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Abstract

The estimation of the correct number of dimensions is a long-standing problem in psycho-

metrics. Several methods have been proposed, such as parallel analysis (PA), Kaiser-Gutt-

man’s eigenvalue-greater-than-one rule, multiple average partial procedure (MAP), the

maximum-likelihood approaches that use fit indexes as BIC and EBIC and the less used

and studied approach called very simple structure (VSS). In the present paper a new

approach to estimate the number of dimensions will be introduced and compared via simula-

tion to the traditional techniques pointed above. The approach proposed in the current

paper is called exploratory graph analysis (EGA), since it is based on the graphical lasso

with the regularization parameter specified using EBIC. The number of dimensions is veri-

fied using the walktrap, a random walk algorithm used to identify communities in networks.

In total, 32,000 data sets were simulated to fit known factor structures, with the data sets

varying across different criteria: number of factors (2 and 4), number of items (5 and 10),

sample size (100, 500, 1000 and 5000) and correlation between factors (orthogonal, .20,

.50 and .70), resulting in 64 different conditions. For each condition, 500 data sets were sim-

ulated using lavaan. The result shows that the EGA performs comparable to parallel analy-

sis, EBIC, eBIC and to Kaiser-Guttman rule in a number of situations, especially when the

number of factors was two. However, EGA was the only technique able to correctly estimate

the number of dimensions in the four-factor structure when the correlation between factors

were .7, showing an accuracy of 100% for a sample size of 5,000 observations. Finally, the

EGA was used to estimate the number of factors in a real dataset, in order to compare its

performance with the other six techniques tested in the simulation study.

Introduction

Estimating the number of dimensions in psychological and educational instruments is a long-

standing problem in psychometrics [1, 2, 3]. Dimensions can be defined as the low set of fea-

tures from a large set of correlated variables that collectively explain most of the variability in
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the original set [4], or as the underlying source of the variability presented in multivariate data

[5]. Two main general traditions, within psychology, can be identified in the methods that

have been proposed [2]. The first one examines patterns of eigenvalues, determining the num-

ber of factors based on some specified stopping rule. Two of the most known methods follow-

ing this tradition is the Kaiser-Guttman eigenvalue greater than one rule [6, 7] and Horn’s

parallel analysis [8]. The second general tradition compares the fit of structural models with

varying numbers of factors and determines the number of factors to be retained based on the

minimum average partial procedure (MAP) [9] or fit indexes such as the Bayesian information

criterion (BIC) [10] and the extended Bayesian information criterion (EBIC) [11]. In addition

to the above-mentioned traditions, there is an alternative—less used and studied—approach

called very simple structure (VSS) [12]. This approach assesses if the original correlation matrix

can be reproduced by a simplified pattern matrix, in which the highest loading for each item is

retained and the other loadings are set to zero.

In this paper, we introduce a new approach to estimate the number of dimensions to be

retained. We term this approach exploratory graph analysis (EGA), since it is based on estimat-

ing a graphical model [13, 14, 15] followed by cluster detection to estimate the number of

dimensions in psychological data. EGA has the additional benefit over the above-mentioned

procedures that it not only estimates the number of dimensions but also which items belong to

each dimension. We will compare this approach via simulation to the traditional or antique

factor retention techniques: VSS, MAP, Kaiser-Guttman rule, parallel analysis, and the fit of

different numbers of factors via BIC and EBIC. Finally, we have implemented EGA [16] in a

free to use software package for the statistical programming language R.

Assessing dimensionality in psychological data

Nowadays, psychology disposes of an impressive number of statistical procedures, with complex

and flexible models carefully developed to deal with a multitude of problems. One may wonder

whether estimating the number of dimensions using factor analysis still plays a role in the investi-

gations, as it did some decades ago. The use of factor models is still very present as an early step in

the process of construct validation [17], being considered “inexorably linked to the development of

intelligence tests and to intelligence theory” (p. 37) [18]. A quick search in the Science Direct, an

Elsevier web database for scientific publications, using the keywords “exploratory factor analysis”

from 1990 to 2016 in journals from the fields of Arts and Humanities, Psychology and Social Sci-

ences, yielded 40,132. From this total, 73.79% were published in the last ten years. So, as the very

brief and non-systematic search pointed above shows, going in the same direction of previous

papers [19], factor analysis is still widely used and broadly applied. However, reviews show that

from 22% to 28% of papers published using exploratory factor analysis failed to report the specific

extraction method used [20]. This is a very serious issue, because the extraction method used can

impact the number of dimensions estimated. As will be pointed in the next paragraphs, each tech-

nique has its benefits and pitfalls, so reporting which method was used is extremely important.

Why does psychology need a new way to estimate the number of dimensions? The answer

lies in the several studies published about the performance of the parallel analysis [18, 21, 22,

23, 24, 25], the MAP [18, 24, 26], the BIC [27, 28, 29, 30] and the Kaiser-Guttman eigenvalue

rule [2, 18, 24, 25, 31] in estimating the correct number of factors. In this line of research, it

has been shown that parallel analysis and the MAP work quite well when there is a low or

moderate correlation between factors, when the sample size is equal to or greater than 500 and

when the factor loadings are from moderate to high [18, 21, 22]. However, they tend to under-

estimate the number of factors when the correlations between factors are high, when the sam-

ple size is small and when there is small number of indicators per factor [2, 18, 21, 22].

Exploratory graph analysis
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The Kaiser-Guttman rule is the default method for choosing the number of factors in many

commercial software packages [20]. However, simulation studies show that this method over-

estimates the number of factors, especially with a large number of items and a large sample

size [2, 18, 24, 25, 31]. Ruscio and Roche [2] provided startling evidence in this direction: the

Kaiser-Gutman rule overestimated the number of factors in 89.87% of the 10,000 simulated

datasets, generated with different number of factors, sample size, number of items, number of

response categories per item and strength of correlation between factors. In face of the evi-

dences from the simulation studies, some researchers strongly recommend not to use this

method [20, 24].

Regarding the BIC, evidences are contrasting. Preacher, Zhang, Kim and Mels [29] showed

that BIC performs well when the sample size is small, but tends to overestimate the number of

factors in large datasets. However, Dziak, Coffman, Lanza and Li [27] showed that BIC de-

creases its underestimation and increases its correctness in estimating the number of factors

when the sample size is greater than 200 cases. It is important to point that, to our best knowl-

edge, there is no study showing how the very simple structure approach behaves under dif-

ferent conditions. These simulation studies highlight a very complicated problem within

psychology, since it is very common to find areas in which the correlation between factors is

high, especially in the intelligence field [18]. Thus, in such situations, parallel analysis, MAP

and comparing different number of factors via BIC perform bad, in average, proving that esti-

mating the number of factors is still a non-trivial task, in spite of the past decades’ develop-

ments [32]. It seems that Kaiser’s dictum remains valid: “a solution to the number-of-factors

problem in factor analysis is easy. . . But the problem, of course is to find the solution” [33].

The next section will introduce a new approach to estimate the number of dimensions,

called exploratory graph analysis (EGA). EGA will be compared to Parallel Analaysis, MAP,

BIC, EBIC, Kaiser-Guttman rule and VSS in a simulation study with 32,000 simulated data

sets, created by 64 conditions varying in four different criteria: number of factors (2 and 4),

number of items per factor (5 and 10), sample size (100, 500, 1000 and 5000) and correlation

between factors (orthogonal, .20, .50 and .70). In the last section, EGA will be used to estimate

the number of factors from a real dataset with an empirically found factor structure. This will

enable the comparison of EGA with the six techniques tested in the simulation study.

Network psychometrics

Recent literature has focused on the estimation of undirected network models, so called Mar-

kov Random Fields [13] to psychological datasets. In these network models, nodes represent

random variables (as opposed to e.g., people in social networks) which are connected by edges

or links indicating the level of interaction between these variables. These models focus on the

estimation of direct relationships between observed variables rather than modeling observed

variables as functions of latent common causes. Such models have shown great promise in

diverse psychological fields such as psychopathology [34, 35, 36, 37, 38], attitude formation

[39] quality of life research [40] and developmental psychology [41]. Forming a network struc-

ture on psychological data, however, is not an easy task. The field of network psychometrics
[42] emerged as a response to these concerns with the estimation of such network models.

The network model we will utilize in this paper is termed the Gaussian graphical model

(GGM) [13] which models multivariate normally distributed network directly through the

inverse covariance matrix. Each element of the inverse covariance matrix corresponds to a

connection, an edge, in the network, linking two variables, nodes, if they feature a pairwise

interaction. These edges can be standardized, visualized and more easily interpreted as partial
correlation coefficients of two variables after conditioning on all other variables in the dataset.

Exploratory graph analysis
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Partial correlation coefficients of exactly zero indicate that there is no edge between two nodes.

Thus, in a GGM, if two variables are not connected, they are conditionally independent after

conditioning on all other variables in the network.

While a GGM can be estimated directly by inverting the sample variance-covariance

matrix, doing so can lead to large standard errors and unstable parameter estimates in rela-

tively small datasets (i.e., typical sample sizes in psychological research) due to overfitting. A

popular technique used in estimating GGMs is to not directly invert the variance-covariance

matrix but to estimate this model using penalized maximum likelihood estimation. In particu-

lar, the least absolute shrinkage and selection operator (LASSO) [43] can be used to estimate a

GGM while guarding against overfitting. By using the LASSO many parameters can be esti-

mated to be exactly zero; indicating conditional independence and increasing interpretability

of a network structure. Because of these properties, LASSO estimation has become the go-to

estimation method for network models on psychological datasets e.g. [38, 40, 44]. When using

LASSO estimation one needs to set a tuning parameter that loosely controls the sparsity of the

resulting network structure. A typical way of setting this tuning parameter is by estimating a

model on 100 different tuning parameters and selecting the value that minimizes some crite-

rion. For GGM estimation, minimizing the extended Bayesian information criterion [11] has

been shown to work well in retrieving the true network structure [15]. This methodology has

been implemented in the qgraph R package [45, 46] for easy usage on psychometric datasets.

