of the financial backtest.
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sample, and data from 2011 as the test sample. On January 1st 2011, we use all
information available up to that point to approximate for each participant separately
the value of the liabilities on December 31st 2011. Using the risk profile of individuals
and the estimated effects from the training sample, we predict the probability that a
participant survives the year 2011. The observations in the test sample tell us which
participants died in the year 2011 and who survived until December 31st 2011. Using
the test set we know the liabilities at the end of the year, and we can compare how
well different model specifications are able to predict the liabilities in the test sample.
This is a natural way to determine the added value of a risk factor when predicting
the value of liabilities.

At the beginning of 2011, 5.7% of the participants was retired, and for 91.1% of the
participants the accrued rights are available in the dataset. For all participants with
unknown accrued rights we assume a final-pay plan with 1.75% accrual per service
year to approximate these rights. We denote the yearly benefit for participant j by
bj , and we assume this benefit remains constant over time. This amount is paid in the
middle of year t if x(j, t) ≥ xr, with x(j, t) the age of participant j at the beginning
of year t and xr the retirement age. In 2011 the retirement age was 65 years in the
Netherlands, so we use xr = 65. For participant j we compute the expected present
value of an annuity aj that pays 1 euro halfway during the year if the participant is
still alive at that time and x(j, t) ≥ xr. See Appendix 5.A for details.

Define η̂−2011
j,x as the fitted portfolio factor for participant j of age x during the

year 2011. This portfolio factor is estimated using the training sample. We model
the uncertainty of participant j surviving the year 2011 using a Bernoulli(p2011,j)

distributed random variable Y2011,j , with P (Y2011,j = 1) = p2011,j = 1 − q2011,j =

exp[−µ2011,j ] which are independent for different j’s. Not all participants are born on
January 1st which we account for when computing the one-year survival probabilities.
Under the assumption of a constant force of mortality µt,x on the interval [t, t+ 1)×
[x, x + 1), the one-year survival probability for participant j with his birthday at
t+ (1− ιj) is given by:

exp[−µ2011,j ] = exp

[
−
∫ 1−ιj

0

µ̂
AG,g(j)
2011,x(j,2011) · η̂−2011

j,x(j,2011)dt

−
∫ 1

1−ιj
µ̂

AG,g(j)
2011,x(j,2011)+1 · η̂−2011

j,x(j,2011)+1dt

]
= exp

[
−(1− ιj) · µ̂AG,g(j)

2011,x(j,2011) · η̂−2011
j,x(j,2011)

−ιj · µ̂AG,g(j)
2011,x(j,2011)+1 · η̂−2011

j,x(j,2011)+1

]
. (5.16)
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The stochastic value of the liabilities Γ on December 31st 2011 is then given by

Γ =

L2011∑
j=1

(Y2011,j · bjaj + (1− Y2011,j) · 0) , (5.17)

with L2011 the number of members alive at the beginning of the year 2011. Given
this specification and using only the point estimate η̂−2011

j,x , the expected value and
variance of the random liabilities Γ are given by

E(Γ|η̂−2011
j,x ) =

L2011∑
j=1

p2011,j · bjaj (5.18)

Var(Γ|η̂−2011
j,x ) =

L2011∑
j=1

(bjaj)
2 · p2011,j · (1− p2011,j). (5.19)

The latter expression shows that the uncertainty in the evolution in the liabilities
over a one-year horizon is mainly caused by participants that have large annuities or
large accrued rights, and participants that have a moderate probability of dying (i.e.
q2011,j not too close to zero or one).

We define the indicator variable I2011,j that is 1 if participant j was still alive
at December 31st 2011 and zero otherwise. The actual liabilities per December 31st
2011 are then calculated as:

Γ̃ =

L2011∑
j=1

I2011,j · bjaj . (5.20)

Assuming normality for the liabilities at an aggregate level, we construct the 90%
prediction interval for Γ with mean and variance as defined in (5.18) and (5.19). If
a model is able to accurately predict the evolution in the liabilities over a one-year
horizon, the actual liabilities Γ̃ will often lie within the prediction interval for Γ.

Within a predictive distribution for the liabilities, underestimations and overes-
timations may cancel out. Therefore, we also calculate the mean squared prediction
error (MSPE) as:

MSPE =

L2011∑
j=1

(I2011,j · bjaj − p2011,j · bjaj)2

/
L2011∑
j=1

(bjaj)
2

=

L2011∑
j=1

(bjaj)
2︸ ︷︷ ︸

‘weights’

(I2011,j − p2011,j︸ ︷︷ ︸
‘errors’

)2

/
L2011∑
j=1

(bjaj)
2

︸ ︷︷ ︸
normalizing constant

. (5.21)

Through this definition of the MSPE, the prediction error on a participants survival
is weighted by the value of the liabilities needed for that participant. This way we
ensure that participants that contribute more to the liabilities of a pension fund are
given more weight in this statistic.
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5.4 Results

We estimate portfolio factors using the procedure described in Sections 5.3.1 and
5.3.2, and we define two reference specifications:

• Portfolio mortality equals population mortality (ηi = 1 for all i);

• The relative difference with population mortality is the same for all participants,
i.e. the regression model in (5.7) only includes the constant β0 (ηi = exp(β0)

for all i).

