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Chapter 1

1.1 Soft condensed matter

Soft condensed matter is a subfield of condensed matter physics encompassing a

variety of materials that are very common in everyday life (e.g. soap, toothpaste,

glue or gel) and in industry (e.g. cement, paints or rubber) [1–6]. These materials

are neither simple liquids nor crystalline solids; specific examples of soft matter

systems are colloidal suspensions, polymer melts, solutions or gels, liquid crystals

and colloidal or polymer glasses [7]. Because of their wide range of technical

applications it is important to understand their mechanical properties and flow

behavior.

1.2 Jamming phase diagram

Interesting mechanical behavior arises in soft matter systems, and this behavior

can be difficult to predict. Understanding the transition between solid-like and

liquid-like behavior that is observed in some of these materials is one of the out-

standing challenges [8]. Consider for instance an emulsion that is a liquid with

dispersed droplets. When the concentration of droplets is low the emulsion behaves

like a Newtonian liquid (for example milk, which is an aqueous phase containing

dispersed fat droplets). However, when the drop concentration increases there is

a point at which the emulsion no longer flows and becomes jammed (for example

mayonnaise, which also has a continuous phase that is aqueous with dispersed oil

droplets). This concentrated emulsion does not flow at rest but starts to flow when

a threshold stress (the yield stress) is exceeded. This transition between solid-like

and liquid-like behavior is sometimes called the jamming transition. Figure 1.1

shows the ”Jamming Phase Diagram” as was first proposed by Liu and Nagel in

1998 [9]; later Trappe et al. published a similar experimental phase diagram for

colloidal systems [10]. In the phase diagram, jamming relates to temperature T ,

load or stress σ and inverse density or volume fraction φ. Materials inside the

yellow portion of the sphere are jammed but can undergo a transition from the

jammed solid-like behavior, to liquid-like behavior by applying a sufficient stress

(load) or decreasing the density. Similarly, for thermal systems increasing the tem-

perature (meaning increasing the thermal motion) will induce jammed materials

to unjam; in this case we speak of the glass transition.
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Figure 1.1: Schematic jamming phase diagram as proposed by Liu and Nagel
in 1998 [9]. Pictures on the right are confocal images of emulsion droplets

(silicone oil-in-water) at high (top) and low (bottom) droplet concentration.

1.2.1 Thermal motion and the glass transition

The emulsions in figure 1.1 have relatively large droplets (a diameter of d ∼ 5µm),

in the limit of large particles one can neglect thermal motion and consider the zero

temperature plane of Fig. 1.1. In this case we have an athermal jamming transition

at a critical volume fraction φJ ≈ 0.64 [11]. The system becomes jammed when

the concentration of droplets is at random close packing (RCP), and when φ > φJ

the emulsion will not flow unless a high enough stress is applied. If we would

decrease the droplet size and look at colloidal suspensions (typically at d ∼ 1µm

or smaller) temperature becomes more important. These small particles exhibit

thermal motion or Brownian motion (named after Robert Brown, 1827 [12]); the

particles move randomly due to collisions with fast-moving atoms or molecules in

the suspended liquid. At high concentrations these thermal systems also become

jammed, however, the critical concentration is lower, namely φG ≈ 0.58, this is

the colloidal glass transition [13]. In experiments, the equilibrium relaxation time,

usually called ”alpha-relaxation” time τα, becomes so large that the particles do

not significantly diffuse over the experimental time scale [14]. At packing fractions

above φG the colloidal particles are mainly moving inside effective cages formed

by their neighbors.

3
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1.2.2 Microscopic dynamics

The jamming and colloidal glass transition for soft repulsive particles share impor-

tant similarities at the rheological level. In both cases, there is a ’critical’ volume

fraction at which solidity emerges and the amorphous solid at large volume fraction

responds elastically for small deformation but flows when a large enough stress is

applied (although most ’real’ glasses break at high stresses). Yet the jamming and

glass transition show different microscopic dynamics. Thermal systems are dom-

inated by thermal fluctuations, while in purely athermal ones elasticity is more

important.

If we consider a system of soft repulsive spheres, the system has two characteristic

energy scales: 1) the thermal energy, kBT , where kB is the Boltzmann’s constant

and T the temperature, and 2) the interaction energy of the particles, ε. The ratio

between the two energies (kBT/ε) is an important control parameter and both

jamming and glass effects can be distinguished in the low-softness limit kBT/ε→ 0.

To study the jamming transition of athermal systems one can take the limit of

vanishing kinetic energy (T → 0), at a fixed repulsion energy scale ε. In that case,

the stress scale, σ0, controlling the yield stress has an energetic nature:

σ0 =
ε

R3
, (1.1)

where R is the particle radius and ε governs the mechanical properties of the

particles (essentially the softness). As a result the yield stress can be written as

σy = σ0f(φ) where f(φ < φJ) = 0. This will be further discussed in chapter 7 and

8.

Alternatively, when the temperature is constant and ε → ∞, this will result in

studying the physics of a thermal hard sphere system having a glass transition. In

glassy materials the yield stress is a function of temperature and density, because

a purely hard sphere potential contains no energy scale. The thermal stress scale,

σT , is given by thermal fluctuations:

σT =
kBT

R3
, (1.2)

and the yield stress can be written by σy = σTg(φ) where g(φ < φG) = 0.

The above stress scales become comparable when the particle softness is large

enough, kBT/ε ≈ 1, while they diverge in the athermal limit, ε� kBT [15].

4
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1.3 Rheology

Understanding the flow properties of complex fluids or elastic behavior of soft ma-

terials is very important for fundamental and industrial purposes. The study of

flow and deformation of matter is called rheology [16]. A simple example to un-

derstand basic rheology is to consider two parallel plates, of area A and separation

h, with a material in between (Fig. 1.2). When a force, F is applied on the top

plate it moves a distance d. The shear stress is then defined as the force per unit

area:

σ =
F

A
(1.3)

and shear strain is given by the ratio of deformation:

γ =
d

h
. (1.4)

For a perfectly elastic solid (Hooke’s law), the strain is simply proportional to the

applied stress with a constant proportionality that is the shear modulus :

G = σ/γ. (1.5)

For a liquid an applied stress will result in a time dependent strain. The resistance

to continuous deformation by shear stress is the viscosity :

η = σ/γ̇ (1.6)

where γ̇ is the shear rate which is the time derivative of the shear strain.

Figure 1.2: Parallel plate representation of rheology.

5
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Figure 1.3: Representation of flow curves of different types of fluids:
Newtonian, shear-thinning and shear-thickening.

1.3.1 Flow curves

By plotting the shear stress as a function of the shear rate one can quantify the flow

behavior of a material, such plots are called flow curves. Depending on the type

of material we can distinguish different types of typical flow curves; Newtonian,

shear-thinning or shear-thickening (Figure 1.3). For the latter two, the viscosity

depends on the applied shear rate; with increasing rate the viscosity decrease

for shear-thinning materials (like mayonnaise or hairgel) [17–20] and increase for

shear-thickening materials (cornstarch for example) [17, 21–23].

1.4 Yield-stress materials

One interesting and widely applied class of soft condensed materials are yield-

stress fluids. For small applied stresses these fluids behave elastically, but once

a threshold stress is exceeded the they start to flow. Bingham was the first to

introduced the yield stress, using the following notation [24]:

σ = σy + ηγ̇ if σ > σy (1.7)

γ̇ = 0 if σ ≤ σy (1.8)

where σy is the yield stress. Thus if σ ≤ σy there is no flow and for σ > σy the

stress increases linearly with γ̇ with a constant post-yield viscosity.

6
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A commonly used model to describe yield-stress materials is the Herschel-Bulkley

model [25]:

σ = σy +Kγ̇β (1.9)

where K and β are adjustable parameters. After the yield stress is overcome,

if β = 1 the material has a constant viscosity, whereas if β < 1 the viscosity

decreases with increasing γ̇ (shear-thinning) or if β > 1 the viscosity increases

with increasing γ̇ (shear-thickening).

1.4.1 Emulsions

An emulsion is a mixture of two (or more) liquids that are usually immiscible

(typically oil and water), but by adding an emulsifier a dispersion of one component

into the other can be obtained. Usually a surfactant is used as emulsifier [26], this

is a surface active agent that lowers the surface tension between the two liquids,

but also solid particles can be used as emulsifiers [27].

Figure 1.4: (a) Confocal image of a concentrated emulsion φ = 0.8. (b)
Schematic representation of jammed elastic spheres at φ = 0.8 [28].

Droplet deformation and Laplace pressure

By increasing the droplet concentration in an emulsion one can obtain a yield-stress

fluid1. Normally the droplet concentration is described by the volume fraction

(φ), which is the ratio of the volume of the dispersed phase to the total volume

of the emulsion. If the dispersed droplets are athermal (R � 1µm) they can

be considered as soft non-Brownian elastic spheres (see figure 1.4) and when φ >

1It is quite amazing that when you mix two liquids together you get a solid-like material,
without any chemical reaction occurring.

7
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φJ ≈ 0.64 the droplets start to deform increasingly with increasing volume fraction,

while the surfactant prevents the droplets from coalescing. The elastic response of

the droplets is determined by the Laplace pressure, the pressure difference between

the inside and outside of a curved surface is given by [29]

∆P = Σ

(
1

R1

+
1

R2

)
(1.10)

where Σ is the surface tension and R1 and R2 are the principal radii of curvature.

If we assume perfect spheres R1 = R2 = R the formula reduces to

∆P =
2Σ

R
. (1.11)

1.5 Scope of this thesis

The main research question in this thesis is: can we describe, understand and

predict the rheology of jamming? Most of the studied systems are made by the

author and rheology is the main tool the measure the flow properties. This thesis

is organized as follows:

Chapter 2: The experimental techniques and the different materials that were used

for this thesis are discussed.