Exploratory graph analysis

The modeling of psychological datasets through network models originates with the work of

van der Maas et al. [41], who show that a dataset that corresponds to a general factor model

can be simulated using a fully connected network model as well. A section of a network in

which all nodes are fully connected is also termed a clique, and a section in which many nodes

are connected with each other is termed a cluster. Such clusters are of particular interest to psy-

chometrics, as it is argued clusters of nodes will lead to comparable data as a latent variable

model, or, depending on one’s assumptions on the underlying causal structure, influence due

to latent variables will manifest in network structures as such clusters or even cliques in which

all nodes interact with each other. For instance, in psychopathological literature it is argued

that clusters of nodes representing symptoms correspond to psychopathological disorders [34,

35]. Similar arguments have been made for stable personality traits, which routinely come up

as clusters in an estimated network structure [45, 47, 48].

The relationship between latent variables on the one hand and network clusters on the

other goes deeper than mere philosophical speculation and empirical findings. It can directly

be seen that if a latent variable model is the true underlying causal model, we would expect

indicators in a network model to feature strongly connected clusters for each latent variable.

Since edges correspond to partial correlation coefficients between two variables after condi-

tioning on all other variables in the network, and two indicators cannot become independent

after conditioning on observed variables given that they are both caused by a latent variable,

the edge strength between two indicators should not be zero. In fact, in a mathematical point

of view, network models can be shown to be equivalent under certain conditions to latent vari-

able models in both binary [42, 49] and Gaussian datasets [50], in which case each latent vari-

able is represented by a rank-1 cluster. Thus, when defining a cluster as a group of connected

nodes regardless of edge weight, we can state the following relationship as a fundamental rule

of network psychometrics: Clusters in network = latent variables.

It should be noted that when multiple correlated latent variables underlie distinct sets of

indicators, none of the edges should be missing as we technically cannot condition on any

Exploratory graph analysis
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observed variable to make two indicators independent. However, we would expect the partial

correlation between two indicators of the same latent variable to be much stronger than the

partial correlation between two indicators of different latent variables. Furthermore, when

using LASSO estimation, we would expect these already small edge weights to be pushed more

easily to zero simply due to the penalization. As such, we expect an algorithm to detect

weighted network clusters to indicate indicators of the same latent variable.

In a more mathematical point of view, let y represent a centered random vector of K
responses, which we assume to be multivariate normally distributed with some variance-

covariance matrix S:

y � NPð0;ΣÞ:

In factor analysis, we typically assume that the response of subject p is caused through a linear

factor model by a set of M latent variables η plus random error ε:

yp ¼ ΛηP þ εP;

in which Λ is a K × M factor loadings matrix. This leads to the well known factor analysis

model:

Σ ¼ ΛψΛ> þΘ;

in which Θ = Var (ε) and ψ = Var (η). Often it is assumed that each item only loads on one fac-

tor (simple structure), and thus that Λ can be reordered to be block diagonal:

Λ ¼

λ1 0 � � � 0

0 λ2 � � � 0

..

. ..
. . .

. ..
.

0 0 � � � λM

2

6
6
6
6
6
4

3

7
7
7
7
7
5

;

Furthermore, we assume Θ to be diagonal (local independence):

Θ ¼

Y1 0 � � � 0

0 Y2 � � � 0

..

. ..
. . .

. ..
.

0 0 � � � YK

2

6
6
6
6
6
4

3

7
7
7
7
7
5

:

In network modeling, the Gaussian graphical model [13] is used in which the inverse variance-

covariance matrix is modeled [51]:

Σ ¼ K � 1:

A zero element in K indicates conditional independence:

yi ?? yjjy
� ði;jÞ()ki;j ¼ kj;i ¼ 0;

in which y−(i,j) indicates y without elements i and j, and negative elements of K can be stan-

dardized to equal partial correlation coefficients:

rij ¼ �
kij
ffiffiffiffiffiffiffiffi
kiikjj

q :
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These partial correlation coefficients are thus proportional to the inverse variance-covariance

matrix, and can be used to form a partial correlation network. As such, off-diagonal elements

of K encode a network structure.

Relating the above expressions and applying the Woodbury matrix identity we obtain:

K ¼ ðΛψΛ> þΘÞ� 1
¼ Θ� 1 � Θ� 1Λðψ� 1 þ Λ>Θ� 1ΛÞ� 1Λ>Θ� 1:

Since Θ is diagonal, so is Θ−1, leading to Θ−1Λ to be block diagonal and ΛTΘ−1Λ to be diag-

onal. Let X = (ψ−1 + ΛTΘ−1Λ)−1. Then, K becomes a block matrix in which every block is con-

structed of the inner product of factor loadings and inverse residual variances, every diagonal

block is scaled by diagonal elements of X and every off-diagonal block is scaled by off-diagonal

values of X.

Since ψ must be positive definite it follows that X must be positive definite as well. Typically

in factor analysis the first factor loadings or the latent variance-covariances are fixed to 1 to

identify the model. We can, however, without loss of information, also constrain the diagonal

of X to equal 1. It then follows that every absolute off-diagonal value of X must be smaller than

1. From the formation of X follows that off-diagonal values of X equal zero if the latent factors

are orthogonal. Hence, the above decomposition shows that:

1. If the latent factors are orthogonal, the resulting GGM consists of unconnected clusters.

2. Assuming factor loadings and residual variances are reasonably on the same scale for every

item, the off-diagonal blocks of K will be scaled closer to zero than the diagonal blocks of K.

Hence, the resulting GGM will contain weighted clusters for each factor.

This line of reasoning leads us to develop Exploratory Graph Analysis (EGA), in which

firstly we estimate the correlation matrix of the observable variables, then the graphical LASSO

estimation is used to obtain the sparse inverse covariance matrix, with the regularization

parameter defined via EBIC over 100 different values. Finally, the walktrap algorithm [52] is

used to find the number of dense subgraphs (communities or clusters) of the partial correla-

tion matrix computed in the previous step. The walktrap algorithm provides a measure of sim-

ilarities between vertices based on random walks which can capture the community/cluster

structure in a graph [52]. The number of clusters identified equals the number of latent factors

in a given dataset.

In sum, we expect EGA to present a high accuracy in estimating the number of dimen-

sions in psychology-like datasets due to the use of the LASSO technique [43]. Partial cor-

relation is one of the methods used to estimate network models, but it suffers from an

important issue: even when two variables are conditionally independent, the estimated par-

tial correlation coefficient is not zero due to sampling variation [46]. In other words, partial

correlation can reflect spurious correlations. This issue can be solved using regularization

techniques, such as the LASSO [43], which is one of the most prominent methods for net-

work estimation on psychological datasets [38, 40, 44]. When LASSO is used to estimate a

network, it avoids overfitting by shrinking the partial correlation coefficients, so small coef-

ficients are estimated to be exactly zero, indicating conditional independence and making

the interpretability of the network structure easier [46]. Since the LASSO can be used to

control spurious connections, it is reasonable to expect it will provide high accurate esti-

mates of the underlying structure of the data when combined with a community detection

algorithm such as the walktrap [52].

Exploratory graph analysis
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Simulation study

Method

Design. Three thousand two hundred data sets were simulated to fit known factor struc-

tures, with the data sets varying across different criteria. The data generation design manipu-

lated four variables, number of factors (2 and 4), number of items per factor (5 and 10), sample

size (100, 500, 1000 and 5000) and correlation between factors (orthogonal, .20, .50 and .70), in

a total of 64 different conditions with a 2x2x4x4 design. For each condition, 500 data sets were

simulated using the R [53] package lavaan [54], resulting in the above mentioned 32,000 data

sets. The simulated data came from a centered multivariate normal distribution, with factor

loadings and variances set to unity, and every item artificially dichotomized at their respective

theoretical mean zero.

Each factor was composed by five or ten dichotomous items. The choice of using this kind

of items can be justified by the dichotomous nature of a significant number of intelligence test

items, especially those requiring the respondents to perform some task with only one correct

answer, such as the Raven’s progressive matrices [55], the Wiener Matrizen-Test 2 [56] or the

more recent tests from the International Cognitive Ability Resource [57, 58]. Since high corre-

lation between factors are often found in intelligence researches, we have intended to mimic

the nature of the field, so the comparison between the proposed exploratory graphical analysis

and the traditional/antique techniques are easier to understand and to interpret.

Data analysis. The simulated data sets were submitted to seven different methods to esti-

mate the number of dimensions (factors): (1) very simple structure (VSS) [12] with complexity

1; (2) minimum average partial procedure (MAP) [9]; (3) the fit of different number of factors,

from 1 to 10, via BIC; (4) the fit of different number of factors, from 1 to 10, via EBIC; (5)

Horn’s Parallel Analysis (PA) [8] using the generalized weighted least squares factor method;

(6) Kaiser-Guttman eigenvalue greater than one rule [6, 7]; and (7) Exploratory Graph Analy-

sis. The first five methods were implemented using the R package psych [59]. Since the items

are dichotomous, the PA was applied using tetrachoric correlations for the real and simulated

data. The eigenvalue greater than one rule was applied taking the observed eigenvalues calcu-

lated during the PA procedure.

