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Complexity Results for Aggregating Judgments using
Scoring or Distance-Based Procedures

Ronald de Haan
Technische Universitat Wien
dehaan@ac.tuwien.ac.at

ABSTRACT

Judgment aggregation is an abstract framework for studying
collective decision making by aggregating individual opin-
ions on logically related issues. Important types of judgment
aggregation methods are those of scoring and distance-based
methods, many of which can be seen as generalisations of
voting rules. An important question to investigate for judg-
ment aggregation methods is how hard it is to find a collec-
tive decision by applying these methods. In this article we
study the complexity of this “winner determination” problem
for some scoring and distance-based judgment aggregation
procedures. Such procedures aggregate judgments by assign-
ing values to judgment sets. Our work fills in some of the last
gaps in the complexity landscape for winner determination
in judgment aggregation. Our results reaffirm that aggregat-
ing judgments is computationally hard and strongly point
towards the necessity of analyzing approximation methods
or parameterized algorithms in judgment aggregation.

CCS Concepts

eTheory of computation — Problems, reductions and
completeness; eComputing methodologies — Artifi-
cial intelligence;

Keywords

Judgment aggregation; computational complexity; winner
determination; scoring procedures; distance-based procedures

INTRODUCTION

“Should we recommend buying the ticket now?”, “Should
we wait, would the tickets sell out?”, “Does the customer
want this ticket?”. These questions, or issues, cannot be
independently answered as they are logically related. For
instance, a yes-answer on the first question implies a yes-
answer on either the second or the third question. Aggre-
gating binary answers from multiple sources to questions
such as these is the focus of judgment aggregation stud-
ies [18]. Judgment aggregation is a social choice discipline
that generalises voting and preference aggregation |7} |27],
and has been investigated using computer science methods
in the field of computational social choice [12].
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One of the topics studied in computational social choice is
the computational complexity analysis of problems related
to aggregation functions. Omne particular problem that is
highly relevant is the problem of determining the outcomes
of the aggregation procedure. In voting, the complexity of
this problem indicates how difficult it is to find the winners
of an election by using a particular voting method. Starting
from the seminal work by Bartholdi, Tovey and Trick [2],
numerous articles explore this topic and today the complex-
ity landscape of the winner determination problem in vot-
ing is well covered. In judgment aggregation, the “winner”
is a set of truth-value assignments, i.e., judgments, to a set
of logically related issues. Namely, judgment aggregation
functions aggregate a profile of judgments, which is a collec-
tion of individual judgment sets, into a collective judgment
set. Judgment aggregation is a much younger discipline with
fewer aggregation methods investigated in the literature, but
even so the complexity of the “winner determination” prob-
lem is not studied for every known method in the literature.
The aim of this paper is to cover more of this gap.

The winner determination problem in judgment aggrega-
tion has been studied in various papers [14] [15] [28] cover-
ing the following judgment aggregation methods: Premise
Based Procedure, Condorcet Admissible Set, Slater, Ke-
meny (also known as Median Rule), Young, Tideman, and
MNAC]} Furthermore, Jamroga and Slavkovik [21] show
some bounds for this problem for the class of distance-based
judgment aggregation methods.

Contributions.

In this paper, we analyze the computational complexity
of the winner determination problem for several judgment
aggregation methods:

e the reversal scoring method introduced by Dietrich [6],

e the distance-based method for the Hamming distance
and addition as aggregator function, introduced as the
arbitration belief merging aggregator by Konieczny and
Pino Pérez (23] and as judgment aggregator by Lang,
Pigozzi, Slavkovik and Van der Torre [26], and

e the distance-based methods for the geodesic distance
and addition as aggregator function, as introduced by
Duddy and Piggins [9).

The first of these methods is a member of the class of scor-
ing judgment aggregators and the second and third are from

!The reader can consult for example [26] for an integral
overview of aggregation methods in judgment aggregation.



the class of distance-based aggregators. We show that decid-
ing whether a judgment set can be selected as winner for a
given profile by the first two of these methods is ©5-complete
(Theorems [2| and . For the third method, this problem is
©%-complete (Theorem [4).

Both the scoring aggregators and the distance-based ag-
gregators aggregate judgments by assigning values to show
how similar a particular judgment set is to the aggregated
profile. The distance-based aggregators are defined with re-
spect to a distance that measures how different two judg-
ment sets are. The scoring aggregators are defined with
respect to a scoring function which attaches a value for each
judgment in a judgment set. In this paper, we also show
the general result that if the scoring function is computable
in polynomial time, deciding whether a judgment set can
be selected as winner for a given profile is in the class ©%
(Theorem [1)).

The completeness results that we establish for the winner
determination problem, for various aggregators, are impor-
tant steps for identifying what algorithmic approaches could
work well to solve this problem in applied settings.

2. PRELIMINARIES

In this section, we begin by describing the formal frame-
work that we use to model judgment aggregation scenarios
(as used by, e.g., 8|14, 28]), and briefly surveying some rel-
evant notions from the theory of computational complexity.

Judgment Aggregation.

A propositional formula is doubly-negated if it is of the
form ——). For every propositional formula ¢, we let ~¢p
denote the complement of ¢, i.e., ~p = —p if ¢ is not of
the form -, and ~¢ = ¥ if ¢ is of the form —). For a
propositional formula ¢, the set Var(y) denotes the set of
all variables occurring in ¢.

An agenda is a finite, nonempty set ® of formulas that
does not contain any doubly-negated formulas and that is
closed under complementation. Moreover, if ® = {¢1,...,pn
—¢1,...,¢n} is an agenda, then we let [®] = {p1,...,pn}
denote the pre-agenda associated to the agenda ®. We de-
note the bitsize of the agenda ® by size(®) = 3> .4 l¢|- A
judgment set J for an agenda ® is a subset J C ®. A judg-
ment set J is complete if ¢ € J or ~p € J for all p € P;
and it is consistent if there exists an assignment that makes
all formulas in J true. Intuitively, the consistent and com-
plete judgment sets are the opinions that individuals and
the group can have.

