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Abstract. State commands refer to states, not actions. They have a
temporal dimension explicitly or implicitly. They indirectly change what
we are permitted, forbidden or obligated to do. This paper presents
DTNL, a deontic logic meant to handle state commands based on the
branching-time temporal logic PCTL*. The models of DTNL are trees
with bad states, which are identified by a propositional constant b intro-
duced in the language. To model state commands, a dynamic operator
that adds states to the extension of b is introduced.

Keywords: deontic logic, temporal logic, commands, deadlines

1 Background

There are two types of commands that refer to actions and states respectively.
The former can be called action commands and the latter state ones. For example
never touch the button is an action command since it imposes a restriction on
which actions can be legally performed, while ensure that the table is clean before
the meeting; everything be in order until I get back [12]; nobody sit in the first
row [12] are state commands as they impose conditions on the future state of
affairs.

Commands of both types can change what the agent is permitted, forbidden
or obligated to do. After the action command never touch the button, the agent
is not allowed to touch the button any more. After the state command ensure
that the table is clean, the agent has the obligation to make it true that the table
is clean.

Unlike action commands, state commands change what the agent can do
indirectly. The state command ensure that the table is clean is not ordering the
agent to clean the table himself. All it requires is that the agent makes it the case
that the table is clean. The agent can execute the command by letting someone
else clean the table.

Commands have a temporal dimension. Ensure that the table is clean before
the meeting imposes a deadline conditional on future events: the command is
fulfilled if the table is clean just before the meeting; everything be in order until
I get back imposes a certain obligation until some other condition is fulfilled;
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nobody sit in the first row imposes a permanent condition: the agent should
prevent from now on that someone sits in the first row.

There are two perspectives concerning how the agent should behave after
a command: the perspective of the agent himself and the external perspective.
They make a difference for the commands without a deadline. We take ensure
that the table is clean some day as an example. From the external perspective,
after the command, the agent should make it true that the table is clean, al-
though he can do it in whichever day he wants. But from the perspective of the
agent, the command creates no obligation, as it will not be violated at any point
in time. This difference was already pointed out by [6] in the context of deadlines
of norms.

Computation Tree Logic (CTL), proposed in [5], is a branching-time temporal
logic broadly used in computer science. Examples of properties expressible by
CTL are it is sure that ¢ will happen in the nexrt moment; it is sure that ¢
will eventually happen; it is possible that ¢ will hold until . By generalizing
CTL, [1] presents a deontic logic, called Normative Temporal Logic (NTL). The
models of this logic are transition systems plus illegal transitions. An example
of properties expressible in NTL is the agent is allowed to act to make ¢ true
in the next moment. Compared with conventional deontic logics, NTL has two
interesting features. Firstly, it makes the idea explicit that the agent acts to
make things true. Secondly, normative notions expressible by it have a temporal
dimension.

NTL is conceptually suitable to handle state commands, but technically has
two problems. Firstly, NTL, as CTL, has a syntactic restriction on applications of
temporal operators: they have to be immediately preceded by path quantifiers.
This implies that the temporal formulas such as ¢ will eventually happen are not
well-formed formulas and iterations of temporal operators are not allowed. So it
is hard to express and interpret state commands within NTL. Secondly, NTL uses
transition systems with illegal transitions to handle normative notions, but these
models are historyless in the sense that whether a transition is illegal or not has
nothing to do with what the agent has done in the past. However, normative
notions with a temporal dimension essentially involve past actions. For example,
assume a scenario in which a child has to collect 100 coins in a piggy bank, and
only then retrieve them by crashing the container. As the difference made by
putting a coin into the bank can not be seen, the child has to rely on his memory
of the past actions to know when to break the bank.

Full Computation Tree Logic (CTL"), introduced in [7], is an extension of
CTL that does not have the syntactic restriction mentioned previously. PCTL*
is a further extension of CTL* with two past operators whose completeness is
shown in [9]. In what follows we present DTNL (“Dynamic Temporal Normative
Logic”), a deontic logic based on PCTL*. This logic takes trees with bad states as
its models, instead of general transition systems with bad transitions. A special
propositional constant b is introduced to indicate bad states. Using this constant,
the normative notions of permission, prohibition and obligation can be defined
as in [8] and [3]. A dynamic operator representing state commands is also intro-
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duced. Its function is to update the model, adding those states that violate the
command to the extension of b. The logic follows the agent’s perspective, and
commands without a deadline might not create the corresponding obligations.
Our way of viewing commands follows [10] and [2] which think that the meaning
of commands lies in how they change the agent’s internal state.

