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Abstract
Psychological constructs such as personality dimensions or cognitive 
traits are typically unobserved and are therefore measured by observ-
ing so-called indicators of the latent construct (e.g., responses to ques-
tionnaire items or observed behavior). The Common Factor Model 
(CFM) models the relations between the observed indicators and the 
latent variable. In this article we argue in favor of interpreting the CFM 
as a causal model rather than merely a statistical model, in which com-
mon factors are only descriptions of the indicators. When there is suf-
ficient reason to hypothesize that the underlying causal structure of 
the data is a common cause structure, a causal interpretation of the 
CFM has several benefits over a merely statistical interpretation of the 
model. We argue that (1) a causal interpretation conforms with most 
research questions in which the goal is to explain the correlations be-
tween indicators rather than merely summarizing them; (2) a causal in-
terpretation of the factor model legitimizes the focus on shared, rather 
than unique variance of the indicators; and (3) a causal interpretation 
of the factor model legitimizes the assumption of local independence.

1 These two authors contributed equally.
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1 Toward a causal interpretation of the common factor model

One of the many pursuits of psychology is to establish causal relations 
between properties of the mind and human behavior. Psychologists 
are interested in the motivations, cognitive abilities and personality 
traits that explain why people behave in a certain way. This endeavor 
has proved to be anything but easy. Part of the problem comes down 
to the very nature of psychological constructs. In psychology, the 
attributes that are used to explain human behavior (e.g., personal-
ity characteristics that explain individual differences in behavior) are 
typically latent variables, that is, theoretical constructs that are unob-
served (Borsboom, Mellenbergh and van Heerden 2003). Because 
latent variables are by definition unobserved, psychological tests are 
constructed to measure them. The observed responses on such tests 
are believed to reflect the latent variable that underlies them. For 
example, intelligence cannot be directly observed. Yet, it is assumed 
that intelligence can be measured by administering a set of IQ items 
to which the responses can be observed. The measurement model 
on which this mechanism is based is the relective model (Figure 1). 
The IQ test is supposed to measure intelligence because it is built 
on the assumption that the responses to the items are a direct effect 
of one unobserved entity, intelligence. Consequently, the variance 
shared among the test scores is assumed to reflect this theoretical 
entity. The variance that is unique to each item is assumed to reflect 
measurement error as well as unique causes of the responses to that 
item (represented by e1 to e4 in Figure 1). The reflective model is an 
example of a common cause model because the latent variable func-
tions as a cause of all of the item responses. In the remainder of the 
paper, we refer to the observed variables (such as the test scores in 
this example) as the indicators of the latent variable.
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Figure 1. The reflective model. Squares represent indicators (e.g., X1 to 
X4 could be the responses on four different IQ items) and h represents 
the latent variable (e.g., intelligence). e1 to e4 refer to measurement er-
ror and unique causes of the indicators. Eliminating these unique factors 
would imply that the indicators are fully determined by the latent vari-
able, which is typically not assumed for causal processes in psychology.

Latent variable modeling originated with the construction of the com-
mon factor model (CFM; Spearman 1904). Spearman observed what is 
now known as the positive manifold: item responses on a variety of 
mental ability tests were all positively correlated with one another. 
Using the principle of the common cause in which a correlation be-
tween two variables is explained by a third variable, Spearman ab-
stracted the general factor of intelligence (g-factor) from these test 
scores, arguing that one underlying entity explains the shared vari-
ance in all branches of intellectual activity: namely, general intelli-
gence. In the CFM all indicators are a linear function of the common 
factor and the indicators are statistically independent conditional on 
this latent variable. After all, if a common cause explains the covaria-
tion between two indicators, the indicators no longer correlate when 
conditioning on this common cause. So, a CFM of general intelli-
gence implies that all branches of intellectual activity are rendered 
independent, conditional on general intelligence. This principle is 
fundamental to Spearman’s CFM and to reflective models in general, 
and is called the principle of local independence. The process of fitting a 
CFM to data is called factor analysis.

