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Interpretation of microbiota-based
diagnostics by explaining individual
classifier decisions
A. Eck1*, L. M. Zintgraf2, E. F. J. de Groot3, T. G. J. de Meij4, T. S. Cohen2, P. H. M. Savelkoul1,6, M. Welling2,5

and A. E. Budding1

Abstract

Background: The human microbiota is associated with various disease states and holds a great promise for non-invasive
diagnostics. However, microbiota data is challenging for traditional diagnostic approaches: It is high-dimensional, sparse
and comprises of high inter-personal variation. State of the art machine learning tools are therefore needed to achieve
this goal. While these tools have the ability to learn from complex data and interpret patterns therein that cannot be
identified by humans, they often operate as black boxes, offering no insight into their decision-making process. In most
cases, it is difficult to represent the learning of a classifier in a comprehensible way, which makes them prone to be
mistrusted, or even misused, in a clinical environment. In this study, we aim to elucidate microbiota-based classifier
decisions in a biologically meaningful context to allow their interpretation.

Results: We applied a method for explanation of classifier decisions on two microbiota datasets of increasing complexity:
gut versus skin microbiota samples, and inflammatory bowel disease versus healthy gut microbiota samples. The
algorithm simulates bacterial species as being unknown to a pre-trained classifier, and measures its effect on
the outcome. Consequently, each patient is assigned a unique quantitative estimation of which species in their
microbiota defined the classification of their sample. The algorithm was able to explain the classifier decisions
well, demonstrated by our validation method, and the explanations were biologically consistent with recent
microbiota findings.

Conclusions: Application of a method for explaining individual classifier decisions for complex microbiota
analysis proved feasible and opens perspectives on personalized therapy. Providing an explanation to support a
microbiota-based diagnosis could guide decisions of clinical microbiologists, and has the potential to increase
their confidence in the outcome of such decision support systems. This may facilitate the development of new
diagnostic applications.

Keywords: Microbiota, Inflammatory bowel disease (IBD), Supervised classification, IS-pro, Machine learning

Background
The human microbiota refers to the trillions of microor-
ganisms living on and within our body, which are involved
in many biological processes necessary to maintain human
health. These microbial communities are associated with a
wide range of disease states [1, 2], and hold a great prom-
ise for non-invasive diagnostics. The diagnostic potential

of microbiota analysis has been extensively studied, for
example, for disorders like inflammatory bowel disease
(IBD) and diverticulitis [3–6] and has led to increasing
efforts to develop clinical applications.
However, using microbiota for diagnostic purposes

imposes several challenges. Studying the human micro-
biota is an active field of research. As knowledge is still
accumulating, a full biological understanding of the
underlying mechanisms is missing, limiting the diagnos-
tic efforts to data-driven approaches, such as data
mining. The data itself is high-dimensional and has high
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inter-personal variability. Consequently, identification of
meaningful patterns is thwarted.
Therefore, machine learning (ML) tools are particu-

larly useful in this field. Compared to humans, classifiers
can more easily identify patterns in high-dimensional
data, being able to learn to distinguish between categor-
ies (e.g., sick vs. healthy) based on examples. A trained
classifier can then make predictions for new patients,
accompanied by a probability reflecting its certainty.
However, contrary to humans, classifiers usually do not
provide an explanation to their propositions. In most
cases they are considered as black boxes, taking features
(e.g., microbial species) as input and returning a predic-
tion. In a diagnostic setting, ML tools are able to assist
us, but still cannot be blindly trusted.
Therefore, in order to effectively incorporate ML tools

in microbiota-based diagnostics it is important to pro-
vide clinical microbiologists with a sensible, sample-
specific explanation for every classifier prediction. This
will allow them to weigh the outcome in the clinical and
biological context, interpret it and even adjust specific
therapy based on microbial species that appear to play a
role in the diagnosis.
In this paper, we present how an idea originally pro-

posed by Robnik-Šikonja and Kononenko [7] can be
implemented for microbiota-based diagnostics. The
method simulates input features as being unknown to
measure their effect on the classification outcome. Con-
sequently, each input feature is assigned a relevance
value that reflects its importance for a specific decision
of the classifier. With this approach, we aim to provide
each patient a unique quantitative estimation of which
species in their microbiota were used to determine their
health status by the classifier. Given a trained classifier
and a microbiota sample of a new patient, the species
relevance ranking may help interpret why this patient
was given a specific diagnosis, highlight species of inter-
est, and guide treatment.
This method was applied on two microbiota datasets

generated by IS-pro, a technique designed for micro-
biota profiling in clinical routine [8]. We further also
describe how the calculated explanations can be vali-
dated and visualized.