2 Language

Let &g be a countable set of atomic propositions and p range over @,. Define
the language @prnL as the following:

pu=p|T[b[-0|(0N0) | Y| (45¢) | Xo | (#U9) | Ag | [l9]
The featured formulas of this language are read as follows:

1. b: this is a bad state.

2. Y¢: ¢ was the case in the last moment.

3. ¢Sp: ¢ has been the case since 1.

4. X¢: ¢ will be the case in the next moment.

5. ¢U: ¢ will be the case until .

6. A¢: no matter how the agent will act in the future, ¢ is the case now.
7. ['o]: 1 is the case after the command make ¢ true is given.

Note that the language $pnL is the language of PCTL* plus the propositional
constant b and the dynamic operator [!¢].

It seems strange to say that no matter how the agent will act in the future,
¢ is the case now, but in fact this is fine. Whether a sentence that involves time
relations is true or not now might be dependent on how the agent will act in the
future. For example, whether a student will pass an exam is dependent on how
he will study. In order to make a sentence true now, the agent has to act in a
certain way in the future.

The other usual propositional connectives and the falsum | are defined in
the usual way:

. f:= —b: this is a fine state.

. P¢:=(TS¢): ¢ was the case.

H¢ := —-P—-¢: ¢ has been the case.

. F¢:= (TU¢): ¢ will be the case.

G¢ := -F-¢: ¢ will always be the case.

. E¢ := ~A—¢: the agent has a way to act in the future s.t. ¢ is the case now;
E¢ intuitively means that making ¢ true is achievable.

SN T NIU O

Let X"¢ denote X...X¢ where n is the number of occurrences of X. The
state commands mentioned in the beginning can be expressed as follows:

1. Ensure that the table is clean before the meeting: ' XF~1¢
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2. Everything be in order until I get back: !(oUb)
3. Nobody sit in the first row: G—s

For the first example, we suppose that the starting time of the meeting is already
fixed and there are k units of time from now to it.

3 Models

Let W be a nonempty set of states and R a binary relation on it. A sequence
wp - . . wy, of states (possibly of length one) is called an R-sequence if woR ... Rw,.
(W, R) is a tree if there is a r € W, called the root of the tree s.t. for any w, there
is a unique R-sequence from r to w. Immediate consequences of the definition
are that the root is unique and R is irreflexive. R is serial if for any w, there is
a u s.t. Rwu (there are no end points).

A serial tree (W, R) is understood as a time structure encoding an agent’s
actions (the transitions) and states in time (the nodes). At any state w, the
history of the agent up to that point is represented by the path connecting the
root to w (the actions performed). The seriality condition corresponds to the
fact that the agent can always perform an action at any given time, while a
branching in the tree is interpreted as a situation in which the agent can choose
between different possible actions.

Fix a serial tree (W, R). Here are some auxiliary notations. An R-sequence
Wy . .. Wy, starting from the root is an history of w,. For any w and u, u is a
historical state of w if there is an R-sequence ug...u, s.t. 0 < n, ug = u and
U, = w. w is a future state of u if w is a historical state of w. Note that a state
can not be a historical or future state of itself.

An infinite R-sequence is a path. A path starting at the root is a timeline. A
path wq ... passes by a state x if x = w; for some ¢ > 0. Let 7 be a path. We use
7(i) to denote the i + 1-th element of 7, ‘7 the prefix of 7 to the i + 1-th element

and 7? the suffix of 7 from the i + 1-th element. For example, if 7 = wy ..., then
7(2) = we, 27 = wowyws and 72 = wy . ... For any history wy . ..w, and path
ug ... 8.t wy, = ug, let wy ... w, @ ug... denote the timeline wy ... w,u; . ...

