
UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

Interactive analysis of SDN-driven defence against Distributed Denial of Service
attacks

Koning, R.; de Graaff, B.; de Laat, C.; Meijer, R.; Grosso, P.
DOI
10.1109/NETSOFT.2016.7502489
Publication date
2016
Document Version
Final published version
Published in
2016 IEEE NetSoft Conference and Workshops : NetSoft 2016
License
Article 25fa Dutch Copyright Act

Link to publication

Citation for published version (APA):
Koning, R., de Graaff, B., de Laat, C., Meijer, R., & Grosso, P. (2016). Interactive analysis of
SDN-driven defence against Distributed Denial of Service attacks. In 2016 IEEE NetSoft
Conference and Workshops : NetSoft 2016: Software-Defined Infrastructure for Networks,
Clouds, IoT and Services : 6-10 June 2016, Seoul, Korea (pp. 483-488). IEEE.
https://doi.org/10.1109/NETSOFT.2016.7502489

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

Download date:11 Feb 2023

https://doi.org/10.1109/NETSOFT.2016.7502489
https://dare.uva.nl/personal/pure/en/publications/interactive-analysis-of-sdndriven-defence-against-distributed-denial-of-service-attacks(913326de-89e1-4f8d-a5b7-a38fb97c6763).html
https://doi.org/10.1109/NETSOFT.2016.7502489

Interactive Analysis of SDN-driven defence against
Distributed Denial of Service attacks

Ralph Koning, Ben de Graaff, Cees de Laat, Robert Meijer, Paola Grosso
System and Network Engineering group (SNE) University of Amsterdam, The Netherlands

Email: r.koning@uva.nl, b.degraaff@uva.nl, delaat@uva.nl, r.j.meijer@uva.nl, p.grosso@uva.nl

Abstract—The Secure Autonomous Response Networks (SAR-
NET) framework introduces a mechanism to respond au-
tonomously to security attacks in Software Defined Networks
(SDN). Still the range of responses possible and their effectiveness
need to be properly evaluated such that the decision making
process and the self-learning capability of such systems are
optimized. To this purpose we developed a touch-table driven
interactive SARNET prototype, named VNET, and we demon-
strated its use through real-time monitoring and control of real
and virtualised networks. By observing users interacting with
the system at SC15 in Austin, we concluded that in a SDN it is
possible to achieve high effectiveness of responses by carefully
choosing a relatively minor number of actions.

I. SARNET FRAMEWORK

Software Defined Networks (SDN) have been proposed
as an effective way to build and support secure (network)
services. The underlying assumption is that the capability of
programming the topology and the paths taken by traffic flows
will build stronger and more resilient networks, and provide
automated responses in the case of attacks. Therefore, we
decided to build a framework that addresses two challenges
that are currently not covered by other SDN systems. Firstly,
we want to provide a system that can react autonomously to
attacks by exploiting a knowledge base of tactics tailored to the
strategies defined by the businesses that use the system. Sec-
ondly, we want to allow services to span multiple domains by
allowing the definition of joint strategies amongst cooperating
organisations.

The SARNET framework [1] will provide autonomous
response across multiple domains to network attacks by ex-
ploiting the underlying SDNs functionalities and virtualised
network functions. The vision is that the SARNET framework
will be adopted by enterprises to provide secure (cloud)
services. The autonomous response in a SARNET is achieved
by means of a control loop, depicted in Fig. 1.

Learn

Analyze

Detect

Define
risksRespond

Measure

Classify

Decide

Adjust

Fig. 1. The SARNET control loop

Every SARNET will monitor the state of the network
and services by continuously evaluating a number of security
observables. Detection of violation of the expected state and
values of these observables will initiate the control loop. After
a recognition phase (classify, analyse, and risk), a SARNET
will autonomously decide the appropriate response to bring
the network back to an acceptable security state. Adjustments
might be needed if the observables do not return to the
desired state after responding. A SARNET will reprogram the
network flows, redefine the location of the virtualised network
functions, and possibly move the location of computing and
storage services.