Chapter 3: We review the definition of the yield stress and demonstrate the signif-

icance of the pre-yielding behavior through a number of elementary measurements

on a model yield-stress fluids, a Carbopol gel.

Chapter 4: We compare different methods of measuring the yield stress with con-

ventional rheometers that have been used in the literature on a variety of materials.

Subsequently, we give an overview of the different values that are found for the

yield stress and yield strain.

Chapter 5: We investigate the role of Laponite clay particles on high internal phase

emulsion stability. By using confocal microscopy we visualize the clay particles and

study the contribution of particles absorbing at the fluid interface and a particle

network in the continuous phase to the overall emulsion stability.

Chapter 6: We investigate why Carbopol, normally viewed as a simple yield-stress

fluid, can undergo a transition to thermally induced shear banding. A set of

8
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rheological tests are done to study this phenomenon in differently prepared Car-

bopol gels. Flow visualization experiments, with fluorescently labelled Carbopol,

elucidate the difference between simple and shear banding behavior.

Chapter 7: Here we attempt to describe, understand and predict the flow behavior

(stress vs. shear rate) of athermal yield-stress fluids in general. The experimental

flow curves of four different ”simple” athermal yield-stress fluids are studied near

the jamming point.

Chapter 8: In this last chapter we investigate the cross-over between thermal and

athermal yield-stress regimes, by looking at the effect of volume fraction, particles

size and the inter-particle interactions on the flow behavior.
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2.1 Experimental techniques

The experimental techniques that were used in this research are described in this

section. Rheology was the main method used to understand the flow properties

of the different systems that are studied here. In addition, confocal microscopy

was used to study the microscopic structures of the systems and pendant drop

measurements were done to determine surface and interfacial tensions.

2.1.1 Rheology

In chapter 1 an example of two parallel plates is presented to explain the basic idea

of a rheological test. In reality, measurements are done on a rheometer with slightly

different (and more complex) geometries than our basic example, nevertheless the

principle remains the same [1, 2]. Here we discuss the different geometries we used,

define the corresponding parameters and describe a series of typical rheological

measurements that were done.

2.1.1.1 Rheometer and geometries

Most of the measurements were done on an Anton Paar MCR 302 rheometer

(figure 2.1). This rheometer has both a direct stress and strain controller, which

allows for controlled shear stress (CSS) and controlled shear rate (CSR) tests.

In a CSS test, a torque is imposed and the angular displacement is measured.

Whereas in case of a CSR test, a rotational speed is imposed and the torque is

Figure 2.1: Anton Paar MCR 302 rheometer with schematic representations of
different geometries: (a) cone-plate, (b) plate-plate and (c) cylindrical geometry.
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measured. In general, three different geometries were used: cone-plate, plate-

plate and a cylindrical couette geometry. The cone-plate geometry was the most

used in this thesis, a 50mm-diameter cone-and-plate geometry with a 1◦ cone and

roughened surfaces to avoid wall slip [3, 4]. But for completeness we describe all

three geometries here.

(a) The cone-plate geometry is rheologically ideal because the angled cone gives

a homogeneous shear field; the shear stress and rate do not depend on the radial

distance from the center. The cone rotates and the plate is static, accordingly the

shear rate γ̇ and shear stress σ are defined as follows [5]:

γ̇ =
ω

tan(α)
≈ ω

α
(2.1)

σ =
3M

2πR3
(2.2)

where ω is the angular frequency, α the angle of the cone, M the torque and R the

radius of the cone. For small angles α we can make the approximation tan(α) ≈ α.

(b) The plate-plate geometry has a rotating and a static plate with a gap h between

the plates. In this geometry the shear rate and shear stress are defined as follows

[5]:

γ̇ =
Rω

h
(2.3)

σ =
2M

πR3
(2.4)

where ω is the angular frequency, M the torque and R is the radius of the plate. An

advantage of this geometry is that the gap can be altered, however the shear rate

varies with the radial distance from the center therefore this is not as rheologically

ideal as the cone-plate geometry.

(c) The cylindrical Couette geometry is often used for low viscous fluids, whereas

these can flow out of the other two geometries. In this geometry, when using a

large gap cylinder, the shear rate and shear stress are related to the surface of the

inner cylinder (i.e. to Ri)[5]:

γ̇ =
2ωR2

e

(R2
e −R2

i )
(2.5)

σ =
M

(2πhR2
i )

(2.6)
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where ω is the angular frequency, M the torque and Ri is the radius of the inner

cylinder (”internal radius”) and Re is the cup radius (”external radius”).

2.1.1.2 Rheological measurements

Material properties can be measured by means of different rheological tests. Some

materials are very sensitive to the way these tests are conducted. For example,

the measuring time can have a significant effect on the material parameters that

are measured; this is the difference between a transient or steady state. Here we

describe a series of standard measurements that are used in this study.

Steady shear measurements

In (steady) shear experiments a shear rate or shear stress sweep is imposed on

the sample and the response stress or rate is measured, respectively. If the mea-

surement time is sufficiently long (depending on the material properties) a steady

state is reached. Usually, the outcome of steady state tests are presented as flow

curves by plotting the stress versus shear rate. In this thesis often up-and-down

shear rate sweeps were performed, imposing first an increasing, and then decreas-

ing shear rate sweep. This experiment is a way to check if the material exhibits

rheological hysteresis. If the up-and-down sweeps give the same value we have a

simple flow curve, whereas a difference between the up-and-down going flow curves

indicates hysteresis, that is often due to thixotropy.

Stress growth and start-up measurements

In stress growth and start-up measurements a constant shear rate is imposed and

the stress evaluation in time is studied. In start-up measurements the focus is

on the first response at the start of a measurement. For example a visco-elastic

material first behaves elastically for small deformations, but starts to flow after a

critical strain is reached. Start-up measurements are also useful to check when a

steady stated is reached.

Oscillation measurements

This measurement consists of imposing an oscillatory shear, that allows to deter-

mine the storage and loss moduli, which give insight in the visco-elasticity of a

material. The storage modulus (G′) is a measure for the storage of elastic energy,

and the loss modulus (G′′) is associated with the dissipation of viscous energy per

cycle of deformation [2, 6]. Consider a sinusoidal shear strain γ with an amplitude
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γ0 and angular frequency ω, given by γ = γ0sin(ωt). Accordingly, the shear stress

σ(t) at low-amplitude deformation is proportional to γ with a phase difference:

σ(t) = σ0sin(ωt+ δ) = γ0[G′(ω)sin(ωt) +G′′(ω)cos(ωt)] (2.7)

where δ represents the phase difference between the stress and strain response. In

case of a perfectly elastic material, G′′ = 0 and δ = 0, whereas for viscous materials

G′ = 0 and δ = 90◦. For yield-stress materials both G′ and G′′ are nonzero and

0◦ < δ < 90◦.

Viscosity bifurcation measurements

In viscosity bifurcation measurements a constant shear stress is imposed while

measuring the evolution of the shear rate and hence the viscosity in time. For

yield-stress fluids, when a stress is applied above the yield stress the material

flows, the viscosity will go towards a steady state value. For stresses below the

yield stress, the viscosity will be infinitely high, because there is no flow. These

experiments are very useful for testing if yield-stress materials are thixotropic or

show hysteresis, because in these cases the yield stress is not easy to define, as

aging and rejuvenation play an important role in the evolution of the viscosity.

Creep

A creep test is very similar to viscosity bifurcation measurements; a constant stress

is imposed but now the strain response in time is studied. For stresses higher than

the yield stress the strain increases indefinitely in time; a constant shear rate then

indicates that the material is flowing. Whereas for stresses lower than the yield

stress, the material behaves like an elastic solid, the strain will increase in time

toward a constant strain value.
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Figure 2.2: Confocal Laser Scanning Microscope (CLSM) with an Anton Paar
DSR 301 rheometer head on top (left). Confocal impage of an oil in water

emulsion (right).

2.1.2 Confocal scanning microscopy

The flow behavior of the emulsions and Carbopol are studied using a Confocal

Laser Scanning Microscope (CLSM), Zeiss Pascal Live (figure 2.2). This imag-

ing technique has an increased optical resolution compared to traditional optical

microscopes. A pinhole placed at the confocal plane of the lens eliminates out-

of-focus light and enables the three-dimensional reconstruction of structures at

different depths [7, 8]. For this technique the samples have to be transparent (to

prevent laser light diffusion by the sample) and fluorescently labeled.

To simultaniously measure the rheology and visualize flow profiles a rheometer

head (Anton Paar DSR 301) is put on top of the confocal microscope (figure

2.2). While imposing a constant shear rate we can measure the velocity profile by

recording the motion at different heights between a cone and plate [9].

2.1.3 Pendant drop

The surface tension of a liquid or the interfacial tension between two liquids can

be determined with the pendant drop method. In this simple experiment a liquid

drop is hanging on the tip of a needle (the end of a fine capillary tube), and by

analyzing the contour of the droplet from an optical image the surface tension can

be calculated [10, 11]. Similarly, the interfacial tension can be calculated, but then

the liquid drop is hanging in another liquid face instead of air.
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Figure 2.3: Schematic of the pendant drop process, going from a raw experi-
mental image to a fitted solution from which Σ can be obtained[11].

The shape of the droplet is determined by the surface tension and gravitation. The

surface tension tends to minimize the surface area by making the drop spherical.