Factor analysis enabled psychologists to discover and test theories 
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about plausible explanations for human behavior. It is therefore not 
surprising that CFMs have become very popular, not only in intel-
ligence research, but also in the fields of psychopathology (e.g., As-
mundson 2000, Caspi et al. 2014) and personality (e.g., McCrae and 
Costa 1887, Musek 2007).

We reserve the name relective model for the theoretical causal in-
terpretation of the CFM. In contrast to the reflective model, the 
CFM is not defined as a causal model but is typically defined as the 
set of equations that equate each indicator Xi to a function of the la-
tent variable h and a unique component ei that is typically called the 
residual in factor analysis. For example, consider four indicators X1 to 
X4 of the same latent variable h. Each indicator is a linear function of 
the same latent variable and a unique residual component:

X1=l1h+e1

X2=l2h+e2

X3=l3h+e3

X4=l4h+e4

These equations are typically graphically represented in the same way 
as the reflective model (see Figure 1). The covariance matrix of the in-
dicators S is a function of the vector of factor loadings l, the variance 
of the latent variable y and the covariance matrix of the residuals Q:

S = lyl + Q

Although the equations above are agnostic with respect to causality, 
we argue that when factor analysis is used to measure a psychological 
construct, the CFM benefits from being interpreted as a reflective 
model, that is, interpreting the latent variable as the common cause 
of the indicators. The reflective model in Figure 1 can be seen as a 
specific case of the CFM: it includes the CFM equations above, and 
adds to them a causal interpretation (Bollen and Lennox 1991, Ed-
wards and Bagozzi 2000).

Even though latent variable modeling has had a profound influ-
ence on psychological research, methodologists and modelers have 
not reached a general consensus about how to understand the nature 
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of latent variables (Bollen 2002, Borsboom et al. 2003, Jonas and 
Markon 2016). As latent variables are not directly observed, it is typ-
ically impossible to perform a manipulation on them to determine (a) 
whether they exist at all, and (b) whether they really cause the ob-
served responses that they are supposed to cause. For example, it is 
impossible for us to manipulate a person’s intelligence to test wheth-
er the answers on an IQ test change as a result of this intervention2.

It is not only the unobservable character of psychological con-
structs that makes causal modeling in psychology a complicated en-
deavour. Factor analysis is most frequently performed on cross-sec-
tional data, gathered at a single time point. Such data cannot be used 
to distinguish between models that have different causal structures 
but are statistically equivalent. Whenever a CFM is fit to a dataset, 
there are alternative causal structures that may equally well have 
generated the data (van der Maas et al. 2006). Because of this am-
biguity, many psychometricians advocate sticking to a strict statisti-
cal interpretation of the CFM, to avoid inferring causality without 
direct evidence for it. They argue instead for a descriptivist approach 
in which the latent variable merely represents the shared variance 
among a set of indicators. The descriptivist approach understands 
latent variables as a parsimonious summary of the data, rather than 
an underlying cause of the indicators (Jonas and Markon 2016).

Thus, although the CFM was developed as a model in which the 
common factor is hypothesized to represent an existing causal entity 
(i.e., general intelligence) that explains patterns in different branches 
of intellectual activity (Spearman 1904), the descriptivist approach 
views the common factor that is obtained with factor analysis merely as 
“just a convenient way of summarizing patterns of observed relation-
ships” (Jonas and Markon 2016: 91). Jonas and Markon (2016) argue:

Reflective latent variable models are agnostic with regard to the nature 
of the etiological process: this is the heart of the descriptivist para-
digm. Reflective latent variable models can describe data generated 

2 Note that it is possible to hypothesize an intervention on intelligence, e.g, 
drinking a lot of alcohol (Borsboom, Mellenbergh and van Heerden 2003). How-
ever, it is problematic to test whether this intervention actually affects intelli-
gence or whether it instead affects the indicators directly, because intelligence is 
only visible via its reflection in the indicators.
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from any number of etiologic processes; consequently, the form of the 
latent variable model cannot arbitrate questions of causality. (Jonas and 
Markon 2016: 91–2)

Factor analysis does not test any causal relations but rather absorbs 
shared variance in a common factor. For any arbitrary set of indica-
tors that share variance, the shared variance will constitute a com-
mon factor, no matter what caused this shared variance. However, in 
order to measure a psychological construct of interest, one does not 
consider any randomly chosen set of variables, but rather a specific 
set of variables that are hypothesized to be affected by the construct. 
The hypothesis that the indicators reflect the psychological construct 
of interest enables the researcher to interpret the common factor as 
this construct, by the logic that, if the indicators share a common 
cause, the shared variance among these variables reflects this cause 
(Edwards and Bagozzi 2000).