While developing the framework, it is imperative to assess,
via fast prototyping, what the implementation issues are,
and possibly whether architectural assumptions need revision.
Therefore, we set out to investigate:

• What is the most appropriate way to expose the
security observable to external components, either
human or software? Concretely, which visualization
techniques are suitable for SARNETs?

• What is the range of responses possible in a SARNET
and how do these depend on the underlying SDN
control software?

• What are the metrics that can guide the selection of
responses to attacks during the decide phase, and what
are the most valuable metrics we can store in the learn
phase to determine solutions’ effectiveness for future
selection?

In this paper, we present the results and findings on
the above questions that we obtained with our interactive
prototype, where visitors use a multi-touch interface to detect
and respond to DDoS attacks, and was demonstrated during the
Super Computing conference held in Austin, TX in November
2015 (SC15).

II. PROTOTYPE ARCHITECTURE

We developed a prototype called VNET that supports
an initial number of SARNET control loop elements, with
particular focus on Detect, Decide, Respond, Measure, and
Learn phases. Currently, VNET is able to provide a visual-
isation of a network suffering from basic DDoS attacks and
it allows users to manipulate the network characteristics with
direct visual feedback on their actions and the effects thereof.
It allows the creation of simple observables based on the
current state of the network topology, traffic and elements.
Additionally, VNET allows scripting of attack scenarios, which978-1-4673-9486-4/16/$31.00 c© 2016 IEEE

483

execute network changes using the network controller. Real-
time monitoring data and observable states are forwarded to
the UI for visualization and user interaction. Fig. 2 shows the
application components of the VNET.

uva-nl

ExoGENI
rack

VNET

Multitouch Table or Web browser

Virtual

machines

VNET-agent

Network

Functions

VNET-agent

UI controller

Infrastructure
controller

Monitoring system
Network
controller

VNET-visualization UI

Fig. 2. Software components in the VNET prototype.

A. ExoGENI

As initial underlying platform for the VNET operations,
we used ExoGENI [2]. ExoGENI is a platform for orchestrat-
ing cloud resources (OpenStack), SDNs (OpenFlow) [3], and
network circuits [4]. There are currently about 20 ExoGENI
racks operational at various educational and research institutes,
including one located at the University of Amsterdam (the uva-
nl rack). Resources are deployed in the form of slices and
can span multiple racks and networks (physical sites). The
platform hides the hardware differences between the racks and
automatically configures the network. Network elements and
functions are implemented as virtual machines.

B. Network functions

Independence of the underlying infrastructure was an
important design requirement. Therefore, we use Ansible1

playbooks to build our network functions and to prepare the
necessary VM images. These playbooks contain instructions
to install each virtual machine and to configure the required
software packages, including the VNET agent which we use
to monitor the VM. We currently have network functions for
traditional and OpenFlow switches, RIP and OSPF routers, and
SDN controllers such as OpenDaylight and Ryu [5]. These
network functions are used in the network topologies that are
deployed by VNET.

C. Infrastructure controller

The infrastructure controller acquires and monitors the
topology from the underlying infrastructure. This topology
consists of the VMs and virtual network links. It translates

1Ansible: https://www.ansible.com/

the topology data from the Infrastructure as a Service (IaaS)
controller and converts this to the VNET internal format. The
topology is regularly polled at a tunable rate dependent on the
expected frequency of changes. A push based approach can
also be used if the IaaS controller supports custom plugins or
sending topology updates.

D. Monitoring controller

The purpose of the monitoring controller is to collect
information, metrics, and statistics from the nodes and links
in the network and to pass this to the VNET interface. The
node and network state (bandwidth usage and link state per
interface) and various function specific data (e.g. spanning-tree
information) is sent over an encrypted channel by the VNET
agent that runs on the VMs.

IaaS platforms do not always accurately provide topology
information. In those cases, the monitoring controller is ca-
pable of deducing the topology based on platform specific
meta-data provided by the VNET agent. For example, in case
of ExoGENI, this meta-data contains the URN that uniquely
identifies the node, the name of the slice, and the cluster
worker node the VM is running on. ExoGENI however, does
not provide a URN representation for its interfaces to the
VMs; therefore, the monitoring controller uses the interface
IP addresses provided by the VNET agent to construct the
final topology.