Gravity stretches the drop from this spherical shape in a typical pear-like form

(figure 2.3). In equilibrium, the surface tension Σ can be calculated from the

balance between the Laplace pressure (ΣC) and the hydrostatic term (ρgz)[12]:

ΣC = ρgz (2.8)

where C is the curvature of the droplet-surface, ρ the density of the liquid and

g the gravitational acceleration. The curvature can be expressed in a cylindrical

coordinate system, because the drop is symmetric around the z-axis (z is the

direction of gravity). By defining rz = dr
dz

and rzz = d2r
dz2

, the curvature is obtained

as [12]:

C = − rzz
(1 + r2

z)
3/2

+
1

r(1 + r2
z)

1/2
(2.9)

Equation 2.8 can then be solved numerically. Accordingly, the surface tension is

taken as an adjustable parameter until the best possible fit for the curvature of

the droplet is found (figure 2.3).
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2.2 Materials

Two main systems are used in this thesis, Carbopol gels and emulsions, to study

the rheology of jammed systems. We use these systems because, first of all, Car-

bopol is a widely used material that behaves as a model yield-stress fluid [13–16],

it is therefore used as a reference system. And secondly, emulsions at high volume

fractions of the dispersed phase are yield-stress fluids, with the benefit that the

volume fraction can be tuned to study the jamming point.

In this section we will discuss the preparation protocol for the different systems

and small nuances to these.

2.2.1 Carbopol gel

Carbopol is a widely used gel within many industries because of its efficient rhe-

ology modifications; a simple yield-stress fluid with enhanced self-wetting for ease

of use [17]. Carbopol is a cross-linked polyacrylic acid polymer, that is usually

provided as a dry white powder. In a water solution at neutral pH, polymers

absorb and retain water and swell to many times their original volume. It is this

tremendous swelling that creates jamming of the polymer ’sponges’ and therefore

the fluid has a yield stress. The procedure to create a Carbopol gel with a simple

yield stress behavior is the following:

1. Disperse 1wt% Carbopol (Ultrez U10 grade) in demineralized water (milli-Q

R©) by stirring with a magnetic stir bar for 1 hour at room temperature.

2. Homogenize the Carbopol by adding a diluted NaOH solution (1M). Add

the base drop by drop while the sample is stirred constantly at 50 rpm.

3. Stir the sample for one more hour when the pH is approximately 7.

4. Leave to rest for one day.

It turns out that the preparation method can change the flow behavior of the

Carbopol. In chapter 6 we study the influence of heavy stirring during the homog-

enization process on the sample composition and the rheology. These samples are

stirred with a simple propeller as presented in figure 2.4.
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Figure 2.4: Schematic presentation of stirring wheel for homogenizing of the
Carbopol gel.

2.2.2 Emulsions

The emulsions used in this thesis are castor oil-in-water emulsions and silicone oil-

in-water emulsions. Different emulsifiers were used to stabilize the emulsions. Most

of the emulsions were stabilized using surfactants, but also emulsions stabilized

with clay particles (and no surfactant) were studied here.

2.2.2.1 Emulsion with surfactants

Castor oil-in-water emulsions are prepared using various surfactant compositions

creating, as we call them, mobile, rigid and soft interaction emulsions. In gen-

eral most type of surfactant-stabilized emulsions are considered as having mobile

droplet surfaces and it is usually assumed that this leads to harmonic interactions

between the droplets [18]. Our mobile emulsions were stabilized using Sodium Do-

decyl Sulfate (SDS, from Sigma-Aldrich), which is an ionic surfactant with molar

formula CH3(CH2)11SO
−
4 Na

+, the negative charge at the droplet surface creates

a repulsive interaction between the drops. The rigid emulsions were stabilized

using a protein solution composed of bovine serum albumin (BSA, from Sigma-

Aldrich) and a co-surfactant propylene glycerol alginate (PGA, from Dextra); this

combination creates rigid surfaces on the droplets and will thereby increase the

drops’ resistance to deformation [19]. Mobile and rigid interfaces have been stud-

ied in the drainage of foams, where insoluble surfactant molecules are expected to

form rigid interfacial layers, enforcing zero-velocity boundary conditions for the
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flow through the liquid channels between the bubbles. Whereas small soluble sur-

factant molecules yield significant interfacial mobility and faster drainage [20–22].

As a consequence, the mechanical properties of the system change and one would

expect to see a difference in the stress-strain flow curves (e.g. the value of the

yield stress at a certain volume fraction).

Mobile Castor oil-in-water emulsions were prepared in the following way:

1. The continuous phase was prepared by dissolving SDS in demineralized water

(Milli-Q R©), obtaining a solution with 1wt% SDS concentration.

2. The dispersed phase consisted of Castor oil (Sigma-Aldrich).

3. Emulsification: the oil was gradually added to the aqueous phase while stir-

ring with a Silverson l5m-a emulsifier at 10,000 rpm for 2 minutes. During

emulsification the sample was cooled in an ice bath to prevent heating of the

sample. The internal volume fraction was φoil = 0.8.

4. Emulsions with lower φ were prepared by diluting the original emulsion (φoil

= 0.80) with the 1% SDS solution.

Rigid systems were prepared in a similar way, but with 0.4wt% PGA and 0.4wt%

BSA instead of 1wt% SDS in the continuous phase. Finally, soft interaction emul-

sions are prepared by adding salt to the mobile emulsion to screen the electrostatic

repulsion due to the SDS, these emulsions therefore have less electrostatic inter-

action than the mobile emulsions.

For optical miscoscopy observations, we prepare transparent emulsions in which

the continuous phase is refractive index matched to the oil phase (Silicone oil

Rhodorsil R© 47 V500) by adding glycerol (99% GC, from Sigma-Aldrich) to the

aqueous phase. The rest of the preparation protocol is the same as mentioned

above.

2.2.2.2 Emulsions with clay

In addition to surfactant stabilized emulsions we prepare particle stabilized emul-

sions. In these so called Pickering emulsions particles are adsorbed at the oil-water
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interface where they form a continuous layer around the dispersed drops impend-

ing coalescence and hence stabilizing the emulsion. We prepared emulsions with

Laponite R© clay particles as stabilizer particles [23].

The continuous aqueous phase is first prepared by suspending 2wt% Laponite R©

RD in a 0.1M Sodium Chloride (NaCl, Ultrapure, from Sigma-Aldrich) solution

in deminiralized water (Milli-Q R©)[24]. To disperse the particles, we use a high

intensity ultrasonic disperser (Branson solifier 250, tip diameter 5mm), operating

at 20kHz and 100W for 30 minutes. Finally castor oil-in-water emulsions are

prepared following the procedure of the mobile emulsions (from step 3).
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3.1 Various definitions of the yield stress

Many materials found in daily life exhibit properties characteristic of either solids

or liquids, depending on the imposed stress. At small stresses these materials de-

form essentially in an elastic manner, but flow once a critical stress is exceeded; this

critical value is called the yield stress (σy), and materials exhibiting a yield stress

are called yield-stress materials. Examples of yield-stress materials include concen-

trated emulsions like cosmetic creams or margarine, toothpaste, foams, polymer

gels like Carbopol, slurries, and some composites [1–3].

As already mentioned, the notion of a yield-stress fluid was introduced by Bing-

ham, who included such fluids in the context of yielding in many classes of ma-

terials in his 1922 book Fluidity and Plasticity [4]. In 1985, Barnes and Walters

published a provocative paper entitled ”The yield stress myth?” [5], in which they

asserted that the yield stress is an experimental artifact, and notably that all flu-

ids will show viscous (indeed, Newtonian) behavior at sufficiently small stresses.

They stated that ”the yield stress hypothesis, which has hitherto been a useful

empiricism, is no longer necessary, and... fluids which flow at high stresses will

flow at all lower stresses; i.e., the viscosity, although large, is always finite and

there is no yield stress.”1 This assertion by two very prominent rheologists caused

a flurry of discussions and publications, with substantial parsing of the meaning

of the words ”yield stress;” i.e., is the yield stress a material property or a use-

ful approximation for materials that exhibit a large reduction in viscosity over a

narrow shear stress range? Barnes and Walters supported their assertion with

data obtained using a constant-stress rheometer that showed a Newtonian regime

at stresses lower than the apparent yield stress, and Barnes subsequently showed

similar data on a number of different materials [6, 7], including Carbopol.

Modern interest in yield-stress fluids largely dates from work by Oldroyd [8] and

Prager [9, 10], that put the description of such materials into an invariant con-

tinuum formulation that can be applied to flows in complex geometries. Both

Oldroyd and Prager assumed that there is a transition between a solid and a fluid

at a critical value of a stress invariant, typically taken to be a yield surface defined

by the von Mises criterion [10]. Prager assumed that no deformation was possible

on the ”solid” side of the yield surface. Oldroyd assumed that the material is an

1Barnes has described the paper as having been presented at the Fourth International
Congress on Rheology in 1984 in a number of publications, but the paper does not appear
in the Congress proceedings.
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incompressible elastic (Hookean) solid before yielding, with a stress proportional

to the strain, and a viscous material thereafter, with a stress that is linear in

the rate of deformation. Most subsequent investigators have assumed that the

solid has an infinite modulus, in which case no deformation is possible prior to

yielding, and the assumption of linearity after yielding has been generalized to

include power-law behavior and even viscoelasticity. The Oldroyd-Prager formu-

lation, with a discontinuous transition between solid and liquid, is at the heart of

the yield stress controversy initiated by Barnes and Walters.

In this chapter we discuss ”the myth” of the yield stress and address the pre-

yielding behavior. We focus on the most basic of yield-stress fluids, an aqueous

Carbopol that is a simple (i.e., non-thixotropic) yield-stress fluid for which the

yield stress is the same whether increasing or decreasing the shear rate in a cyclic

manner [11–15]. A modern rheometer is used to examine the response of the

Carbopol to a variety of deformations in order to elucidate how the mechanics of

the unyielded material manifest themselves in some standard rheological tests.

The main issues that have been discussed over the past decades and that we

address here are:

• Is the yield stress a flow-no flow transition? i.e., per Barnes and Walters

(1985)[5], is there viscous flow below the yield stress?