In this paper, we argue against the view that the common factor 
is merely a convenient summary of the data and argue for a causal 
interpretation of the CFM when used to measure constructs. When 
a causal interpretation is not justified, for example because it is un-
likely that the construct of interest causes the indicators, other sta-
tistical models might be more appropriate (see for example Bollen 
2011, Diamantopoulos, Riefler and Roth 2008, Edwards and Bagozzi 
2000). Although a causal interpretation of the CFM is neither always 
justified nor necessary, it offers several benefits over a purely statisti-
cal reading of the model in cases where it is justified. To make this 
argument we first distinguish between statistical models and causal 
models, and explain why researchers might be reluctant to inter-
pret the CFM causally. Subsequently, we outline the descriptivist 
approach in more detail. Finally, we present three arguments that 
highlight the benefits of a causal interpretation over a purely statisti-
cal interpretation of the factor model.

2 Statistical vs. causal models

We distinguish between statistical models on the one hand, and sta-
tistical models with a causal interpretation on the other. For brevity, 
we use causal model to refer to the latter, though we acknowledge that 
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causal models need not be statistical. A statistical model is a set of 
probability distributions on some sample space (McCullagh 2002). 
This means that no conceptual interpretation is yet included; a statis-
tical model only includes the statistical dependencies among indica-
tors (Moneta and Russo 2014). In contrast, a causal model has an ad-
ditional causal interpretation because one or more of the parameters 
in the model reflect causal relations. A causal model could be seen 
as a representation of a real-world phenomenon, rather than a model 
that only plots the relations in the data. We are aware that there ex-
ists a large literature on the definition of a model and the distinction 
between different types of models in philosophy of science (e.g., van 
Fraassen 2008, Frigg and Hartmann 2012), but a discussion of this 
literature is beyond the scope of this paper.

Two models that represent different causal relations can be statis-
tically equivalent. For example, many structural equation models are 
statistically equivalent to a model in which one of their structural rela-
tions is reversed (MacCallum, Wegener, Uchino and Fabrigar 1993). 
When two models are statistically equivalent, any observational da-
taset provides equal support for both of them; however, because they 
have different causal implications, it is possible to distinguish them 
via experimental intervention. Consider two statistically equivalent 
models: (I) A→B→C and (II) A←B→C. Any possible observed cor-
relation matrix between the variables A, B, and C will provide equal 
support for both models, though the arrow connecting A and B is 
reversed. The causal relation between A and B is therefore different 
for each model. Now suppose that A, B and C are measured at two 
points in time, and that between these time points, variable B is ex-
perimentally manipulated. Both the correlational structure at time 
point 1 and time point 2 will provide equal support for both models, 
but model (I) and (II) imply different expectations with respect to 
the increase or decrease in variable A as a result of the intervention 
on variable B. If intervening on B changes A to the extent predicted 
by model (II), that is evidence for model (II) over model (I).

Because causally different models can be statistically equivalent, 
some researchers and psychometricians argue that it is unjustified to 
make any causal interpretations of statistical models, and prefer the 
descriptivist approach. Against this view, we argue that it is often 
best to enrich a given statistical model with a causal interpretation 
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and thus, we argue for the interpretation and use of the CFM as a 
causal model. In the next section, we take issue with one of the main 
arguments for interpreting the CFM merely as a statistical model 
rather than a causal model. According to this view, a causal interpre-
tation is not justified because factor models are typically estimated 
from the covariance structure of cross-sectional data without con-
sidering interventions on any of the variables over time.

3 Correlation does not entail causation

Factor analysis is typically applied to the correlation structure of 
cross-sectional data. However, a causal interpretation of the CFM 
implies that factor analysis infers causal relations between the latent 
variable and the indicators from observational data without having 
manipulated or intervened on anything. So how can factor analysis be 
used to hypothesize causal relations if it is based on correlational data?