The exploratory graph analysis was applied using the R package EGA [16]. This package has

a function named EGA with two arguments: data and plot.EGA. The first one is used to specify

the dataset and the second one is a logical argument, if TRUE returns a network showing the

dimensions estimated. The EGA function returns a list with 5 elements: ndim (number of

dimensions estimated), correlation (a matrix of zero-order correlation between the items),

glasso (a matrix with the partial correlation estimated using EBICglasso, from qgraph), wc (the

walktrap community membership of the items), dim.variables (a dataframe with two columns:

items and their respective estimated dimension). The EGA function firstly calculates the poly-

choric correlations via the cor_auto function of the qgraph package [45]. Secondly, the function

uses the EBICglasso from the qgraph package [45] to estimate the sparse inverse covariance

matrix with the graphical lasso technique. The EBICglasso function runs one hundred values of

the regularization parameter, generating one hundred graphs. The EBIC is computed and the

graph with the smallest EBIC is selected. Finally, the EGA function uses the walktrap algorithm

[52] to find the number of dense subgraphs (communities) of the partial correlation matrix

computed in the previous step, via the walktrap.community function available in igraph [60].

The walktrap algorithm provides a measure of similarities between vertices based on random

walks which can capture the community structure in a graph [52].

Three indexes were recorded for each one of the 32,000 datasets, following Garrido, Abad

and Posada [17]. The first index is the accuracy to correctly recover the number of factors. For

Exploratory graph analysis
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example, in the four factor structure the accuracy equals one if four factors are estimated and

zero otherwise. So it is possible to compute descriptive statistics based on the accuracy of each

method in each group of 500 simulated data sets, for each condition. The second index, bias

error, is the difference between the number of factors estimated and the true number of fac-

tors. A positive bias error indicates that the method is overestimating the number of factors.

On the other hand, a negative bias error indicates that the method is underestimating the

number of factors, and a bias error of zero indicates a complete lack of bias. The mean bias

error (MBE) is calculated as the sum of the bias error divided by the number of datasets gener-

ated for each condition. The third index is the absolute error, which is the absolute value of the

bias error. The mean absolute error (MAE) is calculated as the sum of the absolute error

divided by the number of datasets generated for each condition. As pointed by Garrido, Abad

and Posada [17], the bias error cannot be used alone for verifying the precision of a method to

estimate the number of factors, since errors of under- and overfactoring can compensate each

other. This does not happen with the accuracy index or with the absolute error index. A mean

absolute error of zero indicates a perfect accuracy, while higher values are evidence of devia-

tion from the correct number of dimensions.

Results

Structure with two factors

Accuracy. Table 1 shows the mean accuracy and its standard deviation for each method,

in each condition. When the correlation between factors was zero (orthogonal) the methods

presented a mean accuracy ranging from 98% to 100%, except for the VSS method, which pre-

sented a mean accuracy of 31% (SD = 46%). As the sample size increased, the mean accuracy

of VSS decreased from 76% (sample size of 100) to 3% (sample size of 5,000). On the other

side, all the other methods achieved a mean accuracy of 100% for sample sizes of 500, 1000 and

5000. The exactly same pattern appeared when the correlation was .2. When the correlation

between factors was .5, BIC, eBIC, Kaiser-Guttman’s eigenvalue rule, PA and EGA presented

an overall mean accuracy greater than 90%, while VSS presented a mean accuracy of 22% and

the MAP 67%. When the correlation was high (.7), only eBIC, PA and EGA presented an over-

all mean accuracy greater than 90%. In general, the increase in the number of items per factor

lead to an increase in the mean accuracy and a decrease in the standard deviation, especially in

the high correlation scenario (Table 1).

Fig 1 presents the mean accuracies and its 95% confidence interval by correlation (top left

panel), number of items per factor (to right panel), sample size (bottom left panel) and by all

conditions combined (bottom right panel). In general, the mean accuracies spread as the cor-

relation between factors increase from zero to .7, with the Kaiser-Guttman’s rule, PA and EGA

presenting the highest accuracies (Fig 1, top left panel). On the other side, the mean accuracies

are higher (between 90% and 100%) when the number of items increase from 5 to 10, except

for the VSS (Fig 1, top right panel). As the sample size increases, the mean accuracies of BIC,

eBIC, PA and EGA also increase, attaining its maximum from sample sizes of 500 on (Fig 1,

bottom left panel). The Kaiser-Guttman’s rule is the technique less affected by the variability

in sample size. Finally, the bottom right panel of Fig 1 shows clearly that the worst scenario

appears when the correlation is high (.7), the number of items is small (5 per factor) and the

sample size is 100. In this case, as the sample size increases from 100 to 500, 1,000, or 5,000,

BIC, eBIC, PA and EGA increase its accuracies up to 100% (Table 1).

Bias error and absolute error. In terms of mean bias error (Fig 2), i.e. the mean dif-

ference between the estimated and the correct number of factors, VSS presented a very high

error, indicating an overestimation when the correlation between factors are orthogonal

Exploratory graph analysis
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Table 1. Mean accuracy and its standard deviation, for each method and each condition, for the two factor structure. VSS = Very Simple Structure;

BIC = Bayesian Information Criteria; EBIC = Extended Bayesian Information Criteria; MAP = Minimum Average Partial procedure; Kaiser = Kaiser-Guttman

eigenvalue greater than one rule; PA = Parallel Analysis; EGA = Exploratory Graph Analysis. Low correlation = .2; Moderate Correlation = .5; High Correlation

= .7. The rows show the aggregate mean and standard deviation for each level of correlation (bold), sample size (bold and italicized) and number of items per

factor (non-italicized).

VSS MAP BIC EBIC Kaiser PA EGA Total

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

Orthogonal 0.31 0.46 0.99 0.10 0.99 0.07 1.00 0.02 1.00 0.03 0.99 0.08 0.98 0.13 0.90 0.31

100 0.76 0.43 0.96 0.21 0.98 0.14 1.00 0.03 1.00 0.06 0.97 0.17 0.94 0.25 0.94 0.23

5 0.71 0.45 0.91 0.28 0.96 0.20 1.00 0.04 1.00 0.04 0.95 0.22 0.92 0.27 0.92 0.27

10 0.81 0.39 1.00 0.00 1.00 0.00 1.00 0.00 0.99 0.08 1.00 0.06 0.95 0.22 0.96 0.19

500 0.36 0.48 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.03 1.00 0.00 0.91 0.29

5 0.54 0.50 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.04 1.00 0.00 0.93 0.25

10 0.18 0.38 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 0.88 0.32

1000 0.08 0.27 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 0.87 0.34

5 0.08 0.28 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 0.87 0.34

10 0.07 0.26 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 0.87 0.34

5000 0.03 0.18 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 0.86 0.34

5 0.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 0.86 0.35

10 0.07 0.25 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 0.87 0.34

Low Correlation 0.33 0.47 0.98 0.12 0.99 0.10 1.00 0.03 1.00 0.04 0.99 0.10 0.99 0.10 0.90 0.30

100 0.79 0.40 0.94 0.24 0.96 0.19 1.00 0.05 0.99 0.08 0.96 0.20 0.96 0.19 0.94 0.23

5 0.71 0.45 0.88 0.33 0.93 0.26 0.99 0.08 0.99 0.09 0.93 0.26 0.96 0.20 0.91 0.28

10 0.88 0.33 1.00 0.04 1.00 0.04 1.00 0.00 1.00 0.06 0.99 0.08 0.96 0.19 0.98 0.16

500 0.36 0.48 1.00 0.03 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 0.91 0.29

5 0.54 0.50 1.00 0.04 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 0.93 0.25

10 0.18 0.39 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 0.88 0.32

1000 0.12 0.33 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 0.87 0.33

5 0.14 0.35 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 0.88 0.33

10 0.10 0.30 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 0.87 0.34

5000 0.03 0.16 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 0.86 0.35

5 0.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 0.86 0.35

10 0.05 0.23 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 0.86 0.34

Moderate Correlation 0.22 0.42 0.67 0.47 0.92 0.27 0.98 0.13 0.93 0.26 0.98 0.15 0.96 0.19 0.81 0.39

100 0.39 0.49 0.68 0.47 0.67 0.47 0.93 0.26 0.86 0.34 0.91 0.29 0.86 0.35 0.76 0.43

5 0.39 0.49 0.37 0.48 0.49 0.50 0.87 0.34 0.75 0.43 0.83 0.37 0.85 0.35 0.65 0.48

10 0.39 0.49 0.99 0.12 0.86 0.35 0.99 0.09 0.98 0.15 0.98 0.14 0.86 0.35 0.86 0.35

500 0.33 0.47 0.70 0.46 1.00 0.00 1.00 0.00 0.91 0.28 1.00 0.03 1.00 0.00 0.85 0.36

5 0.54 0.50 0.39 0.49 1.00 0.00 1.00 0.00 0.83 0.38 1.00 0.04 1.00 0.00 0.82 0.38

10 0.11 0.31 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 0.87 0.33

1000 0.17 0.38 0.68 0.47 1.00 0.00 1.00 0.00 0.94 0.24 1.00 0.00 1.00 0.00 0.83 0.38

5 0.29 0.45 0.36 0.48 1.00 0.00 1.00 0.00 0.87 0.33 1.00 0.00 1.00 0.00 0.79 0.41

10 0.06 0.23 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 0.87 0.34

5000 0.01 0.08 0.62 0.49 1.00 0.00 1.00 0.00 1.00 0.06 1.00 0.00 1.00 0.00 0.80 0.40

5 0.00 0.00 0.23 0.42 1.00 0.00 1.00 0.00 0.99 0.09 1.00 0.00 1.00 0.00 0.75 0.44