• Can the yield stress be inferred by extrapolation of the flow curve to zero

shear rate?

• Can the yield stress be inferred from start-up experiments?

• Are nonlinear oscillatory shear measurements a better way to infer the yield

stress?

29



Chapter 3

3.2 Rheological measurements

Our model yield-stress fluid is a 0.6 wt% solution of Carbopol Ultrez U10 in de-

mineralized water (mili-Q) that has been stirred for one hour and adjusted to a

pH of approximately 7 by adding drops of a 20 wt% Sodium Hydroxide (Sigma-

Aldrich) solution. The Carbopol gel is homogenized by shaking and stirring manu-

ally. All rheological measurements were carried out using an Anton Paar MCR302

rheometer equipped with a 50mm-diameter cone-and-plate geometry with a 1◦

cone and roughened surfaces to avoid wall slip. To characterize the system, we

first consider the response of the Carbopol gel to small-amplitude oscillatory shear.

The storage (G′) and loss (G′′) moduli at a strain of 0.05 are shown in Fig. 3.1. G′

is much larger than G′′, more than an order of magnitude so at frequencies below

1 Hz. The unyielded material is thus clearly a viscoelastic solid, with a nearly

constant storage modulus (G′ ∼ ω0.05), but the frequency dependence of the loss

modulus (G′′ ∼ ω0.32 for ω ≥ 0.8 Hz) is weaker than that of a single Kelvin-Voigt

element. We return to oscillatory forcing subsequently.

3.2.1 Extrapolation to zero shear rate: flow curves

We now turn to the measurement of flow curves. As noted by Barnes (1999), the

yield stress obtained by extrapolation of the steady-state flow curve to zero shear

rate depends on the shear rate range chosen. We therefore performed experiments

over different shear rate ranges, both increasing and decreasing the shear rate

in a shear rate ramp. Figure 3.2 shows the result of twelve independent runs

with a maximum shear rate of 100s−1, six with increasing shear rate and six with

Figure 3.1: Linear viscoelastic response at a strain of 0.05.

30



Everything flows

Figure 3.2: Flow curves for increasing (red symbols) and decreasing (black
symbols) imposed shear rates. Measuring time per point is 10 seconds. The
yield stresses are extrapolated from the flow curves of the decreasing imposed
rates by fitting with the Herschel-Bulkley model, giving a mean yield stress of

σy = 53.7± 2.7.

decreasing shear rate, all with different minimum shear rates ranging from 10 to

10−4s−1. All of the data overlap for shear rates slightly above 10−3s−1 and are

well fit by a Herschel-Bulkley model with a yield stress of 53.7 ± 2.7 Pa and a

power-law exponent β = 0.4. Extrapolation of the flow curves obtained starting

from high rates appears to give a reliable value of the yield stress. Initial data from

the two lowest increasing runs, with starting shear rates of 10−4s−1 and 10−3s−1,

respectively, lie below the curve and apparently reflect insufficient accumulated

strain to reach steady flow. This is consequently a residual effect of the elasticity

of the unyielded material seen in Fig. 3.2 and should not be taken into account:

it is not steady state behavior.

3.2.2 Flow to no flow transition

As already mentioned, Barnes and Walters (1985) showed data obtained using

a constant-stress rheometer that exhibited a Newtonian regime at stresses lower

than the apparent yield stress, and they inferred from this that the yield-stress

material flows with a very high viscosity below the yield stress. Møller et al. [16]

subsequently showed that these high viscosities do not correspond to a steady

state, and thus should be discarded. For the system studied here, the apparent

31



Chapter 3

Figure 3.3: Apparent viscosity versus stress for increasing imposed stresses
(filled red symbols), together with data at decreasing stress (blue stars) and

decreasing imposed shear rates (open black symbols).

viscosity is shown in Fig. 3.3 as a function of shear stress for measurements taken

at imposed constant stresses with different waiting times, plotted together with

stress-controlled data at decreasing stresses and the decreasing rate data. The

decreasing stress data lie on the same Herschel-Bulkley curve as the decreasing

rate data. The increasing stress data show the phenomenon observed by Barnes,

namely an apparent viscosity at low stresses that is nearly constant and five or

more orders of magnitude larger than the high-rate viscosity of the fully yielded

material. The data also show the phenomenon observed by Møller et al. [16]

wherein the apparent viscosity plateau increases with increasing measuring time,

in this case diverging with a power-law exponent of 0.4.

3.2.3 Startup: experiments at a constant shear rate

Figures 3.2 and 3.3 raise the question how to understand startup flows. The

buildup of the apparent viscosity as a function of time at constant imposed shear

rate is shown for our Carbopol sample in Fig. 3.4a. The steady-state values are

the same as those shown in Fig. 3.2 at the same shear rates. It is more instructive

to consider the same data replotted in Fig. 3.4b as stress versus strain. Here there

is overlap up to a strain of about 0.1, then a small rate-dependent separation until

all curves exhibit a sharp break to a constant stress at a strain between 0.2 and

0.3. The yield stress that is inferred from the break in slope at the lowest shear
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Figure 3.4: (a) Buildup of apparent viscosity as a function of time for four
imposed shear rates. (b) The same measurements, but with the data plotted as

shear stress as a function of strain.

rate is about 54Pa, which is in agreement with the value found from the flow

curves in Fig. 3.2. The flow curve obtained at decreasing rates contains the same

information as the start-up measurement, but the extrapolation of the flow curve

minimizes the effect of finite rate on the determination of the yield stress. A stress

overshoot, which is not observed in our material, could be a complicating factor in

the use of a startup measurement, since the sharp transition observed in Fig. 3.4a

would be absent. Observations and discussions of stress overshoot may be found,

for example, in [17, 18].

3.2.4 Oscillatory measurements

We now return to oscillatory measurements, this time carried out to large strains

to see the yielding strains. G′ and G′′ are shown in Fig. 3.5a as functions of

strain for different frequencies. The material is linear up to a strain of about

0.1, after which a strain dependence is observed. The strain dependence of G′

and G′′ becomes significant at strains of about 0.3, with increasing dissipation and

ultimately with G′ becoming smaller than G′′ at strains of order unity. (G′ and G′′

are the fundamental terms in a harmonic representation of the oscillatory stress

response. Higher harmonics are negligible for this material in the strain range

studied.)

The same data are plotted as total stress versus strain for different frequencies in

Fig. 3.5b. This is a revealing way to visualize the data, as shown by Christopoulou

et al. [19] for a colloidal glass and by us [20] for non-thixotropic yield-stress fluids
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Figure 3.5: (a) G’ and G” as functions of strain at different frequencies.
(b) Total stress in oscillatory shear as a function of strain at different frequencies.

including emulsions, foam, and Carbopol. There is a linear stress-strain relation

with a modulus of 235 Pa at all frequencies up to a strain of about 0.1, after which

there is a small frequency dependence that accompanies the transition to a softer

material. The transition strain is equal to 0.22 for all frequencies up to 1 Hz,

with a small increase thereafter. The transition stress increases with increasing

frequency above 1 Hz, from about 50 Pa to 72 Pa. This behavior is reminiscent

of the start-up at constant shear rate data shown in Fig. 5. The increase in the

transition stress with frequency mirrors the increase in G′′, and it is likely that

the transition is determined by the strain, with the small increase in stress as a

consequence of the fact that an increasing portion of the stress is from dissipative

non-recoverable strain. An ideal Oldroyd-Prager yield-stress fluid would exhibit

no frequency dependence.
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3.3 The effect of viscoelasticity:

pre-yielding mechanism

Perhaps the main question from the above observations is how to understand the

effect(s) of elasticity that become important at small deformations. We can gain

some insight by considering the simplest viscoelastic models for small strains, the

Kelvin-Voigt solid and the Maxwell fluid:

Kelvin-Voigt solid: τ = Gγ + ηγ̇ (3.1a)

Maxwell fluid: τ + λτ̇ = ηγ̇ (3.1b)

The Maxwell fluid asymptotically approaches a stress equal to ηγ̇ in a constant

shear rate deformation, while the response for t� λ is τ = γt; this is qualitatively

the behavior seen in Fig. 3.4, except that experimental viscosity is a (strongly)

decreasing function of the shear rate. The stress for the Kelvin-Voigt model for

this deformation is proportional to strain, but with an offset equal to ηγ̇, so there

is no superposition in the elastic regime as seen in Fig. 3.4b.

The Maxwell fluid simply exhibits Newtonian behavior in a constant stress defor-

mation, with no time dependence. The strain in the Kelvin-Voigt solid evolves

exponentially as

γ =
τ

G

(
1− e−Gt/η

)
, (3.2)

which can be manipulated into the form

τ

γ̇
= ηapp = ηeGt/η. (3.3)

That is, the Kelvin-Voigt solid appears to have a shear viscosity in a constant stress

deformation that is independent of stress and deformation rate but increases with

waiting time. This is qualitatively the behavior seen for the increasing controlled

stress data in Fig. 3.2 and is a qualitative explanation of the observation of a

Newtonian regime below the yield stress by Barnes and Walters. The single Kelvin-

Voigt element model is instructive, but it is too elementary to be of quantitative

use, however.

Of course, a material cannot be roughly a Maxwell fluid in one class of deformations

and roughly a Kelvin-Voigt solid in another unless there is a hidden variable in

a more general formulation that interpolates between the behaviors. This is the
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case in the Kinematic Hardening model used by Dimitriou and coworkers [21], for

example, in which the ”back stress” evolves dynamically and affects the mechanics.