We associate with each agenda ® an integrity constraint I,
that can be used to further restrict the set of feasible opin-
ions. Such an integrity constraint consists of a single propo-
sitional formula. A judgment set J is I'-consistent if there
exists a truth assignment that simultaneously makes all for-
mulas in J and T" true. Let J(®,T') denote the set of all
complete and I'-consistent subsets of ®. We say that finite
sequences J € J(®,T)" of complete and I'-consistent judg-
ment sets are profiles, and where convenient we equate a
profile J = (J1,..., Jp) with the (multi)set {J1,...,Jp}.

A judgment aggregation procedure (or rule) for the
agenda ® and the integrity constraint I is a function F' that
takes as input a profile J € J(®,I")", and that produces a
non-empty set of non-empty judgment sets. We call a judg-
ment aggregation procedure F' resolute if for any profile J it
returns a singleton; otherwise, we call F' irresolute.

953

The Polynomial Hierarchy.

We begin with reviewing some basic notions from com-
putational complexity. We assume the reader to be famil-
iar with the complexity classes P and NP, and with basic
notions such as polynomial-time reductions. For more de-
tails, we refer to textbooks on computational complexity
theory (see, e.g., |1]). We would like to remind you of the
quintessential NP-complete problem SAT.

SAT
Instance: A propositional formula .
Question: Is there an interpretation that satisfies ¢7

We briefly review the classes of the Polynomial Hierarchy
(PH) [29, [33} 36}, |38]. In order to do so, we consider quan-
tified Boolean formulas. A quantified Boolean formula (in
prenez form) is a formula of the form Q121Q2x2 . .. Qnn. 1,
where all z; are propositional variables, each @; is either an
existential or a universal quantifier, and 1 is a (quantifier-
free) propositional formula over the variables x1,...,Zn.
Truth for such formulas is defined in the usual way.

To consider the complexity classes of the PH, we restrict
the number of quantifier alternations occurring in quanti-
fied Boolean formulas, i.e., the number of times where Q; #
Qit1. We consider the complexity classes X7, for each k > 1.
Let k£ > 1 be an arbitrary, fixed constant. The complexity
class X}, consists of all decision problems for which there ex-
ists a polynomial-time reduction to the problem QSAT,, that
is defined as follows. Instances of the problem QSAT, are
quantified Boolean formulas of the form Jz; ... 3z, Ve, 11
.. .ng,z e le’gk71+1 e le’gk .1[), where Qk =3Jif kis odd
and Qr = V if k is even, where 1 < /1 < .-+ < {i, and
where 1 is quantifier-free. The problem is to decide if the
quantified Boolean formula is true. The complementary
class II} consists of all decision problems for which there ex-
ists a polynomial-time reduction to the problem co-QSAT,,
that is complementary to the problem QSAT,. The Polyno-
mial Hierarchy (PH) contains these classes ¥} and II}.

Alternatively, one can characterize the class X5 using non-
deterministic polynomial-time algorithms with access to an
oracle for an NP-complete problem. Let O be a decision
problem. A Turing machine M with access to an O ora-
cle is a Turing machine with a dedicated oracle tape and
dedicated states gquery; Gyes and gno. Whenever M is in the
state gquery, it does not proceed according to the transition
relation, but instead it transitions into the state gyes if the
oracle tape contains a string x that is a yes-instance for
the problem O, i.e., if x € O, and it transitions into the
state gno if x ¢ O. Intuitively, the oracle solves arbitrary
instances of O in a single time step. The class X5 consists of
all decision problems that can be solved in polynomial time
by a nondeterministic Turing machine that has access to an
O-oracle, for some O € NP.

We will also refer to the complexity class ©F, that consists
of all decision problems that can be solved by a polynomial-
time algorithm that queries an NP oracle O(logn) times.
The following two problems are complete for the class ©5
under polynomial-time reductions. The first is the MAX-
MobEL |5} 24} [37].

MAX-MODEL

Instance: A satisfiable propositional formula ¢, and a
variable w € Var(y).

Question: Is there a model of ¢ that sets a maximal num-
ber of variables in Var(y) to true (among all models of ¢)
and that sets w to true?



The second is the problem MAXCARDSCEPTICAL-
INFERENCE from [28|, which was proved to be ©O5-
complete [31] (under the name CARDINALITY-MAXIMIZING
BASE REVISION). A supernormal default theory is a pair
D = (A, B) with A = {p1,...,pp}, where p1,...,p,, 3 are
propositional logic formulas. A propositional formula « is a
maxcard sceptical inference of D iff SU {8} = « for every
S that is a maximally consistent subset of A with respect
to set cardinality. The MAXCARD SCEPTICAL INFERENCE
takes an instance consisting of D, 8 and a and returns yes
if @ is a maxcard sceptical inference of D.

MAXCARDSCEPTICALINFERENCE

Instance: A supernormal default theory D
propositional formula a.

Question: Is a a maxcard sceptical inference of D?

(A, B),

In addition, we will refer to the complexity class ©%,
that consists of all decision problems that can be solved
by a polynomial-time algorithm that queries an X% ora-
cle O(logn) times. The following problem is complete for
the class ©F under polynomial-time reductions.

QSAT,-MAX-MODEL

Instance: A satisfiable instance ¢ of QSAT,, where ¢ =
3X.VY.9), and a variable w € Var(yp).

Question: Is there a truth assignment o : X — {0,1}
s.t. ¥[a] is valid, that sets a maximal number of variables
in X to true (among all such assignments making [«]
valid), and that sets w to true?