E. Network controller

VNET interacts with the network components and changes
properties that alter the behaviour of the network and the
traffic flows. The network controller facilitates this; it uses
an RPC channel to the VNET agents to set node and link
configuration, and to execute commands on the nodes. Changes
to the network can be triggered by the user via the multi touch
interface or automatically by VNET.

F. VNET agent

The VNET agent monitors and controls the node. The
daemon maintains secure connections to both the monitoring
controller, and the network controller over a TLS secured
WebSocket2 connection. The agent reports detailed interface
statistics and host meta-data such as host name, interfaces
and IP addresses. Network function specific data can supple-
ment the host meta-data by writing this data in the form of
(JSON) key/value pairs to a predefined directory which will
be automatically picked up and transmitted to the monitoring
controller.

G. Visualization user interface

The VNET user interface supports both touch and pointer
events, it is build in JavaScript using the D3.js3 library and uses
WebSockets to talk to the user interface controller component.

2The WebSocket protocol: https://tools.ietf.org/html/rfc6455
3D3.js Data-Driven Documents: https://d3js.org/

484

Fig. 3. VNET demonstration running scenario: 2 (converted to black on
white for improved readability)

Fig. 3 shows the VNET user interface, as during the
demonstration at SC 15. Information is organised in three
columns. The left column shows information relevant to the
operation of the network; the demo showed scenario controls
and service revenue as described in Sec. III-B. The centre
column shows a network representation. It displays disabled
links and the line colour changes based on link utilization for
active links. An observable, node health status, is displayed
using a red, orange, or green circle. Finally, the right column
shows details of the currently selected node or link, and
provides controls for node actions.

The concurrent display of network and service information
is an essential element for the SARNET operation, as this is
the only way in which the system can maintain the proper
view and balance between effect of software defined network
operation and the resulting service to the end users.

H. Bootstrapping

To bootstrap a network, we use a topology description, a
JSON file with a list of nodes, node type and a list of all
the available network links between these nodes. The format
is kept basic for readability and ease of use. This is done
by using common defaults so properties do not have to be
defined for each element. When supported by the underly
ing infrastructure, multiple domains can be used by simply
specifying the location (domain) of the node in the topology.
This simplified topology is converted into the appropriate
orchestration request for the underlying virtualisation platform.
In the case of ExoGENI this is NDL-OWL [6], [7], [8].

I. Scenarios

After bootstrapping the network, we load an attack sce
nario. The definition consists of two parts. First, the initial state
of the network is defined, such as which links are enabled, what
their bandwidth is, and which filters are applied. The scenario
also defines the visual elements such as the colours or icons of
nodes in the topology. Secondly, it allows scripting predefined
attack patterns over a period of time. The script contains a list
of time points that define when and by which nodes the DDoS
attacks are started. Commands contain the target of the attack,
its type (e.g. UDP or TCP), the duration of the attack, and its
strength in terms of bandwidth.

485

III. MULTI-TOUCH TABLE DEMONSTRATION

The demo we showed at the Super Computing 2015 (SCI5)
conference relies on the prototype described in Sec. II. The
visitor of the demo was presented with a multi-touch table
interface showing an interactive visualisation of a network. The
goal was to use this interface to reconfigure the network and
minimise the effect of the DDoS attack congesting the service
and to recover revenue. By detecting, analysing, deciding
and reacting to the attack, the visitor effectively acts as the
SARNET control loop (Fig. 1). The 25 VMs used for this
demo were hosted on the uva-nl ExoGENI rack and the links
between the nodes were requested with a maximum bandwidth
of 100 mbit/s.

During SCI5, the ExoGENI laaS platform posed some
limitations: first, running slices could not be modified4 . We
implemented our own mechanisms to scale bandwidth on the
virtual links using tcS on the interfaces of the virtual machines.
We used token bucket filter to shape the outgoing rate to the
bandwidth requested by the visitor. Additionally, removing
links in an active slice, was implemented by shutting down
interfaces on the virtual machines. Secondly, there was no
mapping between the interfaces on the virtual machines and
the interfaces/links in the ExoGENI topology. We solved this
by using a static IP addressing scheme that allowed us to
unambiguously identify links and interfaces.