A tuple M = (W, R,r, B,V) is a model if

1. (W, R) is a serial tree with r as the root
2. B is a subset of W meeting the following conditions:
(a) if w € B, then u € B for any u s.t. Rwu
(b) if w ¢ B, then there is a u s.t. Rwu and u ¢ B
3. V is a function from &, to 2%

B is called the set of bad states and W — B the set of fine ones. Intuitively, a
transition (w,w) is illegal if w is a bad state. The first constraint on B is called
persistency of liability; it indicates that if we reached a state in which we failed
to fulfill a command, then this holds for all its successors. This constraint implies
that if a state is bad, then all of its future states are bad, and if a state is fine,
then all of its historical states are fine. The second constraint on B is called
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seriality of legality; it means that if a state is fine, then at least a successor of
it is fine. The conjunction of the two constraints is called normative coherence.
Figure 1 illustrates a model.

Fig. 1. This figure indicates a model. wy is the root. Dotted circles denote bad states
and solid circles fine states. Arrows are transitions.

The following is an intuitive interpretation of the models: an agent’s possible
actions are encoded by a serial tree (as mentioned above). At any moment, the
agent has a set of rules he should respect, and these rules are encoded by the
bad states: the agent is allowed to travel to the fine states but not to the bad
ones. If the agent has not done anything illegal, there is always something legal
for him to do, and if he has done something illegal, there is nothing legal for him
to do. We will get back to the last point again in Section 6.

4 Semantics

Following the dynamic approach, we define by mutual recursion the truth of
formulas with respect to a model and an update operation to interpret the
dynamic operator !¢.

M, 7,1 |- @, the formula ¢ being true at the state 7 () relative to the timeline
7 in the model 9, is defined as follows:

M, m,ilkp & w(i) e V(p)

M, m,ilkT

M, w,il-b < w(i)eB

M, 7,0 Ik - < not M, m,ilk ¢

M, w0 lFd A S Mom,ilk ¢ and M, 7, i -

M, m,ilF Yo & i>0and Mmi—11F ¢

M, m, i Ik @Sy & thereisaj <est. Mme—jlFy
and M, m,i — k|- ¢ for any k < j

M, m, 1 Ik X S Mmi+1llk¢

M, 7, Ik pUx & thereisa jst. M om i+ jl-
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and M, m, i+ k|- ¢ for any k < j

M, w1 - Agp & for any path p starting at 7(i), M, ‘7 @ p,i IF ¢
Ml gy & MG milk
A is a universal quantifier over possible timelines. The evaluation of some for-
mulas does not depend on the whole path but only on the point of the path with
the selected index (e.g., p, T, b and A¢). We will call a formula for which this
property holds in every model a state formula, while a formula whose semantical
interpretation depends on other points of the path (e.g., Yo, ¢Stp, X¢ and ¢U1))
will be called a temporal formula. In particular, if ¢ is a state formula then [!¢]y)
is a state formula too.

A path wq ... is legal if w; is a fine state for every ¢ > 0. The update model
zmij‘;i) is defined as follows.

Definition 1 (Update with commands). Let 0t = (W, R, r, B, V') be a model,
¢ a formula and w a state. Let wy ... w; be the history of w. Define a set X\?
of states as follows: for any x € W, x € X!? < (i) z is a future state of w,
(it) x is a fine state, and (iii) there is no legal path p starting at w and passing
by x s.t. Mowg ... w; @ p,i I ¢. Let M? = (W, R,r, BUX!. V) if BUX? is
normatively coherent, or else MY = M. IM'? is called the result of updating I
at w with the command !¢.

Proposition 1. Fiz 9 = (W,R,r,B,V), w, i and ¢. BU Xﬁi) s not norma-
tively coherent < (i) is a fine state in M and there is no legal path p starting
at w(i) s.t. M, 'w @ p,il- P.

Proof. (<) Assume that (%) is as in the hypothesis. Since 7(7) is not reachable
from = (4), by definition of Xjfzi) it follows that 7 (i) ¢ BU ijzi)'

Consider now a successor u of m(¢). If u ¢ B, by hypothesis we know that
there is no legal path p starting at 7(¢) s.t. 9,7 @ p, ¢ - ¢ and passing by u. By
definition of lerdzi) this implies u € X:izi), and because u was arbitrary, it follows
that all the successors of 7(7) lie in BU X:fzi), and so the set is not normatively
coherent.