Methods
Subjects and samples
Two balanced datasets were included: skin versus gut
microbiota (SVG, n = 94) and gut microbiota of IBD
patients versus healthy individuals (IBD, n = 112). Skin
microbiota samples were collected by swabbing the
inner lower arm of healthy adults. Swabs were stored in
RTF buffer immediately after collection and later frozen
at −20 °C. Gut microbiota was sampled from healthy
children and children diagnosed with IBD according to

the diagnostic Porto-criteria for pediatric IBD. Fresh
fecal samples were collected in sterile containers and
immediately stored in the freezer at −20 °C as was
previously described [9].

Microbiota profiling by IS-pro
All samples were analyzed by intergenic spacer (IS)
profiling (IS-pro) [8, 9]. IS-pro is a PCR-based technique
that differentiates bacterial species by the length of the
16S–23S rRNA in combination with phylum-specific
fluorescently labeled PCR primers. Three phylum-
specific primers were used: (1) Bacteroidetes, (2) Firmi-
cutes, Actinobacteria, Fusobacteria, and Verrucomicrobia
(FAFV), and (3) Protebacteria. For more details see the
Additional file 1: Supplementary Methods.

Preprocessing
Preprocessing was carried out with the IS-Pro propri-
etary software suite (IS-Diagnostics, Amsterdam, the
Netherlands) and resulted in microbial profiles, pre-
sented as peak profiles. Each peak represents an IS frag-
ment and is characterized by a color that corresponds to
the phylum (or phyla). The length of the IS fragment,
measured in nucleotides (nt), discriminates bacterial
species, and its intensity, measured in relative fluores-
cence units (RFU), reflects the abundance. Intensity
values were log2 transformed. Each peak was taken as a
feature for classification. After excluding all-zero fea-
tures, 914 and 1199 features were left for classification
in the SVG and IBD datasets, respectively.

Supervised classification
The following classifiers were used: Linear Support
Vector Machine (SVM), Random Forest (RF), Nearest
Shrunken Centroids (NSC) and Logistic Regression with
L2 regularization (LR).
These classifiers are especially suitable for high-

dimensional data as they apply regularization or dimension-
ality reduction. Examples of their applicability to human
microbiota were previously described [10]. Implementation
was done using packages of the scikit-learn 0.17.0 Python
library: svm.SVC (with linear kernel and probabilistic
outputs); neighbors.nearest_centroid.NearestCentroid (with
a 0.1 shrink threshold and probabilities as computed in
[11]); ensemble.RandomForestClassifier (with 50 trees), and
linear_model.LogisticRegression (with L2 penalty).
Overall relevance measures of NSC were obtained per

class by taking the difference between the global
centroid and the class centroid, to which we compared
our explanation for the predicted class. For the RF
classifier, we used the importance ranking given by
RandomForestClassifier.feature_importances. Note that
using the weights of a linear SVM as an indication of
feature importance is wrong and misleading [12].
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Similarly, the coefficients of the LR classifier cannot be
interpreted directly.

Algorithm for explaining classifier decisions
Robnik-Šikonja and Kononenko [7] proposed that in
order to measure how important a feature (e.g., a bacter-
ial species) is, we can evaluate the classifier output when
that feature is considered “unknown”. In our case, we
seek to evaluate the decision the classifier would make if
the information about a single bacterial species is not
available. By simulating this for every feature individu-
ally, we obtain an overall ranking of the importance of
each species for a sample-specific classification.
The authors proposed three strategies to evaluate the

classifier while leaving one feature out: simply declare
the feature as unknown (which only few classifiers
allow), re-train the classifier without that feature (which
is computationally unfeasible for clinical applications if
there are many features), or approximately marginalize
the feature out. We chose the latter for our analysis.
Based on this strategy, we used the empirical distribu-
tion of the feature in the dataset, and replaced its value
in the given sample with all other possible values it
obtained in the dataset. The average prediction probabil-
ity over those values was then used to determine the
importance of the feature (see the Additional file 1:
Supplementary Methods for the mathematical formula-
tion). The algorithm returns a vector of the same size as
the number of features, where each entry reflects the

relevance of the respective input feature. A positive
relevance value means that the feature value is a
supportive evidence for the decision, and a negative rele-
vance value expresses that the feature value constitutes
evidence against the decision (and therefore evidence for
the other class in a two-class problem like ours).

Univariate vs. multivariate approach
The method described above is a univariate approach:
to estimate a feature’s relevance, we marginalized out
only this one feature. Intuitively, we would expect the
classifier to stay robust to changes in only one feature,
for example when features are redundant. In this case, it
might be necessary to remove several features at once to
have a noticeable effect on the prediction of the classi-
fier. We propose a computationally feasible multivariate
implementation for microbiota data in the Additional
file 1: Supplementary Methods.