We used three types of network elements to build the demo,
routers running OSPF, services and customers that can turn
into an attacker. Services run a web service that simulates
web shop transactions; customers send transactions to the web
service while attackers send both transactions and attack traffic
to the web services.

Fig. 4. The two demo scenarios (scenario 1 left and scenario 2 right); colours
represent different domains

Fig. 4 shows the two demo scenarios we used during SC15
where we varied the number of elements present, the network
topology among them, and the number of domains present. The
network topology is pre-programmed to ensure a correct mix
and spread of attack traffic such that the problem is solvable
by the visitor and ensure that all the defence strategies have
effect.

In both scenarios in Fig. 4 virtual customers, C1-12,
attempt to perform transactions with two web services S I-S2.
The transactions traverse a network consisting of the routers

4RENCI deployed slice modification for ExoGENI and deployed this early
2016.

5Tc is a tool to configure Traffic Control in the Linux kernel.

WI-3, NI-4, EI-3, UI-2 and FI-2. Scenario 1 also includes
a switch in the middle, SWI. Some of these customers are
assigned the additional role of attacker and try to congest the
network such that the virtual customers will be unable to make
transactions to the web services. The dual role of both attacker
and consumer is realistic since attack traffic almost always
originates from networks that also send legitimate traffic.

Revenue is determined by summing the successful trans
actions between customer and web service in the network.
When the attacks start, the visitor sees that the revenue graph
decreases and changes in link utilization. Congestion due to at
tacks causes links to change colour and eventually, since traffic
cannot reach the web services, the web service icon becomes
red as well. This is implemented by using an observable on
the amount of sales handled by the service. When the sales
drop below a certain threshold, the observable triggers and
changes the web service symbol in the user interface changes
from green to red. When the service recovers, the visualization
turns back to green. The attack traffic consists of UDP iperj26
traffic from multiple hosts at different rates.

A. Responses and costs

We implemented four responses that can be applied on all
links between network elements: 1) link state, to shut down
links; 2) rate up, to scale bandwidth upward; 3) rate down, to
scale bandwidth downward; 4) filter, to filter out attack traffic.
Based on the network display, the visitor can apply one or
more of these methods on congested links to restore revenue.
The operations have associated costs which are determined as
follows:

Lri
cost = bT + fLai

i

a clean scenario. Start/Retry lets the visitor retry the problem
without submitting. Done/Submit ends the timer and submits
the final result. When the visitor presses done, the revenue
over a small time window is measured and this is considered
the final score. Submit will save the solution.

Per visitor we stored a unique session id and the informa
tion listed in Table I and II.

IV. RESULTS

The submissions of the users can be used as a dataset
to possibly improve automated response to the problems
presented in the demonstration. The solutions provided by
the visitors in combination with our observations during the
demonstration give insight in which attack responses might be
effective.

Table I and II show the solutions collected during SC15
for the two scenarios described in section III; rank shows
the best solution, rank is currently based on the revenue
recovery - network cost where recovery is the percentage of
the revenue that is recovered by the given solution and cost is
the percentage of the original network cost. changes shows the
changes to the topology which is the sum of the actions: link
state (link down), rate up (increasing bandwidth), rate down
(decreasing bandwidth), and traffic filters.