10 0.01 0.11 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 0.86 0.35

High Correlation 0.01 0.08 0.48 0.50 0.78 0.41 0.91 0.28 0.52 0.50 0.94 0.24 0.91 0.29 0.65 0.48

100 0.03 0.16 0.43 0.50 0.16 0.36 0.66 0.47 0.59 0.49 0.77 0.42 0.62 0.48 0.46 0.50

(Continued )
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(MBE = 2.96, SD = 2.95). As the correlation increases, the mean bias error of VSS, Kaiser-Gutt-

man rule, BIC and MAP decreases, while PA and eBIC remains relatively stable, and EGA

increases the MBE from .03 (SD = .02) when the correlation is orthogonal to .19 (SD = .28)

when the correlation is high (Fig 2, top left panel). From five to ten items per factor, VSS also

decreases its mean bias error, while the other techniques remain stable or increases the MBE

to values close to zero (Fig 2, top right panel). Considering the sample size, the highest MBE

variability is found when the sample equals 100 cases (Fig 2, bottom left panel), with EGA pre-

senting a mean bias error of .30 (SD = 1.06), while the MBE of VSS was .05 (SD = 1.54), of PA

.03 (SD = .37), eBIC -.10 (SD = .31), Kaiser-Guttman -.10 (SD = .35), MAP -.25 (SD = .43),

and BIC -.31 (SD = .46). The increase in sample size sharply increases the MBE of VSS. When

the sample size was equal to or greater than 500, EGA, PA, BIC and eBIC presented a MBE of

zero (Fig 2, bottom left panel). Analyzing all the conditions together (Fig 2, bottom right

panel), it is clear that VSS is the technique presenting the more intense issue with overestima-

tion, while MAP and the Kaiser-Guttman rule tend to underestimate the number of factors

when the correlation is high and the number of items per factor is five (Fig 2, bottom right

panel). In terms of mean absolute error (Fig 3), i.e. the mean absolute difference between the

estimated and the correct number of factors, the scenario is very similar to the described

above.

Structure with four factors

Accuracy. Table 2 shows the mean accuracy and its standard deviation for each method,

in each condition in the four factor structure. When the correlation between factors was zero

(orthogonal), BIC, the Kaiser-Guttman rule, PA and EGA achieved accuracies greater than

90%, while MAP presented a mean accuracy of only 32% (SD = 47%). The increase in the sam-

ple size improved the mean accuracies, except for MAP. The same scenario appeared when the

correlation between factors were low. However, when the correlation was moderate, only EGA

achieved a mean accuracy greater than 90%, irrespective of the sample size, number of items

per factor or sample size. In the high correlation scenario, EGA showed the higher overall

accuracy (Mean = 71%, SD = 46%). However, as the sample size and the number of items per

factor increased, BIC, eBIC, Kaiser-Guttman and PA were able to achieve mean accuracies

greater than 90%.

Table 1. (Continued)

VSS MAP BIC EBIC Kaiser PA EGA Total

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

5 0.05 0.22 0.05 0.22 0.11 0.31 0.41 0.49 0.20 0.40 0.64 0.48 0.67 0.47 0.31 0.46

10 0.00 0.06 0.81 0.39 0.20 0.40 0.91 0.29 0.97 0.18 0.90 0.29 0.58 0.49 0.62 0.48

500 0.00 0.03 0.50 0.50 0.98 0.14 1.00 0.07 0.50 0.50 0.99 0.10 1.00 0.00 0.71 0.45

5 0.00 0.04 0.00 0.00 0.96 0.20 0.99 0.10 0.00 0.04 0.98 0.15 1.00 0.00 0.56 0.50

10 0.00 0.00 0.99 0.10 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 0.86 0.35

1000 0.00 0.00 0.50 0.50 1.00 0.00 1.00 0.00 0.50 0.50 1.00 0.06 1.00 0.00 0.71 0.45

5 0.00 0.00 0.00 0.00 1.00 0.00 1.00 0.00 0.00 0.00 0.99 0.09 1.00 0.00 0.57 0.50

10 0.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 0.86 0.35

5000 0.00 0.00 0.50 0.50 1.00 0.00 1.00 0.00 0.50 0.50 1.00 0.00 1.00 0.00 0.71 0.45

5 0.00 0.00 0.00 0.00 1.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 1.00 0.00 0.57 0.49

10 0.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 0.86 0.35

Total 0.22 0.41 0.78 0.41 0.92 0.27 0.97 0.16 0.86 0.35 0.97 0.16 0.96 0.19 0.81 0.39

https://doi.org/10.1371/journal.pone.0174035.t001
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Fig 4 presents the mean accuracies and its 95% confidence interval by correlation (top left

panel), number of items per factor (to right panel), sample size (bottom left panel) and by all

conditions combined (bottom right panel) in the four-factor structure. In general, the mean

accuracies decrease as the correlation between factors increases from zero to .7, with EGA pre-

senting the highest mean accuracy (Fig 4, top left panel). On the other hand, the mean accura-

cies increase when the number of items goes from 5 to 10 (Fig 4, top right panel) and with the

increase of the sample size (Fig 4, bottom left panel), except for MAP, whose accuracy is

inversely related to sample size. Finally, the bottom right panel of Fig 4 shows, again, that the

worst scenario appears when the correlation between factors is high (.7) and the number of

items is small (5 per factor). In this case, only EGA was able to correctly estimate the number

of dimensions, presenting a mean accuracy of 100% for a sample size of 5,000 (Fig 4, bottom

right panel). However, the increase in the number of items per factor, from five to ten, sharply

increments the mean accuracy of the methods (Fig 4, bottom right panel).

Fig 1. Mean accuracies and its 95% confidence interval by correlation (top left panel), number of items per factor (top right panel),

sample size (bottom left panel) and by all conditions combined (bottom right panel) for the two-factor structure. VSS = Very Simple Structure;

BIC = Bayesian Information Criteria; EBIC = Extended Bayesian Information Criteria; MAP = Minimum Average Partial procedure; Kaiser = Kaiser-

Guttman eigenvalue greater than one rule; PA = Parallel Analysis; EGA = Exploratory Graph Analysis. Low correlation = .2; Moderate Correlation = .5;

High Correlation = .7.

https://doi.org/10.1371/journal.pone.0174035.g001
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Bias error and absolute error. In terms of mean bias error, Fig 5 shows that VSS overesti-

mated the number of dimensions when the correlation between factors was orthogonal or low.

When the correlation between factors was moderate, MAP, BIC, eBIC, VSS, Kaiser-Guttman

and PA underestimated the number of dimensions. All techniques presented a mean bias

error lower than zero, indicating a tendency to underestimate the number of factors in the

high correlation scenario (Fig 5, top left panel). The top right panel of Fig 5 also shows a very

clear tendency: except for EGA, all the methods increased the mean bias error with the

increase in number of items increases per factor. The sample size also affects the mean bias

error (Fig 5, bottom left panel). When the sample size was 100, BIC, VSS, MAP, eBIC and PA

presented the lowest mean bias error. As sample size increase, the mean bias error of the tech-

niques tends to be closer to zero, except for the VSS, since the increase in the sample size

implies an increase in its overestimation. Finally, the bottom right panel of Fig 5 shows what

happens when the correlation between factors is high and the number of items is five: the

methods tends to underestimate the number of dimensions. In terms of mean absolute error

Fig 2. Mean bias error and its 95% confidence interval by correlation (top left panel), number of items per factor (top right panel),

sample size (bottom left panel) and by all conditions combined (bottom right panel) for the two-factor structure. VSS = Very Simple Structure;

BIC = Bayesian Information Criteria; EBIC = Extended Bayesian Information Criteria; MAP = Minimum Average Partial procedure; Kaiser = Kaiser-

Guttman eigenvalue greater than one rule; PA = Parallel Analysis; EGA = Exploratory Graph Analysis. Low correlation = .2; Moderate Correlation = .5;

High Correlation = .7.

https://doi.org/10.1371/journal.pone.0174035.g002
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(Fig 6), i.e. the mean absolute difference between the estimated and the correct number of fac-

tors, the scenario is very similar to the described above. In general, the absolute error increased

as the correlation between factors became stronger and decreased when the number of items

went from five to ten and when the sample size increased (except for VSS). EGA was the only

technique to present a mean absolute error of zero for a sample size of 5,000.

High order interactions

The final analysis aimed to verify how each condition investigated, and their combinations,

impacted the accuracy to identify the correct number of dimensions for each technique used.

In order to do it, an analysis of variance (ANOVA) were performed for each technique, with

the accuracy as the dependent variable and the correlation between factors, sample size, num-

ber of items per factor and number of factors as the independent variables (Table 3). Only the

partial η2 (eta squared) effect size will be reported, since the goal is to verify the magnitude of

the difference between groups of conditions, in each technique. Partial η2 values equals to or

Fig 3. Mean absolute error and its 95% confidence interval by correlation (top left panel), number of items per factor (top right panel), sample

size (bottom left panel) and by all conditions combined (bottom right panel) for the two-factor structure. VSS = Very Simple Structure;

BIC = Bayesian Information Criteria; EBIC = Extended Bayesian Information Criteria; MAP = Minimum Average Partial procedure; Kaiser = Kaiser-

Guttman eigenvalue greater than one rule; PA = Parallel Analysis; EGA = Exploratory Graph Analysis. Low correlation = .2; Moderate Correlation = .5;

High Correlation = .7.

https://doi.org/10.1371/journal.pone.0174035.g003
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Table 2. Mean accuracy and its standard deviation, for each method and each condition, for the four factor structure. VSS = Very Simple Structure;

BIC = Bayesian Information Criteria; EBIC = Extended Bayesian Information Criteria; MAP = Minimum Average Partial procedure; Kaiser = Kaiser-Guttman

eigenvalue greater than one rule; PARAN = Parallel Analysis; EGA = Exploratory Graph Analysis. Low correlation = .2; Moderate Correlation = .5; High Corre-

lation = .7. The rows show the aggregate mean and standard deviation for each level of correlation (bold), sample size (bold and italicized) and number of

items per factor (non-italicized).