The back stress can be viewed as a ”lambda parameter” [11] in simple shear

flow and causes the location of the yield surface to adjust, depending on the

deformation state, as in the general framework of the evolution of the yield stress

surface for elastoviscoplastic solids that was developed by Naghdi and Srinivasa

[22]. The Kinetic Hardening model can be shown to be roughly Maxwellian for

small deformations at constant shear rate, and to be Maxwellian for the difference

τ = τy close to yielding, so it reflects the behavior seen in Fig. 3.4. Dimitrou et

al. [21] have shown via a numerical simulation at constant stress that the model

predicts behavior qualitatively like that shown in Fig. 3.3.

3.4 Conclusion

The significance of the description of the pre-yielded material in considering the

mechanics of yield-stress fluids is highlighted. For the simple yield-stress fluid

considered here the transition appears to be based on a critical strain, with the

possibility of dissipative deformations in a viscoelastic solid that make the critical

stress under transient conditions deformation dependent. It is clear experimentally

that the appearance of a Newtonian fluid regime at stresses below the yield stress

is an artifact that would be observed with the simplest viscoelastic solid represen-

tation, namely a Kelvin-Voigt solid. We have not addressed the likely failure of

the Oldroyd-Prager formalism following yielding, but there is convincing evidence

that a viscoelastic fluid description is necessary for materials like the Carbopol

studied here. Indeed, Fraggedakis et al. [23] have employed both kinematic hard-

ening and a viscoelastic model by Saramito [24] to describe the kinematics and

settling dynamics of a spherical particle through a Carbopol gel.

Finally, we note that for the ideal (non-thixotropic) yield-stress fluid studied here,

the transition in a plot of total stress versus strain in finite-amplitude oscilla-

tory shear gives a value of the yield stress that is consistent with the yield stress

obtained by extrapolation of the flow curve and the value obtained in a startup

experiment, with the added information of the yield strain. This method has the

advantage of eliminating artifacts associated with startup flows or extrapolation of

the flow curve. Any of these methods properly used, however, can give a reliable

value of the yield stress.
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Chapter 4

4.1 Introduction

Determining the yield stress is critical in industrial processes; the yield stress is

required to know the minimum pressure needed to start a slurry in a pipeline, for

example, or to know the stiffness of dairy products [1]. In some applications the

yield stress determines whether air bubbles will remain trapped [2]. Yet the best

way to obtain the value of the yield stress for any given material has been the

subject of considerable debate (figure 4.1).

Over the years many methods have been proposed for determining the yield stress;

it has been demonstrated that variations of more than one order of magnitude can

arise, however, depending on the method used and the handling of the sample

[4–6]. This has led, amongst other things, to the suggestion that there may be

two yield stresses, dynamic and static; the former would be given by the minimum

stress needed to start a flow and the latter would be the smallest stress applied

before a sample stops flowing. In addition, several works, including [7–11], have

proposed that yield-stress materials can be classified into two categories: ’simple’

and thixotropic. For ’simple’ yield-stress materials the viscosity depends only on

the shear rate, and the yield stress is well defined; the yield stress can therefore be

considered a material property. For thixotropic yield-stress materials the viscosity

depends not only on the shear rate but also on the (deformation) history of the

sample, implying that for this type of material the rheological behavior is given

by a competition between aging – spontaneous build-up of some microstructure

– and shear rejuvenation – breakdown of the microstructure by flow. (Ovarlez et

Figure 4.1: Sketch of the stress response in a start-up experiment at constant
shear rate, with various definitions that have been used to define the yield stress

[3].
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al. [12] have recently suggested that a third class of yield-stress material exists in

which the yield stress can be tuned by an appropriate flow history.) Very recently,

Balmforth et al. [13] and Coussot [14] showed that for a ’simple’ yield-stress

material the static and the dynamic yield stresses are indeed the same, while for

thixotropic yield-stress materials these stresses are different.

4.2 Rheological measurements

In chapter 2 a number of different types of rheological measurements are discussed.

Here we compare the yield stresses and yield strains obtained from steady shear,

oscillatory shear, stress growth, and creep experiments. The pros and cons of

different tests are discussed and an overview is given of the range of values that

are found from the different measurements.

Our measurements were carried out using a controlled-shear-stress rheometer (CSS,

Physica MCR302) and a controlled-shear-rate rheometer (CSR, ARES), both with

a 50mm-diameter cone-and-plate geometry with a 1◦ cone and roughened surfaces

to avoid wall slip [7, 15]. Before performing any experiments, samples were pre-

sheared at a shear rate of 100 s−1 for 30 s, followed by a rest period of 30 s in

order to create a controlled initial state in the samples [14, 16]. The static normal

stresses in all samples were zero after the rest period.

The materials that were used are Castor oil-in-water emulsions stabilized with

1wt% SDS (mobile emulsion), Carbopol gels, a commercial hair gel, and a shaving

foam. The emulsions and carbopol are prepared as described in chapter 2. The

hair gel was a commercial product (Albert Heijn). This is basically a Carbopol

gel in which the pH is adjusted by using triethanolamine rather than NaOH. The

foam was a commercial shaving foam, Gillette Foamy Regular. The liquid volume

fraction of the shaving foam was 9.2±0.5%, with a mean bubble radius of about 18

micrometers, in fair agreement with previously reported data on the same brand

[17].

4.2.1 Steady shear measurements

The steady shear experiments were performed with the CSR rheometer by carry-

ing out shear rate sweeps from 100s−1 to 1× 10−3s−1 (to 10−4 for the oil-in-water
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emulsions), obtaining flow curves that were fit to the Herschel-Bulkley model.

(High-to-low rate sweeps are preferable for systems that exhibit no thixotropy,

because short-term transients caused by the transition from viscoelastic solid to

mobile liquid at fluidization are avoided.) Flow curves obtained for all our sim-

ple yield-stress materials are shown in Figure 4.2. The flow curves are clearly

approaching plateaus at low shear rates within the range at which data were ob-

tained, and all can be fit to the Herschel-Bulkley model. (The model fits are based

on the range of accessible shear rates, and it is possible that the power-law index

might change if higher rates could be explored, but our interest is in the fit to the

yield stress, which should be insensitive to rates above 100s−1.)

Figure 4.2: Flow curves obtained by means of steady shear measurements.
(a) Carbopol at different mass concentrations. Inset: Hair gel. (b) Emulsions
with different internal volume fractions. Inset: foam. Lines are the fits of the

flow curves to the Herschel-Bulkley model.

4.2.2 Oscillatory measurements

The oscillatory measurements were performed with the CSS rheometer by carrying

out shear stress sweeps from 1× 10−2 Pa to 5× 102 Pa at a constant frequency of

1Hz, generating curves of G′ and G′′ as functions of σ or γ. The linear viscoelastic

storage modulus G′ is insensitive to frequency in this range for all materials stud-

ied; the linear loss modulus G′′ is always much smaller than G′ and is insensitive

to frequency for all but the emulsion, where there is a transition from a frequency

dependence of about ω1/4 to ω1/2 in the neighborhood of 1 Hz. (See Supplemen-

tary Material.) Curves of G′ and G′′ as functions of σ and γ at a frequency of 1

Hz are shown in Figures 4.3 and 4.4, respectively. At low amplitudes, G′ and G′′

are independent of stress magnitude and represent the entire elastic or dissipative

44



Different ways of measuring the yield stress

contributions, respectively. Higher harmonics appear in the LAOS measurements

at larger amplitudes, and the coefficients of the harmonics become strain depen-

dent. The coefficients of the fundamental (the frequency of the stress or strain

input) are still conventionally called G′ and G′′, and we follow that convention

here, but these functions no longer represent the complete elastic or dissipative

portions of the stress in the nonlinear regime. Treatments of the nonlinear data

are discussed in, for example, [18–22].

Figure 4.3: Storage (G′) and loss (G′′) moduli as functions of σ for (a) Car-
bopol samples, (b) hair gel, (c) emulsions, and (d) foam. Open symbols corre-
spond to G′, filled symbols to G′′. Black lines are power-law fits of the behavior
well above yield point, whose intersection with the horizontal line through the
linear G’ data is shown by the black circles. Gray squares show σ at the char-

acteristic modulus, G′ = G′′.

Now, the question is how to extract the yield stress from these data? As noted

by [23], ”There is no unique and rigorously motivated criterion allowing a yield

stress to be determined from oscillatory data.” For example, [24–26] define the

yield stress as the stress for which G′ = G′′ (the characteristic modulus), where

the viscous and the elastic contributions to the fundamental are equal; at higher
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Figure 4.4: Storage (G′) and loss (G′′) moduli as functions of γ for (a) Car-
bopol samples, (b) hair gel, (c) emulsions, and (d) foam. Open symbols corre-
spond to G′, and filled symbols correspond to G′′. Black lines are power-law fits
of the behavior well above the yield point, whose intersection with the horizon-
tal line through the linear G′ data is shown by the black circles. Gray squares

show γ at the characteristic modulus, G′ = G′′.

stresses the viscous contribution will dominate the elastic, indicating that the

material is indeed flowing. The location of the characteristic modulus is indicated

by gray squares in Figures 4.3 and 4.4. The yield stress and the yield strain

can also be defined from this approach by the intersection of the horizontal line

representing the behavior of G′ well below the yielding point with the power-law

equation representing the behavior of G′ well above the yielding point; this method

was used by [23] for determining the yield stress of foams. These intersections are

shown as dark circles in Figures 4.3 and 4.4. We also re-plot the oscillatory data

shown in Figures 4.3 and 4.4 as σ vs. γ (Figure 4.5). The data are linear at

small strains with a unit slope on log-log coordinates; the magnitude of the line

corresponds to G′ in the linear regime. (G′ � G′′ in this regime, so the total

stress is comprised mostly of the elastic component.) Following [Mason et al.
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Figure 4.5: σ vs γ obtained from the oscillatory measurements (same data
shown in Fig. 2 and 3) for (a) Carbopol samples, (b) hair gel, (c) emulsions, and
(d) foam. Lines are power-law fits of the behavior well above and well below

the yielding point, whose intersection is shown by the black circles.