Fig. 5. Relation between the amount of topology changes and revenue
recovery in scenario 1

rank recovery cost changes state rate up rate down filter
1 92 103 20 0 12 8 0
2 91 112 14 2 6 2 4
3 87 108 3 0 0 0 3
4 79 100 6 4 0 0 2
5 98 126 16 2 6 0 8
6 96 127 16 0 2 4 10
7 99 132 16 0 4 2 10
8 67 100 6 2 0 2 2
9 78 114 10 0 10 0 0

10 96 133 16 0 8 0 8
11 64 103 11 4 2 2 3
12 85 129 16 0 10 0 6
13 89 138 16 0 4 0 12
14 61 119 16 2 6 2 6
15 27 94 8 0 2 6 0
16 54 123 12 2 2 0 8
17 94 164 22 0 0 0 22
18 33 103 8 2 2 2 2
19 51 126 14 0 10 0 4

• where b is interface cost in $ per megabit; we used
b == 10

• where i is an active interface
• where r i is link bandwidth of interface i in Mbit/s
• where f is the cost of a filter in $; we used f == 500
• where ai is 1 if a filter is active on interface i or 0

The value for b was chosen based on the consideration
that bandwidth cost in North-America is $10 per megabit per
second [9]. The value for the parameter f derives from the
observation that the market offers DDoS mitigation services
from a few hundred to thousands of dollars per month; we
therefore chose $500 for a filter action since it is 100%
effective when applied to a link. Because in this demonstration
the number of nodes is fixed, we did not add node costs to the
equation.

B. Collecting solutions

To collect defence strategies from all visitors operating the
system, we limited the time for each visitor to 4 minutes;
during this time, the visitor's goal is to minimise the attack and
maximise the sales. Fig. 3 on the top-left, shows the controls
for the demonstration. Reset stops the attack and starts with

6We used iperf2 instead of the newer iperf3 because iperf2 does not require
a control channel for UDP. https://sourceforge.net/projects/iperf/

486

TABLE 1. COLLECTED DATA DURING DEMONSTRATION: SCENARIO 1

Fig. 5 and Table I show that filters are used in most of the
submissions (16 of 19). The best ranked solution uses no filters
and only link rate changes, which are less costly. However,
the application of filters seem to have a significant effect on
revenue. Analysis confirmed the significance of p == .049 and
the adjusted R 2 of .162 indicates that filters have a positive
effect on the revenue.

Fig. 7. Relation between cost increase and revenue increase of a solution

v. DISCUSSION

If we look back at the four types of responses that we can
perform (see Sec.III-A), we can draw some general conclu
sions.

Fig. 6. Relation between the amount of topology changes and revenue
recovery in scenario 2

rank recovery cost changes state rate up rate down filter
1 149 98 12 0 0 10 2
2 163 119 6 0 2 0 4
3 162 119 6 0 2 0 4
4 161 119 6 0 2 0 4
5 138 97 6 0 0 4 2
6 153 123 6 0 0 0 6
7 149 121 8 0 4 0 4
8 135 121 30 4 20 6 0
9 99 96 10 4 4 2 0

10 130 130 8 0 0 0 8
11 101 103 4 2 0 0 2
12 109 115 8 2 2 0 4
13 96 106 12 4 2 2 4
14 146 165 18 0 2 0 16
15 104 123 6 0 0 0 6
16 104 123 18 0 4 7 7
17 54 103 4 2 0 0 2

In Fig. 6 and Table II, most of the solutions result in
a recovery above 100%. This is possible because of the
initial state of the topology where the two links to the web
services were congested by consumer requests. By increasing
the bandwidth on these two links, more transactions can reach
the web services resulting in revenue gain. In scenario 2, 15
of the 17 solutions use filters; in contrast to scenario 1, filters
did not show a significant effect on the revenue. Analysis of
the three similar solutions (rank 2, 3, 4) in II showed that they
were submitted by different users at different times and the
changes were applied to different nodes in the network.

Fig. 7 suggests a positive correlation between revenue gain
due to the solution and solution costs. Further data analysis
showed that the correlation is moderate in scenario 1, r == .511,
which is significant on a 2-tailed .025 level. For scenario 2,
the correlation is weak, r == .356, and not significant with a
p-value of .161. The figure also shows that most solutions
for network 2 provide revenue gain and that it is possible
to achieve both revenue gain and network cost reduction
simultaneously.

TABLE II. COLLECTED DATA DURING DEMONSTRATION: SCENARIO 2

Scaling bandwidth upward or downward requires a careful
analysis of the distribution of legitimate network traffic and
malicious traffic. In general, upward scaling should be de
ployed when the attack traffic cannot consume the additional
bandwidth, which is then available for legitimate traffic only.
This strategy works only when the subsequent downstream
links are of equal or higher capacity. On the other hand, scaling
downward is the strategy of choice when a large amount of
attack traffic traverses a certain link. This needs to happen as
close as possible to the malicious traffic sources.

