
UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

What Are the Odds? Modern Relevance and Bayes Factor Solutions for
MacAlister’s Problem From the 1881 Educational Times

Jamil, T.; Marsman, M.; Ly, A.; Morey, R.D.; Wagenmakers, E.-J.
DOI
10.1177/0013164416667980
Publication date
2017
Document Version
Final published version
Published in
Educational and Psychological Measurement
License
Article 25fa Dutch Copyright Act

Link to publication

Citation for published version (APA):
Jamil, T., Marsman, M., Ly, A., Morey, R. D., & Wagenmakers, E-J. (2017). What Are the
Odds? Modern Relevance and Bayes Factor Solutions for MacAlister’s Problem From the
1881 Educational Times. Educational and Psychological Measurement, 77(5), 819-830.
https://doi.org/10.1177/0013164416667980

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

Download date:11 Feb 2023

https://doi.org/10.1177/0013164416667980
https://dare.uva.nl/personal/pure/en/publications/what-are-the-odds-modern-relevance-and-bayes-factor-solutions-for-macalisters-problem-from-the-1881-educational-times(776890b5-dfc3-4cb9-9f4f-92a5d1c31c22).html
https://doi.org/10.1177/0013164416667980


Article

Educational and Psychological
Measurement

2017, Vol. 77(5) 819–830
� The Author(s) 2016

Reprints and permissions:
sagepub.com/journalsPermissions.nav

DOI: 10.1177/0013164416667980
journals.sagepub.com/home/epm
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Modern Relevance and
Bayes Factor Solutions for
MacAlister’s Problem From
the 1881 Educational Times

Tahira Jamil1, Maarten Marsman1, Alexander Ly1,
Richard D. Morey2, and Eric-Jan Wagenmakers1

Abstract

In 1881, Donald MacAlister posed a problem in the Educational Times that remains rel-
evant today. The problem centers on the statistical evidence for the effectiveness of a
treatment based on a comparison between two proportions. A brief historical sketch
is followed by a discussion of two default Bayesian solutions, one based on a one-
sided test between independent rates, and one on a one-sided test between depen-
dent rates. We demonstrate the current-day relevance of MacAlister’s original ques-
tion with a modern-day example about the effectiveness of an educational program.
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In 1881, Donald MacAlister posed a famous problem in the Educational Times, a

problem that represents one of the earliest instances concerning the comparison of

two proportions in small samples:

Of 10 cases treated by Lister’s method, 7 did well and 3 suffered from blood-poisoning; of

14 cases treated with ordinary dressings, 9 did well and 5 had blood-poisoning; what are the

odds that the success of Lister’s method was due to chance?
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It is clear that the answer to this question is of considerable statistical relevance,

far exceeding the specifics of the problem at hand. In modern-day educational

research, one often wants to quantify the evidence for the effectiveness of a new pro-

gram or instruction; if the new program seems to result in a beneficial outcome, the

immediate question is identical that posed by MacAlister: ‘‘What are the odds that

the success of the new method is due to chance’’?

Before proceeding, a few remarks are in order. First and foremost, the traditional

p value cannot be used to address MacAlister’s question, as the p value is based on a

single hypothesis (i.e., the null hypothesis) and therefore does not produce an odds.

Moreover, for the MacAlister data the p value is not even close to being significant

(p . :70 for all standard classical methods); based on this p value, one might suspect

that the evidence supports the null hypothesis. But to what degree? Second,

MacAlister did not pose his question with mathematical exactness, and this requires

that it has to be interpreted at least to some extent. The solutions offered in 1882

demonstrate how easy it is to misunderstand the problem (Dale, 1999: pp. 435–438;

Winsor, 1948). Third, the problem as posed cannot be solved without involving the

prior odds that Lister’s method is effective. To appreciate the importance of the prior

odds, consider the fact that Lister was a famous scientist who had advocated the use

of antiseptic dressings to reduce the possibility of postsurgical infection, based on

the theory that these infections were caused by germs (Lister, 1867/1967). The idea

that antiseptic dressings fail to reduce the rate of postsurgical infection will strike the

modern reader as absurd; consequently, the prior odds that the method’s success is

due to chance are extremely low. In MacAlister’s example, we have the rare case

that we know the answer—that Lister was correct—before we begin, so we can focus

without distraction on the evidence provided by the data. These ‘‘data odds’’ can

then be multiplied by the prior odds to obtain the posterior odds, as explained below.