These two reference models allow us to quantify the relative importance of including
different risk factors in explaining historical portfolio mortality. Besides these refer-
ence models, we consider all single variable specifications and a selection of multiple
variable specifications. The variables that we include as explanatory variables are
Gender, Age, DisTime, DisPerc, Sal, IA, AFPP, Edu and (Long,Lat). The variable
Year is not included, because the dataset covers only a few years. In this chapter,
our focus is on investigating which in-sample statistic our out-of-sample test leads to
optimal risk factor selection. For exploratory purposes, we therefore consider single
effects only. The analysis can be extended to include interactions between effects such
as gender-specific salary effects. Interactions between continuous variables are also
possible, but this greatly increases the number of possible specifications and increases
the computational cost.

5.4.1 Estimation results

Table 5.2 shows the model fit (the log likelihood, estimated degrees of freedom, con-
ditional AIC and BIC) and cross validation statistics (the time-averaged log score)
for a selection of single and multiple variable specifications.

Model fit and estimated factors. The two reference specifications are shown in
the top two rows of Table 5.2, and the model fit improves considerably if we allow
for differences between mortality in the population and the portfolio. The cAIC and
BIC almost always improve if we add a single variable on top of the constant, but
the BIC does not improve if we add Gender. Note that gender is already included in
the baseline mortality level µpop,g

t,x . It is therefore no surprise that Gender has little
additional explanatory power. The results for cAIC and BIC are similar, but as is to
be expected, there are some cases in which the information criteria suggest different
model specifications.

Large improvements in model fit come from adding DisTime, DisPerc or Sal.
With Salary and DisPerc included in the model (for example row 15 in Table 5.2),
the information criteria and score function improve considerably compared to the
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Table 5.2: Estimation results for a selection of models. For lnL larger is better, for the
other statistics smaller is better. The horizontal lines separate models with
increasing numbers of risk factors. Note that all regression models (row 2 and
below) include a constant.

Model lnL EDF cAIC BIC ln S (×10−3)

1. Baseline -222,772 0.0 445,545 445,545 19.66795
2. Constant -222,089 1.0 444,180 444,195 19.60966

3. Gender -222,083 2.0 444,170 444,199 19.60912
4. Age -221,993 2.6 443,992 444,031 19.60180
5. DisTime -220,482 7.0 440,978 441,083 19.46849
6. DisPerc -220,501 6.6 441,016 441,114 19.47032
7. Sal -221,037 5.3 442,085 442,163 19.51721
8. IA -221,962 3.2 443,931 443,979 19.59840
9. AFPP -221,977 3.1 443,960 444,007 19.59983

10. Edu -222,017 6.9 444,047 444,150 19.60374
11. PC -222,026 7.0 444,065 444,170 19.60752

12. DisPerc-DisTime -220,480 9.3 440,978 441,117 19.46892
13. DisPerc-Gender -220,476 7.6 440,968 441,081 19.46815
14. DisPerc-Age -220,442 11.7 440,908 441,084 19.46621
15. DisPerc-Sal -219,853 10.9 439,728 439,891 19.41381
16. DisPerc-IA -220,477 8.7 440,970 441,100 19.46821
17. DisPerc-AFPP -220,416 8.7 440,850 440,981 19.46306
18. DisPerc-Edu -220,444 12.0 440,912 441,092 19.46569
19. DisPerc-PC -220,446 11.6 440,916 441,089 19.46841

20. DisPerc-Sal-Gender -219,834 11.8 439,691 439,868 19.41212
21. DisPerc-Sal-Age -219,808 16.2 439,649 439,891 19.41100
22. DisPerc-Sal-IA -219,793 13.3 439,613 439,811 19.40865
23. DisPerc-Sal-AFPP -219,786 13.6 439,598 439,802 19.40814
24. DisPerc-Sal-Edu -219,815 16.2 439,663 439,905 19.41084
25. DisPerc-Sal-PC -219,808 15.9 439,648 439,886 19.41212

26. DisPerc-Sal-IA-AFPP -219,726 15.9 439,484 439,721 19.40305
27. DisPerc-Sal-IA-Edu -219,756 18.5 439,549 439,826 19.40577
28. DisPerc-Sal-IA-PC -219,759 16.2 439,550 439,792 19.40732

29. DisPerc-Sal-IA-AFPP-Edu-PC-219,661 24.2 439,370 439,731 19.39947
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first two rows. If we keep adding variables, the statistics improve further, but the
improvements are much smaller than those from adding Salary and DisPerc.

Figures 5.2a-5.2h show the estimated effects for the models with a single variable,
i.e. for the models in row 3-10 of Table 5.2. The gray area in the graphs represents
the 80% confidence interval based on the calibration using the complete dataset. The
colored lines represent the estimated effect if a single year is left out of the dataset.