(=) The result is proved by contraposition. We want to show that BU X;:zzi)

is normatively coherent assuming that 7(¢) is a bad state or that there is a legal
path p starting at 7(7) s.t. M, 7w ® p,i |k ¢.
The former case: assume that (i) is a bad state in 9. Then X'® . = () and

' (i)
BUXY,

The latter case: assume that there is a legal path p as described above.
Spelling out the definition of normative coherence, we have to show that the
successors of a state in B U X;sz ) are again in BU X;f; ) (persistency of liability)

i i
and that given a state w ¢ BU X:fzi) then it has a successor u s.t. u ¢ B UXT!:Z)

)= B. Then B U X!? is trivially normatively coherent.

(seriality of legality).
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The first condition it’s easily checked. If w € B then all its successors are in
B because we assumed that M is normative coherent. Otherwise if w € X:Ei),
consider u s.t. Rwu; clearly we have

w e X:fzi) = Rm(i)w and for all p starting at (%)
and passing by w: M, 1 ® p,i I} ¢
= Rn(i)u and for all p starting at 7(7)
and passing by u: M,*m ® p,i lff ¢
=ucBoruecX?

(1)
=u€ BU X;dzl.)
[

For the second condition, consider w ¢ B U Xir(i) and suppose that Rr(i)w
(otherwise the result trivially follows). We have, by definition of lejzi)’ that there
exists a legal path p starting at 7(i) passing by w such that M, ‘w ® p,i I+ ¢.
And now it easily follows that for any successor u of w in the path p we have
u € B (as pis legal) and u ¢ Xifzi) (as the path (i) ® p witness this). O
The proof of this proposition is omitted due to limit of space. That there is no
legal path p starting at 7(i) s.t. M, 7 ® p,i Ik ¢ means that making ¢ true at
(i) is forbidden. 9'¢ is understood as follows. Assume that the agent is at the
state w and the command make ¢ true is given to him. If w is a fine state but
it is not allowed to make ¢ true, then the agent considers the command strange
and ignores it. Assume otherwise. Then the agent scans the fine states that he
can reach from w one by one. He marks a state bad if he finds this: if he travels
to it, there would be no legal way to make ¢ true at w, no matter where he goes
afterwards. X9 is the collection of the states that he marks bad. After marking,
the agent behaves by taking the new bad states into consideration. Figure 2
illustrates how a command updates a model.

Note that the set X'¢ is defined w.r.t. 9. Updating M at w with !¢ only
changes the future states of w.

A formula ¢ is wvalid if for any 9, m and i, M, 7,7 - ¢. Let ' be a set
of formulas and ¢ a formula. I' = ¢, I' entails ¢, if for any 9, 7 and 4, if
M, 7,4 I- I, then M, 7w, i - ¢. We in the sequel use DTNL to denote the set of
valid formulas.

5 A static deontic logic by reduction

Without the dynamic operator, the static part of DTNL is just PCTL* plus
the propositional constant b. As mentioned in the introduction, there is already
a complete axiomatization of PCTL* in the literature. We can get a complete
axiomatization for the static part of DTNL by adding the axioms b — AXb and
f — EXf to PCTL*. The two formulas respectively express the two constraints
on the models of DTNL : persistency of liability and seriality of legality.

The formula XGf indicates that from the next moment on, the state will
always be fine. It expresses legal paths in the following sense: for any model 9t
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Fig. 2. This figure illustrates how a model is updated by a command. The valuation
of two propositions p and ¢ is depicted. miﬁip is the result of updating 9t at w; with
the command make p true in the next moment (!Xp).

and history wg...w;, a path p is legal iff 9, wyp ... w; ® p, ¢ IF XGf. Using this
formula and the path quantifiers A and E, we can define some deontic notions.

1. P¢ := E(XGf A ¢): the agent has a legal way to act in the future s.t. ¢ is
the case now. That is, the agent is permitted to make ¢ true now.

2. F¢ = A(XGf — —¢): no matter how the agent will legally act in the future,
¢ is not the case now. That is, the agent is forbidden to make ¢ true now.

3. O¢ := A(XGf — ¢): no matter how the agent will legally act in the future,
¢ is the case now. That is, the agent is obligated to make ¢ true now.

The truth conditions of the normative formulas can be specified by use of
legal paths.