(1996)], [27], and [28] for similar systems, σy and γy can then be obtained from

the intersection of the line at low strains and a power law drawn through the data

at high strains.

These methods employing oscillatory data are empirical and are all based on de-

partures from the linear viscoelastic regime. Only the use of the characteristic

modulus is unambiguous; the other methods require extrapolations that will de-

pend on the quality of data and the range selected for fitting a power law. The

transitions in the plots of σ vs. γ in Fig. 4.5 appear sharper to the eye than those

of G′ versus σ or γ in Figs. 4.3 and 4.4, respectively. One interesting feature of

these data for most systems is that the intersection of G′ and G′′ as functions of σ

occurs at or near the maximum in G′′; i.e., the maximum value of G′′ is very close

to the characteristic modulus.
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4.2.3 Stress growth experiments

The stress growth experiments were performed with the CSR rheometer by im-

posing a constant shear rate γ̇ = 10−2s−1 and recording σ for 300s, equivalent to

a total deformation γ = 3. Finally, the creep experiments were carried out with

the CSS rheometer with increasing imposed stresses starting near to but below

the expected yield stress, as determined by the other measurements. The creep

experiments were carried out at a later date, using new samples prepared accord-

ing to the same protocols. The evolution of σ as a function of γ at an imposed

strain rate γ̇ = 10−2s−1 is shown in Figure 4.6. The stress initially grows with

increasing strain in what is an elastic or viscoelastic solid response, followed by

a transition to a steady stress that characterizes a fluid response; in some cases

there is a stress overshoot. Here, too, there are a number of ways in which the

yield stress and yield strain can be defined [3]: (i) the highest σ(or corresponding

γ) at which the response is still elastic, (ii) the maximum σ (or corresponding γ),

or (iii) the stress at which a steady state is achieved.

Defining the yield point as the highest stress at which the response is still elastic is

ambiguous. One approach is to choose the point at which the stress-strain response

deviates from linearity, but this depends on the time resolution and the imposed

rate. Furthermore, the deviation from linearity might simply be a transition to

a non-linear elastic response, or it might reflect viscoelasticity; see, for example,

[29]. We choose to define the deviation from an elastic response empirically as

the intersection between the line with unit slope on logarithmic coordinates that

is tangent to the data at low deformations and the horizontal steady-state stress.

The former should have a magnitude corresponding to G′, although it is clear

from the plots that the line does not pass through the data at the lowest strains.

The use of the maximum in the stress-strain curve to determine both σy and γy,

to the contrary, provides a precise value, but this value is highly dependent on

the imposed strain rate and waiting time, as reported by [30–33]. Additionally,

a stress overshoot is not always present, as demonstrated by the experiments

presented here, where a stress overshoot is only observed for samples with more

than 0.5 wt% Carbopol . Finally, defining σy by the steady state gives a precise

value of the yield stress, although the value may be dependent on the strain rate,

but then the determination of the yield strain is no longer possible.

48



Different ways of measuring the yield stress

Figure 4.6: σ as a function of γ at an imposed γ̇ = 1×10−2s−1 for (a) Carbopol
samples with wt%-Carbopol: 1.5, 0.75, 0.50, and 0.10 (top to bottom), (b) hair
gel, (c) emulsions with φ = 0.78, 0.74, 0.70, 0.67, and 0.66 (top to bottom), and

(d) foam.

4.2.4 Creep experiments

Creep data are usually shown as creep compliance J(t) = γ(t)/σ versus time,

where γ(t) is the time-dependent shear strain and sigma the constant imposed

stress. Creep experiments were carried out within a stress range determined from

the results of the previous experiments. In principle, J will go to a constant

value at imposed stresses below the yield stress, while it will continue to grow

in the liquid state at stresses beyond yielding. Creep compliance data are shown

in Figure 4.7 for 0.75 wt% Carbopol, the hair gel, 0.78 vol% emulsion, and the

foam. The horizontal arrows on the figures indicate the yield stress from the

Herschel-Bulkley fit to the steady shear data. The distinction between unyielded

and flowing behavior is clear for the Carbopol and the emulsion. It is difficult

to identify the location of the change of curvature for the hair gel, although the

curvature is clearly different at the lowest and highest stresses. [34] noted in creep
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measurements on a different Carbopol that there appears to be an intermediate

regime in which there is no stable steady flow over the course of the experiment,

and it is possible that this behavior is reflected in the hair gel.) The foam data are

difficult to interpret because of the upturn at even the small stresses at long times,

perhaps because of a change in structure in the unyielded foam; the yield stress

is likely given by the apparent loss of an inflection point in the curve. Overall,

conducting creep measurements to find a good estimate of the yield stress appears

to be rather inefficient; not only is a priori knowledge of the approximate yield

stress required, but the method appears to be more sensitive to structural changes

during the long time required at a constant stress relative to, for example, a

Herschel-Bulkley fit.

Figure 4.7: J vs t obtained from creep measurements for (a) carbopol sample
of 0.75wt%, (b) hair gel, (c) emulsion of 78% vol of oil, and (d) foam. The
horizontal arrows indicate the yield stress from the Herschel-Bulkley fit to the

steady shear data.
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Figure 4.8: Yield stress values from different methods for (a) Carbopol, (b)
emulsions, and (c) hair gel and foam. Black symbols are the values obtained
from steady shear experiments, in which flow curves were fit to the Herschel-
Bulkley model. Blue symbols are values obtained from the oscillatory measure-
ments. Red symbols are values obtained from the stress growth experiments.
Lines are σy ∼(wt% Carbopol)1.18 and σy ∼ (∆φ)2, with φc = 0.645, for the

Carbopol and emulsion, respectively.

4.3 Comparing values obtained from different

methods

4.3.1 Yield stress

Figure 4.8 shows that different methods do indeed give different yield stress val-

ues (error bars correspond to statistical error limits from the fitting parameters).

Values obtained from the crossover of G′ and G′′ (characteristic modulus) are the

highest for all cases; this is not surprising, as there is already significant viscous

dissipation by the time that G′ = G′′. Yield stresses obtained from the crossover of

G′ and G′′ are about twice the values obtained from the Herschel-Bulkley model,

which are generally the lowest and are close to the transitions seen in the creep

experiments for the Carbopol and emulsion. Values obtained from the stress-strain

plot derived from the oscillatory data are typically close to the Herschel-Bulkley
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values, and, as discussed subsequently, these two methods appear to give the most

reliable values of the yield stress among those considered here. (This conclusion is

consistent with the observation of [Christopoulou et al. (2009)], who identified the

intersection of the stress-strain lines as the yield point and the intersection of G′

and G′′ as the onset of ”complete fluidization”.) The scaling with concentration

is the same for all methods of measurement, however; σy ∼ (wt% Carbopol)1.18

for the Carbopol gels, while, σy ∼ (φ − φc)2, with φc = 0.645, for the emulsion.

Previous work [Nordstrom et al. (2010)] has shown similar scaling of σy with ∆φ

for similar systems. The value of φc = 0.645 has previously been reported by

[Paredes et al. (2013)] for the same system, and is close to the expected value for

random close packing, φRCP ≈ 0.64 [35–37]; above φc emulsions jam and a yield

stress appears.

4.3.2 Yield strain

Yield strain values obtained with different methods are different, in some cases by

an order of magnitude, as shown in Figure 4.9 (statistical variations are within the

symbols). Yield strains obtained from the characteristic modulus are the highest;

as already noted for the yield stress, this is not surprising, as equality of G′ and

G′′ indicates that there has already been a significant amount of dissipation, so

the material must have yielded prior to the strain at which G′ = G′′. The values

obtained from the stress growth experiments in Fig. 5 are dependent on the

particular choice of fitting the low-strain data, and the lines used in all cases have

magnitudes equal to only about 80% of G′, possibly because of a finite rate effect.

Yield strains obtained from the intersection of power-law equations describing the

behaviors at low and high γ in oscillatory flow (Figure 4.5) are nearly always the

lowest; these strains correspond to the yield stresses that are consistent with the

fits to the Herschel-Bulkley equation and are probably closest to the true yield

strain among the methods studied. Figure 8 shows that γy scales with the amount

of polymer for the Carbopol, and with (φ − φc) = ∆φ, the distance to jamming,

for the emulsion, with φc = 0.645, as noted above. These scalings are shown in

Table 4.1, and it is evident that the scalings are highly dependent on the measuring

method; indeed, the results can be different if the same data are plotted in different

ways, as can be seen by comparing the yield strains from oscillatory data obtained

by plotting G′ vs. γ and σ vs. γ.

52



Different ways of measuring the yield stress

Figure 4.9: Yield strain values obtained from different methods for (a) Car-
bopol, (b) emulsions, and (c) hair gel and foam. Blue symbols are values ob-
tained from the oscillatory measurements. Red symbols are values obtained
from the stress growth experiments. Lines represent scaling of σy with wt%

Carbopol for the Carbopol or ∆φ for the emulsions.

Table 4.1: Scaling of the yield strain with wt% Carbopol for Carbopol samples
and φ for emulsions.

Rheological measurements Scaling of γy
Carbopol Emulsion

Oscillatory:
Crossover G’ and G” (fig 4.4) ∼(wt%)0.25 ∼ ∆φ0

Intersect power-law equations, G’ vs. γ (fig 4.4) ∼(wt%)0.25 ∼ ∆φ0.50

Intersect power-law equations, σ vs. γ (fig 4.5) ∼(wt%)0.50 ∼ ∆φ1.0

Stress growth:
Intersect lines σ vs. γ (fig 4.6) ∼(wt%)0.20 ∼ ∆φ0.5

Stress overshoot (fig 4.6) ∼(wt%)0.37 -

4.4 Synthesis and conclusion

The above results clearly show that both the apparent yield strain and the yield

stress are dependent on the method and criteria used for determining their values.