The shape of the estimated effects for the variables Sal and IA are in line with
intuition: higher salary leads to lower mortality, and more hours worked at irregular
times leads to higher mortality, and the estimated effects for these single risk factor
models are strong. The maximal relative difference in the force of mortality for
participants with high and low salary is about exp[0.2− (−0.6)] ≈ 2.2, and the effect
for IA is only slightly lower. For AFPP most of the exposure is located at AFPP=60
and AFPP=65, and from Figure 5.2g we derive that retiring at the age of 60 (early
retirement) reduces the force of mortality by about 18% compared with retiring at 65
(the official retirement age).

In Figure 5.2e and 5.2f we consider Dis ∈ {DisPerc, DisTime}. Participants with
a disability spell equal to zero (Dis = 0) are included in the reference group, for
participants with missing disability information (Dis is missing) we include a dummy
variable, and for participants with a non-zero disability spell (Dis > 0) a smooth
effect is included.13 The effect estimated for the dummy variable and the smooth
effect are added to the intercept for the respective groups, and the portfolio factor ηi
when only Dis is included in the model is thus represented as:

ln η̃i = β0 + I[Dis is missing] · β1 + I[Dis > 0] · fDis(Disi).

The parameters β0 and β1 in these models are estimated at -0.42 and 0.28 respec-
tively.14 The force of mortality for participants with missing disability information is
therefore roughly exp[0.28]−1 = 33% higher compared to participants with Dis equal
to zero. This can be explained by the fact that participants with missing disability
information are a mixture of participants with Dis equal to zero (low mortality) and
participants with positive Dis (high mortality). The estimated smooth effects for
DisPerc and DisTime are shown in Figure 5.2e and 5.2f, and those effects are on
average approximately 0.7. For participants with Dis greater than zero the force of
mortality is almost twice as large compared to the force of mortality for participants
with Dis equal to zero.

The estimated effect for DisPerc shown in Figure 5.2e is difficult to explain. In
2005 the Dutch government introduced new legislation regarding income protection

13If a participant has a cumulative disability spell equal to zero, then both DisTime and DisPerc
are zero. The same principle holds for participants with missing disability information or with a
positive disability spell.

14These numbers are identical for the models with either DisPerc or DisTime.
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(a) f(Age) (b) Gender

(c) f(Sal) (d) f(IA)

(e) f(DisPerc) (f) f(DisTime)

(g) f(AFPP) (h) f(Edu)

Figure 5.2: Estimated factors for the models shown in row 3-10 in Table 5.2. The gray
area bounded by the black lines represents the 80% confidence interval for
the effect estimated on the complete dataset, and the colored lines represent
the estimated effect if a single observation year is excluded.
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provided by the state. Under this new legislation people can be classified as being par-
tially disabled, and for this group a suitable replacement job is searched. Three main
classes are distinguished: less than 35% disabled, between 35% and 80% disabled, and
above 80% disabled, and the state pension and effort put into searching a suitable
replacement job depends on the disability class. DisPerc is a variable aggregated over
time and can thus not be directly compared with the disability classes distinguished
in the legislation. The different treatment of these three disability classes may be the
cause for the curvature in the estimated effect for DisPerc.

From Figure 5.2f we observe that mortality increases with the length of a disability
spell, except for the first few years. The exposure for small values of DisTime is large,
but also potentially heterogeneous. Participants with a disability spell of one year
may have been disabled for one year and lived healthily for many years since then,
or they may be in the first year of a disability spell that will eventually become very
long.

Models with Salary and DisTime perform similarly to models with Salary and
DisPerc, but we prefer to use DisPerc over DisTime since in the dataset DisPerc
is more uniformly spread over different classes, see Figure 5.1. Also, from the single
factor analysis we observe that the confidence interval widens for larger values of
DisTime, but remains steady for all values of DisPerc, see Figures 5.2e and 5.2f.

The model with the risk factors DisPerc, Sal, IA, AFPP, Edu and PC performs
well on the model assessment criteria we introduced in Section 5.3.3 (see row 29 in
Table 5.2 for those results). Figure 5.3 shows the estimated effects for this model. In
the middle row of Figure 5.3, we observe that the effects of DisPerc, Sal, IA and Edu
are similar to the effects of factors shown in Figure 5.2. The effects of Sal and IA
are nearly identical, which suggests that the effects of these variables are independent
of the effects of the other variables included. It is remarkable that the effect for
AFPP is reversed. In Figure 5.2g the estimated effect indicates that early retirement
decreases the level of mortality, but Figure 5.3 indicates otherwise. Participants may
have different motivations for retiring early. Wealthy participants may have chosen
to retire early because they no longer needed to work, whereas participants with bad
health may have retired early because they could no longer work. For the first group
we expect lower mortality and for the second group we expect higher mortality. In
a single factor model, AFPP tries to capture these two effects, while in a model with
multiple risk factors this effect may be captured, for example, by Sal and DisPerc.