In the rest of the paper we are concerned with studying the
computational complexity of the following problem defined
for a judgment aggregator F.

OUTCOME(F)

Instance: An agenda ® with an integrity constraint I', a
profile J € J(®,T)" and subsets L, L1,..., L, C ® with
u > 0.

Question: Is there a judgment set J* € F(J) s.t. L C J*
and L; € J* for each i € {1,...,u}.

In the next two sections we consider members of two
classes of judgment aggregators: scoring methods and
distance-based methods.

3. SCORING METHODS

A score s : J(®,T) x & = R is a function that assigns
a nonnegative value for a judgment in & with respect to a
rational judgment set from J(®,T"). A scoring judgment
aggregator F is a function defined for a score s as:

F5(J) = argmax Z s(Ji, ).
Jeg(®.I) jes
ped

(1)

Before we turn to the results that we develop in this sec-
tion, we introduce some definitions and observations. An
interpretation w for the agenda ® assigns a value true or
false for each judgment in ®. An interpretation satisfies a
formula ¢ € @ if it evaluates it to true while also evalu-
ating I' to true, in the classic propositional logic sense; we
write w =r ¢. An interpretation satisfies a judgment set
J e J(@,T) iff wk=r AJ. The set Q is the set of all inter-
pretations that satisfy ® with respect to I'.
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Algorithm 1: OUTCOMESCORE(J®, k) is in NP.

Set k' :=0

Set J :=0

Guess an interpretation w

For each (p;,0;) € J° do
if w Er s then do

J:=JU{pi}
Check w E=r J
Check value(J®, J) > k

0w N O Uk W N R

Algorithm 2: OuTcoME(F}) is in ©5.

1 Set my, =0

2 Set me =3, ,ye3s O

3 Set k:= T2

4 while m,, # m, do

5 if OUTCOMESCORE(J®, k) then m,, 1=k
6 else m; =k

7 k= metma

Observe first that given a score s, we can represent any
profile J as a set of pairs J° in the following way:

P ={p, > s(Jip) | pcd}

Ji€d

(2)

Let us define the value of a judgment set J € F,(J) with
respect to a profile J and a score s as:

value(J®, J) = Z o.

(p,0)€IS
pEJ

3)

In this section, we will also consider the following auxiliary
problem, defined for a score s.

OUTCOMESCORE(J®, k)

Instance: An agenda ®, constraints I', a profile J° € & x
R™ and a real nonnegative number k € RT.
Question: Is there a judgment set J* €
s.t. value(J®, J*) > k?

J(@,T)

3.1 Scoring methods with polynomial scores

In this section, we show the general result that for any
score s that is computable in polynomial time—that is, J®
can be computed from J in polynomial time—the winner
determination problem OUTCOME(F) is in ©F.

THEOREM 1. If J° can be computed from J in polynomial
time, then OUTCOME(F}) is in ©F.

ProOOF. The proof is similar to the proof of Prop-
erty 4.20 in [11]. We first consider the problem
OUTCOMESCORE(J®, k). Algorithm [I]shows that OUTCOME-
SCORE(J*®, k) is in NP.

We then show that OUTCOME(F;) is in ©F via Algo-
rithm 2] Algorithm [2] finds the maximal value k for which
there is some judgment set J with value(J®, J) = k. Then,
checking whether there is such a judgment set s.t. L C J
and L; ¢ J for all i can be done with one additional NP
oracle query. [



Matching ©5-hardness results.

We showed that for any score s for which J® can be com-
puted from J in polynomial time, the winner determination
problem OUTCOME(Fj) for the corresponding judgment ag-
gregation procedure is contained in the class ©5. This is an
upper bound—the complexity of winner determination for
such scoring procedures is not higher than ©5.

Not every polynomial-time computable score s leads to
a judgment aggregation procedure that is also complete for
the class ©F (taking some common complexity-theoretic as-
sumptions into account). There are trivial counterexamples.
For instance, the trivial score sg that always returns 0—that
is, for which so(J,¢) = 0 for all J and all ¢—results in
a judgment aggregation procedure F, for which the win-
ner determination problem is in NP. Namely, all com-
plete and I'-consistent judgment sets J get the same total
score » ;5 yey S0(Ji, ) = 0. Therefore, deciding whether
there is a complete and I'-consistent judgment set J* with
maximum score and with L C J* and L; € J* for all ¢ can
be done in nondeterministic polynomial time. In particular,
this tells us that OUTCOME(Fj,) is not ©5-complete, unless
the Polynomial Hierarchy collapses.

There are, however, natural scoring judgment aggrega-
tion procedures Fs for which the score s is computable in
polynomial-time and for which the problem OUTCOME(F},)
is ©5-complete. One example of such a procedure is the
stmple scoring procedure |6], based on the score spl defined
by letting spl(J, o) = 1if ¢ € J and spl(J,¢) =0 if o & J.
This procedure is also known as the Kemeny judgment ag-
gregation procedure and its winner determination problem
is known to be ©5-complete |14} |15} [28].

3.2 Reversal scoring aggregator

In this section, we consider the reversal scoring proce-
dure [6]. This procedure can be seen as a generalisation
of the Borda rule in voting (for more details, we refer to
Section . The reversal scoring procedure is defined as fol-
lows.

Let J € J(®,T) be a complete and I'-consistent judgment
set for an agenda ® and an integrity constraint I'. Moreover,
let ¢ € ®. Then the reversal score rev(J, ) of ¢ for J is
defined as the minimal number of formulas in J that need
to be negated to get a complete and I'-consistent judgment
set J' that contains ~. Formally:

min  du(J',J).
J'eJ(®,T)
~peJ!

rev(J,¢) =

(Here du denotes the Hamming distance between two com-
plete judgment sets, i.e., du(J,J') =|(J\J)| =[(J \J)|.)
Based on the reversal score, we get the reversal scoring judg-
ment aggregation procedure Fy, that is defined as follows:

F.(J) = argmax Z rev(Js, ).
Jreg(®.) jres
peJ*

The reversal scoring judgment aggregation procedure is ir-
resolute, complete and I'-consistent.