In many of the cases studied here the properties determined in different ways ex-

hibit the same scaling with respect to the dispersed phase, although with different

magnitudes.
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For the simple yield-stress fluids, the value defined by a Herschel-Bulkley fit to a

shear-rate sweep consistently gave the lowest yield stress among all methods used.

In most cases the intersection between pre-yield and post-yield asymptotes of a

stress vs strain curve constructed from oscillatory data gave similar results, and

this method consistently gave the lowest value of the yield strain. These values

are consistent with each other and, where a valid comparison may be made, with

data from the creep experiment. The stress versus strain curve constructed from

the oscillatory data generally showed a sharp transition from the linear viscoelastic

regime to a power-law response that extended well into the nonlinear regime of sub-

stantial dissipation and flow, so it is likely that this transition is close to the point

of initiation of flow and provides a good estimate of the yield stress. Hence the

Herschel-Bulkley fit and the stress-strain curve from the oscillatory data appear to

be the most reliable values among the various methods employed on conventional

rheometers, although the former depends on reaching a low enough shear rate and

sufficient waiting time to enable reliable extrapolation. The yield stress obtained

from stress growth is ambiguous and depends on the time resolution and imposed

rate. Generally, determining the yield stress from oscillatory measurements is am-

biguous because of the fitting the slopes to find the intersection. The intersection

of the G′ and G′′ curves as functions of strain (the characteristic modulus) is un-

ambiguous but consistently gave the highest values of the yield stress and yield

strain; this is to be expected, since the material must have already yielded in order

to experience the observed increase in the dissipative modulus G′′, and this cannot

be considered to be a valid estimate of the yield stress. (In fact, the characteristic

modulus was usually close to the maximum of G′′ as a function of strain, which

is an observation that deserves further exploration.) Table 4.2 gives an overview

of the concluding remarks. The use of a stress growth curve gives yield stress and

yield strain values in most cases that are intermediate, which is undoubtedly a

consequence of the ambiguity of the method when there is significant curvature

prior to yielding, and this does not appear to be a good method for determining

either the static or dynamic yield stress. The same conclusion can be reached

for the use of the intersection of high- and low-strain values of G′ in the LAOS

experiment.
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Table 4.2: Overview of rheological measurements and concluding remarks in
determining the yield stress.

Rheological measurements Ambiguity Remark
Oscillatory:
Crossover G’ and G” (fig 4.3) No High σy, past yielding?
Intersect power-law equations,
G’ vs. γ (fig 4.4)

Slope Definition of crossover point?

Intersect power-law equations,
σ vs. γ (fig 4.5)

Slope Definition of crossover point?

Stress growth:
Intersect lines σ vs. γ (fig 4.7) Slope Depends on γ̇ and waiting

time
Stress overshoot (fig 4.6) Still elastic? Not always present
Herschel-Bulkley (fig 3.2) No Apply low enough γ̇
Creep (fig 4.7) No Inefficient
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5.1 Introduction

Emulsions are of great importance for the cosmetic, oil and food industry. Most

frequently, emulsions are stabilized with surfactants [1], however these are not

always stable under shear [2] and alternative stabilization mechanisms have there-

fore being intensively explored in recent years [3]. Amongst these, particle stabi-

lized emulsions have attracted much attention, notably for their high stability and

possible role in food applications, in the design of more environmentally friendly

agricultural formulations and for the realization of high internal phase emulsions

[4]. This type of emulsion is called Pickering emulsion; particles are adsorbed at

the oil-water interface with a high stabilization energy and are believed to form a

continuous layer around the dispersed drops impeding coalescence [5] and hence

stabilizing the emulsion. Such Pickering emulsions are stabilized by solid particles

only [6–9]. If a surfactant is also present the particle wetting preference can be

changed, and possibly the particles will not adsorb; in this case, another type of

emulsion can form that is mainly stabilized by the presence of a surfactant layer at

the surface of the drops. For the rheology, it is known that colloidal clay particles

in emulsions can induce a depletion interaction between the emulsion droplets that

can cause these emulsions to be thixotropic, i.e., have a time-dependent rheology

[10]. Also, in foams aging effects have been observed when LaponiteR© clays were

added to the foam [11].

Clays are frequently-used solid particles in oil-in-water emulsion stabilization, of-

ten with rather high clay concentrations. This makes it likely that the continuous

aqueous phase between the oily emulsion drops forms a gel, which should influ-

ence both the stability and the rheology of the emulsions [12–14]; such an effect

does not appear to have been taken into account in prior experiments on emulsion

stability and rheology in the presence of clay particles [15–18]. Reports that do

take the gelation of clay particles into account are always in the presence of a

surfactant. Lagaly et al. [19] discussed the two mechanisms by which clay in addi-

tion to a surfactant based emulsion can stabilize drops. The first is “stabilization

by envelopes of particles around the oil droplets” and the second is ”stabilization

by entrapment and immobilization of oil drops in three-dimensional network of

particles”. They also remark that the stabilization by a particle network may be

comparable to the role of liquid-crystalline phases in stabilizing emulsions [20].

Bon and Clover [21] used LaponiteR© as stabilizer in the miniemulsion polymer-

ization of styrene to obtain L atex particles armored with LaponiteR© particles.
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They showed that a three-dimensional network of clay particles in the continu-

ous phase of the emulsions is required to obtain a stable LaponiteR© coated latex.

All these observations pose the question what the difference is between clay and

clay/surfactant stabilized emulsions. This question is particularly important for

concentrated emulsions where shear induced instabilities have a higher impact on

droplet coalescence and hence emulsion stability.

In this chapter we compare the stability to shear of three emulsion systems; the

first is stabilized with surfactant only, the second with surfactant and clay particles

and finally emulsions stabilized with clay particles only. The emulsions are castor

oil-in-water and silicone oil-in-water emulsions.

5.2 Different type of emulsions

The three different systems have different continuous phases: surfactant only, sur-

factant + clay; and clay only. To study the influence of clay, different concentration

of LaponiteR© RD are added before emulsifying (in wt% of the total weight of the

emulsion). LaponiteR© is a synthetic clay that consists of disc-like particles, with a

diameter of 30nm and thickness of 1nm obtained from BYK Additives & Instru-

ments [22]. The LaponiteR© disks have a negative charge on the sides and can be

slightly positively charged on the edges. The surfactant used is Sodium Dodecyl

Sulfate (SDS, from Sigma Aldrich). The preparation protocol for the emulsions

is described in Chapter 2. We consider rather high clay concentration and high

surfactant (ionic strength) or salt concentrations, therefore an attractive gel forms

[23].

5.2.1 Emulsions with surfactant and clay + surfactant

The emulsions stabilized with SDS are stable for months to coalescence and are

stable to shear. Figure 5.1a shows an up-and-down shear rate sweep for cas-

tor oil-in-water emulsion (φoil = 0.80) with SDS and different concentrations of

LaponiteR©. We observe that without clay, the flow curve is perfectly reversible do-

ing an up-and-down shear rate sweep. However, adding clay to the same emulsion,

the flow curves develop a hysteresis that becomes more pronounced with increas-

ing clay content. These emulsions can be characterized rheologically as thixotropic
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Figure 5.1: Flow curves for castor oil-in-water emulsions. On the left, stabi-
lized with SDS and different clay concentrations (φoil = 0.8). On the right, sta-
bilized with LaponiteR© only, without surfactant (φoil = 0.7); continuous phase
exists of 2wt% LaponiteR© in 0.1M NaCl. Directly after samples are prepared
the stress is measured by applying increasing (filled symbols) and decreasing
(empty symbols) shear rate. Three increasing/decreasing sweeps are done, in
the following order black, blue and green. (inset) Same measurement for the
continuous phase, sample has left to rest for 2 hours before the first shear rate
sweep starts. Symbols correspond to increasing (filled) and decreasing (empty)

shear rate.

yield-stress materials [10]. Besides the thixotropy, the addition of clay does not

have a significant effect on the emulsions stability in these experiments. By the

definition of thixotropy, the changes in the rheological behavior are reversible; they

are also reversible in these rheology experiments, showing that the shear doen not

induce any macroscopic destabilization of the emulsion itself.

5.2.2 Emulsions with clay only (no surfactant)

If emulsions are only stabilized with clay, we find that the emulsions exhibit good

stability to coalescence at rest: leaving the samples for several weeks does not

result in any visible changes of the aspect of the emulsion. However during the

rheological measurements the emulsions destabilize quite spectacularly. Figure

5.1b shows the result of up-and-down shear rate sweeps performed repeatedly

(three times consecutively) on the castor oil-in-water emulsion. Similar results

are obtained for the silicone oil-in-water emulsion. The emulsions show a rapid

decrease in viscosity when performing multiple shear rate sweeps; this is in stark

contrast to what is observed for surfactant-stabilized emulsions, for which the flow

curve is perfectly reversible in up-and-down stress.
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Visual inspection after shearing reveals that the LaponiteR©-stabilized emulsions

are unstable to shear: after the rheological tests a clear phase separation between

the oil and the water phases is observed. A similar decrease of the viscosity is

observed if the same experiment is done on the continuous phase only. At the clay

and salt concentrations that compose the continuous phase, aqueous LaponiteR©

suspensions are known to form an attractive colloidal gel that is very sensitive

to shear [24]. The rheological experiment shows that after the first up-and-down

shear rate sweep, the viscosity decreases by an order of magnitude, and remains

very low if the sample is sheared in subsequent sweeps (Figure 5.1b, inset).