The top row of Figure 5.3 shows (from left to right) the estimated postcode effect
using longitude and latitude, the significance of the estimated spatial effect, and the
clusters created by the Fisher-Jenks clustering method (see Section 5.3.2). There are
clear regions with higher mortality and regions with lower mortality, and the effect
is significantly different from zero at many regions using a 80% confidence level. The
resulting clustering of postcodes shows great similarities with the estimated spatial
effect, but each postcode within a cluster now has the same impact on the predictor.
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Figure 5.3: Estimated effects for the model with DisPerc, Sal, IA, AFPP, Edu and PC
included (row 29 in Table 5.2). The top row shows the estimated spatial
effect from Step 2 as described in Section 5.3.2, the significance of that
spatial effect, and the resulting clusters after the Fisher-Jenks method has
been applied. The graph at the bottom right shows the estimated effects for
the corresponding clusters in the top-right graph. The remaining graphs
show the estimated smooth effects for DisPerc, Sal, IA, AFPP and Edu; the
gray area bounded by the black lines represents the 80% confidence interval
for the effects estimated on the complete dataset, and the colored lines
represent the estimated effects if a single observation year is excluded.
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Cross validation and robustness analysis. The last column in Table 5.2 shows
the cross validation statistics (smaller ln S is better). There is no penalty on the
scoring rule for adding parameters. Therefore, if a variable captures an effect that is
consistent through time, including that variable will lead to a more accurate predictive
distribution and thus to improved results for the scoring rule, while including variables
that represent uninformative noise may deteriorate those results. We see that results
for the scoring rule improve if we add variables, so apparently all variables capture
effects that are consistent through time.

From Figure 5.2 we observe that the colored lines show a similar pattern as the
gray areas. This means that the estimated effects for the risk factors are stable over
time. Even in Figure 5.3, where we included many risk factors in a single model, the
estimated effects are stable over time. This is not surprising, since we have many
observations.

5.4.2 Predicted cohort life expectancies

The model with the risk factors DisPerc, Sal, IA, AFPP, Edu and PC performs well
both in-sample and out-of-sample, and the estimated effects for this model are robust.
Using the estimated effects from that model as illustrated in Figure 5.3 and (5.14),
we compute remaining cohort life expectancies (LE) for different risk profiles which
are shown in Table 5.3. This allows us to quantify the impact of different variables
on LE, and to compare our results with existing literature. Note that we do not
distinguish between different levels of IA, AFPP and Edu because doing so would com-
plicate providing a clear presentation of the results. These variables are therefore
assumed missing in calculating the remaining life expectancies. The most-favorable
group in this table is represented by (PC_Group=1, DisPerc=“No”, Sal=0.90) and
the least-favorable group by (PC_Group=3, DisPerc=5%, Sal=0.10).

The results are striking. For the remaining life expectancy at age 25, the difference
between low and high salary risk profiles is between 5 and 6 years, and the difference
is of similar size for being/having been disabled or not. Chetty et al. (2016) found a
difference of 14.6 years between the 1% richest and 1% poorest, but their dataset is
not restricted to people in pension funds (they consider all individuals with positive
household earnings in the USA). The USA is a more heterogeneous group than the
participants within the Dutch pension fund, and we use different quantiles for salary,
so the different scale need not surprise us. Further, even the effect of postal code on
life expectancy is not negligible since it amounts to approximately one year, and this
result is in line with Figure 5 from Chetty et al. (2016).

Cairns et al. (2016) compute the partial period life expectancy from age 55 to 90
for different affluence groups. These affluence groups are defined using a combination
of reported wealth and income. They find that the difference in partial period life
expectancy between the lowest and highest affluence groups is about 6.5 years, which
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Table 5.3: Predicted remaining cohort life expectancies for different risk profiles. The
model used for estimating portfolio factors includes the variables DisPerc,
Sal, IA, AFPP, Edu and PC_Group, and remaining life expectancies are
computed in the year 2012 for males (M) and females (F ) at the age of 25
and 65. To limit the dimensions of the risk profiles, we have assumed IA, AFPP
and Edu missing in all risk profiles.

PC_Group DisPerc Sal LEM (25) LEF (25) LEM (65) LEF (65)

Lowest No 0.90 69.1 71.2 26.2 28.8
mortality 0.50 66.7 68.9 23.7 26.5
(cluster 1) 0.10 63.5 66.0 20.6 23.6

5% 0.90 62.7 65.2 19.9 22.9
0.50 60.2 62.8 17.6 20.7
0.10 56.7 59.5 14.8 18.0

Highest No 0.90 68.2 70.3 25.2 27.9
mortality 0.50 65.8 68.1 22.8 25.6
(cluster 3) 0.10 62.6 65.1 19.7 22.7

5% 0.90 61.8 64.3 19.0 22.0
0.50 59.2 61.9 16.7 19.9
0.10 55.6 58.5 14.0 17.2

Baseline in: general population 62.5 65.1 19.6 22.7
portfolio 64.0 66.4 21.0 24.0

is also in line with our results. Further, RIVM (2014) reports differences up to six
years in period life expectancy at birth between low and highly educated people. This
range is similar to what we observe for low and high salaries.

The difference in remaining life expectancy for x = 25 between the most-favorable
group in this table and the least-favorable group is 13.5 and 12.7 for males and females
respectively. These differences persist over time: at age 65 the differences are 12.2 and
11.6 for males and females respectively. This means that if participants were to retire
at age 65, males in the most-favorable group benefit 26.2 years from their pension
which is almost twice as long as males in the least-favorable group, who benefit 14.0
years on average. We have not taken into account the effect from all risk factors that
can be included in the model, so for more granular risk profiles the differences may
be even larger.