Fourth, the results may be presented in familiar form using a contingency table, as

presented in Table 1.

The solution proposed by MacAlister was based on a procedure developed by

Liebermeister (1877). Denote the probability of recovery by Lister’s method and by

the traditional method as ul and ut, respectively. It is clear that the interest partly

concerns the probability of Lister’s method outperforming the traditional method,

that is, Hþ : p (ul . utjy), where y denotes the observed data. But what should this

Table 1. MacAlister’s 1881 Data Displayed as a Contingency Table.

Method

Outcome

TotalDid well Blood poisoning

Lister 7 3 10
Traditional 9 5 14
Total 16 8 24
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probability be compared to? MacAlister assumed independent uniform priors for ul

and ut and computed p (ul . utjy) = 0:59825. MacAlister compared this proportion to

its complement, p(ul\utjy), and concluded, ‘‘We may wager nearly 3 to 2 that the

difference in the results is not due to chance.’’ We may understand ‘‘due to chance’’

as ‘‘due to mere chance.’’ Note that MacAlister’s solution quantifies evidence in

favor of the effectiveness of the treatment, despite the fact that the p value is not

even close to being significant.

The hypothesis that the difference is due to mere chance, however, plays no role

in MacAlister’s solution, as no prior mass is assigned to the invariance or general

law that the treatments are equally effective: that is, H0 : ul = ut (Wrinch & Jeffreys,

1921). By failing to assign prior mass to mere chance (i.e., the hypothesis that the

treatments are in fact equally effective), the question at hand cannot be answered.

MacAlister’s odds of ‘‘nearly 3 to 2’’ address a different question, namely, ‘‘What

are the odds that the success of Lister’s method is due to its superiority versus its

inferiority over the traditional method?’’

Two Default Bayes Factor Solutions

To address MacAlister’s problem, we contrast two hypotheses. The first hypothesis

represents the assertion that both treatments are equally effective, that is, H0 : ul = ut;

the second hypothesis represents the assertion that Lister’s treatment is superior to

the standard treatment, that is,Hþ : ul . ut.

We now wish to compute the evidence that the data provide for Hþ over H0.

Recall that Bayes’ rule can be recast as follows:

p(Hþjy)

p(H0jy)
|fflfflfflffl{zfflfflfflffl}

Posterior odds

=
p(Hþ)

p(H0)
|fflffl{zfflffl}

Prior odds

3
p(yjHþ)

p(yjH0)
|fflfflfflffl{zfflfflfflffl}

Bayes factor

:

Thus, data y are used to update the prior odds to posterior odds. The assessment of

prior odds is inherently subjective and depends on background information that

informs one’s initial skepticism about the hypotheses under consideration. Indeed, in

commenting on MacAlister’s solution to his own problem, Miss Elizabeth

Blackwood stated—quite correctly, in our view,

I will merely remark that Dr. MacAlister would probably feel less satisfied as to the correct-

ness of his result, if Lister were not the eminent man of science he is, but some superstitious

old woman who, while really expert in dressing wounds, relied for protection against blood-

poisoning mainly upon some mysterious charms and incantations.

MacAlister’s response made it clear that he did not consider prior odds to factor into

the problem at all:
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Miss Elizabeth Blackwood has perhaps not read my solution: there is no symbol in it repre-

senting Mr. Lister’s science. For algebraical purposes I might substitute Mumbo Jumbo for

Lister throughout, as I substituted the letter A, and no step of the reasoning on which alone

the result depends would be altered.1

Here we adhere to the intention from MacAlister and focus on the Bayes factor

BF+0, that is, the change from prior to posterior model odds brought about by the

data (Jeffreys, 1961).

The Bayes factor

BF+0 =
p(yjHþ)

p(yjH0)
,

expresses the evidence in the data for the one-sided hypothesisHþ : ul . ut, asserting

that Lister’s treatment is superior to the standard treatment, against the point hypoth-

esis H0 : ul = ut, asserting that both treatments are equally effective. In order to com-

pute p(yjHþ) and p(yjH0), we need to assign prior distributions to the rate parameters

ul and ut. This can be accomplished in many ways. Here we explore two default solu-

tions: a model in which ul and ut are independent, and a model in which ul and ut are

dependent. Both models yield a similar outcome.