Analytic validation of resulting explanations
When the data is poorly understood by humans, it is not
straightforward to assess how good an explanation is.
We propose a novel method for the analytic validation
of the explanations, since we have not found any such
method in literature. The relevance estimation method
described above returns a relevance ranking which indi-
cates a contribution measure of each feature. Features
were sorted according to their relevance in ascending
order (from features with negative influence on the class

A

B

D

C

E

Fig. 1 A gut microbiota sample and its peaks’ relevance values: (a) A gut microbiota sample: Peaks correspond to bacterial species; Peak heights
correspond to abundance. (b) Relevance values calculated for each present peak in the profile in (a). (c) Relevance values calculated for each
zero-valued peak in the profile in (a). (d) Average gut microbiota profile across all samples. (e) Average skin microbiota profile across all samples;
FAFV: Firmicutes, Actinobacteria, Fusobacteria and Verrucomicrobia; Relevance was calculated based on SVM predictions
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score, to irrelevant features, to the most important
ones). Then, we successively marginalized out a growing
number of features, starting with the least important
ones, until no features were left. We used the predicted
class for the analysis, and observed how the class prob-
ability changed based on the features' subset used for
the classification. The class probability should rise when
features with negative evidence for the predicted class
are ignored, remain stable if features of zero importance
are removed, and decline when highly discriminative
features are ignored.
We also assessed our results based on pairwise corre-

lations between relevance vectors of a sample calculated
by different classifiers, as well as between sample-
specific relevance measures and global ones.

Results
In this study, we calculated explanations for individual
classifier decisions using two microbiota datasets. Each
sample is represented as a peak profile, composed of
peaks representing different bacterial species and their
abundances, which are taken as features for classification
(see Methods).
The first dataset, denoted “SVG” (Skin Versus Gut),

consisted of 47 skin microbiota samples that were classi-
fied against 47 gut microbiota samples (both of healthy
subjects). Since the microbiota composition that inhabits
skin or gut is very different, this classification task is
relatively easy and can be directly interpreted by experts.
This dataset was used to demonstrate how the method
works and how the results can be presented, while
allowing a qualitative evaluation of the method.
The second dataset, denoted “IBD”, consisted of 56

IBD gut microbiota samples (20 Ulcerative Colitis
patients and 36 Crohn’s disease patients) classified
against 56 healthy gut microbiota samples. This data is
more complex and not so well understood, and classi-
fiers outperform human expertise. It is those cases that
are interesting for clinical applications, and for which ex-
planations for classifier decisions are especially desirable.
The performance obtained by the classifiers in terms

of prediction accuracy in a 10-fold cross-validation test
was: SVM - 98% and 81%, RF - 99% and 81%, NSC -
99% and 79%, and LR - 100% and 78%, for SVG and IBD
datasets, respectively.
Each classifier’s decision is accompanied by a probabil-

ity value reflecting the certainty of the classifier (all of
the above classifiers are either probabilistic or their out-
put can be transformed to probabilities). To explain the
decision, we assigned each input feature a relevance
value. A positive value means that the feature’s value was
supportive evidence for the predicted class, and a negative
value means it was evidence against the predicted class.

Skin vs. gut microbiota
This section presents the results for a simple case study:
the SVG dataset.

Explaining a single prediction
Figure 1 displays the output of the explanation algorithm
for a single prediction of the classifier. For this example,
we selected a gut microbiota sample correctly classified
by a linear SVM. Bacterial species abundances (feature
values) are shown in Fig. 1a, and the relevance values
calculated for each feature are illustrated below (Fig. 1b
and c). To facilitate interpretation, we split the relevance
calculated for positive-valued features (present peaks,
Fig. 1b) from that of zero-valued features (absent peaks,
Fig. 1c), since zero-abundance peaks also hold informa-
tion but are not visible in the profile and therefore can
be visually confusing.
In general, for a single gut microbiota sample, we

expect that common gut colonizers would obtain
positive relevance values when they are found in the
sample, and negative relevance values in case they are
not detected. On the other hand, common skin colo-
nizers should obtain negative relevance values when
they are found in the sample and positive values
otherwise. This was indeed observed for this example,
with common members of the gut microbiota, such

Table 1 Most relevant bacterial species for classification of the
gut microbiota sample shown in Fig. 1

Species name IS-pro
peak(s)