Although correlations do not entail causality, causality does en-
tail covariation. In addition, particular causal structures imply par-
ticular patterns of conditional independence among variables. For 
example, when A←B→C is hypothesized, in which B is a common 
cause of A and C, then one expects covariation between A, B and C, 
and one expects that A and C are conditionally independent given B 
(Reichenbach 1956). Also, one expects that the correlation between 
A and C is smaller than the correlations between A and B and be-
tween B and C. These are all implications of a causal structure that 
can be verified from a correlation matrix. Similar expectations can 
be laid out for the reflective model (Figure 1), in which the latent 
variable is a common cause of its indicators: one expects the indica-
tors to covary in a certain way, e.g., two indicators that are strongly 
correlated with each other should also share much variance with the 
other indicators. After all, indicators that consist of relatively more 
shared variance and less unique variance are more reliable indicators 
than those that consist of relatively little shared variance and more 
unique variance. Reliable indicators will also correlate more strongly 
with each other. Unlike in the 3-variable example cited earlier, how-
ever, in latent variable modeling it is impossible to test conditional 
independence given the common cause, because the common cause 
is unobserved. All in all, causation does lay out some expectations 
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for observational data, though one should always consider the possi-
bility of alternative causal structures that imply similar expectations 
for the data (e.g., the expectations summarized for A←B→C also 
correspond to the structure A→B→C).

These implied constraints of the common cause structure are 
tested in the fit of a CFM. Violation of local independence will re-
sult in poor model fit. As noted earlier, although the hypothesis of 
a common cause can be rejected because of the testable constraints 
it puts on the data (e.g., on tetrad rank constraints see Bollen and 
Ting 1993), the common cause structure cannot be verified from 
observational data alone because there will always exist alternative 
causal structures that can explain the observations in the data. But 
even though factor analysis cannot verify a common cause structure, 
hypothesizing such a structure justifies the use of factor analysis 
to measure the latent variable in the first place. After all, the con-
straints that are tested when fitting a CFM to the data are all implied 
by the common cause structure.

In the next section we elaborate on the descriptivist approach and 
then we proceed to developing three arguments in favor of a causal 
interpretation of the CFM.

4 What is the common factor in the descriptivist approach?

As described by Jonas and Markon (2016), the descriptivist approach 
entails that a common factor should not be interpreted as a real-
world entity, but rather as mere shared variance that is nothing but 
a parsimonious summary of the data. From this perspective, latent 
variables are not postulated as concrete entities that have direct caus-
al effects on their indicators, but rather as summaries of the covariance 
among indicators. When the latent variable is defined as the shared 
variance of a set of indicators, it cannot also be a common cause of 
the indicators. After all, the shared variance among indicators does 
not cause the shared variance among indicators; something cannot 
have caused itself. Thus, when the latent variable is the shared vari-
ance rather than being a cause of the shared variance, the arrows in 
Figure 1 pointing from the latent variable to the indicators should 
be interpreted as “is part of”. The latent variable is part of the indica-
tors, by the logic that the variance in the indicators consists of shared 
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variance (arrow pointing from a common component to the indica-
tor) and unique variance (arrow pointing from a unique component 
to the indicator). That is, when the latent variable is merely shared 
variance, the relation intelligence → IQ test should be interpreted in 
the same manner as boys → people: just as the set of boys is part of the 
set of people, intelligence is part of IQ test scores. Whether a vari-
able is part of another variable or causes another variable, statistically 
speaking there is no difference between these two relations. More 
concretely, whether the latent variable is a part of the variance of 
the indicators (i.e., the variance that is shared among indicators) or 
is a cause of the indicators, both result in the same statistical model.

5 Toward a causal interpretation

Whereas descriptivists argue for a statistical reading of the factor 
model, we believe that a causal interpretation of the model is in 
many cases more appropriate. It is important to note here that our 
objections to the descriptivist approach are limited to cases in which 
the CFM is used as a measurement model rather than as a method 
for data reduction. When factor analysis is used as a data reduction 
method, the common factor can be used to predict other variables, 
but the common factor does not refer to anything outside the model 
itself. In data reduction, researchers are only interested in bringing 
a large set of variables down to a smaller set of dimensions. In other 
words, they are interested in a concise summary of the data, rather 
than in causal connections between latent variables and indicators. 
Again, in this case the obtained factor is part of the original set of 
indicators, rather than referring to a common cause that generated 
the data, and a causal reading is not sensible.