Solution I: Prior Independence of ul and ut

The default Bayes factor approach contrasts the single-rate model H0 to the dual-rate

model H1. The dual-rate model usually does not include information about the pre-

dicted direction of the effect. However, with any two-sided Bayes factor in hand a

simple correction produces the desired one-sided version (see the appendix for

details).

To obtain the default two-sided Bayes factor BF10 we assume that under the dual-

rate model, each rate has an independent uniform prior distribution ranging from 0 to

1 (de Braganca Pereira & Stern, 1999; Gunel & Dickey, 1974; Jeffreys, 1935).2

Based on this default prior specification, the one-sided Bayes factor can be computed

easily in JASP (jasp-stats.org), a free and open-source statistical software program

with a graphical user interface familiar to users of SPSS. The same result is available

for R users through the BayesFactor package (Morey & Rouder, 2015). The top

panel of Figure 1 shows the JASP output.

As shown in the top panel of Figure 1, the BF0 + ’1:8, which means that the

observed data are almost twice as likely under the single rate model H0 than under

the dual-rate model Hþ. The panel also features a probability wheel (i.e., a circle of

area 1; Tversky, 1969) that visualizes the strength of the evidence; under equal prior

odds, the white area equals the posterior probability for H0 and the red area equals

the posterior probability for Hþ. The strength of evidence can then be assessed as

follows. Imagine the wheel is a dart board. You put on a blindfold and the board is

attached to the wall in a random orientation. You then throw a dart and you are told

822 Educational and Psychological Measurement 77(5)



Figure 1. Two default one-sided Bayes factor analyses of the MacAlister data. Top panel:
JASP output for the prior independent rate model, consisting of a posterior distribution for
the log odds ratio and a visualization of the Bayes factor by means of a probability wheel. The
corresponding .jasp file with data, analyses, and annotations is available at https://osf.io/nvdqh/.
Bottom panel: Prior and posterior distributions for the difference parameter d under the prior
dependent probit rate model. The Bayes factor in favor of H0 is 2.3, which equals the ratio of
posterior and prior ordinates at d = 0 (e.g., Wagenmakers, Lodewyckx, Kuriyal, & Grasman,
2010).
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it has hit the board. You remove the blindfold and observe that the dart has hit the

red area instead of the white area. How surprised are you? This measure of imagined

surprise, we suggest, conveys properly the degree of evidence that a particular Bayes

factor imparts.

Consider again our Bayes factor BF0 + ’1:8 for the MacAlister data. According to

the classification scheme proposed by Jeffreys (1961, appendix B), this level of evi-

dence is ‘‘not worth more than a bare mention.’’ Assuming that the single rate model

and the dual-rate model are equally likely a priori, we can use MacAlister’s terminol-

ogy and state that ‘‘we may wager nearly 2 to 1 that the difference in the results is

due to mere chance.’’ Regardless of the inconclusive nature of the evidence in this

particular instance, this result does answer MacAlister’s question.

Solution II: Prior Dependence of ul and ut

An alternative model specification views the two rates as dependent (e.g., Howard,

1998). Such a dependence is reasonable in many such problems; the probabilities of

the two groups are typically similar. As clarified by Howard (1998)

[. . .] do English or Scots cattle have a higher proportion of cows infected with a certain

virus? Suppose we were informed (before collecting any data) that the proportion of

English cows infected was 0.8. With independent uniform priors we would now give H1

(p1 . p2) a probability of 0.8 (because the chance that p2 . 0:8 is still 0.2). In very many

cases this would not be appropriate. Often we will believe (for example) that if p1 is 80%,

p2 will be near 80% as well and will be almost equally likely to be larger or smaller. (p.

363)

Thus, instead of thinking about the separate probabilities at which the two groups

recover, it is convenient to instead frame the problem in terms of an overall recovery

rate and the difference of the two groups from that overall rate (see also Kass &

Vaidyanathan, 1992). This induces a reasonable dependency between the two groups.