Presence Relevance Common
habitat

Alistipes putredinis 235 + 0.43 Gut

Alistipes finegoldii 396 + 0.4 Gut

231 + 0.33 Gut

Lachnospiraceae sp. 605 + 0.25 Gut

Bacteroides fragilis 537 + 0.22 Gut

Staphylococcus epidermidis 313 – 0.2 Skin

Odoribacter splanchnicus 307 + 0.18 Gut

Bacteroides sp. 549 + 0.16 Gut

Prevotella sp. 438 + 0.15 Gut

Lachnospiraceae sp. 491 + 0.15 Gut

Alistipes finegoldii 230 – −0.14 Gut

Bacteroides vulgatus 478 + 0.14 Gut

Streptococcus mitis 296 – 0.13 Skin

Sutterella wadsworthensis 661 + 0.12 Gut

unclassified Bacteroidete 455 + 0.09 Gut

unclassified Proteobacterium 932 + 0.09 –

Escherichia coli 735/828 + 0.08 Gut

unclassified Firmicute 558 + 0.07 Gut

’+’ and’-’ indicate whether a peak is present or absent in a sample, and needs
to be coupled with the relevance value for interpretation. Ranking is based on
absolute relevance values; Classification was done by a linear SVM
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as Bacteroides and Prevotella species, being assigned
positive relevance when they were found in the sam-
ple. This is indicated by the matching peaks between
Fig. 1b and d. Prevalent skin species that were not
detected in this sample, such as Staphylococcus epi-
dermidis, also obtained positive relevance. This is in-
dicated by the matching peaks between Fig. 1c and e.
Table 1 lists the top ranked species according to ab-
solute relevance, together with their presence status
in this sample and the body habitat they usually
colonize as a validation.

Meta-analysis of all samples
While the proposed method is mainly aimed to explain
single predictions, to validate it and gain insight into its
behavior across the entire dataset, we calculated expla-
nations for every sample in the dataset. These were
summarized in heat maps (Fig. 2) to visualize the over-
all relevance of features in the dataset. To facilitate a

visual interpretation, we again separated the present
peaks (Fig. 2a) from the absent peaks (Fig. 2b). In both
heat maps, the relevance values clustered the samples
according to their (mostly correctly) predicted class.
Prevalent colonizers of each habitat stood out with es-
pecially high or low relevance values, depending on the
class and the presence status. Top ranked species, by
means of average absolute relevance across all samples,
are listed in Table 2.

Healthy vs. IBD gut microbiota
While body habitats are relatively easy to classify, and
the calculated explanations of the classification are suit-
able for a qualitative interpretation, real-life clinical
dilemmas are usually much more complicated and much
less straightforward to interpret. The following use-case,
in which we classified gut microbiota samples of IBD
patients against gut microbiota of healthy individuals, is
a good example.

A B

Fig. 2 Skin microbiota vs. gut microbiota: Clustered heat maps of peaks’ relevance values across all samples. Columns correspond to samples,
rows to peaks (or bacterial species). Top relevant species for classification are indicated. (a) Heat map including only the relevance calculated for
positive-abundance peaks in each sample; (b) Heat map including only the relevance calculated for zero-abundance peaks in each sample. Only
peaks with mean absolute relevance above 0.01 are shown in each heat map. Color key from pink to blue indicates relevance from low to high,
respectively. For each sample the predicted class (pred) and the true class (obs) are indicated. Clustering is based on cosine correlation matrix
followed by unweighted pair group method with arithmetic mean (UPGMA). Relevance values were calculated based on linear SVM predictions
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Explaining a single prediction
Figure 3 illustrates the relevance calculated for three
selected IBD individual samples, all correctly classified
by a linear SVM. Similar to Fig. 1, peak-specific
relevance values are presented in reference to their
abundance profile (Fig. 3a and b), which allows a
straightforward interpretation of which peaks in the
profile drove the classification towards the IBD class or
against it. In a separate panel (Fig. 3c) the same is
displayed for zero-abundance peaks. The most relevant
species to explain the classifier’s decision for the top
example are listed in Table 3.
In a clinical context, such relevance ranking can

improve the understanding of a classifier’s output by
clinicians, and potentially support their decisions.
Species that were assigned high relevance values may
then guide an intervention according to their abun-
dance. For example, in the top case presented in
Fig. 3, determining a relevance cutoff of 0.25 would
result in a short list of species that can be presented
to clinical microbiologists, which is more informative
than just presenting the decision (i.e. class probabil-
ity) itself (Fig. 4). Based on their expertise, it may be
advised that eliminating Escherichia coli and/or sup-
plementing Alistipes spp. would be beneficial for this
particular patient.