M, 7, |- Pp < there is a legal path p from 7(i) s.t. M, ‘7 @ p,i Ik ¢
M, 7, |- Fép < there is no legal path p from 7(i) s.t. M, ‘7 @ p,i k¢
M, 7,1 I O¢ < for any legal path p from 7 (i), M, it @ p,i I ¢

The deontic operators can be treated as quantifiers over legal paths.

We obtained a deontic logic, namely the static part of DTNL, for which
normative formulas have a temporal dimension. For example, OFp says that the
agent ought to make p true at some point in the future.

A quite different case is Op. This formula does not mean that the agent
ought to make p true, but that the agent ought to act in the future to make
p true at the present moment. As the condition is independent from the future
events, this should count as a trivial obligation, and in fact it can be verified
that f — (p <> Op) is a valid formula.

As defined above, a path is legal if it consists only of legal transitions, but
there are other properties of paths expressible in DTNL that are interesting in
normative contexts. One of them is containing finitely many illegal transitions,
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which is expressed by FGf. This property can be intuitively understood as mainly
consisting of legal transitions and is slightly weaker than legal paths. Using this
property, we can define different normative notions in a similar fashion as the
one presented above. This issue deserves a closer look.

6 Explanations

The models of DTNL are trees with bad states. Note that in trees, defining
bad states or bad transitions results in equivalent semantics and there is no
real difference between the two approaches. We mentioned in Section 1 that
bad transitions in general transition systems are historyless and not suitable
to handle normative notions with a temporal dimension. A concrete example is
given in Figure 3.

w u

Fig. 3. The structure in this figure represents a conceivable scenario. Let ¢ = O(X—pA
XXGp). This formula says what follows is obligatory: firstly make p false; then make p
true; then keep p true forever. In fact, it can be checked that there is no way to arrange
illegal transitions in this structure s.t. ¢ is true at w. This shows the importance of
keeping track of the past actions.

Note that technically, trees with bad states are equivalent to general transi-
tion systems with history-dependent bad transitions. By history-dependent, we
mean whether a transition is bad or not is dependent on specific histories, that
is, finite transition sequences. Roughly, the arguments for the equivalence can go
as follows: point generated submodels preserve truth; pointed transition systems
with history-dependent bad transitions can be safely unwound to trees with bad
states. We refer to [4] for the details of generated submodels and unwinding.
However, if we work with transition systems with history-dependent bad tran-
sitions, the definitions, especially the definition for the update with commands,
would be very complicated. Working with trees plus bad states makes things
much easier.

The special constraint persistency of liability on the models of DTNL denotes
that if a state is bad, then all of its successors are bad as well. We use this
constraint for two reasons. One reason concerns offering state permissions such
as you may let the prisoners go today or tomorrow. Offering permissions tends
to make bad states fine. This paper focuses on giving commands and does not
deal with offering permissions, but once we want to handle it in this framework,
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it becomes clear why the constraint is needed. Another reason is conceptual. If
a command has been violated, then this fact will remain true also in the future.
The constraint persistency of liability is coherent with this.

7 Commands without a deadline

The formula [1¢]O¢ is not generally valid. For example, ['Fp]OFp is not valid,
as shown in Figure 4. Therefore, commands do not always cause the expected
effects, sometimes they fail. Note that the command !Fp does not have a deadline
and so it can not be checked if it has been violated after a finite amount of time.
Actually, this failure only happens for this kind of commands.

Fig. 4. This figure explains why [![Fp]OFp is not valid. The model 9 does not contain
any bad state and all the paths in it are legal. The command !Fp at wo in 9t does
not change anything, as no matter where the agent goes from wy, there is a way to
make Fp true at wo. Therefore, wows ... is a legal path of m;fg) However, it can be
seen that not Dﬁiﬂf’, wows . ..,0 Ik Fp. Then not Smlef,wowl ...,0IF OFp, that is, not
M, wows - .., 0 IF [!Fp]OFp.

We say that a formula ¢ is colorless if it contains no occurrence of b. Colorless
formulas are not sensitive to badness of states.

Proposition 2. Let ¢ be a colorless formula. Then M, 7,i Ik [\¢]O¢ < for
any path p starting at ©(i), if M,’7w @ p,i - {X"EY"(XGf A ¢)|n € N}, then
M, 7w @ p,i - ¢.