We show that the winner determination problem for
the reversal scoring judgment aggregation procedure is ©5-
complete.

Since the reversal score is not computable in polynomial
time (unless P = NP), we cannot directly apply Theorem
Nevertheless, OUTCOME(F) is in ©F.
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LEMMA 1. OUTCOME(F;) is in ©F.

PROOF. We show membership in ©F by describing a
polynomial-time algorithm that solves OUTCOME(F:) by
making a logarithmic number of queries to (different) NP
oracles. Let (®,1,J,L,Lq,...,L,) specify an instance of
OuTCOME(F}), where J = (Ji,..., Jp).

Firstly, we determine the following value:

bl = E /min dH(J/,Ji).
J;€J 7 fjé?}}r)
peD ®

We will determine b1 by means of binary search using one NP
oracle. After having determined the value b1, we can use this
value to determine the maximum reversal score by for any
complete and I'-consistent judgment set J* € J(®,T') by
means of binary search using another NP oracle. This second
oracle uses the value b1. Finally, after having determined the
value b2, we can decide whether the instance is a yes-instance
by using one last query to the second oracle.

The NP oracle @i that we will use to deter-
mine b; decides—for a given natural number b—whether
Do gies Dpeas Milyeg @), ~per du(J', Ji) < b Tt s
straightforward to verify that the problem @ that this or-
acle solves is in NP.

We have a straightforward upper bound of 2pn? for the
value of b;. Therefore, we can find the exact value of by
using O(logp + 2logn) queries to the oracle Q1.

Next, we will determine the following value:

by = max E min dH(J/,Ji).
J*eJ(®,I") J'eg(®,T)
peJ* ~ped!

J;€3

The NP oracle Q2 that we will use for this decides—for
given sets L',L},...,L, C ® and a given natural num-
ber b—whether there exists a complete and I'-consistent
judgment set J* € J(®,T") s.t. L' C J*, L; € J* for each Lj,
and ZJ@EJ ZWEJ* min‘]/ej(¢.’l—\)’~wey dH(J” Jz) > b. The
problem @2 that this oracle solves is in NP. Because we
know the value of b1, we can guess for each ¢ € ® and
each J; € J a judgment set J with —¢ € J, and verify that
the total Hamming distance from these judgment sets to the
sets J; € J is exactly b1. This allows us to show that the
problem @2 is in NP.

We can now determine the value of by by using binary
search. We have a straightforward upper bound of pn? for bs.
Therefore, we can find the exact value of bz using O(logp +
2logn) queries to the oracle Q2 (where we take L' = () and
where we use no sets L}, i.e., u=0).

Finally, using one more query to the oracle Q2,
we can decide whether there exists a complete
and T'-consistent judgment set J* € J(®,T') s.t.
(1) L <€ J, (2) Ly ¢ J* for each L;, and
(3) X ex 2pes Miyeg(@ ) ~pes du(J, Ji) > b
For this query, we use b = be, L = L', and L; = L} for
each i. The instance of OUTCOME(F)) is a yes-instance iff
this this last oracle query returns “yes.” This completes our
description of the algorithm that witnesses membership in

ey. O
THEOREM 2. OUTCOME(F}) is ©F-hard.

PROOF. Membership in ©% follows from Lemma We
show ©O-hardness by giving a reduction from the ©5%-
complete problem MAX-MODEL [5} 24, 37]. Let (¢, w) be an



instance of MAX-MODEL, where ¢ is a satisfiable proposi-
tional formula with Var(¢) = {z1,...,z,} and w € Var(yp).
Without loss of generality, we may assume that the truth as-
signment that sets every variable z; to false satisfies . We
construct an agenda P, an integrity constraint I', a profile J,
and a set L C ® s.t. there is some J* € F,.(J) with L C J* iff
there is a model of ¢ that sets a maximum number of vari-
ables in Var(y) to true (among all models of ¢) and that
sets w to true.

Let m = 3n 4+ 2. We introduce new propositional vari-
ables zg; for each ¢ € [3] and each j € [m]. We define ®
by letting [®] = {z1,...,2n} U {20, : £ € [3],5 € [m]}.
Moreover, we define I' as follows:

L= A (A ~z5) =0

J1,d2€[m]  €€[3]

J1#ij2 J€{i1.i2}
We let L = {w}. Finally, we define the profile J
(J1, J2,J3) as defined in Figure

J “ Ji Jo T3
T; 1 1 1
21,5 1 0 0
227]' O 1 0
23,5 0 0 1

Figure 1: The profile J = (Ji,J2,J3) in the proof
of Theorem EI. Here i ranges over [n] and j ranges
over [m].

We observe the following equalities, for each ¢ € [n],
each ¢ € [3], and each j € [m]: >, yrev(Ji,zi) =
3, Xsearev(di,mwi) = 0, 30, yrev(Ji,ze;) = 1, and
> s,earev(Ji, mze;) = 2. We also observe that each of the
complete and I'-consistent judgment sets J € J(P,T") satis-
fies at least one of the following conditions: (1) for m — 1 of
the indices j € [m], it holds that z¢ ; € J for some £ € [3], or
(2) J = . This follows directly from the construction of T".