Meta-analysis of all samples
Figure 5 provides an overview of the relevance values cal-
culated per peak for every sample in the dataset. The clus-
tering of the samples matched the predicted classes,
although it fitted less accurately the true class of the sam-
ples, since more samples were misclassified compared to
the SVG dataset. The color pattern for prevalent species
was complementary between the two classes and the pres-
ence (Fig. 5a) or absence (Fig. 5b) status, i.e., a prevalent
peak that strongly supported one class also supported the
other class by its absence, and vice versa. Top explanatory
species by means of average absolute relevance for classifi-
cation across all samples are shown in Table 4.

Discovering underlying subgroups within a class
IBD is a complex and multifactorial disease character-
ized by high between-patient variability in symptoms
and response to treatment. This variability is attributed
to various factors, including the intestinal microbiota
composition. We show how the calculated explanations
may be used to reveal underlying subgroups within a
group of patients (Fig. 6). Most of Crohn’s disease
patients in our cohort (32/36) were treated with exclu-
sive enteral nutrition (EEN), and were evaluated again
after a six-week period. These patients could be grouped
into two clusters based on the calculated relevance

Table 2 Most relevant bacterial species for classification of skin microbiota versus gut microbiota samples

Species name IS-pro peak(s) Common habitat Ranked top 15 by:

Alistipes finegoldii 230/231/395/396/400/407 Gut all

Alistipes putredinis 235/236 Gut all

Bacteroides vulgatus 478/479 Gut all

Bacteroides fragilis 537 Gut all

Clostridium perfringens 235 Gut all

Streptococcus mitis 296/297 Skin all

Staphylococcus epidermidis 312/313 Skin svm, nsc, lr

Prevotella sp. 437/438 Gut svm, rf, lr

Bacteroides sp. 474 Gut svm, rf, nsc

Lactobacillus paracasei 294 Gut svm, nsc

Staphylococcus epidermidis 303 Skin nsc, lr

Streptococcus sp. 321 Gut nsc, lr

Bifidobacterium adolescentis 495 Gut nsc, lr

Clostridium sp. 231 Gut rf

Odoribacter splanchnicus 308 Gut rf

Streptococcus sp. 318 Gut rf

Lactobacillus sp. 478 Gut rf

unclassified Proteobacterium 941 – rf

Lactococcus lactis 344 Gut nsc

Propionibacterium acnes 269 Skin nsc

Ranking is based on absolute mean relevance values across all samples per classifier. Species are ordered according to the number of classifiers by which they
were top-ranked. All - all classifiers; svm - linear SVM; rf - Random Forest; nsc - Nearest Shrunken Centroids; lr - L2-regularized Logistic Regression
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values, with a significant enrichment of patients with
induced remission in response to EEN in one cluster
compared to the other cluster (p = 0.04, chi-square test).

Analytic validation of explanations
Since the IBD dataset is poorly understood by humans,
we sought for a way to analytically validate the results.
Here, we propose a novel validation method that
consists of subsequently removing a growing number of
features, sorted by their relevance in ascending order.
For a good explanation, the confidence of the classifier
is expected to first go up (evidence against the predic-
tion is removed), and then start to go down when
important features are taken out. When all features are
removed, the classifier has no information left and there-
fore its certainty should drop to 0.5 in a balanced dataset.
The average validation results for the IBD dataset are

presented in Fig. 7. Only a small number of features was
very relevant (either as positive or negative evidence for

the predicted class, Fig. 7a). Most features had a near-zero
relevance score, and were therefore not important for the
decision. We observed a rise in certainty when features
with high negative relevance were removed, followed by a
strong decline in response to removal of features with
top-ranked positive evidence (Fig. 7b). In the middle
range, where features with near-zero relevance were ex-
cluded, the validation curve stagnates, indicating that re-
moving them had no influence on the classification.
In addition, we validated our results by comparing

explanations calculated by different classifiers by sam-
ple, and comparing sample-specific explanations of a
classifier with the respective model’s global ranking (if
available by the classifier). The correlation was higher
when calculated within-classifier, i.e. between the
sample-specific relevance vectors and the global im-
portance ranking of the same classifier, than between
sample-specific relevance vectors of different classi-
fiers (Additional file 2: Figure S1).