VSS MAP BIC EBIC Kaiser PA EGA Total

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

Orthogonal 0.79 0.41 0.32 0.47 0.95 0.23 0.86 0.35 0.99 0.11 1.00 0.07 0.95 0.21 0.83 0.37

100 0.72 0.45 0.54 0.50 0.79 0.41 0.45 0.50 0.95 0.22 0.98 0.13 0.75 0.43 0.74 0.44

5 0.89 0.32 0.57 0.50 0.68 0.47 0.26 0.44 0.98 0.15 0.97 0.18 0.68 0.47 0.72 0.45

10 0.55 0.50 0.51 0.50 0.89 0.31 0.63 0.48 0.92 0.27 1.00 0.00 0.93 0.25 0.76 0.43

500 0.81 0.39 0.26 0.44 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 0.87 0.34

5 0.81 0.39 0.30 0.46 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 0.87 0.33

10 0.80 0.40 0.21 0.40 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 0.86 0.35

1000 0.81 0.39 0.25 0.43 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 0.87 0.34

5 0.83 0.38 0.30 0.46 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 0.87 0.33

10 0.80 0.40 0.20 0.40 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 0.86 0.35

5000 0.81 0.39 0.23 0.42 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 0.86 0.34

5 0.82 0.38 0.26 0.44 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 0.87 0.34

10 0.80 0.40 0.20 0.40 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 0.86 0.35

Low Correlation 0.76 0.43 0.31 0.46 0.91 0.29 0.82 0.39 0.97 0.18 0.99 0.10 0.97 0.17 0.82 0.39

100 0.62 0.48 0.51 0.50 0.64 0.48 0.27 0.45 0.87 0.34 0.96 0.19 0.82 0.38 0.66 0.47

5 0.82 0.38 0.50 0.50 0.48 0.50 0.19 0.40 0.85 0.36 0.93 0.26 0.79 0.41 0.65 0.48

10 0.42 0.49 0.51 0.50 0.80 0.40 0.35 0.48 0.89 0.31 1.00 0.04 0.97 0.16 0.67 0.47

500 0.81 0.39 0.25 0.43 1.00 0.03 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 0.87 0.34

5 0.82 0.39 0.30 0.46 1.00 0.04 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 0.87 0.33

10 0.80 0.40 0.20 0.40 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 0.86 0.35

1000 0.81 0.39 0.24 0.43 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 0.86 0.34

5 0.82 0.38 0.28 0.45 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 0.87 0.34

10 0.80 0.40 0.20 0.40 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 0.86 0.35

5000 0.81 0.40 0.23 0.42 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 0.86 0.34

5 0.81 0.39 0.26 0.44 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 0.87 0.34

10 0.80 0.40 0.20 0.40 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 0.86 0.35

Moderate Correlation 0.33 0.47 0.13 0.33 0.51 0.50 0.63 0.48 0.70 0.46 0.83 0.37 0.93 0.25 0.57 0.49

100 0.09 0.29 0.13 0.34 0.36 0.48 0.10 0.29 0.39 0.49 0.55 0.50 0.56 0.50 0.29 0.46

5 0.04 0.21 0.07 0.25 0.01 0.08 0.00 0.00 0.03 0.17 0.18 0.38 0.50 0.50 0.11 0.31

10 0.14 0.34 0.20 0.40 0.72 0.45 0.19 0.39 0.75 0.44 0.93 0.26 0.97 0.16 0.50 0.50

500 0.41 0.49 0.13 0.34 0.51 0.50 0.56 0.50 0.64 0.48 0.81 0.40 1.00 0.04 0.58 0.49

5 0.01 0.10 0.07 0.25 0.01 0.10 0.11 0.31 0.28 0.45 0.61 0.49 1.00 0.06 0.30 0.46

10 0.80 0.40 0.20 0.40 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 0.86 0.35

1000 0.41 0.49 0.12 0.32 0.57 0.49 0.88 0.33 0.87 0.33 0.97 0.18 1.00 0.00 0.69 0.46

5 0.01 0.10 0.04 0.19 0.15 0.35 0.75 0.43 0.74 0.44 0.93 0.26 1.00 0.00 0.52 0.50

10 0.80 0.40 0.20 0.40 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 0.86 0.35

5000 0.41 0.49 0.12 0.32 0.60 0.49 1.00 0.00 0.90 0.30 1.00 0.00 1.00 0.00 0.72 0.45

5 0.01 0.12 0.03 0.18 0.20 0.40 1.00 0.00 0.80 0.40 1.00 0.00 1.00 0.00 0.58 0.49

10 0.80 0.40 0.20 0.40 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 0.86 0.35

High Correlation 0.32 0.47 0.08 0.27 0.39 0.49 0.35 0.48 0.39 0.49 0.40 0.49 0.71 0.46 0.37 0.48

100 0.07 0.26 0.03 0.18 0.14 0.35 0.01 0.10 0.07 0.25 0.10 0.30 0.27 0.44 0.09 0.28

(Continued )
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greater than .14 can be considered large effect sizes [61]. The VSS technique presented a large

effect size for correlation, number of factors and for the two-way interaction of sample size X

number of factors. The MAP method presented a large effect size for correlation, number of

factors and for the two-way interaction of correlation X items per factor. BIC and eBIC, on the

other hand, presented large effect sizes for correlation, sample size, items per factor and num-

ber of factors. BIC also presented large effect sizes for every two-way interaction involving cor-

relation, plus the two-way interaction of items per factor X number of factors and the three-

way interaction of correlation X items per factor X number of factors. The eBIC technique, on

the other hand, also presented large effect sizes for correlation X items per factor, correlation X

number of factors, sample size X number of factors and for the four-way interaction of correla-

tion X sample size X items per factor X number of factors. By its turn, the Kaiser-Guttman rule

presented large effect sizes for correlation, items per factor, and correlation X items per factor.

Parallel analysis presented large effect sizes for all isolate conditions, plus the two-way interac-

tions of correlation X items per factor, correlation X number of factors, as well as for the three-

way interaction of correlation X items per factor X number of factors and the four-way interac-

tion of correlation X sample size X items per factor X number of factors. Finally, EGA only

presented a large effect size for the sample size, being the technique whose accuracy was least

affected by the conditions investigated in this paper.

Using EGA in real dataset

The dataset we are using in this section was published by Golino and Gomes [62]. It presents

data from 1,803 Brazilians (52.5% female) with age varying from 5 to 85 years (M = 15.75;

SD = 12.21) that answered to the Inductive Reasoning Developmental Test–IRDT (3rd ver-

sion) [62], a pencil-and-paper instrument with 56 items designed to assess developmentally

sequenced and hierarchically organized inductive reasoning. The dataset can be downloaded

for reproducible purposes in the following link: https://figshare.com/articles/TDRI_dataset_

csv/3142321. The sequence of IRDT items was constructed to measure seven developmental

stages based on the Model of Hierarchical Complexity [63, 64] and on Fischer’s Dynamic

Skill Theory [65, 66], two neo-Piagetian theories of development. Golino and Gomes [62]

showed that two structures can be used to describe the IRDT items. The first one is a seven

correlated factors model [χ2 (1463) = 764,28; p = 0,00; CFI = 1,00; RMSEA = 0,00; NFI = 0,99;

Table 2. (Continued)

VSS MAP BIC EBIC Kaiser PA EGA Total

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.15 0.15 0.36 0.02 0.15

10 0.15 0.35 0.06 0.24 0.28 0.45 0.02 0.15 0.13 0.34 0.17 0.38 0.64 0.48 0.16 0.36

500 0.40 0.49 0.09 0.29 0.44 0.50 0.38 0.49 0.50 0.50 0.50 0.50 0.61 0.49 0.42 0.49

5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.22 0.42 0.03 0.18

10 0.79 0.41 0.19 0.39 0.87 0.33 0.76 0.43 1.00 0.00 1.00 0.00 1.00 0.00 0.80 0.40

1000 0.40 0.49 0.10 0.30 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.77 0.42 0.47 0.50

5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.53 0.50 0.08 0.27

10 0.80 0.40 0.20 0.40 1.00 0.06 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 0.86 0.35

5000 0.40 0.49 0.10 0.30 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 1.00 0.00 0.50 0.50

5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.14 0.35

10 0.80 0.40 0.20 0.40 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 0.86 0.35

Total 0.55 0.50 0.21 0.41 0.69 0.46 0.66 0.47 0.76 0.43 0.80 0.40 0.89 0.31 0.65 0.48

https://doi.org/10.1371/journal.pone.0174035.t002
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NNFI = 1,00], in which each factor represents one stage and explains a group of eight items

(Fig 7). The other is a bifactor (Schmid-Leiman) model with seven specific first order factors

(Fig 8), each one representing one stage and explaining a group of eight items, plus a general

first order factor directly explaining the IRDT’s 56 items [χ2 (1428) = 2768,36; p = 0,00;

CFI = 0,98; RMSEA = 0,04; NFI = 0,95; NNFI = 0,98]. The authors showed that both models

are not significantly different, via the Satorra and Bentler’s [67] scaled chi-square test [Δχ2 =

-99.87; ΔDF = 35; p = 1]. Figs 7 and 8 shows the standardized factor loadings and correlations

of both models, and were created using semPlot [68].