In this analysis we have assumed that the variables Sal, DisPerc and PC_Group
remain constant throughout the entire lifetime of a participant. Although this is a
strong assumption, it is the best assumption we can make based on the available data.
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5.4.3 Financial backtest

Figure 5.4 shows the results of the financial backtest. For each model we computed
the mean and variance of the value of the liabilities (predicted at January 1st 2011)
using (5.18) and (5.19). The mean is represented by the large dot, the horizontal
lines represent the 90% prediction intervals under the assumption of normality for
the value of the liabilities. The actual values observed at the end of the year (i.e. the
target for our predictions at the beginning of the year) are represented by the vertical
dashed line. The mean squared prediction error (MSPE) as defined in (5.21) is shown
on the right-hand side of the figure.

If we use portfolio factors equal to one (i.e. portfolio mortality is the same as
population mortality), we underestimate the liabilities; the actual liabilities are far
outside the prediction interval. Predictions improve if we take portfolio mortality into
account, so this clearly shows the usefulness of adjustments to population mortality
rates. However, the liabilities are still underestimated. It is surprising that if we
include the variables Age, Gender, DisTime, DisPerc, AFPP, PC or IA, the predicted
liabilities are very similar to the predicted liabilities when only an intercept, and thus
a fixed correction to population mortality, is included. Note that this does not imply
that including these risk factors leads to the same predicted liabilities at individual
level.

However, if we include Sal as an explanatory variable the prediction of the liabili-
ties improves significantly, and the actual liabilities lie within the prediction interval.
Since accrued benefits are correlated with salary, this was to be expected. This is also
the reason why practitioners in the actuarial field tend to work with mortality rates
weighted by insured amounts, as in Plat (2009b).

The model estimation results in Table 5.2 suggest to use a model which includes
Sal and either DisTime or DisPerc, and possibly IA, Edu and PC as additional ex-
planatory variables. However, in Figure 5.4 we see that including information on
disability when Sal is already taken into account decreases the predicted value of lia-
bilities and the backtesting results worsen (compared to the model where only Sal is
included). This is further investigated in Figure 5.5 where we show the predicted value
of liabilities for specifications with DisPerc and/or Sal included, but now separately
for participants with known and unknown disability and/or salary information:

• If only DisPerc is included, liabilities are underestimated for participants with-
out a positive disability spell, because the correlation between mortality and
accrued rights is not taken into account. The actual liabilities fall within the
prediction interval for participants with a positive disability spell;

• If only Sal is included, predicted liabilities increase for participants with known
salary information compared to the predicted liabilities for the other single
factor regression models. For participants without positive disability spell the
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Figure 5.4: Results for the financial backtest. For each model we show the expected
value and 90% confidence interval for the predicted liabilities needed on
December 31st 2011 (predicted at January 1st 2011). The vertical dotted
line represents the liabilities for the participants who were still actually alive
on December 31st 2011. The mean squared prediction error is shown for
each model on the right-hand side of the figure.
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Figure 5.5: The financial backtest split between participants with and without disability
and/or salary information. There are no participants with known salary
information but unknown disability information. Notes: see Figure 5.4.

liabilities are underestimated, and for participants with positive disability spell
the liabilities are overestimated. The actual liabilities fall outside the prediction
interval for all groups;

• If both DisPerc and Sal are included, the predicted liabilities are closer to the
actual liabilities for nearly all groups compared to the liabilities predicted using
the single factor regression models. For people with known salary the prediction
agrees very closely to the actual liabilities.

This example shows that focusing on a single backtest at an aggregate level may lead
to suboptimal decisions regarding the selection of risk factors. For one risk profile we
may underestimate the liabilities while for another risk profile the liabilities may be
overestimated. Therefore, we also calculated the MSPE and the results are included on
the right-hand side of Figure 5.4. We calculated the MSPE using liabilities predicted
at an individual level, so within the MSPE under- and overestimation cannot cancel
out each other.

The MSPE for the model with only Sal included is worse than when only DisPerc
is included. Further, if we include both DisPerc and Sal the MSPE improves sub-
stantially. Once both Sal and DisPerc have been included, the MSPE improves only
marginally when other risk factors are added.

Based on Figures 5.4 and 5.5 we conclude that the MSPE yields more accurate
information regarding which models provide accurate liability predictions on an in-
dividual level. However, the prediction intervals may provide valuable insights for
subgroups of the portfolio on whether liabilities are under- or overestimated. There-
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Figure 5.6: The value of the liabilities split between participants with and without
disability and/or salary information. For all participants the portfolio
factors is used for the entire projection period. There are no participants
with known salary information but unknown disability information.

Table 5.4: Liabilities for participants who are alive at January 1st 2011, valued using
different specifications for the portfolio-specific factors.

Model Liabilities in eB

No model 103.24
Constant 106.91
DisPerc 109.62
Sal 113.14
DisPerc-Sal 113.38

fore, we recommend to use both backtesting tools to obtain a complete view on how
different models perform relative to each other.