A

B

D

C

E

Fig. 3 Three IBD gut microbiota samples and their corresponding peaks’ relevance values illustrate unique sample-specific relevance ranking. All
samples were correctly classified, with the classifier’s probability values displayed per sample. (a) Gut microbiota samples: peaks correspond to
bacterial species; Peak heights correspond to abundance. Classification probability is shown to the right of each profile. (b) Relevance values
calculated for each present peak in the profiles in (a). (c) Relevance values calculated for each absent peak (i.e. zero-valued peak) in the profiles
in (a). (d) Average IBD gut microbiota profile across all samples. (e) Average healthy microbiota profile across all samples FAFV: Firmicutes,
Actinobacteria, Fusobacteria and Verrucomicrobia; Relevance was calculated based on SVM predictions
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Discussion
In this study, we present how a method aimed to explain
individual classifier decisions can be applied to human
microbiota data to facilitate the interpretation of
microbiota-based predictions in a biologically meaningful

context. Our algorithm is based on a method originally
proposed by Robnik-Šikonja and Kononenko [7]. It gener-
ates a sample-specific feature relevance ranking that,
combined with an abundance profile, allows us to
reason about the importance of different species in
driving a prediction. This gives an insight into the
specific pathogenic perturbations of the microbiota of
individual patients, which in turn may allow adjusting
personalized treatment, supplementing or targeting
specific species.
We first tested our approach on an easily classifiable

dataset consisting of gut and skin microbiota samples.
Species ranked highly relevant were identified as
common inhabitants of each of these body sites [13].
Common gut colonizers, such as Bacteroidetes spp. and
E. coli, were supportive evidence for the ‘gut’ class. Skin
samples presented an opposite image, with dominant
skin bacteria, such as S. epidermidis and Streptococcus
mitis, driving the classification by their presence. It is
important to note that evidence for or against a class
can be found in the presence of certain species, but also
in their absence.
Assessing the explanations for the ‘IBD versus

healthy’ case was more challenging. Although findings
of aberrations in the microbiota composition of IBD
patients are well established [14–16], they are not
consistent regarding specific species. Increased
amounts of mucosa-associated E. coli, which was
assigned high relevance values by all classifiers tested,
were indeed previously detected in IBD patients [17].
We also compared our results to a recent study1 [9]
in which a core microbiota, prevalent and stable over
time, was identified in healthy children. Interestingly,
strong evidence for the IBD class was given by the
absence of peaks originating from species described
as members of the pediatric healthy core microbiota,

Table 3 Most relevant bacterial species for the top IBD
microbiota sample presented in Fig. 3

Species name IS-pro peak(s) Presence Relevance

Escherichia coli 735 + 0.62

Alistipes finegoldii 396 – 0.57

Alistipes finegoldii 230 – 0.52

unclassified Proteobacterium 747 + 0.35

Lachnospiraceae sp. 606 + 0.3

Alistipes putredinis 235 – 0.29

unclassified Firmicute 326 + −0.26

Finegoldia magna 306 + 0.24

Parabacteroides distasonis 461 + 0.23

Morganella morganii 855 + −0.23

Alistipes finegoldii 400 – 0.21

Bacteroides fragilis 605 + −0.21

Escherichia coli 827 + 0.19

Alistipes putredinis 236 – 0.18

Streptococcus sp. 321 + 0.17

unclassified Firmicute 525 + 0.17

Bacteroides vulgatus 479 – 0.16

Bacteroides sp. 594 + 0.16

Alistipes finegoldii 407 – 0.15

Escherichia coli 828 – −0.14

Bacteroides fragilis 537 – 0.05

’+’ and’-’ indicate whether a peak is present or absent in a sample, and needs
to be coupled with the relevance for interpretation. Ranking is based on
absolute relevance values; Classification was done by a linear SVM

A B

Fig. 4 Output of a classifier without (a) and with (b) explanation
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such as certain Alistipes, Bacteroides and Prevotella
species. These species were mostly absent from IBD
samples, and were assigned consistently high rele-
vance values, which resulted in high dendrogram
distances between the two clusters that appear in the
heat map displaying the absent peaks (Fig. 5b). In
general, in all heat maps, clustering based on the cal-
culated relevance values separated the samples mostly
according to their predicted class, which means the
relevance values explain the classifier decisions well.
To analytically validate this, we proposed a method

that estimates how the classifier’s probability for a class
changes when features of varying relevance are excluded.
This approach brings value since it is not always
straightforward to assess how good an explanation is,
especially when we lack knowledge about the domain. A
good explanation means that the certainty of a classifier
would decline only when high relevance features are

ignored. Indeed, this was observed for all the classifiers
we tested in the IBD dataset. We could rank features
correctly according to their relevance even when a
classifier was less certain about its decisions and resulted
in lower probabilities, like in the case of RF (Fig. 7). In
our case, the set of important features for one individual
sample was quite small, meaning that a short list of the
most important species could be effectively presented to a
physician. Note that although the set of important
features was rather small for an individual classification,
this does not mean that the classifier relies only on those,
and that they hold all the information. The set of import-
ant features varied widely between samples (Figs. 2 and 4),
which corroborates the need for a sample-specific explan-
ation method for microbiota data.
Still, sample-specific explanations were highly corre-

lated with the global feature rankings at the model level
(Additional file 2: Figure S1), indicating that our method