In the next subsections we present three arguments for a causal 
interpretation of a CFM over a merely statistical interpretation when 
the goal is to measure psychological constructs. We argue that (1) es-
tablishing causal relations conforms with most research questions in 
which the goal is to explain the correlations between indicators rather 
than merely summarizing them; (2) a causal interpretation of the 
CFM legitimizes why we are interested in the shared variance rather 
than in the unique variance of the indicators; and (3) a causal interpre-
tation of the CFM legitimizes the assumption of local independence.
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5.1 “Look, we found shared variance!”

Social scientists are typically interested in the best possible explanation 
for their observations. They want to know how and why observations 
occur the way they do. Borsboom et al. (2003) argued that latent vari-
able models require a realist ontology in order to use them for estab-
lishing causal connections between latent variables and indicators. The 
choice for latent variable models, in which a set of indicators is as-
sumed to covary because of this latent variable, already implies that one 
assumes this latent variable exists. Choosing a latent variable model 
therefore naturally implies a realist ontology. In other words, when the 
aim is to detect and theorize about a putative causal relation, it does 
not make sense to avoid a realist, causal interpretation all together.

To illustrate this point, we will use a study performed by Caspi 
et al. (2014) as a special case that in our view highlights why a causal 
reading is sensible. In their study, Caspi et al. (2014) “evaluate alter-
native hypotheses about the latent structure underlying 10 common 
mental disorders” (2014: 120). The authors conclude that a bifactor 
model, with three group factors and one general factor, best explains 
the structure of psychopathology, and they name this general psy-
chopathology factor the p factor. The descriptivist view would only 
allow the researchers to conclude that their study provides support 
for shared variance among a set of disorders. With a causal interpre-
tation though, their findings would provide support for a meaning-
ful hypothesis, namely that the p factor causes mental disorders to 
covary, and explains comorbidity. Here, a descriptivist approach is 
simply unsatisfying and uninteresting.

Of course it is legitimate to claim that a single dimension is able 
to account for most of the covariation among disorders, resulting in 
a parsimonious description of the data. But if the goal is to explain 
the structure of psychopathology, this claim is greatly unsatisfying: 
shared variance as such has no explanatory value. In contrast, when 
the shared variance reflects a common cause, this common cause does 
explain the correlations between indicators, resulting in a better un-
derstanding of the observations and an opportunity to further the re-
search programme by searching for the identity of the common cause. 
A common cause not only renders the indicators independent when 
accounted for, the indicators correlate because they share a common 
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cause. Explanation therefore has additional value to mere description, 
and in the end, establishing causal relations and finding explanations 
is essential to science. Thus, the p factor model has much greater the-
oretical import as a causal model than as a merely statistical model. 
Researchers should, however, try to verify whether this causal model 
for the structure of psychopathology is justified in each case.

5.2 Why shared variance at all?

The CFM distinguishes between shared variance (that which is shared 
by all indicators) and unique variance (variance which is unique to 
each indicator). Shared variance is attributed to the latent variable, 
while unique variance is attributed to residual influences, such as 
measurement error. The distinction between shared and unique 
variance, of which only the former is of interest in latent variable 
modeling, makes sense when a common cause underlies the indi-
cators but is not sensible under alternative underlying causal struc-
tures. Put differently, the belief that a common cause underlies the 
indicators legitimizes that only shared variance is of interest rather 
than unique variance of the indicators.

Consider an example in which the indicators reflect some variable 
that is not a common cause of the indicators. For example, healthy 
eating is a variable that can be indicated by responses to questions 
like “do you eat a lot of junk food?”, “do you often eat fruit?”, and 
“how much sugar do you eat?”. These three items are all indicators 
of healthy eating, however, eating healthy is probably not a cause of 
these indicators. In this case it is not sensible to only take into ac-
count the variance that is shared by these items: the unique variance 
of the indicators is equally important to the construct healthy eating, 
even though these indicators are correlated and would likely result in 
a well-fitting reflective model.