5.4.4 Valuation of liabilities

In this section we quantify the impact on the liabilities when different models are used
to explain historically observed portfolio mortality data. In the previous section we
used participant-specific mortality adjustments only for the year 2011, and we used
the same mortality adjustment for all participants for the years thereafter. We use
the same approach here, but we now use the estimated participant-specific mortality
adjustments for the entire future instead of only for the year 2011.

In Figure 5.6 we show the liabilities for specifications with DisPerc and/or Sal
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included, but separately for participants with known and unknown disability spell
and/or salary. The total liabilities summed over the different subgroups are shown in
Table 5.4. By comparing Figure 5.4 and Figure 5.6 we observe that the ranking of the
models in terms of liabilities is the same for each subgroup. However, the differences
in liabilities between the different models have become larger in absolute terms since
the participant-specific mortality adjustments are now used for the entire future. The
largest relative difference is observed for the participants with known salary and who
have a positive disability spell. The liabilities calculated using the model with only
Sal included equals e13.97 B, whereas if we also include DisPerc the liabilities are
only e12.35 B, which is almost 12% lower.

In the financial backtest the total predicted liabilities for the model with both
DisPerc and Sal are lower than those for the model with Sal only. However, in
Table 5.4 we observe that if we account for the differences in mortality between
participants for the entire future that the liabilities when including both DisPerc
and Sal are higher than when only Sal is included. If we only include Sal, the
potential correlation between Sal and DisPerc is not taken into account. As a result,
we value the liabilities lower for the participants with DisPerc = 0 and known salary
(the largest group in Figure 5.6) if we only include Sal than when we also include
DisPerc.

5.5 Conclusion

It is well known that many factors influence the level of individual mortality rates.
The increasing sophistication of modern statistical methods allows pension funds to
improve their mortality estimates by not just using age and gender. We can now also
include other explanatory variables, and these variables may be categorical, continu-
ous or spatial factors.

Using a large Dutch pension portfolio, we show that such extensions are now
feasible for the very large datasets involved if the data are aggregated in a particular
manner. This allows us to base our conclusions on a large quantity of information,
while results that have been reported so far have been based, to the best of our
knowledge, on datasets with a much smaller number of pension fund participants.

The scale of our analysis strengthens our conclusion that salary, disability and
working at irregular hours all have a particularly strong impact on the level of mor-
tality, while portfolio-specific adjustments to variables such as age, gender and the
age at which pension payments start are less important.

By applying a financial backtest which aggregated the effect of individual deaths
to the level of the liabilities for the fund as whole, we found that only information on
salary and disability is particularly valuable to improve the accuracy of predictions.
This shows that one may want to use the modeling framework introduced in this
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chapter to distinguish between risk factors which improve the accuracy of predicting
individual deaths from risk factors which also improve on the quality of the predictions
which are most important from an actuarial perspective.

The application of our framework could be used to include other factors as well
if these are available, but this obviously depends on the information that is collected
within a pension fund. For older retirees, which form a substantial part of the port-
folio, less information on risk factors is available: past salary information is usually
missing for example, and only total accrued rights are reported. These accrued rights
are determined by the whole history of earned salaries and past service years, and
they are therefore difficult to compare between participants in absolute terms. It
would be worthwhile to investigate whether they can still be included in an appropri-
ate manner in the regression analysis. Further, in this chapter we only consider single
effects, but estimation and backtesting results may improve if combined effects, such
as a gender-specific salary effect, are introduced.

Another interesting topic left for future research is related to the derivation of
portfolio factors based on insured amount weighted mortality rates. This approach
is widely used in practice, but it lacks theoretical justification. In this chapter we
have illustrated how a factor such as salary can be included in a regression model
to explain observed death counts, but it is worthwhile investigating whether better
predictions can be obtained when survival of participants is weighted by their insured
amount or the value of their liabilities in a statistically just manner.
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5.A Detailed description of the financial backtest

Below we first discuss the model used to create population-wide mortality forecasts,
then we discuss how the expected present value of annuities is calculated.

5.A.1 Population mortality model

We use the AG2014 model to obtain population mortality forecasts, see Koninklijk
Actuarieel Genootschap (2014). This model is an application of the Li and Lee (2005)
model to a selection of West-European countries under a Poisson assumption for the
observed death counts (Brouhns et al. (2002)).

They consider a group of West-European countries: Austria, Belgium, Denmark,
England and Wales, West-Germany, Finland, France, Iceland, Ireland, Luxembourg,
the Netherlands, Norway, Sweden and Switzerland. For each country c we download
the observed death counts dct,x and corresponding risk exposures Ect,x from the Human
Mortality Database15, and we define dEU

t,x =
∑
c d

c
t,x and EEU

t,x =
∑
cE

c
t,x for t =

1970, . . . , 2010 and x = 0, . . . , 90.
The mortality model is specified as

DEU
t,x ∼ Poisson(EEU

t,x µ
EU
t,x ) (5.22)

DNL
t,x ∼ Poisson(ENL

t,x µ
NL
t,x ), (5.23)

with

lnµEU
t,x = Ax +BxKt (5.24)

ln ∆NL
t,x = αx + βxκt (5.25)

lnµNL
t,x = lnµEU

t,x + ln ∆NL
t,x . (5.26)