We show that for each J* € F.(J) it holds that J* = .
Take an arbitrary J* € F,.(J). To derive a contradiction,
suppose that J* £ ¢. Then, by our previous observa-
tion, we know that for m — 1 of the indices j € [m], it
holds that z,; € J for some ¢ € [3]. Therefore, the to-
tal score >, _;rev(J;, J*) can be at most 5m + 3n + 1.
However, consider the complete judgment set J’ that in-
cludes all formulas z, ;, for £ € [3] and j € [m], and that
includes —x; for all i € [n]. Clearly, J' is I'-consistent,
since J' = ¢. Moreover, the total score 3, ;rev(Ji, J')
of J' is 6m > 5m + 3n + 1. This contradicts our assumption
that J* has maximum score. Therefore, we can conclude
that J* = ¢.

From this, it straightforwardly follows that there is
some J* € F.(J) with {w} = L C J* iff there is a model
of ¢ that sets a maximum number of variables in Var(y) to
true (among all models of ¢) and that sets w to true. This
concludes our proof of ©5-hardness. []

To illustrate the reversal scoring rule, but also the partic-
ular distance-based methods we consider in the next section,
we use the so-called “doctrinal paradox” as an example. Con-
sider the agenda ® = {p, —p, q,~q,r,—r} and the integrity
constraint I' = r <> (p A q). We consider the profile J given
in Table The set m(J), constructing by adding those
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judgments from & that are supported by a majority of the
agents in J, is inconsistent with I'. The last two columns
of the table list all the judgment sets that are selected by
F,.(J). For details of the intermediary calculations we refer
to the literature |6, Table 3].

J S S I || m3) | FJ)
p[ 1T 1 0 I 1 o
g 1 0 1 1 o 1
r|1 0 o0 0 JJo o

Table 1: Profile for the doctrinal paradox example.

4. DISTANCE-BASED METHODS

A distance d : J(®,T) x J(®,T) — R" is a function that
satisfies identity of the indiscernible, symmetry and triangle
inequalityﬂ A distance-based judgment aggregator Fj is a
function defined for a distance d and an aggregation function
* as:

F37(J) = argmin x(d(J, J1),...,d(J, Jn)).
JeT(2,T)

(4)

The aggregation function x usually used is ¥ or max. To
ease the notation, we will use the subscript H instead of dg
to indicate that the aggregator is defined using the Hamming
distance.

The aggregator F'5 is well studied in judgment aggrega-
tion; it appears in many places under different names: ProO-
TOTYPE [30], median rule [32], mazimum weighted agenda
rule |25], simple scoring rule |6] and distance-based procedure
|14], see also |26]. Variants of this rule have been defined by
Konieczny and Pino-Pérez [22] and Pigozzi [34]. The FZ
aggregator generalises the Kemeny voting rule in judgment
aggregation [27]. The Kemeny voting method is one of the
first problems to be shown to be ©5-complete [20]. The win-
ner determination problem for F has also been shown to
be ©5-complete [15] |14} |28].

In this section, we will also consider the following auxil-
iary problem, defined for a distance d and an aggregation
function *.

OUTCOMEDISTANCE(d, %)

Instance: An agenda ®, an integrity constraint I', a pro-
file J = (J1,...,Jp), a real nonnegative number k € RT,
and subsets L, Li,...,L, C ® with u > 0.

Question: Is there a judgment set J* € J(®,T') s.t. L C
J*, Ly & J* for all i, and x(d(J*, J1),...,d(J", Jp)) < k?

4.1 The max+Hamming distance aggregator

We show ©5-completeness for OUTCOME(F{F*)—the
problem of computing outcomes for the judgment aggrega-
tion procedure based on the Hamming distance with maxi-
mization as aggregator function.

For the profile in Table we obtain Fg**(J) =

{p,a, 7} {p, ~¢, =}, {=p, ¢, 7r}}. Namely, all of the profile
judgment sets are selected, because in this case, as in other

2For any three J¢,J® J° € J(®,T), d satisfies identity of
the indiscernible when d(J¢, Jb) = 0 iff J* = J°, symme-
try when d(J%,J°) = d(J° J%); triangle inequality when
d(J®, J°) < d(J%, J%) +d(J°, J°).



Ty (mAy) e w2y (T2 Ay) m e oz yp (T AY) = o
J1 1 1 1 1 0 1 1 0 1
Jo 1 1 1 0 1 1 0 1 1
J3 1 0 1 1 1 1 1 0 1
Ja 0 1 1 1 1 1 0 1 1
Jopr | 10 1 1 0 1 o1 1
Jgp 0 1 1 0 1 1 1 1 1

Table 2: The profile J used in the proof of Theorem

cases with small agendas and profiles with small number of
agents, the F7** is not very selective.

THEOREM 3. OUTCOME(F{F®) is ©F-complete.

PrROOF. Let J = (Ji,...,Jp). To show that the problem
OUTCOME(FF®) is in ©F we can use Algorithm |2 with one
minor adjustment—we set m, = |®|/2 in line 2, since the
maximal Hamming distance that one judgment set can have
from another is |®|/2 and thus, for any rational J we have
that max(d(J, J1),...,d(J, Jp)) < |®|/2.

To show that OUTCOME(F*) is ©5-hard, we make a re-
duction from MAXCARD SCEPTICAL INFERENCE to a judg-
ment aggregation problem, as done in [28].

Consider A = {p1,...,pp}, B, and propositional formula
a. We construct an agenda [®Pa] = { @i, yi, (T A yi) —
wi 11 € [1,p],0i € A}, where z;,y; are new propositional
variables. We construct the profile Ja given in Table
Moreover, set I' = 3, set L = {—a}, and let u = 0.

Let |A] = n. Consider a rational judgment set J €
T (®a,B) st (zi ANys) = i) € J for any i € [n]. Let
D (J,J) = max(d(J, J1),...,d(J,Jp)). Observe that if J’
is s.t. there exists a ¢ € [n] for which (z; Ay;) = ;i € J',
we have that D,,(J',J) = 2p + D.,(J,J), thus such J’ will
for sure not be in FF*(Ja), therefore we do not consider
them.