The two parameters—the overall rate and the difference between the two

groups—are best expressed on the probit scale, to avoid the common problem of

compression of the probability scale at the extremes:

F�1(ul) = m + d=2,

and

F�1(ut) = m� d=2,

where F�1 denotes the the probit transformation; that is, the inverse of the standard

normal cumulative distribution function. Parameter m is the overall recovery rate on

the probit scale, and d is the difference between the two groups and represents the

effect of interest. Next, m and d are assigned normal priors. For demonstration, we

assign a Normal(0, :707) prior distribution to m and d is assigned a folded (i.e., posi-

tive-only, to incorporate knowledge about the hypothesized direction of the effect)
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normal prior with mean 0 and standard deviation s. The test will not be very sensi-

tive to the prior choice on m; however, a reasonable prior on d is important, as it is

the parameter of interest. For demonstration we choose s =
ffiffiffi

2
p

as a default value.

We choose these settings because they yield the same marginal priors on u1 and u2

as under Solution I.

The Bayes factor of interest is based on a comparison between two models,

H0 : d = 0 versus Hþ : d . 0. To obtain BF+0, we use Gaussian quadrature.3

Analyzing the MacAlister data, the bottom panel of Figure 1 shows the prior and

posterior distributions for the difference d under Hþ. At the value of interest, d = 0,

the posterior distribution is about 2.3 times as high as the prior distribution, and

hence, BF0 + ’2:3 (Dickey & Lientz, 1970; Wagenmakers et al., 2010). As for the

default analysis using the independent priors, the Bayes factor indicates that the data

are more likely to occur under H0 than under Hþ, but the strength of this evidence is

not impressive.

A Modern Example From Education Research

To underscore the relevance of MacAlister’s problem for current-day research we

turn to a study by Tuckman and Kennedy (2011) published in the Journal of

Experimental Education. These authors investigated the effect of a learning strategies

course on students’ academic performance as quantified by several dependent vari-

ables including retention rate, that is, the proportion of students that return to college

the following year. The data showed that from a total of n1 = 351 first-year students

who took the course, 93:4% returned to college the next year; from a total of

n2 = 351 matched students who did not take the course, 85:5% returned. Table 2

shows the data in the form of a contingency table. For these data, MacAlister’s ques-

tion is again relevant: What are the odds that the success of the learning strategies

course was due to mere chance?

We address this question as we did before, by contrasting two hypotheses. The null

hypothesis states that the course has no effect, H0 : u1 = u2. The alternative hypoth-

esis has direction and states that the course increases the retention rate, Hþ : u1 . u2.

Table 2. Number of Students Retained as a Function of Having Attended a Learning
Strategies Course.

Group

Retained

TotalYes No

Course takers 328 23 351
Non–course takers 300 51 351
Total 628 74 702

Note. Data reported in Tuckman and Kennedy (2011).

Jamil et al. 825



As before, the change from prior to posterior odds for H0 versus Hþ is expressed

through the Bayes factor BF+0.

First, the results from the independent prior analysis (Gunel & Dickey, 1974;

Jeffreys, 1935) are displayed in the top panel of Figure 2. The output shows that

BF+0 = 45:83, meaning that the observed data are 45.83 times more likely to occur

under Hþ than under H0. According to Jeffreys’ classification scheme, this constitu-

tes ‘‘very strong’’ evidence in favor of the effectiveness of the course on retention

rate.

Second, the results from the dependent prior analysis with the probit model are

displayed in the bottom panel of Figure 2. As before, the distributions are for the dif-

ference d under Hþ. At the value of interest, d = 0, the prior distribution is about

:0142 times as high as the posterior distribution, and hence, BF+0 ’ 70. Even though

the two methods give slightly different results, they agree that the data provide con-

siderable support in favor of Hþ.

Conclusion

We have outlined a Bayesian method to quantify the support that the data provide for

the equality or inequality of two rates. This Bayesian method allows one to address

the key problem posed by MacAlister in 1881: What are the odds that the success of

a particular treatment is based on mere chance? In our solution to MacAlister’s prob-

lem, we compared a single rate modelH0 against an order-restricted default dual-rate

model Hþ, using two fundamentally different prior specifications, one dependent

and one independent. As usual, it should be acknowledged that the default prior dis-

tributions can often be enriched and adjusted by incorporating substantive knowledge

about the problem at hand. Moreover, in applied settings, one might extend the cur-

rent framework and use model-averaging to obtain superior predictions (e.g.,

Hoeting, Madigan, Raftery, & Volinsky, 1999); in addition, one might specify utili-

ties and combine these with the fundamental unknowns in order to make the best pos-

sible decision in a coherent manner (e.g., Lindley, 1985, 2006). Both prediction and

decision making require the consideration of the prior odds for the competing

hypotheses, an endeavor that is often inherently subjective.