15http://www.mortality.org
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The model is applied to both genders separately, so dependence on gender g is not
shown. Here, µEU

t,x is the force of mortality for the collection of West-European coun-
tries, ∆NL

t,x is the (relative) difference in force of mortality between West-Europe and
the Netherlands, and µNL

t,x is the resulting force of mortality for the Netherlands.
For Kt we assume a random walk with drift and for κt a mean reverting process

that reverts back to zero:

Kt = Kt−1 + θ + εt, εt ∼ N(0, σ2
ε) (5.27)

κt = aκt−1 + νt, νt ∼ N(0, σ2
ν). (5.28)

We further assume the error terms εt and νt to be correlated for fixed t but uncor-
related over different t, so we can use Seemingly Unrelated Regression techniques to
estimate this model. To compute annuities (see the next section) we use the most
likely mortality path, i.e. we set error terms εt and νt equal to zero when forecasting
mortality. We calibrate our model to the ages 0 to 90, but mortality estimates for
higher ages are needed in order to obtain more accurate (complete) estimates of an-
nuities. We use the closure method of Kannistö (1992) to obtain mortality rates for
ages higher than 90, using ages 80, . . . , 90 in the Kannistö regression.

5.A.2 Assumptions to compute the expected present value of
life annuities

The financial backtest uses the expected present value of life annuities aj for parti-
cipant j starting at December 31st 2011, as predicted on December 31st 2010. We
make the following assumptions when computing the expected present value of the
annuities:

1. All participants have integer age at January 1st 2011 (rounded down);

2. Benefits are paid halfway during the year;

3. There are no payments after age 121, i.e. pj = 0 when x(j, t) ≥ 121;

4. The relative difference between mortality in the population and the pension
fund is the same for all participants in the pension fund. This difference is
represented by the factor η which is computed as∑

tjx

δtjx/
∑
tjx

τtjxµ̂
AG,g(j)
tx ,

where the summation is taken over all individuals in the training sample t =

{2006, . . . , 2010}, and including both information before and after the birthday
of participant j.
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Here, µ̂AG,g
tx is obtained by calibrating the AG2014 model on mortality data from

1970-2010. The portfolio factor η defined above is the same as the one that results
from a model with only a constant included in (5.7).

We use the discount curve published by the Dutch Central Bank for December
31st 2010, and we define zk as the k-year zero rate for k ≥ 0 and z0 = 0. We define
the mid-year discount factor in year k as

DF
k+

1
2

= [(1 + zk)k · (1 + zk+1)k+1]−1/2, (5.29)

with k ≥ 0 .
In calculating the expected present value of the annuities aj we only consider the

risk factors age x and gender g. The one-year survival probability for participant j
in year 2011 + k is given by

pj,k = exp[−µ̂AG,g(j)
2011+k,x(j,2011)+k · η], for k ≥ 0,

where the force of mortality µ̂AG,g
tx is obtained from a calibration using mortality data

up to and including the year 2010. Given the set of assumptions listed above, we
compute an annuity aj as follows:

aj =
∑
k≥0

DF
k+

1
2
·
k+

1
2
pj ,

with

k+
1
2
pj =

(pj,0)
1
2 for k = 0,(∏k−1

l=0 pj,l

)
(pj,k)

1
2 for k ≥ 1.

The expected present value of the annuity aj is used in (5.18) and (5.19).
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Summary

This thesis investigates models for historical mortality data that can be used to con-
struct forecasts for both population mortality and portfolio-specific mortality.

In Chapter 2 we provide an extensive introduction to stochastic mortality mod-
eling. We discuss the Lee-Carter model and several extensions, and we provide an
overview of different approaches to forecast the time series in mortality models. In a
Bayesian setting, we demonstrate the impact of parameter uncertainty on prediction
intervals for mortality rates.

For nearly all mortality models the random walk with drift is used for the modeling
and projection of the underlying time series. However, projections are potentially
very sensitive with respect to the calibration period, and when the historical data
contains a structural change it is possible that mortality forecasts are not in line with
the most recent observations. In Chapter 3 we propose a modeling approach in
which the possible presence of structural changes in the calibrated period effects is
explicitly incorporated. We find that allowing for multiple structural changes results
in more plausible projections of the period effects, and that this also leads to improved
backtesting results in some cases.

InChapter 4 we propose a method to estimate population mortality and portfolio-
specific mortality simultaneously. We define our model in a Bayesian setting for two
reasons: 1) it allows for simultaneous estimation of the population mortality model
and the portfolio-specific adjustments, and 2) as a byproduct of the estimation pro-
cedure, we obtain information on parameter uncertainty which is essential for risk
management purposes. For the population we use the Lee-Carter model, and we use
age-dependent factors to adjust mortality in the portfolio. We consider two speci-
fications for the age-dependent portfolio-specific factors, and we find that imposing
a correlation structure between these factors for different ages results in a reduction
of the uncertainty in their estimates. However, for the future numbers of deaths,
we find that individual mortality risk is most relevant on the short term, and as the
projection horizon increases, uncertainty in the mortality trend becomes increasingly
important.