Let us define the sets K1, K2, K3 and K4, of cardinalities
ki1, k2, ks and k4 respectively, as follows:

Ky ={{zi,yi, (s Nyi) > @i} CJ:i€[n]}
Ko = {{zi,~yi, (@i Ny:) > pi} CJ i€ n]}
Ks={{—zi,yi, (@i Ny;) > p;} CJ:1 € [n]}
Ky = {{~xi,~ys, (@i Nyi) = p;} CJ:i€[n]}

()

Observe that for any J; € J, J; N K is a singleton, J; N K4
is the empty set, for j odd J; N K3 is the empty set and
for j even J; N K3 is the empty set. Given a judgment set
J; € J, let k be the index of the unique positive triple in
Jj, namely {zk, yi, (xx Ayr) = wr} C Jj. Let us define the
number kq(J;, J) as:

o ka(Jj,J) = 0iff {ax, yx, (xx Ayr) = @r} C J,

o ka(J;,J) = 1 iff {—~zw,yi, (xx ANyx) — @} C J or
{zk, i, (xk Ayx) = @i} C J, and

hd kd(‘]j7 J) =2 iff {_‘xkv Wi, (Ik A yk) — sﬂk} cJ

The cells in Table [3| gives the possible distances between
J and a judgment set J; € J for all cases.

Observe now that judgment sets J € J(®a, ) for which
there exists a J; € J s.t. kq(J;, J) = 2 cannot be included in
FF**(Ja). But since each J; € J has exactly one positive
triple, then if k4 # 0, there necessarily will exist at least

957

‘ j odd ‘ j even
kd(Jj,J):O ki+2ks+ks—1 | k1 +2ks+ks—1
kd(Jj,J):l ki+2ks+ks+1 | k1 +2ks+ks+1
k‘d(Jj,J)IQ ki +2ks+ka+2 | k1+2ks + ks +2

Table 3: Hamming distances from rational judgment
sets to the profile from Table

one J; € J s.t. ka(Jj,J) = 2. Thus we conclude that J €
Fg*(Ja) iff ks = 0.

Assume, without the loss of generality that k2 > ks, thus
Dm(.],.]) = kl + 2k2 + 1. ObSQI‘VG that kl =+ kg —+ k3 = nN.
Consequently, the larger the k; is, the smaller the D, (J,J)
becomes. The judgment set with maximal k; is the one
containing all the triples {x:,ys, (x: A yi) — @i} for which
®; is in the maximally consistent subset in A. []

4.2 Geodesic distance aggregator

The geodesic distance aggregator [9] is based on the
geodesic distance dg, that is defined as follows. Take an
agenda ® and an integrity constraint I'. We then define
the graph G(®,T') = (V, E) as follows. The set V of ver-
tices of G(®,T") consists of all complete and I'-consistent
judgment sets J, i.e., V = J(®,T"). Moreover, two ver-
tices J,J' € V are connected in the graph G(®,T) if there
exists no third vertex J” s.t. (1) J” is distinct from J and
J’, and (2) on each proposition ¢ € ®, J” agrees with J
or J' (or both). The geodesic distance dg is then defined by
letting dg(J, J') be the length of the shortest path from J
to J' in the graph G(®,T"). The geodesic distance aggre-
gator FgE (or Fy for short) uses addition as its aggregator
function x. That is:

Fy(J) = argmin Z dg(J, Jy).
JeT@r) £

(6)

For example, for the profile J in Table[I]we obtain Fy(J) =
{{p,q,7r}} . For intermediary steps of the calculation, the
reader can consult [9], in particular, the last paragraph of
the Section 3.1 there.

We show that the problem of computing outcomes for the
judgment aggregation procedure based on the geodesic dis-
tance with addition as aggregator function is ©%-complete.

LEMMA 2. OUTCOME(Fy) is in OF.

PROOF. In order to show membership in ©%, we firstly
show that the problem OUTCOMEDISTANCE(dy,X) is in
3%, by describing a nondeterministic polynomial-time al-
gorithm that has access to an NP oracle, and that decides
OUTCOMEDISTANCE(dy, ). The algorithm gets as input an
agenda ®, an integrity constraint I', a profile J, two com-
plete and consistent judgment sets J,J' € J(®,T), and



a number k. The algorithm guesses some natural num-
ber 0 < ¢ < k, £ many judgment sets Ji,...,Jr C @, and ¢
many truth assignments wi,...,w; : Var(®) — {0,1}. The
algorithm then verifies (1) whether each judgment set J;
is complete, and (2) whether the assignment w; satisfies
the judgment set J; as well as I', for each i € [¢]. More-
over, it verifies (3) whether for no 0 < i < ¢, there is some
complete and consistent judgment set that lies between J;
and Ji+1. It does so by querying the NP oracle whether
there exists some set J' C ® and some i € [¢ — 1] s.t. (a) J’
is a complete and I'-consistent judgment set, and (b) for
each ¢ € ®, J' agrees with J; or J;41 (or both). We know
that condition (3) is satisfied iff the oracle answers “no.” The
algorithm accepts iff all conditions (1)—(3) are satisfied. It is
straightforward to verify that }_; 5 d(J", J;) < k iff there
exists some guess that satisfies conditions (1)—(3). Thus,
OUTCOMEDISTANCE(dg, %) is in X5.

Then, we describe how to solve OUTCOME(Fy) in poly-
nomial time by querying an oracle in X5 at most a log-
arithmic number of times. We know that the maximum
value of >7; _;ydg(J,J;) for any judgment set J is up-
per bounded by |J| - |®]. Therefore, by using a loga-
rithmic number of queries to an oracle for the problem
OUTCOMEDISTANCE(dy, 3), we can determine the minimum
value k* for 3, ;dg(J, Ji) using binary search. Then,
with one additional query to this oracle we can determine
whether there exists a judgment set J € J(®,T) s.t. (1)
2sesde(d, i) <k, (2) L C J, and (3) Li € J for all i.
Thus, the problem OUTCOME(Fy) is in ©5. O

THEOREM 4. OUTCOME(Fy) is ©F-complete.