Despite these reservations, we believe that in many situations the default prior

specifications provide an appropriate reference analysis. For a range of standard sta-

tistical models, such reference analyses can be easily conducted using the R

BayesFactor package (Morey & Rouder, 2015) or the free and open-source program

JASP (jasp-stats.org). Prominent advantages of the default Bayesian analysis include

the possibility to monitor evidence as the data accumulate and the ability to discrimi-

nate evidence of absence from the absence of evidence. The problem posed by

MacAlister in 1881 is still relevant today, and Bayesian methods such as the one out-

lined in this article constitute a solution that is theoretically elegant and practically

relevant.
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Figure 2. Two default one-sided Bayes factor analyses of the data from Tuckman and
Kennedy (2011). Top panel: JASP output for the prior independent rate model, consisting of a
posterior distribution for the log odds ratio and a visualization of the Bayes factor by means
of a probability wheel. The corresponding .jasp file with data, analyses, and annotations is
available at https://osf.io/nvdqh/. Bottom panel: Prior and posterior distributions for the
difference parameter d under the prior dependent probit rate model. The Bayes factor in
favor of Hþ is approximately 70, which equals the ratio of posterior and prior ordinates at
d = 0 (e.g., Wagenmakers et al., 2010).
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Appendix

Obtaining the One-Sided Bayes Factor

The Bayes factor BF+0 can be easily obtained by decomposing it into two parts

(Morey & Wagenmakers, 2014; Pericchi, Liu, & Torres, 2008):

BF+0 =
p(yjHþ)

p(yjH0)

=
p(yjHþ)

p(yjH1)
3

p(yjH1)

p(yjH0)

= BF+13BF10,

ðA1Þ

where BF+1 quantifies the evidence for the hypothesis Hþ that Lister’s method is

superior against the undirected hypothesis H1 : ul 6¼ ut that simply asserts that the

two treatments have a different effect.

Equation (A1) demonstrates that to compute the one-sided Bayes factor BF+0, we

multiply the two-sided BF10 by the factor BF+1. Klugkist, Laudy, and Hoijtink (2005)

noted that BF+1 equals the ratio of posterior and prior mass under H1 that is consis-

tent with the restriction postulated byHþ. That is,

BF+1 =
p(ul . utjy,H1)

p(ul . utjH1)
, ðA2Þ

which simplifies to BF+1 = 23p(ul . utjy,H1) whenever the prior distributions do

not express any knowledge or preference for the ordering of ul and ut, meaning that

p(ul . ut) = 1=2.
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Notes

1. In a later rejoinder, Miss Blackwood retorted as follows:
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As to the right which Dr. MacAlister claims to substitute, if he chooses, Mumbo Jumbo

for Lister in his solution, I am inclined to think he has already exercised that right. But,

granting this mathematical license of substitution ‘‘for algebraical purposes’’ (a euphe-

mism apparently for juggling purposes) is Lister to be arbitrarily valued at 1
2

merely

because we don’t know what other value to assign to him? Poor Lister!

2. Another popular default prior distribution for rate parameters is the Beta(1=2, 1=2) prior,

which is also known as Jeffreys’s prior (e.g., Zhu & Lu, 2004). However, Jeffreys proposed

this prior specifically for estimation problems, whereas for testing problems Jeffreys con-

sistently used the uniform Beta(1, 1) prior. Another option—less popular, but worthy of

more attention—is to use nonlocal priors (Johnson & Rossell, 2010).

3. There are a number of other ways to obtain the Bayes factor, including importance sam-

pling and Markov chain Monte Carlo sampling. An interactive application to compute and

visualize the Bayes factor can be found at richarddmorey.shinyapps.io/probitProportions,

and R code to compute the Bayes factor and plots can be downloaded at gist.github.com/

richarddmorey/4c7a408a45c3045ab949.
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