The items eating vegetables and avoiding sugar are both relevant to 
the construct healthy eating, regardless of what causes them or how 
much of that variance is shared. That is, it does not matter what causes 
someone to eat a lot of vegetables (e.g., having a big vegetable garden) 
and whether that is the same cause as for not eating too much sugar 
(e.g., having strict parents). Both of these are indicators of healthy 
eating, including their unique variance. When a factor model is fit 
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to these data, variance due to these unique causes is relegated to the 
uninteresting unique variance component of the model. But argu-
ably, the unique variance due to vegetable gardens and strict par-
ents is no less relevant to healthy eating than the shared variance that 
may be due to causes such as a person’s motivation to be healthy. As 
such, when the construct of interest is not a common cause, there is 
no theoretical reason to disentangle the shared and unique variance 
of the indicators. Doing so risks a biased representation of the con-
struct of interest.

The above argument can just as well be applied to psychologi-
cal constructs of which the exact nature is unclear. For example, 
extraversion is typically measured with a reflective model. Suppose 
that extraversion is just a summary of the scores on a set of extraver-
sion items. In that case, why use the shared variance as a summary, 
rather than the unique variance or all variance? What is the justifica-
tion for discarding unique variance if the shared variance holds no 
special status? There is none. The shared variance is just one way of 
reducing high dimensional data to fewer dimensions, and there are 
alternative techniques for data reduction that do not discard unique 
variance, e.g., Principal Component Analysis (PCA; James, Witten, 
Hastie and Tibshirani 2013). Thus, when the status of the construct 
is either known to be not a common cause (as in the healthy eating 
example) or is unknown (as in the extraversion example), the practice 
of interpreting only the shared variance among a set of items is not 
well supported.

In contrast, when one’s theory explicitly states that the construct 
is a common cause of a set of items, it is immediately legitimate to 
interpret only the shared variance of the indicators because it is pre-
cisely this shared variance that must be due to the common cause. 
Returning to the Caspi et al. (2014) study, we can draw a similar con-
clusion. The reason why the authors are at all interested in the shared 
variance rather than the total variance, or the unique variance, is 
because they must have reasons to believe that the shared variance 
has certain explanatory power. Thus, the difference between a latent 
variable that is interpreted as merely shared variance and a latent 
variable that is believed to be a common cause of the indicators is that 
the former results from the distinction between unique and shared 
variance in a CFM, while the latter legitimizes this distinction.
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5.3 Local independence

The principle of local independence is a fundamental assumption of 
the reflective model and comprises the idea that when a common 
cause underlies a set of indicators, conditioning on this common 
cause renders the indicators statistically independent (Borsboom et 
al. 2003). When factor analysis is performed on a dataset, it searches 
for a factor solution that meets this criterion. The assumption of local 
independence does not apply to all data reduction models. As stated 
before, PCA also results in a parsimonious summary of the data but 
in contrast to factor analysis, PCA does not use local independence as 
a criterion. PCA rather composes a variable that accounts for most of 
the variability in the indicators (James et al. 2013). In this process, 
PCA takes all variance into account, not only shared variance. Thus 
in the case of PCA, the indicators are not rendered independent, yet 
PCA provides a parsimonious summary of the data. A purely statis-
tical interpretation of the reflective model does not legitimize the 
principle of local independence and therefore the use of the reflective 
model. In contrast, a causal interpretation of the reflective model im-
plies that local independence should hold, so a latent variable model 
should be preferred when theory holds that a common cause is re-
sponsible for covariation among items. Getting back to the example of 
the p factor, the reason why the p factor is constructed in a way that 
it renders the disorders independent is because it is believed to reflect 
a psychopathology factor that forms a common cause to these disor-
ders. A mere summary of the data is not bound to such a constraint 
on the data. So not only does a causal theory justify a focus on the 
shared variance, it also justifies the assumption of local independence. 
Instead of local independence merely resulting from absorbing shared 
variance, a common cause explains why local independence is assumed.