PROOF. Membership in ©% is shown in Lemma To
show ©%-hardness, we give a polynomial-time reduction
from QSAT,-MAX-MODEL. Let ¢ = 3X.VY.%) be a true
quantified Boolean formula, where 1 is quantifier-free, and
where X = {z1,...,2,}. We may assume without loss of
generality that for each assignment w : X — {0,1} we have
that 3Y.¢[w] is true. We construct an agenda ® and a pro-
file J s.t. the complete and consistent judgment sets J se-
lected by F, correspond exactly to the maximal models of ¢.

We define mi = 3, and mg = (m1+1)-n, and we introduce
auxiliary variables z; for each i € [m1] and each j € [ma)].
Intuitively, for each i, the variables zJi- will act as a clus-
ter of switches, that can be triggered individually (and in
several cases, collectively). We then construct the proposi-
tional formula x = ¢ — V|, Xi, where for ,each i € [ma]
we let Xi = Ajc(ma) 25 A Nirepma,irzi,jeime) 775 - Intuitively,
this formula x ensures that whenever v is true, it holds that
the switches z; are “on” for exactly one cluster.

We now define the agenda & by letting [®]
{z1,..., e} U {2} : i € [ma1],j € [m2] } U{x}. Moreover,
we let ' = T. For the sake of convenience, we will in-
troduce the following property Q). We say that a complete
and consistent judgment set J € J(®) has property @ if
there exists some i € [ma] s.t. {21,...,2},,} C J and for
each i’ € [ma] s.t. i’ # i it holds that {ﬂz{'/, o —wi,lz} cJ.
Because 3Y.¢[w] is true for each assignment w : X — {0,1},
it is straightforward to verify that each J € J(®) belongs to
exactly one of three classes (A)—(C), defined by the following
conditions: (A): x € J, and J has property Q; (B): x € J, J
does not have property @, and J U {—} is satisfiable; and
(C): =x € J, and J does not have property Q.
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Next, for each i € [m1], we define the complete and con-
sistent judgment set J; = {x,~w1,...,~zn} U {2z} : j €
[m2] } U {ﬁz;:, :4' € [ma],i’ # 4,5 € [m2]}. Moreover, we
let J = (Ji,...,Jm,;). In the remainder of the proof, we will
show that Fj selects (all and only) judgment sets J that
correspond to the assignments w : X — {0,1} of minimal
weight s.t. VY.9[w] is true. For the sake of convenience, we
will assume without loss of generality that 3X.VY.4 is true.

Let w : X — {0,1} be an assignment of weight w
s.t. VY.¢w] is true (we will call such assignments satisfy-
ing assignments). For any integer ¢ € [m1], let the com-
plete and consistent judgment set J;” be defined by J;’
DG u{z rw(@) =1 U {2 s w(x) =0}U{z;:j€
[me] }U {ﬂz;:, 24 € [mal, i’ # 4,7 € [ma] }. We now claim
the following.

Claim 1: For any i1,i2 € [mai] with 41 # i2, and any
satisfying assignment w, it holds that dy(J;, Jio) = 1.

Claim 2: For any i € [m1], and any i’ € [ma1] s.t. i # i, it
holds that dg(J;, Ji") = w and dg(J;r, J§") = w + 1.

Claim 3: Let wo be the minimum weight of any sat-
isfying assignment w X — {0,1}. Then for any
such w of weight wo, and any ¢ € [ma], it holds
that ZJJ-EJ dg((]f,(]j) =m1 - wo + 1 = dp.

Claim 4: For any complete and consistent judgment set
that does not coincide with J;° for any satisfying assign-
ment w of weight wo, it holds that ZJJ-EJ dy(J7, J5) > do.

Suppose for a moment that we have proven these claims.
We can then complete our proof as follows, by specifying how
to produce a satisfying assignment for ¢ that has minimum
weight from any J selected by Fy,. Let J be an arbitrary
judgment set selected by Fj,. By Claim 3 and Claim 4, we
know that J must be of the form J;°, for some satisfying
assignment w of minimum weight wo and for some ¢ € [m4].
It is straightforward to extract the assignment w from J;”.

All that remains now is to prove our claims.

Proof of Claim 1: This follows from the facts that ¥[w] is
a tautology and that x € J;j N J;;.

Proof of Claim 2: The conclusion that dg(J;, J§)
w follows directly from the fact that all complete judg-
ment sets J' D J; N J{ are consistent. The conclusion
that dg(Jy, J5) w + 1 then follows directly by using
Claim 1.

Proof of Claim 3: This follows from Claims 1 and 2.

Proof of Claim 4: For any satisfying assignment w, and
any 41,42 € [m1] with i1 < 42, we call the edge in G(®,T")
between J;; and Jj, a shortcut. We claim the following.
Let 41,i2 € [mi] with @1 < iz, and let Ji,Jo be com-
plete and consistent judgment sets s.t. { 2j* : j € [m2] } C
J1, {—\z;v/ cdl € i’ # g € [me]} C U, {22 15 €
[m2] } C Ja, and {—|Z§/ 21 € [ma], i’ # 2,5 € [m2] } C Ja.
Then any path from J; to J2 in G(®,T") that does not involve

any shortcuts is of length at least ms > do. This claim holds,
because any intermediate complete judgment set, i.e., any

set J' with { =2% @i’ € [m], & & {ir,i2},j € [mo] } C J', is
consistent. This is straightforward to verify. []

5. RELATED WORK

The problem of finding the collective judgment sets has
been approached by formulating various decision problems.
One decision problem that has been studied [21} [28] is the
following: given a judgment ¢, a profile of judgments J and



an aggregation function f is it true that the judgment ¢ is
in all J € f(J). In contrast, the decision problem studied
by Endriss et al. [15] [14] is the same as we study it here.
The class of distance based aggregators has been considered
by Jamroga and Slavkovik [21], and they have shown that
it is possible for the decision problem to be undecidable. In
the literature 15| |14} [28], all of the better known judgment
aggregation functions have been analyzed with the excep-
tion of the aggregators that we study in this paper. With
this work, we thus—for now—complete the complexity anal-
ysis of the “winner determination” problem for the judgment
aggregators considered in the literature.