The EGA was used in the IRDT data and suggested seven dimensions (Fig 9) with its

respective items. The nodes represent the items, and the communities, factors or dimensions

are colored. The seven dimensions estimated by EGA correspond exactly to the seven first-

order factors investigated in the original publication [62]. Parallel analysis, MAP, VSS and BIC

and EBIC were used to estimate the number of dimensions in the IRDT data via the psych [59]

package. Table 4 shows the statistics by number of factors from one to ten, for each method.

Fig 4. Mean accuracy and its 95% confidence interval by correlation (top left panel), number of items per factor (top right panel),

sample size (bottom left panel) and by all conditions combined (bottom right panel) for the four-factor structure. VSS = Very Simple Structure;

BIC = Bayesian Information Criteria; EBIC = Extended Bayesian Information Criteria; MAP = Minimum Average Partial procedure; Kaiser = Kaiser-

Guttman eigenvalue greater than one rule; PA = Parallel Analysis; EGA = Exploratory Graph Analysis. Low correlation = .2; Moderate Correlation = .5;

High Correlation = .7.

https://doi.org/10.1371/journal.pone.0174035.g004
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As can be seen highlighted in bold in Table 4, VSS suggests two factors, Kaiser-Guttman eigen-

value rule suggests six factors, MAP seven, BIC and EBIC ten factors, and parallel analysis four

factors. Only MAP suggested the same number of factors investigated in the original publica-

tion for the IRDT data.

Conclusion

Estimating the correct number of dimensions in psychological and educational instruments is

challenging [1, 2, 3]. We proposed a new method for assessing the number of dimensions in

psychological data, which has been derived from the growing field of network psychometrics

in which network models are used to model the covariance structure. We term this method

exploratory graph analysis (EGA), and showed in simulation studies that the method per-

formed comparable to parallel analysis in most cases, and better with multiple strongly cor-

related latent factors. In addition, EGA automatically identifies which items indicate the

retrieved dimensions. We showcased EGA on an empirical dataset of the Inductive Reasoning

Developmental Test.

Fig 5. Mean bias error and its 95% confidence interval by correlation (top left panel), number of items per factor (top right panel),

sample size (bottom left panel) and by all conditions combined (bottom right panel) for the four-factor structure. VSS = Very Simple Structure;

BIC = Bayesian Information Criteria; EBIC = Extended Bayesian Information Criteria; MAP = Minimum Average Partial procedure; Kaiser = Kaiser-

Guttman eigenvalue greater than one rule; PA = Parallel Analysis; EGA = Exploratory Graph Analysis. Low correlation = .2; Moderate Correlation = .5;

High Correlation = .7.

https://doi.org/10.1371/journal.pone.0174035.g005
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As shown in our simulation study, EGA performed comparable to parallel analysis, EBIC,

eBIC and to Kaiser-Guttman rule in a number of situations, especially when the number of

factors was two. However, EGA outperformed all methods when the number of items per fac-

tor was five and the correlation between factors were high in the four-factor structure. In gen-

eral, EGA outperformed the other methods in the four factor structure, with a general mean

accuracy of 89%, and was the technique whose accuracy was least affected by the conditions

investigated in this paper, as shown by the ANOVA’s partial eta squared effect size in Table 2.

The large differences in the four factors X high correlation X five indicators condition is

remarkable, especially compared to the results of the 10-indicator condition. Future simulation

studies should confirm if these results can be replicated. Not taking this condition into

account, EGA performs comparable to PA over all other conditions with the added benefit of

returning which items indicate each dimension.

A surprising evidence appeared in our results: The Kaiser-Guttman eigenvalue greater-

than-one rule was better than some researchers would expect [20, 24]. It presented the third

Fig 6. Mean absolute error and its 95% confidence interval by correlation (top left panel), number of items per factor (top right panel), sample

size (bottom left panel) and by all conditions combined (bottom right panel) for the four-factor structure. VSS = Very Simple Structure;

BIC = Bayesian Information Criteria; EBIC = Extended Bayesian Information Criteria; MAP = Minimum Average Partial procedure; Kaiser = Kaiser-

Guttman eigenvalue greater than one rule; PA = Parallel Analysis; EGA = Exploratory Graph Analysis. Low correlation = .2; Moderate Correlation = .5;

High Correlation = .7.

https://doi.org/10.1371/journal.pone.0174035.g006
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best mean accuracy for the two-factor structure (Mean = 86%; SD = 35%) and for the four-fac-

tor structure (Mean = 76%, SD = 43%), only losing to parallel analysis (Mean Two-Factors = 97%,

SD Two-Factors = 16%; Mean Four-Factors = 80%, SD Four-Factors = 40%) and EGA (Mean Two-Factors =

97%, SD Two-Factors = 19%; Mean Four-Factors = 89%, SD Four-Factors = 31%). However, the Kai-

ser-Guttman rule suffers from the same issues of parallel analysis, i.e. its accuracy is very

low when the correlation between factors is high and the number of items per factor is low.

Another results worth pointing refers to the poor performance of VSS, that was the technique

less accurate to estimate the number of factors. It should be noticed that while choosing a

method to investigate the number of underlying dimensions of a given dataset or instrument,

one needs to consider the strengths and weaknesses of each technique, reviewing the scientific

literature in order to see the conditions they work the best and the conditions they fail, as well

as considering the assumptions of each method. For example, VSS seeks a very simple struc-

ture, making very rigid assumptions, that will be met only in a limited number of cases. Both

the results of simulation studies and the careful analysis of the underlying assumptions of

each method should be considered in order to make a substantiated decision regarding which

technique to use.

It is important to note that we have used a very pragmatic approach in our study, since the

goal was to investigate whether different procedures can detect the number of simulated

dimensions. This is an important part of the development of new quantitative methods aiming

to identify the number of dimensions or factors underlying a given instrument or dataset. It is

also relevant in order to detect in which conditions the available techniques work the best, in

which conditions they should be used carefully and under which circumstances they fail. How-

ever, detecting the correct number of factors is only possible for simulated data. Real data

allow for several solutions, often similar, especially if one varies the decision criterion. The role

of quantitative techniques is to provide support in the quest for understanding the data, sup-

ported by careful theoretical analysis, in order to arrive at a solution that is robust both from a

quantitative and from a theoretical point of view.

As this is the first study presenting EGA and comparing it to other methods, it has impor-

tant limitations that should be addressed in future research. Future research should investigate

Table 3. ANOVA’s Partial eta squared effect sizes. VSS = Very Simple Structure; BIC = Bayesian Information Criteria; EBIC = Extended Bayesian Infor-

mation Criteria; MAP = Minimum Average Partial procedure; Kaiser = Kaiser-Guttman eigenvalue greater than one rule; PA = Parallel Analysis;

EGA = Exploratory Graph Analysis. In bold and underlined are the large effect sizes [61].

VSS MAP BIC EBIC Kaiser PA EGA

Correlation 0.21 0.22 0.42 0.32 0.61 0.44 0.12

Sample Size 0.03 0.00 0.31 0.45 0.10 0.17 0.18

Items per Factor 0.02 0.13 0.28 0.19 0.42 0.22 0.02

Number of Factors 0.20 0.47 0.27 0.44 0.08 0.25 0.04

Correlation X Sample Size 0.05 0.01 0.14 0.05 0.07 0.12 0.08

Correlation X Items per Factor 0.07 0.15 0.21 0.17 0.51 0.25 0.03

Sample Size X Items per Factor 0.02 0.00 0.00 0.01 0.02 0.01 0.01

Correlation X Number of Factors 0.05 0.03 0.16 0.19 0.06 0.36 0.05

Sample Size X Number of Factors 0.15 0.01 0.00 0.30 0.10 0.03 0.03

Items per Factor X Number of Factors 0.06 0.08 0.22 0.12 0.00 0.14 0.03

Correlation X Sample Size X Items per Factor 0.01 0.01 0.05 0.08 0.13 0.12 0.03

Correlation X Sample Size X Number of Factors 0.02 0.01 0.12 0.11 0.06 0.04 0.03

Correlation X Items per Factor X Number of Factors 0.08 0.05 0.17 0.08 0.07 0.19 0.05

Sample Size X Items per Factor X Number of Factors 0.05 0.00 0.02 0.04 0.01 0.02 0.02

Correlation X Sample Size X Items per Factor X Number of Factors 0.01 0.00 0.06 0.19 0.05 0.16 0.03

https://doi.org/10.1371/journal.pone.0174035.t003
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the robustness of EGA to estimate the correct number of dimensions if the data is not multi-

variate normal, as well as compare it to the well-known and used technique of the Scree-Plot.

Also, it would be important to verify the accuracy of other community detection algorithm,

besides the walk-trap algorithm currently used in the EGA procedure, in the identification of

clusters in undirected weighted networks. A similar investigation was published by Yang,

Algesheimer and Tessone [69], which showed the walk-trap algorithm as one of the most accu-

rate ones. However, Yang, Algesheimer and Tessone [69] investigated the accuracy of commu-

nity detection algorithms for very large undirected weighted networks (with more than 1,000

Fig 7. Inductive Reasoning Developmental Test [62] seven correlated factors model. The factors correspond to the stages the

instrument intended to measure: Prp = Pre-Operational; Prm = Primary; Cnc = Concrete; Abs = Abstract; Frm = Formal;

Sys = Systematic; Met = Metasystematic.

https://doi.org/10.1371/journal.pone.0174035.g007
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nodes), which is not the usual number of variables in psychological or educational researches

involving the use of tests and/or questionnaires.