Proof. (<) By contraposition, assume M, 7,i [ [1¢]|O¢. By spelling out the
semantic clauses, this means that there exists a legal path p of 93?'7?(1) starting at
(1) s.t. Em!:%i),iw ® p,i I ¢. It is straightforward that p is also a legal path of
I as well. Moreover, as ¢ is colorless, M, ‘7 @ p,i I ¢.

It remains to show that M, 'r ® p,i - X"EY"(XGf A ¢) for every value
of n € N. Fix the notation p = wou; ... and j > 0. As u; is a fine state in



A Dynamic Approach to Temporal Normative Logic 11

Qﬁﬁi), there exists a legal path 7 in 9 starting at 7(i) and passing by u; s.t.
M, ir ® 7,i I ¢ (notice that 7 and p coincide up to the n-th state because
our structure is a tree). Then clearly 9, ‘7w @ 7,4 IF XGf A ¢ and consequently
M, in @ p,i IF XIEYI(XGf A ¢). Since j was arbitrary, it follows I, ‘7 @ p, i I+
{X"EY"(XGf A ¢) |n > 0}, as wanted.

(=) By contraposition, assume there is a path p starting at 7(i) s.t. 0, ‘7 @
p,i IF {X"EY"(XGfA¢)|n € N} but M, ‘r®@p,i I ¢. Note that, as ¢ is colorless,
this is equivalent to E)ﬁ!f(i), ‘r®p,ilff ¢. So in order to show M, 7, i I} [19]O, it
suffices to prove that p is a fine path of 93?‘:’(2)

Let p = wupuy ... and j > 0. It is easy to show, using again that ¢ is colorless,
that the hypothesis 9, ‘7 @ p,i |- XIEY7(XGf A ¢) implies that every u; is a

fine in 91 and is not an element of Xﬁi), and this means exactly that u; is a

fine state of E)Jtlf(l) Since j was arbitrary, it follows that p is a fine path, as
wanted. 0

A formula ¢ is co-compact if {X"EY"¢|n € N} = ¢. An example of such
a formula is Gp, while Fp is not. Co-compact formulas are exactly the formulas
that can be falsified in finite steps: if the formula is not true at a path, this is
attested by an initial segment. For example, if Gp is false at 7, then in order to
know this, we just have to scan 7 up to a state in which p is false. Note that if
Gp is true, we might need to scan the whole path: it is possible that the agent
will never execute !¢ but we are unable to attest this. In other words, if ¢ is not
co-compact, then !¢ is a command without a deadline.

Proposition 3. Let ¢ be a colorless formula. Then [\¢]|O¢ is valid < ¢ is co-
compact.

Proof. By Proposition 2, it suffices to show that {X"EY"(XGfA¢) |n € N} |
¢ < {X"EY"¢|n € N} E ¢. As X"EY"™(XGf A ¢) implies X"EY"¢ for any n,
the direction from right to left is trivial.

For the other direction, reasoning by contraposition, assume {X"EY"¢ |n €
N} £ ¢. Then there is M, 7 and i s.t. M, 7,7 IF {X"EY"¢ | n € N} but M, 7, |
¢. Note that, as ¢ is colorless, we can assume that all the states in 9% are fine,
and so it follows trivially I, 7, ¢ IF {X"EY"(XGf A ¢) |n € N}, thus showing
that {X"EY"(XGf A ¢) |n € N} i ¢ as wanted. O

Something worth mentioning is that a command containing a co-compact
formula might have different deadlines in different situations and so a bound
to the length of the initial segment falsyfing the formula can not be given. An
example is !Gp. These commands just have implicit deadlines. We say that a
formula ¢ is explicitly co-compact if there is a n s.t. X"EY"¢ — ¢ is valid. The
commands containing this sort of formulas have explicit deadlines. For example,
I(Xp v XXp) has an explicit deadline, that is, two steps; if p is not true in two
steps, then the command is violated.
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It can be seen that past operators let us easily state the condition of [l¢]O¢
being true and the definition of co-compact formulas. This is the reason that we
introduce them.

8 Connections with other work

We mentioned in Section 1 the deontic logic NTL which is based on CTL and
presented in [1]. The language of NTL, &y, is defined as follows®:

pu=p|T|=¢] (@A) | PXp|P(pUg) | OX¢ | O(¢Ug)
Note that &n1L is a fragment of @pTn that contains only state formulas.