Filtering actions were very effective especially in scenario
1, but also admittedly simple to perform as our attack traffic
was always UDP and our legitimate traffic TCP. In case of
more sophisticated attacks, defining filter patterns will be
more complicated; and the execution of complex patterns may
require specialized anti DDoS solutions which can be costly
especially if one has to filter the higher layers. On the other
hand, shutting down links proved to be much less effective.
Routing algorithms were, in this case, counter-productive, as
they would re-route the attack traffic via other paths in the net
work, once a link was disabled. These two extremes highlight
the need for a proper balance between the traditional routing
goal of general availability and the fine-grained behaviour
required to fend off attacks.

In scenario 2, the revenue gain is more dependent on
the skill set of the visitor since from the results there was
no correlation between specific changes and revenue gain.
This also showed in practise; combinations of responses were
effective but required the user to have advanced experience
with network engineering. By tactically shutting down links,
we were able to reroute most malicious traffic via one path
and legitimate traffic over the other; subsequently, by applying
bandwidth scaling, up in case of legitimate and down in case of
malicious, we were able to restore most of the revenue without
applying expensive filtering. Applying these methods results
in temporary loss of traffic, but we did not consider this a
major drawback as we were not looking for an approach that
minimizes impact on the traffic since when under an attack
impairment is already the case.

We learned that SDN platforms are suitable for security

487

purposes only if they provide an extensive set of primitives
available to programmers. In our case, we used the ExoGENI
platform as underlying network infrastructure. We discovered
that the network slices we could create would not exhibit
the required flexibility to effectively defend against network
attacks. For example, it was not possible to add or remove
links or nodes in an existing ExoGENI topology. This implies
that the instruction set exposed by the network controllers will
limit the response capabilities of the SARNET framework.

Finally, as network topologies increase in size, the choice
of the optimal strategy and the decision on where to act
will become too complex for a manual solution. Autonomous
frameworks such as SARNET will therefore provide the nec-
essary aid to automate the response.

The results showed a positive correlation between the
revenue gain and the use of filters for scenario 1 but not in
scenario 2. For all the other changes, we found no correlation;
therefore, without further research, we cannot say anything
about the effectiveness of the countermeasures because they
may be dependent on the specific scenario. Effectiveness of
the solution is in this demonstration determined by subtracting
the solution cost from the revenue gain which is sufficient for
demo purposes. Yet, for real situations other factors may need
to be included, e.g. resiliency to network failure.

VI. RELATED WORK

While security can be enhanced by using SDNs, it is also
true that such networks bring in specific attack possibilities.
In [10], Scott et al. clearly explain that the features of SDN
that are appealing and useful to enhance security are at the
same time the ones that can expose these type of networks to
novel types of attacks. Sezer et al. [11] compiled an exten-
sive overview of the implementation challenges for adoption
of SDN and included a security overview of the possible
vulnerabilities. These works teach us that a framework like
SARNET will need to include the knowledge of the pecu-
liarity of SDN’s attack surfaces when compiling the network
topology to be instantiated and limit its exposure to these new
attacks. Likewise SDN-specific attacks need to be part of the
SARNET knowledge base used in the control loop during the
classification phase.

Visualization of network behaviour exists in many pro-
totypes. Network weather-maps like [12] are a powerful
visualisation method. Still, combinations of monitoring and
controlling SDN networks are not yet mainstream and VNET
shows how to accomplish both in a simple and intuitive
manner. Furthermore, the simultaneous exposure of service and
network information is a first step toward a tighter integration
of network and applications.

VII. CONCLUSION AND FUTURE WORK

The SARNET prototype, VNET, and the demonstration
at SC15 led to insights in what factors are necessary to
autonomously defend against cyber-attacks. We showed that
concurrent display of network and service information provide
the visual aid required for human analysis of DDoS attacks.
Automatic response requires a measure of effectiveness, cal-
culating this by subtracting cost from revenue proved to
be sufficient for this demonstration. Additionally, the results

showed that effective solutions can be achieved using a small
number of countermeasures.