A B

Fig. 5 IBD gut microbiota vs. healthy gut microbiota: Clustered heat maps of peaks’ relevance values across all samples. Columns correspond to
samples, rows to peaks (or bacterial species). Most relevant species for classification are indicated. (a) Heat map including only the relevance
calculated for positive-abundance peaks in each sample; (b) Heat map including only the relevance calculated for zero-abundance peaks in each
sample. Only peaks with mean absolute relevance above 0.01 are shown in each heat map. Color key from pink to blue indicates relevance from
low to high, respectively. For each sample the predicted class (pred) and the true class (obs) are indicated. Clustering is based on cosine correlation
matrix followed by unweighted pair group method with arithmetic mean (UPGMA). Relevance values were calculated based on linear SVM predictions
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conforms to the general rankings. Some discrepancies
occur when comparing explanations between the differ-
ent classifiers, which represent different algorithm
concepts; SVM and LR are linear classifiers, RF is an en-
semble of decision trees, and NSC relies on the distance
between data points to class centroids. While there may
be several solutions to a problem and different classifiers
can make different mistakes, we can assume that the
better the prediction accuracy of a classifier is, the closer
the explanation of its decision is to the true difference
between the classes. Nonetheless, in practice it is also
important to pay attention to overfitting, which is a
common concern in small microbiota datasets. While in
our experiments we did not observe overfitting, it is im-
portant to take into account that in such cases the clas-
sifier may fit to random noise in the data, and the
explanations might not be sensible.
The calculated relevance can also be used to reveal

underlying subgroups within a patient group. As an
example, we focused on response to EEN, an effective
therapeutic measure to induce remission in active
Crohn’s disease pediatric patients. EEN consists of a
complete liquid diet [18] and leads to the induction
of remission in approximately 85% of patients. In our
cohort, remission was induced in 18 out of 32 pa-
tients. While several factors may influence the re-
sponse to EEN, including disease duration and

location, a biomarker to predict the response or to
adjust an individualized application of EEN in chil-
dren is not yet available. Our results suggest a role of
the microbiota in the response to EEN, and illustrate
the potential the explanations hold to unveil patterns
in the data.
Several other techniques also aim to interpret the

learning of a classifier. These are mostly focused on
feature ranking and feature selection, which are global

Fig. 6 Response to exclusive enteral nutrition (EEN) in Crohn’s disease
patients: a clustered heat map displaying peaks’ relevance values
across Crohn’s disease patients who received EEN treatment. Columns
correspond to samples, rows to peaks (or bacterial species). For each
sample, it is indicated whether the prediction was correct (i.e. the
sample was classified as ‘IBD’, dark grey) or not (the sample was
classified as ‘healthy, light grey), and whether remission was induced in
response to EEN (green) or not (red). The cluster on the left is enriched
with patients with induced remission compared to the other cluster
on the right (p = 0.04, chi-square test). Only peaks with mean absolute
relevance above 0.01 are shown. Color key from pink to blue indicates
relevance from low to high, respectively. Clustering is based on cosine
correlation matrix followed by unweighted pair group method with
arithmetic mean (UPGMA). Relevance values were calculated based on
linear SVM predictions

Table 4 Most relevant bacterial species for classification of IBD
gut microbiota versus healthy gut microbiota samples

Species name IS-pro peak(s) Ranked top 15 by

Alistipes finegoldii 230/395/396/400/407 all

Alistipes putredinis 235/236 all

Odoribacter splanchnicus 307/308 all

unclassified Firmicute 396 all

Escherichia coli 735/821/827/828 all

unclassified Bacteroidete 251 svm, rf, nsc

Lachnospiraceae sp. 491/605 svm, rf, lr

Bacteroides vulgatus 479 svm, nsc

Lactobacillus sp. 478 svm, lr

Streptococcus sp. 318 svm, lr

Bacteroides sp. 474 svm, lr

Streptococcus sp. 321 nsc, lr

Prevotella sp. 438 rf, nsc

Bacteroides fragilis 537 rf, nsc

Clostridium perfringens 233/235 rf, nsc

Lactobacillus sp. 244 rf, nsc

unclassified Firmicute 156 rf

Ranking is based on absolute mean relevance values across all samples per
classifier. Species are ordered according to the number of classifiers by which
they were top-ranked. All - all classifiers; svm - linear SVM; rf - Random Forest;
nsc - Nearest Shrunken Centroids; lr - L2-regularized Logistic Regression
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methods, independent of a specific input sample. An
individual explanation may contribute to specific inter-
pretation that can lead to customized clinical decisions,
which are especially desired in microbiota analysis due
to its highly personalized composition. However, the
evaluation of the contribution in practice of such a
method to support clinical decision making has not yet
been conducted, which is a limitation of this study. Such
evaluation should be carried out as part of future work,
similarly to the work done by Lou et al. [19].
A common method for instance-specific relevance esti-