6 How to assess whether a common cause structure is correct

Using a CFM in the descriptivist framework does not require that a 
specific causal structure is hypothesized. It simply does not matter 
exactly what causal structure underlies the data for the latent variable 
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to be a useful summary of the data. For the causal interpretation, in 
contrast, it is of central importance that the model accurately repre-
sents the underlying causal structure. Attaching causal meaning to a 
CFM that does not accurately represent the actual causal system will 
result in incorrect predictions.

Consider four indicators that all influence each other, resulting 
in shared variance among these variables. A CFM can be applied 
to the correlation matrix of these variables, and, depending on the 
strengths of the causal relations between the indicators, this may re-
sult in a well-fitting model. In such a situation, the factor model may 
be useful as a parsimonious prediction model, but as a causal model 
this factor model makes incorrect predictions with respect to inter-
vention on any of the indicators. For example, a causal interpretation 
of the factor model implies that intervention on any of the indicators 
would not affect the other indicators, because all covariation is pur-
ported to arise due to a single latent common cause. In contrast, the 
true underlying causal structure implies that intervention on any of 
the indicators leads to changes in the other indicators, because the 
shared variance truly reflects direct causal relations among indica-
tors. So a causal interpretation of an estimated model can lead to 
false conclusions when the causal structure of the data generating 
model is not represented accurately.

This begs the question of how to assess whether the true data gen-
erating model has a common cause structure. How do we figure out 
whether the principle of the common cause applies in cases in which 
we do not have easy access to the real underlying causal structure? 
As stated before, ideally one would manipulate the common cause, 
and see what happens to the variation in the indicators (Borsboom 
et al. 2003). If this were possible, one could directly observe the 
effects of the manipulation and consequently give causal meaning 
to the model. But when the common cause is latent, such direct ma-
nipulation can be impossible. In some cases, however, an alternative 
causal model might offer different predictions for manipulations on 
the indicators. For example, if an alternative model states that the in-
dicators cause each other, such that the shared variance is explained 
by causal influences between the variables rather than by a com-
mon cause, intervening on the indicators would differentiate the two 
models. Whereas a model with causal influences between indicators 
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implies that certain indicators change as a result of interventions on 
other indicators, a common cause model implies that indicators are 
not affected by other indicators. These diverging predictions enable 
the researcher to differentiate between such alternative models that 
explain the shared variance among a set of variables.

When intervention is not possible, empirical tests of the goodness 
of fit of the reflective model may shed light on whether the com-
mon cause model is a likely generating model for a particular data 
set. Although a researcher cannot determine what causal structure 
underlies cross-sectional data, the common cause model does put 
testable constraints on the covariance structure of the data. Widely 
used test statistics and fit indices for confirmatory factor analysis 
test the hypothesis that the covariance structure of the data matches 
the covariance structure implied by a common cause model. Tests 
based on the pattern of partial correlations in the data may also allow 
researchers to determine whether a common cause model is more 
likely to underlie the data than an alternative model that posits direct 
effects among indicators (van Bork, Rhemtulla, and Borsboom 2015, 
van Bork, Rhemtulla, Waldorp and Borsboom 2016).

We believe that it is especially important to think about the data 
generating process in the phase of test construction. As we men-
tioned before, researchers do not pick an arbitrary set of indicators 
but select those indicators that are hypothesized to be affected by the 
construct of interest. This is an important point that concerns the 
stage of test construction rather than test-analysis. Borsboom, Mel-
lenbergh and van Heerden write:

a century of experience with test construction and analysis clearly shows 
that it is very hard to find out where the scores are coming from if tests 
are not constructed on the basis of a theory of item response processes in 
the first place (Borsboom, Mellenbergh and van Heerden 2004: 1067)

They continue with the conclusion:

Thus, it is suggested here that the issue may not be first to measure and 
then to find out what it is that is being measured but rather that the pro-
cess must run the other way. It does seem that if one knows exactly what 
one intends to measure, then one will probably know how to measure 
it, and little if any validation research will be necessary. (Borsboom, 
Mellenbergh and van Heerden 2004: 1067)
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Another possibility to give causal meaning to the factor model, is that 
a factor model can be posited as a plausible hypothesis for a certain 
phenomenon (Haig 2005, 2014). When theoretical considerations 
imply that the principle of the common cause describes a certain 
mechanism accurately, the factor model can be used as a method 
for theory generation. Specifically, exploratory factor analysis can be 
used for the generation of plausible theories, and through confirma-
tory factor analysis, these theories can then be evaluated. Through 
methods such as cross-validation and replication, the theory can gain 
additional support. This of course does not result in absolute certain-
ty that the causal reading is in fact the true reading, but by choosing 
the models that have more explanatory value over those that are less 
explanatory, the best model is left standing. This way, it is possible 
to gather evidence for the hypothesis that a common cause structure 
is indeed applicable to the phenomenon in question.

All in all, an inevitable conclusion of the causal interpretation of 
the factor model we defend, is that the data generating process mat-
ters. Therefore, one should always try to assess whether it is plausible 
that the data generating mechanism has a common cause structure.

7 Conclusion

Even though the fit of a CFM to cross-sectional data does not test the 
causal structure that generated the data, if the goal is to measure psy-
chological constructs and make meaningful claims about how such 
constructs relate to each other, we argue for a causal interpretation 
of the CFM rather than a merely statistical interpretation proposed 
by the descriptivist approach. First, a causal interpretation matches 
the scientific aim of explaining observed patterns in behavior rath-
er than summarizing them. Second, a causal interpretation of the 
CFM legitimizes why the shared variance is of interest rather than 
the unique variance of the indicators. And lastly, a causal interpreta-
tion of the CFM legitimizes the assumption of local independence. A 
statistical reading of the model is not incorrect but does not provide 
an explanation for the observed data, it does not explain why shared 
variance rather than unique variance is of interest and it does not 
explain why local independence should hold.

We are aware that a causal interpretation of CFMs brings a host 
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of other problems. Reading a CFM causally does not suddenly turn 
a non-causal mechanism into one that is in fact causal. CFMs are 
only tools to posit plausible causal relations, and they need additional 
input in the form of causal knowledge or assumptions to establish 
what kind of causal relation it is. These models are only meaningful 
when users impose meaning onto them, and it is up to these users 
to then verify whether their hypotheses are confirmed or not. In 
other words, researchers construct plausible causal hypotheses, fit a 
model that imposes these hypotheses on the data, and then consider 
how the output supports their hypothesis. This process has a built-in 
buffer that balances formulating strong causal statements that refer 
to real-world mechanisms and being cautious about such statements.

We also acknowledge that there are situations in which a statisti-
cal non-causal interpretation of the CFM makes sense. When a com-
mon cause structure is unlikely to underlie the data, a purely sta-
tistical interpretation of the CFM can still be useful for prediction. 
For example, although the existence of general intelligence is often 
disputed, the g-factor can be used to merely predict school success, 
without having to establish its objective existence. But even for data 
reduction, other methods are available (e.g., PCA) that do not rely on 
latent variables, local independence and a distinction between shared 
and unique variance in the indicators. It is not entirely clear why fac-
tor analysis should be used rather than other data reduction methods 
such as PCA, when the first model implies constraints on the data 
that can not be justified from a descriptivist approach whereas the 
latter does not.

Ultimately, we plead for an understanding of the CFM as an ex-
plicit causal hypothesis that can be falsified. In situations where the 
data generating mechanism matters for the theory about a psychologi-
cal construct (e.g., should depression be understood as a cause of its 
symptoms or as the name for a system of interacting symptoms?), 
treating the CFM as a summary rather than a hypothesis about this 
causal structure takes away the need to test the data-generating mech-
anism. Rather than concealing the urge to infer causal relations by re-
stricting the interpretations of these models to descriptions of the data 
without reference outside of the data, we argue that one should dare 
to hypothesize. By making hypotheses explicit (e.g., “we hypothesize 
that construct A is the common cause of the indicators X1 to Xj”), they 
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are open to falsification. Additionally, interpreting the CFM causally 
stresses the need for theories about how differences in the latent vari-
able result in differences in the responses; theories that we think are 
crucial for the measurement of psychological constructs.3
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