It is well known that judgment aggregation generalises
preference aggregation |7] and in particular that judgment
aggregators generalise voting aggregators [27]. A preference
aggregation problem is defined with a finite set of candidates
C and a finite set of voters represented as total, strict and
transitive preference orders >; over the set of candidates.
Such preference aggregation problems can be represented as
judgment aggregation problems: the agenda ®c¢ is a set of
issues x Py, each interpreted as “alternative x is preferred to
alternative y”, while the set of constraints is the transitivity
constraint Tr expressing that you cannot have a judgment
Py and a judgment yPz without having a judgment zPz,
for any triple of alternatives x, y, z. The voters can be repre-
sented as profile of rational judgment sets Jv € J(®c, Tr)*.

It is interesting to compare the complexity results for the
“winner determination” problem that we obtain with the
complexity of the winner determination in the case of the re-
spective preference aggregation methods. Dietrich [6] shows
that the reversal scoring method generalises the Borda pref-
erence aggregation method [3|, and also, as we discussed in
Section that F3 is a generalisation of the Kemeny method.
The problem of checking if a candidate is a Kemeny winner
for a profile of preferences is one of the first ©%-complete
problems, and here we observe no “complexity jump” when
generalising the method to judgment aggregation. In con-
trast to its judgment aggregation generalisation, the Borda
method is computationally easy, finding winners can be done
in linear time of the number of agents and alternatives.

Interestingly, the ng aggregator is also a generalisation of
the Kemeny method. Let us construct the Hamming graph
G(®) = (V, E) where V is the set of all complete, but pos-
sibly inconsistent judgment sets from ® and there exists an
edge in E between two sets J and J' iff dg(J,J") = 1.
Observe that if G(®) is s.t. every rational judgment set
(node) in G(®) is connected to at least one other ratio-
nal judgment set in G(®), then for every J,J € I'(®,T),
we have that du(J,J") = dg(J,J'). Now observe that the
graph G(®c,Tr) for any set of alternatives C is a permu-
tohedron with every node being connected to |C| — 1 nodes
that are at Hamming distance one from it. Therefore, for
any two judgment sets J,J' € J(®c,Tr), we have that
du(J,J') = dg¢(J,J"). Consequently for profiles Jy for the
preference agenda it holds that F,°(Jv) = F7(Jv). Thus
ng would aggregate to judgment sets corresponding to pref-
erence orders that the Kemeny method would produce.

Binary Aggregation.

In addition to the judgment aggregation framework that
we consider in this paper (as defined in Section , an-
other framework has been considered in the literature to
model judgment aggregation settings (see, e.g., |13} |17])—
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this other framework is known under the name binary aggre-
gation (with integrity constraints). The main difference with
the judgment aggregation framework that we consider in this
paper is that no additional propositional variables (beyond
those representing the issues) can be used to specify the log-
ical relations between issues. In general, the complexity of
the winner determination problem can differ between these
two different judgment aggregation frameworks |13]. In par-
ticular, when considering the complexity from the more de-
tailed perspective of parameterized complexity, complexity
results tend to differ (see, e.g., [19]). All the membership
results (for the classes ©F and ©F) that we presented in this
paper straightforwardly carry over to the setting of binary
aggregation. The hardness proofs in this paper cannot all
directly be used for the setting of binary aggregation. The
reason for this is that transforming an agenda from the judg-
ment aggregation framework that we use in this paper to
the framework of binary aggregation, in general, leads to an
exponential blow-up [13] (under some common complexity-
theoretic assumptions). However, whenever the agenda ®
used in a hardness proof contains all the variables occuring
in ¢ as formulas in the agenda, the hardness proof carries
over to the setting of binary aggregation. This is the case for
our proof of Theorem [2] for instance. Extending the other
hardness results that we obtained in this paper to the setting
of binary aggregation remains a topic for future research.

6. CONCLUSION

We studied the complexity bounds of the winner deter-
mination problem in judgment aggregation for three aggre-
gation methods so far unconsidered for such analysis in the
literature: the reversal scoring rule and the two distance-
based methods FgF** and ng. Judgment aggregation is a
relatively new area of social choice and new methods for ag-
gregating profiles of judgments are being actively developed,
such as |4, |10} |16, 35] as well as other scoring methods given
in [6], therefore we cannot claim to have closed the chapter
on winner determination complexity analysis in judgment
aggregation with our work. However, the methods we study
here were the last of the methods frequently referenced in
the literature for which a complexity analysis was not done.

We showed that the winner determination problem for the
reversal scoring rule and Fi** is ©)-complete, while that
problem for ng is ©%-complete. For judgment aggregation
methods that satisfy non-dictatorship and the universal do-
main property, i.e., nontrivial methods that can aggregate
any profile of rational judgment sets, the complexity of the
winner determination problem has so far not been below
the ©F level. We thus have a very strong indicator that the
problem of aggregating judgments is computationally very
hard. We do not yet have a clear picture of what the pa-
rameterized complexity landscape of this problem looks like,
with the exception of the F7** method studied in [19], nor
how approximable this problem is for the various aggrega-
tion methods. These are immediate directions for future
work.
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