mation is the sensitivity analysis [20], where the relevance
of each feature of a particular input sample is given by the
partial derivative of the output with respect to this feature.
If a classifier’s decision is sensitive to the input (i.e., small
changes in the feature lead to a large change in output
probability), a high relevance value is assigned to that fea-
ture. This method requires the estimation of partial deriv-
atives of the output with respect to the input, which for
some classifiers may require (more expensive) empirical
analysis. Moreover, in some cases, like in the case of linear
SVM, the sensitivity analysis is not applicable, since it
returns the weight vector, which is an incorrect

explanation of feature importance. Furthermore, it cannot
give insight into which features constitute evidence for or
against a class, but only how important they are in an ab-
solute sense. Yet, if the partial derivatives can be estimated
analytically, it is faster and easier to implement than the
method we used.
We hypothesized that since the microbiota is an

ecological system, in which different species continu-
ously interact, multiple species should be considered
by the algorithm at once. In a follow-up paper [21],
Štrumbelj and Kononenko suggested to marginalize
out all possible subsets of features. However, neither
this approach nor its approximation [22] are feasible
for high-dimensional data. To circumvent the compu-
tational complexity, we implemented a multivariate
method based on a sensible selection of subsets from
the power-set of all features. However, the explana-
tions were not affected by this extension, and we
therefore concluded that the univariate approach is
valid in our case. Nonetheless, more sophisticated
classifiers (such as neural networks) might be more
sensitive to feature correlations, and in such cases the
multivariate approach would become valuable.

Fig. 7 Validation of explanations: (a) Average feature relevance across all samples in the IBD dataset presented per classifier. Relevance values are
sorted in ascending order, and color key from blue to red indicates relevance from low to high, respectively. (b) Validation plot: Features are
sorted by relevance values and are plotted against the class probability, calculated when all features up to the current one at each point are
ignored. The curve of each classifier is averaged over all samples. (c) and (d) The same curve as in (b), zoomed in on the first 20 (i.e., least support
for predicted class) and last 20 (i.e., most support for the predicted class) features, respectively
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Conclusions
The human microbiota consists of promising bio-
markers for various disease states, but to facilitate the
development of new diagnostic applications, results
need to be reported in an intelligible way. We showed
that an added explanation to each prediction allows a
more extensive analysis, which in turn may allow
clinical microbiologists to make informed decisions.
The benefit of an explanation alongside a classifier’s
decision is manifold: it may assist in treatment guid-
ance for individual patients and can help improve
clinical expertise, with new patient subgroups discov-
ered. Finally, it holds potential to increase the under-
standing of classifiers’ outputs, which is key for their
incorporation in clinical practice.

Endnotes
1of which our healthy cohort is a subset
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Additional file 1: Supplementary methods. (DOCX 20 kb)

Additional file 2: Figure S1. Correlation calculated between different
relevance measures. Spearman’s rank correlation was calculated between
sample-specific explanations calculated by different classifiers, and between
sample-specific relevance measures and global ones at the model level,
when available by the classifier (RF and NSC). Top: SVG dataset, bottom: IBD
dataset. Left: Between-classifier correlations. Correlations are shown as
absolute values, since two classifiers with oppositional predictions would
have negatively correlated relevance measures. Right: Within-classifier
correlations. For each sample, the correlation was calculated between the
sample-specific explanation and the global relevance measures as given by
the classification algorithm (for NSC and RF). The correlations between
classifiers are higher in the SVG dataset than in the IBD dataset, probably
because the classifiers make more mistakes on a harder classification task
(IBD vs. healthy), which leads to wrong explanations (also for correct
predictions). Since different classifiers make different mistakes, the overall
correlation is lower. In both datasets, the highest correlation is obtained
between the SVM and LR classifiers. The highest discrepancy occurred
between RF and the rest of the classifiers, which could be attributed to the
conceptual differences between the algorithms. Sample-specific rankings
were highly correlated with the global rankings of the NSC and RF classifiers,
indicating that the explanations are coherent with the model-level rankings.
Differences still occur as sample-specific explanations are tailored to a single
sample, and each microbial fingerprint gets a unique relevance ranking, as
is shown by the three examples displayed in Fig. 3. (TIFF 415 kb)
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