A model of NTL is a structure (W, R, n, V') where W and V' are as usual, R is
a serial relation on W, and 7 is a subset of R whose complement is serial, called
the set of illegal transitionsS. A path wow; ... is called legal if (w;,wiy1) & 7
for any i. The semantics of @yt is a special case of the semantics of @PpyyL,
but now P and O can be regarded as an existential and universal quantifier over
legal paths respectively.

Say that a formula ¢ in PpryL is f-valid if for any 9, 7 and 4, if 7 (i) is a
fine state, then 9, 7,4 I ¢. NTL can be embedded into DTNL under the notion
of f-validity.

Let M = (W, R,n, V) be a NTL model s.t. (W, R) is a tree. Let r be the root
of (W,R). Let B={y € W|(z,y) € n for some z} and B’ be the smallest set
containing B and closed under R. It can be verified that for any w, if w ¢ B’, then
there is a u s.t. Rwu and u ¢ B’. Define ™ as the structure (W, R, r, B', V),
which is a DTNL model.

Lemma 1. Let M = (W, R,n, V) be a NTL model s.t. (W, R) is a tree. Let w
be a fine state of M*. Then for any ¢ € Pn1L, M, w lF ¢ < M* w I+ ¢.

The lemma follows immediately by noticing that for any fine state u of 9>, a
path 7 starting at u is legal in 901 iff it is legal in 9.

Proposition 4. For any ¢ of Pn7L, ¢ is valid in NTL < ¢ is f-valid in DTNL .

Proof. Assume that ¢ is not valid in NTL. Then there is an NTL model 9t =
(W,R,n,V) and a state w s.t. M, w I ¢. Let M = (W', R',n’, V') be the
unwinding of M from w. It follows immediately that 9 is also an NTL model,
that 9, w Iff ¢ and that w is a fine state of (9')*. By Lemma 1, (9)*,w I} ¢
and so ¢ is not f-valid in DTNL.

Assume that ¢ is not f-valid in DTNL. Then there is a DTNL model 91 =
(W,r,R,B,V) and a fine state w s.t. M, w | ¢. Let M = (W, R,n, V) where
n={(z,y) |y € B}. Then M’ is an NTL model and it can be seen that (9')* =
M. By Lemma 1, M, w I ¢ and so ¢ is not valid in NTL. O

® In [1], every deontic operator has a parameter referring to a specific set of illegal
transitions. Here we ignore the parameter, but this is not crucial for the comparison
between NTL and DTNL.

5 The models of NTL in [1] have initial states that are omitted here.
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Standard Deontic Logic (SDL), proposed in [11], is one of the most well-known
deontic logics. SDL is a typical normal modal logic, where (¢ is interpreted as
it ought to be that ¢, and Q¢ as it may be that ¢. The frames of SDL are serial
relational structures.

As mentioned in [1], SDL is a sublogic of NTL under the translation o defined
as follows:

(o

b =p
(~9)7 = 67
(dAY)T =97 AN
(0) = OXg7

(09)? = PX¢” (derived)

Under this translation, the formulas of @sp; have temporal reading: ¢ means
that it ought to be that ¢ is true in the next moment. Note that for any ¢ € ®gpy,
@7 is a state formula.

Actually, this previous fact can be stronger: SDL can be embedded to NTL.
As NTL can be embedded to DTNL, SDL can be embedded to DTNL too.

9 Future work

The expressive power of DTNL needs further study. It is still not known whether
the dynamic operator can be reduced: if this is the case, then the completeness
of DTNL follows by the completeness of PCTL*. Another point worth men-
tioning is that in defining the commands with a deadline, we use the inference
{X"EY"¢|n € N} |= ¢. It’s s still not known if this entailment can be expressed
by a formula of DTNL.

Offering state permissions is another important way to change the normative
state of an agent, but it is harder to capture as it raises some interesting issues
such as free-choice permission. Formalizing giving permissions is another future
work.

The constraint persistency of liability on the models of DTNL says that if
the agent has done something illegal, then there will be nothing legal for him to
do. This implies that DTNL only works for ideal agents who always comply, so
this logic is far from being realistic. One way to solve this issue is to introduce
more shades, instead of a simple distinction between bad and fine states.
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