There are at least other four things to investigate further. The first two are how EGA works

for different levels of factor loadings and for different type of items (polytomous and continu-

ous). It is also important to investigate if the findings of the current paper can be replicated in

scenarios involving only one factor. Finally, future research should investigate both the

Fig 8. Inductive Reasoning Developmental Test [62] bifactor model. The specific, first order factors correspond to the stages the

instrument intended to measure: Prp = Pre-Operational; Prm = Primary; Cnc = Concrete; Abs = Abstract; Frm = Formal; Sys = Systematic;

Met = Metasystematic. The general first order factor (G) is the general factor of inductive reasoning.

https://doi.org/10.1371/journal.pone.0174035.g008
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communalities and the proportion of explained variance of the dimensional structure sug-

gested by EGA, especially when using real data. We expect that, in spite of the relevant open

questions briefly pointed above, EGA can be used in real datasets. It outperformed other meth-

ods, including the very well-known and widely used parallel analysis and minimum average

partial procedure, when the number of factors were equal to four, the number of items was

Fig 9. Network of partial correlations estimated during the exploratory graph analysis procedure showing

seven latent dimensions in data from the Inductive Reasoning Developmental Test.

https://doi.org/10.1371/journal.pone.0174035.g009

Table 4. Statistics by each method, from 1 to 10 factors. VSS = Very Simple Structure; BIC = Bayesian Information Criteria; EBIC = Extended Bayesian

Information Criteria; MAP = Minimum Average Partial procedure; Kaiser = Kaiser-Guttman eigenvalue rule. The number of factors is chosen as follows: the

highest value of the VSS statistic, the lowest value of the MAP, BIC and EBIC statistics, and the last observed eigenvalue greater than the simulated eigen-

value in the parallel analysis.

Number

of factors

VSS MAP BIC EBIC Kaiser Parallel Analysis

Observed Eigenvalues Simulated Eigenvalues

1 0.63 0.0403 36739 110227 23.17 23.17 2.69

2 0.68 0.0289 23717 45380 7.29 7.29 2.27

3 0.68 0.0192 13721 19638 3.94 3.94 2.06

4 0.64 0.0142 8245 10762 3.02 3.02 1.80

5 0.66 0.0083 5326 -1422 1.24 1.24 1.60

6 0.58 0.0078 2565 -4205 1.07 1.07 1.41

7 0.58 0.0056 1646 -6297 0.85 0.85 1.22

8 0.59 0.006 1340 -6115 0.40 0.40 1.12

9 0.58 0.0065 1036 -6011 0.33 0.33 0.98

10 0.58 0.0071 866 -5903 0.22 0.22 0.86

https://doi.org/10.1371/journal.pone.0174035.t004
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five and the correlation between factors were high. In a nutshell, EGA can help with an issue

that have been challenging researchers since the beginning of scientific psychological testing.

The findings of the current paper may be the solution that Keith, Caemmerer and Reynolds

[18] was looking for when they investigated if the available methods underestimates or overes-

timates the number of factors in intelligence researches. In face of the problems with parallel

analysis and MAP, they pointed that a possible solution could be found in formal and informal

theory in research with cognitive tests. We can argue that a possible solution is the use of EGA

in intelligence like data.
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S1 File. Scripts used in the current simulation study.

(RAR)

Author Contributions

Conceptualization: HFG SE.

Formal analysis: HFG.

Methodology: HFG.

Software: HFG.

Validation: HFG.

Visualization: HFG.

Writing – original draft: HFG SE.

Writing – review & editing: HFG SE.

References
1. Preacher KJ, MacCallum RC. Repairing Tom Swift’s electric factor analysis machine. Understanding

statistics: Statistical issues in psychology, education, and the social sciences. 2003 Feb 3; 2(1):13–43.

2. Ruscio J, Roche B. Determining the number of factors to retain in an exploratory factor analysis using

comparison data of known factorial structure. Psychological assessment. 2012 Jun; 24(2):282. https://

doi.org/10.1037/a0025697 PMID: 21966933

3. Velicer WF, Jackson DN. Component analysis versus common factor analysis: Some issues in select-

ing an appropriate procedure. Multivariate behavioral research. 1990 Jan 1; 25(1):1–28. https://doi.org/

10.1207/s15327906mbr2501_1 PMID: 26741964

4. James G, Witten D, Hastie T, Tibshirani R. An introduction to statistical learning. New York: springer;

2013 Feb 11.

5. Friedman J, Hastie T, Tibshirani R. The elements of statistical learning. Springer, Berlin: Springer

series in statistics; 2001.

6. Guttman L. Some necessary conditions for common-factor analysis. Psychometrika. 1954 Jun 1; 19

(2):149–61.

7. Kaiser HF. The application of electronic computers to factor analysis. Educational and psychological

measurement. 1960, 20:141–151.

8. Horn JL. A rationale and test for the number of factors in factor analysis. Psychometrika. 1965 Jun 1; 30

(2):179–85.

9. Velicer WF. Determining the number of components from the matrix of partial correlations. Psychome-

trika. 1976 Sep 1; 41(3):321–7.

10. Schwarz G. Estimating the dimension of a model. The annals of statistics. 1978; 6(2):461–4.

11. Chen J, Chen Z. Extended Bayesian information criteria for model selection with large model spaces.

Biometrika. 2008 Sep 1; 95(3):759–71.

Exploratory graph analysis

PLOS ONE | https://doi.org/10.1371/journal.pone.0174035 June 8, 2017 23 / 26

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0174035.s001
https://doi.org/10.1037/a0025697
https://doi.org/10.1037/a0025697
http://www.ncbi.nlm.nih.gov/pubmed/21966933
https://doi.org/10.1207/s15327906mbr2501_1
https://doi.org/10.1207/s15327906mbr2501_1
http://www.ncbi.nlm.nih.gov/pubmed/26741964
https://doi.org/10.1371/journal.pone.0174035


12. Revelle W, Rocklin T. Very simple structure: An alternative procedure for estimating the optimal number

of interpretable factors. Multivariate Behavioral Research. 1979 Oct 1; 14(4):403–14. https://doi.org/10.

1207/s15327906mbr1404_2 PMID: 26804437

13. Lauritzen SL. Graphical models. Clarendon Press; 1996 May 2.

14. Friedman J, Hastie T, Tibshirani R. Sparse inverse covariance estimation with the graphical lasso. Bio-

statistics. 2008 Jul 1; 9(3):432–41. https://doi.org/10.1093/biostatistics/kxm045 PMID: 18079126

15. Foygel R, Drton M. Extended Bayesian information criteria for Gaussian graphical models. InAdvances

in neural information processing systems 2010 (pp. 604–612).

16. Golino, HF. EGA package. Available at github.com/hfgolino/EGA.

17. Garrido LE, Abad FJ, Ponsoda V. Are fit indices really fit to estimate the number of factors with categori-

cal variables? Some cautionary findings via Monte Carlo simulation. Psychological methods. 2016 Mar;

21(1):93. https://doi.org/10.1037/met0000064 PMID: 26651983

18. Keith TZ, Caemmerer JM, Reynolds MR. Comparison of methods for factor extraction for cognitive test-

like data: Which overfactor, which underfactor?. Intelligence. 2016 Feb 29; 54:37–54.

19. Osborne JW, Costello AB. Best practices in exploratory factor analysis: Four recommendations for get-

ting the most from your analysis. Pan-Pacific Management Review. 2009 Jul 1; 12(2):131–46.

20. Bandalos DL, Boehm-Kaufman MR. Four common misconceptions in exploratory factor analysis. Sta-

tistical and methodological myths and urban legends: Doctrine, verity and fable in the organizational

and social sciences. 2009:61–87.

21. Crawford AV, Green SB, Levy R, Lo WJ, Scott L, Svetina D, et al. Evaluation of parallel analysis meth-

ods for determining the number of factors. Educational and Psychological Measurement. 2010 Sep 1.

https://doi.org/10.1177/0013164410387338

22. Green SB, Redell N, Thompson MS, Levy R. Accuracy of revised and traditional parallel analyses for

assessing dimensionality with binary data. Educational and Psychological Measurement. 2016 Feb 1;

76(1):5–21.

23. Timmerman ME, Lorenzo-Seva U. Dimensionality assessment of ordered polytomous items with paral-

lel analysis. Psychological Methods. 2011 Jun; 16(2):209. https://doi.org/10.1037/a0023353 PMID:

21500916

24. Velicer WF, Eaton CA, Fava JL. Construct explication through factor or component analysis: A review

and evaluation of alternative procedures for determining the number of factors or components. InPro-

blems and solutions in human assessment 2000 (pp. 41–71). Springer US.

25. Zwick WR, Velicer WF. Comparison of five rules for determining the number of components to retain.

Psychological bulletin. 1986 May; 99(3):432.

26. Garrido LE, Abad FJ, Ponsoda V. Performance of Velicer’s minimum average partial factor retention

method with categorical variables. Educational and Psychological Measurement. 2011 Apr

5:0013164410389489.

27. Dziak JJ, Coffman DL, Lanza ST, Li R. Sensitivity and specificity of information criteria. The Methodol-

ogy Center and Department of Statistics, Penn State, The Pennsylvania State University. 2012 Jun

27:1–0.

28. Lopes HF, West M. Bayesian model assessment in factor analysis. Statistica Sinica. 2004 Jan 1:41–

67.