Finally, in Chapter 5 we investigate mortality in a large pension fund. We
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Summary

estimate effects for a variety of risk factors using generalized additive models (GAMs).
The use of GAMs means that we do not have to impose beforehand what the structure
of the effects should be (e.g. linear or quadratic), since we estimate the structure using
thin plate splines. We consider different combinations of risk factors, and compare the
model fit using information criteria and proper scoring rules. Of particular interest for
pension funds is the impact of the inclusion of different risk factors when predicting
the value of the liabilities that are needed at the end of the year. We show that
it is crucial to include salary information to ensure that the estimated value of the
liabilities is at an appropriate level for the portfolio as a whole. However, when
disability information is included additional to salary information, predictions become
significantly more accurate for specific risk groups.
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Samenvatting

Rond 1850 werden mensen gemiddeld nog geen 40 jaar oud, inmiddels wordt meer
dan 60% van de Nederlandse mannen en 75% van de Nederlandse vrouwen die nu
geboren worden ouder dan 90 jaar. Pensioenfondsen en levensverzekeraars hebben
langlopende verplichtingen aan hun deelnemers respectievelijk polishouders. Voor
een nauwkeurige waardering van die verplichtingen is een goede inschatting van de
toekomstige ontwikkelingen in sterftekansen essentieel.

Sinds de jaren ‘90 wordt er veel onderzoek gedaan naar modellen die de historische
sterftedata proberen te beschrijven, en die vervolgens gebruikt kunnen worden om
projecties van sterftekansen voor de toekomst te maken. Vaak worden daarbij li-
neaire modellen gebruikt om tijdreeksen te projecteren, zonder rekening te houden
met mogelijke veranderingen in de bijbehorende parameters. Dit heeft tot gevolg dat
projecties niet altijd goed aansluiten bij de meest recente historie.

In hoofdstuk 3 onderzoeken we modellen waarin structurele veranderingen in tijd-
reeksen worden geïdentificeerd. Op basis van informatiecriteria bepalen we het meest
aannemelijke aantal structurele veranderingen, en we laten zien dat projecties van tijd-
reeksen het beste aansluiten bij historische waarnemingen wanneer rekening gehouden
wordt met meerdere structurele veranderingen. We testen de meerwaarde van het
toelaten van structurele veranderingen door de voorspellende kracht van de sterfte-
modellen te testen. We zien dat die in enkele gevallen verbetert maar soms ook
verslechtert. In die gevallen zijn de projecties van sterftekansen minder intuïtief, ook
al zijn de projecties van de onderliggende tijdreeksen wel plausibeler.

In een populatie kunnen er tussen verschillende groepen individuen grote ver-
schillen bestaan in sterftekansen. Mensen met een fysiek zwaar beroep overlijden
naar verwachting eerder. In de waardering van verplichtingen moet ook hier rekening
mee gehouden worden: de projecties van sterftekansen voor de Nederlandse bevolking
kunnen niet direct toegepast worden, maar moeten gecorrigeerd worden voor porte-
feuillespecifieke kenmerken.

In hoofdstuk 4 beschouwen we sterfte in een portefeuille van verzekerden in En-
geland en Wales met sterfte in de gehele bevolking in Engeland en Wales. We veron-
derstellen dat de relatieve verschillen in sterfte tussen beide groepen (de portefeuille-
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Samenvatting

factoren) leeftijdsafhankelijk en constant over de tijd zijn. Doordat het model in
een Bayesiaanse setting geschat wordt, zijn we in staat om drie vormen van on-
zekerheid van elkaar te onderscheiden: individueel sterfterisico, onzekerheid in de
sterfteontwikkelingen, en parameteronzekerheid. We vinden dat de onzekerheid in de
portefeuillefactoren groter is wanneer onafhankelijkheid tussen de portefeuillefactoren
verondersteld wordt, en dat individueel sterfterisico op de korte termijn een grotere
impact heeft op de onzekerheid in sterfteaantallen dan parameteronzekerheid. Op
de lange termijn heeft de onzekerheid in de sterftetrend de grootste impact op de
onzekerheid in sterfteaantallen.

Tot slot analyseren we in hoofdstuk 5 de sterfte die geobserveerd is in een groot
Nederlands pensioenfonds over de jaren 2006 tot en met 2011. De dataset bevat in-
formatie over verschillende risicofactoren zoals salaris en arbeidsongeschiktheid, en
deze informatie kan gebruikt worden om verschillen in sterfte te verklaren. We ge-
bruiken een gegeneraliseerd additief model, waardoor we niet-lineaire gladde effecten
kunnen schatten voor de risicofactoren; dit in tegenstelling tot de lineaire effecten
die vaak met een gegeneraliseerd lineair model geschat worden. Door het gebruik
van informatiecriteria en kruisvalidatietesten vinden we dat het salaris, een eventueel
arbeidsongeschiktheidsverleden, en een toeslag voor het werken op onregelmatige tij-
den de sterkste invloed hebben op de sterftekansen. Pensioenfondsen en verzekeraars
zijn vooral geïnteresseerd in het accuraat voorspellen van (de vrijval in) de waarde
van de verplichtingen, en we vinden dat informatie over het salaris en het arbeids-
ongeschiktheidsverleden hier cruciaal voor zijn.
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