More research is required to determine which additional
factors are necessary to calculate effectiveness and cost of a
countermeasure. Response actions are limited by the API of the
underlying SDN platform, which, in this prototype, prevented
us from adding and removing network elements. As IaaS plat-
forms differ in programmability, the range of response actions
also differ per provider. Including this factor in calculating
effectiveness will be an important next step, especially when
progressing to multi-domain response strategies.

ACKNOWLEDGEMENTS

SARNET is funded by the Dutch Science Foundation
NWO (grant no: CYBSEC.14.003 / 618.001.016) and the Na-
tional project COMMIT (WP20.11) Special thanks to CIENA
for hosting our demonstration at their booth at SC15 and our
other research partners TNO and KLM. Additionally, we thank
the ExoGENI team at RENCI for their support and prompt
response in resolving issues involving their platform.

REFERENCES

[1] SNE group – University of Amsterdam. (2016, Feb.) SARNET.
[Online]. Available: https://sarnet.uvalight.net/

[2] I. Baldine, Y. Xin, A. Mandal, P. Ruth, C. Heerman, and J. Chase, “Exo-
geni: A multi-domain infrastructure-as-a-service testbed,” in Testbeds

and Research Infrastructure. Development of Networks and Communi-

ties. Springer, 2012, pp. 97–113.

[3] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “Openflow: enabling innovation in
campus networks,” ACM SIGCOMM Computer Communication Review,
vol. 38, no. 2, pp. 69–74, 2008.

[4] I. Baldine, Y. Xin, A. Mandal, C. H. Renci, J. Chase, V. Marupadi,
A. Yumerefendi, and D. Irwin, “Networked cloud orchestration: a geni
perspective,” in GLOBECOM Workshops (GC Wkshps), 2010 IEEE.
IEEE, 2010, pp. 573–578.

[5] R. Khondoker, A. Zaalouk, R. Marx, and K. Bayarou, “Feature-based
comparison and selection of software defined networking (sdn) con-
trollers,” in Computer Applications and Information Systems (WCCAIS),

2014 World Congress on. IEEE, 2014, pp. 1–7.

[6] J. Van Der Ham, F. Dijkstra, P. Grosso, R. Van Der Pol, A. Toonk, and
C. De Laat, “A distributed topology information system for optical net-
works based on the semantic web,” Optical Switching and Networking,
vol. 5, no. 2, pp. 85–93, 2008.

[7] R. Koning, P. Grosso, and C. de Laat, “Using ontologies for resource
description in the cinegrid exchange,” Future Generation Computer

Systems, vol. 27, no. 7, pp. 960–965, 2011.

[8] M. Ghijsen, J. Van der Ham, P. Grosso, and C. De Laat, “Towards an
infrastructure description language for modeling computing infrastruc-
tures,” in Parallel and Distributed Processing with Applications (ISPA),

2012 IEEE 10th International Symposium on. IEEE, 2012, pp. 207–
214.

[9] Matthew Prince – CloudFlare. (2016, Feb.) The relative cost
of bandwidth around the world. [Online]. Available: https://blog.
cloudflare.com/the-relative-cost-of-bandwidth-around-the-world/

[10] S. Scott-Hayward, G. O’Callaghan, and S. Sezer, “SDN Security: A
Survey,” in Future Networks and Services (SDN4FNS), 2013 IEEE SDN

for, Nov 2013, pp. 1–7.

[11] S. Sezer, S. Scott-Hayward, P. Chouhan, B. Fraser, D. Lake, J. Finnegan,
N. Viljoen, M. Miller, and N. Rao, “Are we ready for SDN? Imple-
mentation challenges for software-defined networks,” Communications

Magazine, IEEE, vol. 51, no. 7, pp. 36–43, July 2013.

[12] Network Weathermap. (2016, Feb.). [Online]. Available: http://
network-weathermap.com/

488