29. Preacher KJ, Zhang G, Kim C, Mels G. Choosing the optimal number of factors in exploratory factor

analysis: A model selection perspective. Multivariate Behavioral Research. 2013 Jan 1; 48(1):28–56.

https://doi.org/10.1080/00273171.2012.710386 PMID: 26789208

30. Song J, Belin TR. Choosing an appropriate number of factors in factor analysis with incomplete data.

Computational Statistics & Data Analysis. 2008 Mar 15; 52(7):3560–9.

31. Hakstian AR, Rogers WT, Cattell RB. The behavior of number-of-factors rules with simulated data. Mul-

tivariate Behavioral Research. 1982 Apr 1; 17(2):193–219. https://doi.org/10.1207/

s15327906mbr1702_3 PMID: 26810948

32. Buja A, Eyuboglu N. Remarks on parallel analysis. Multivariate behavioral research. 1992 Oct 1; 27

(4):509–40. https://doi.org/10.1207/s15327906mbr2704_2 PMID: 26811132

33. Horn JL, Engstrom R. Cattell’s scree test in relation to Bartlett’s chi-square test and other observations

on the number of factors problem. Multivariate Behavioral Research. 1979 Jul 1; 14(3):283–300. https://

doi.org/10.1207/s15327906mbr1403_1 PMID: 26821851

34. Borsboom D, Cramer AO, Schmittmann VD, Epskamp S, Waldorp LJ. The small world of psychopathol-

ogy. PloS one. 2011 Nov 17; 6(11):e27407. https://doi.org/10.1371/journal.pone.0027407 PMID:

22114671

Exploratory graph analysis

PLOS ONE | https://doi.org/10.1371/journal.pone.0174035 June 8, 2017 24 / 26

https://doi.org/10.1207/s15327906mbr1404_2
https://doi.org/10.1207/s15327906mbr1404_2
http://www.ncbi.nlm.nih.gov/pubmed/26804437
https://doi.org/10.1093/biostatistics/kxm045
http://www.ncbi.nlm.nih.gov/pubmed/18079126
https://doi.org/10.1037/met0000064
http://www.ncbi.nlm.nih.gov/pubmed/26651983
https://doi.org/10.1177/0013164410387338
https://doi.org/10.1037/a0023353
http://www.ncbi.nlm.nih.gov/pubmed/21500916
https://doi.org/10.1080/00273171.2012.710386
http://www.ncbi.nlm.nih.gov/pubmed/26789208
https://doi.org/10.1207/s15327906mbr1702_3
https://doi.org/10.1207/s15327906mbr1702_3
http://www.ncbi.nlm.nih.gov/pubmed/26810948
https://doi.org/10.1207/s15327906mbr2704_2
http://www.ncbi.nlm.nih.gov/pubmed/26811132
https://doi.org/10.1207/s15327906mbr1403_1
https://doi.org/10.1207/s15327906mbr1403_1
http://www.ncbi.nlm.nih.gov/pubmed/26821851
https://doi.org/10.1371/journal.pone.0027407
http://www.ncbi.nlm.nih.gov/pubmed/22114671
https://doi.org/10.1371/journal.pone.0174035


35. Borsboom D, Cramer AO. Network analysis: an integrative approach to the structure of psychopathol-

ogy. Annual review of clinical psychology. 2013 Mar 28; 9:91–121. https://doi.org/10.1146/annurev-

clinpsy-050212-185608 PMID: 23537483

36. Isvoranu AM, van Borkulo CD, Boyette LL, Wigman JT, Vinkers CH, Borsboom D. A Network Approach

to Psychosis: Pathways Between Childhood Trauma and Psychotic Symptoms. Schizophrenia bulletin.

2016 May 10:sbw055.

37. McNally RJ, Robinaugh DJ, Wu GW, Wang L, Deserno MK, Borsboom D. Mental disorders as causal

systems a network approach to posttraumatic stress disorder. Clinical Psychological Science. 2015

Nov 1; 3(6):836–49.

38. Fried EI, Bockting C, Arjadi R, Borsboom D, Amshoff M, Cramer AO, et al. From loss to loneliness: The

relationship between bereavement and depressive symptoms. Journal of abnormal psychology. 2015

May; 124(2):256. https://doi.org/10.1037/abn0000028 PMID: 25730514

39. Dalege J, Borsboom D, van Harreveld F, van den Berg H, Conner M, van der Maas HL. Toward a for-

malized account of attitudes: The Causal Attitude Network (CAN) model. Psychological review. 2016

Jan; 123(1):2. https://doi.org/10.1037/a0039802 PMID: 26479706

40. Kossakowski JJ, Epskamp S, Kieffer JM, van Borkulo CD, Rhemtulla M, Borsboom D. The application

of a network approach to Health-Related Quality of Life (HRQoL): introducing a new method for assess-

ing HRQoL in healthy adults and cancer patients. Quality of Life Research. 2016 Apr 1; 25(4):781–92.

https://doi.org/10.1007/s11136-015-1127-z PMID: 26370099

41. Van Der Maas HL, Dolan CV, Grasman RP, Wicherts JM, Huizenga HM, Raijmakers ME. A dynamical

model of general intelligence: the positive manifold of intelligence by mutualism. Psychological review.

2006 Oct; 113(4):842. https://doi.org/10.1037/0033-295X.113.4.842 PMID: 17014305

42. Epskamp S, Maris G, Waldorp LJ, Borsboom D. Network psychometrics. Handbook of psychometrics.

New York: Wiley. 2015.

43. Tibshirani R. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society.

Series B (Methodological). 1996 Jan 1:267–88.

44. van Borkulo CD, Borsboom D, Epskamp S, Blanken TF, Boschloo L, Schoevers RA, et al. A new

method for constructing networks from binary data. Scientific Reports. 2014 Aug 1; 4.

45. Epskamp S, Cramer AO, Waldorp LJ, Schmittmann VD, Borsboom D. qgraph: Network visualizations

of relationships in psychometric data. Journal of Statistical Software. 2012 May 24; 48(4):1–8.

46. Epskamp S, Fried EI. Estimating Regularized Psychological Networks Using qgraph. arXiv preprint

arXiv:1607.01367. 2016 Sep 25.

47. Cramer AO, Sluis S, Noordhof A, Wichers M, Geschwind N, Aggen SH, et al. Dimensions of normal per-

sonality as networks in search of equilibrium: You can’t like parties if you don’t like people. European

Journal of Personality. 2012 Jul 1; 26(4):414–31.

48. Costantini G, Epskamp S, Borsboom D, Perugini M, Mõttus R, Waldorp LJ, et al. State of the aRt per-

sonality research: A tutorial on network analysis of personality data in R. Journal of Research in Person-

ality. 2015 Feb 28; 54:13–29.

49. Marsman M, Maris G, Bechger T, Glas C. Bayesian inference for low-rank Ising networks. Scientific

reports. 2015; 5.

50. Chandrasekaran V, Parrilo PA, Willsky AS. Latent variable graphical model selection via convex optimi-

zation. InCommunication, Control, and Computing (Allerton), 2010 48th Annual Allerton Conference on

2010 Sep 29 (pp. 1610–1613). IEEE.

51. Epskamp S, Rhemtulla M, Borsboom D. Generalized Network Psychometrics: Combining Network and

Latent Variable Models. arXiv preprint arXiv:1605.09288. 2016 May 30.

52. Pons P, Latapy M. Computing communities in large networks using random walks. InInternational Sym-

posium on Computer and Information Sciences 2005 Oct 26 (pp. 284–293). Springer Berlin Heidelberg.

53. R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical

Computing, Vienna, Austria. 2016. URL http://www.R-project.org/.

54. Rosseel Y. lavaan: An R package for structural equation modeling. Journal of Statistical Software. 2012

May 24; 48(2):1–36.

55. Raven JC. Progressive matrices: A perceptual test of intelligence. London: HK Lewis. 1938.

56. Formann AK, Waldherr K, Piswanger K. Wiener Matrizen-Test 2 (WMT-2): Ein Rasch-skalierter sprach-

freier Kurztest zur Erfassung der Intelligenz. Beltz Test; 2011.

57. Condon DM, Revelle W. The International Cognitive Ability Resource: Development and initial validation

of a public-domain measure. Intelligence. 2014 Apr 30; 43:52–64.

58. Condon DM, Revelle W. Selected ICAR data from the SAPA-Project: Development and initial validation

of a public-domain measure. Journal of Open Psychology Data. 2016 Jan 26; 4(1).

Exploratory graph analysis

PLOS ONE | https://doi.org/10.1371/journal.pone.0174035 June 8, 2017 25 / 26

https://doi.org/10.1146/annurev-clinpsy-050212-185608
https://doi.org/10.1146/annurev-clinpsy-050212-185608
http://www.ncbi.nlm.nih.gov/pubmed/23537483
https://doi.org/10.1037/abn0000028
http://www.ncbi.nlm.nih.gov/pubmed/25730514
https://doi.org/10.1037/a0039802
http://www.ncbi.nlm.nih.gov/pubmed/26479706
https://doi.org/10.1007/s11136-015-1127-z
http://www.ncbi.nlm.nih.gov/pubmed/26370099
https://doi.org/10.1037/0033-295X.113.4.842
http://www.ncbi.nlm.nih.gov/pubmed/17014305
http://www.R-project.org/
https://doi.org/10.1371/journal.pone.0174035


59. Revelle W. psych: Procedures for personality and psychological research. Northwestern University,

Evanston. R package version. 2014 Jan;1(1).

60. Csardi G, Nepusz T. The igraph software package for complex network research. InterJournal, Com-

plex Systems. 2006 Jan 11; 1695(5):1–9.

61. Cohen J. Statistical power analysis for the behavior science. Lawrance Eribaum Association. 1988.
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