5.3 Structure of clay particles in the continuous

phase

The picture that emerges from the ensemble of these experiments is that the flow

destabilizes the colloidal clay gel that forms the continuous phase separating the

drops; this allows the droplets to contact each other and coalesce, which in turn

destabilizes the emulsion. To check this scenario on a more microscopic level, con-

focal fluorescence microscopy is used to visualize both the LaponiteR© suspension

by itself and the emulsions containing LaponiteR©. As a fluorescent dye we use

Rhodamine G6 (from Sigma Aldrich), a hydrophilic fluorescent molecule that is

completely adsorbed onto the LaponiteR© particles. The behavior of the transpar-

ent silicone oil-in-water emulsions, before, during and after shearing, is observed

with the confocal microscope in combination with a rheometer. The LaponiteR©

particles are clearly visible; they form aggregated flocs in the continuous phase,

but are also clearly visible on the interface of the oil droplets with the continuous

phase (Figure 5.2a). The continuous phase is more heterogeneous. In contrast,

in the presence of surfactant the clay particles for a continuous (homogeneous)

network surrounding the particles and are not specifically located at the interface

(Figure 5.2b). Moreover, the droplet size is different.

Separate observation on the aqueous LaponiteR© phase alone (before emulsifica-

tion with the oil) also reveal the formation of a colloidal gel with a very similar

structure. The continuous phase is a soft elastic solid that does not flow under the

influence of gravity (Figure 5.3). To asses the effect of flow, we shear for 30 seconds

at γ̇ = 100s−1 and visualize the LaponiteR© structure before and after shear. We
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Figure 5.2: The emulsion visualized with confocal fluorescence microscopy
image (LaponiteR© is dyed with Rhodamine G6). Silicone oil-in-water emulsion
index matched with glycerol: in (a) stabilized by 2wt% LaponiteR© in 0.1M NaCl
LaponiteR©, in (b) stabilized with 1wt% SDS in water with 2wt% LaponiteR©.

observe before shear a continuous network, whereas after shear the network breaks

into smaller aggregates and does not appear to be percolated anymore. It is this

gel that destabilizes under shear that leads to destabilization of the emulsion. This

follows the observation that an emulsion with a surfactant does not destabilize.

In the usual definition of Pickering emulsions, the particles are localized at the

interface to form a dense film that protects the droplets from coalescence. It is for

this reason that such emulsions are believed to be very stable; for spherical particles

the stabilization energy depends on the particle size [6] but is typically of the order

of a few hundred kBT [25, 26]. If the emulsions solely stabilized with LaponiteR©

have a similar protective particle film on the drop surfaces, one would expect a

similar stability for the LaponiteR©-stabilized emulsions. LaponiteR© particles are

not spherical but disk-like, but still if the particles are at the interface stabilization

energies should be similar. We find however that although the emulsions are stable

at rest, they are extremely rapidly destabilized by shear, and hence the LaponiteR©

layer at the surface does not provide a significant barrier against coalescence. The

observation that the rheology of the emulsions and the continuous LaponiteR© phase

are similar suggests that the stability of the emulsions at rest is due to the fact

that the oil droplets are embedded in the visco-elastic LaponiteR© gel, that prevents

the droplets from coalescencing. When the colloidal gel is destroyed by the shear
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Figure 5.3: Confocal fluorescence images of the continuous phase; 2wt%
LaponiteR© in 0.1M NaCl (LaponiteR© dyed with Rhodamine G6). Before and

after shear (shear for 30 seconds at γ̇ = 100s−1.

allowing the droplets to move and get in contact, coalescence is rapid, in agreement

with all of the observations above. The aggregated LaponiteR© particles on the

surface are not able to rearrange to provide an effective barrier against coalescence,

but rather form particle aggregates that are not effective in providing effective

coverage. Garcia and Whitby [27] also observed this behavior, but coalescence

was not detected due to lower volume fraction of oil. Whitby and co-authors [28]

however observed the shear induced coalescence in oil-in-water Pickering emulsions

stabilized by silanized fumed silica particles subjected to simple shear flow.

5.4 Model system (carbopol gel)

As an independent test of the idea, that the stabilization is only due to the gel

formation of the LaponiteR©, we can make emulsions without any particles or surfac-

tants, but with the continuous phase being a gel with a yield stress. We therefore

make emulsions with a Carbopol gel as the continuous phase. The carbopol itself

is a simple yield-stress fluid [29], from which subsequently castor oil-in-gel ’emul-

sions’ (φoil = 0.4; for higher concentrations of castor oil we observe phase inversion

of the emulsion) are prepared using the same procedure as for the LaponiteR© emul-

sions. We find that the Carbopol ’emulsions’ show a similar rheology as we observe
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Figure 5.4: (a) Flow curves of Castor oil-in-water with 2wt% Carbopol in
water as the continuous phase. The stress is measured applying increasing
(filled symbols) and decreasing (empty symbols) shear rate. The photographs

in (b) and (c) show the sample before and after shear, respectively.

for the LaponiteR©-stabilized emulsions (Figure 5.4); a very stable ’emulsion’ at rest

that is rapidly destabilized by shearing. When the continuous phase is a yield-

stress fluid but nothing happens at the oil-water surface, in that case emulsions

can be stable at rest but not under shear. The similarity with the results for

LaponiteR© strongly suggest that the mechanism is the same there.

5.5 Conclusion

We have investigated the stability of LaponiteR©-stabilized high internal phase

emulsions. A simple rheological test shows that the emulsions are not stable to

shear and undergo a catastrophic coalescence. Therefore, our ’Pickering’ emul-

sions, as evident from confocal microscopy, behave merely as a dispersion of oil

droplets in a LaponiteR© gel. It is this gel, that destabilizes under shear, that leads

to destabilization of the emulsion. This also follows from the observation that an

emulsion with a good emulsifier (a surfactant) does not destabilize. This point is

reinforced if we look at the conditions of formation of LaponiteR©-stabilized emul-

sions. Such emulsions were studied previously, but with lower salt concentration

and lower oil volume fraction that are also in a region of the LaponiteR©/salt phase
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diagram where the continuous phase becomes a soft visco-elastic solid. Ashby and

Binks [15] have shown that in their systems, LaponiteR©-stabilized emulsions, are

only stable if enough salt is added to effectively screen the electrostatic interactions

between the LaponiteR© particles and hence favor the formation of the colloidal gel.

If our emulsions are made with a liquid suspension of the same concentration of

LaponiteR© but without salt, no stable emulsions are obtained. Thus we conclude

that the colloidal gel formation of the clay is the essential ingredient for the emul-

sion preparation, however the extend of shear thinning and recovery speed of the

colloidal gel play a critical role in the emulsion stabilization.
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6.1 Introduction

Yield-stress fluids are an important class of complex fluids and their flow behav-

ior is still a subject of considerable interest [1–3]. Yield-stress materials respond

elastically to small applied stresses and start to flow once a threshold stress is ex-

ceeded; the yield stress. The flow curve of a simple yield-stress fluid can often be

successfully described by the Herschel-Bulkley equation [4]: σ = σy +Kγ̇β, where

σ is the stress, σy the yield stress, γ̇ the shear rate, and K and β are adjustable pa-

rameters. However, as often seen in nature, most materials do not behave like the

ideal model system; they are significantly more complex and can exhibit for exam-

ple hysteresis [5, 6], thixotropy [7] and shear banding [8]. It is therefore important

to understand the mechanisms causing these distinct properties. In yield-stress

fluids solidity emerges near a ‘critical’ volume fraction φ below which the material

is a fluid whose viscosity rapidly increases with φ. Depending on the concentration

and size of the dispersed phase one can have a glass or jammed material (e.g. a

glassy colloidal suspension or a concentrated emulsion respectively). Glass and

jamming transitions share important similarities at the rheological level. Based

on these, a unified jamming phase diagram has been proposed where thermal and

athermal systems appear as a single ‘jammed’ phase [9]. However in the crossover

regime, glass and jamming transitions co-exist and give complex flow curves [10].

To investigate the flow behavior and complications of yield-stress fluids, we study

a Carbopol ”gel”. Carbopol is a widely used material in many industries because

of its efficient rheology modifications; a simple yield-stress fluid with enhanced

self-wetting properties that makes it easy to use [11]. Carbopol is a cross-linked

polyacrylic acid polymer, that is usually provided as a dry white powder. In a

water solution at neutral pH, Carbopol is an anionic polymer, i.e. some of the

side chains will lose their protons and acquire a negative charge. This makes them

polyelectrolytes, with the ability to absorb and retain water and swell to many

times their original volume. Therefore, the Carbopol-gel has a yield stress and is

extensively used in the literature as a model yield-stress fluid [12–15]. However

there is an ongoing discussion in the literature about the precise flow behavior of

this ”model” yield-stress fluid. Some authors report rheological hysteresis in the

flow curve [16] or transient shear banding that persists for a very long time [17],

which is incompatible with Carbopol being a simple yield-stress fluid.
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In this chapter we study the flow behavior of simple yield-stress fluids and try to

understand whether Carbopol is a simple yield-stress fluid or not. We perform

rheological tests to show that the Carbopol gel is sensitive to the preparation

protocol. We then try to understand what is causing hysteresis by visualizing

the different Carbopol gels using confocal fluorescent microscopy. The underlying

physics that for a certain preparation protocol causes the hysteresis and shear

banding turns out to be an interesting competition between thermal and athermal

parts dominating the system. To demonstrate the generality of these findings, the

same behavior is studied in another model system: an oil-in-water emulsion with

high surfactant concentration. Finally, we propose a simple theoretical approach

to describe this behavior.

6.2 Experimental section

First we compare two different Carbopol gels: Carbopol Ultrez U10 (used by us

[18]) and Carbopol ETD 2050 (used by Divoux et al. [17]). Both gels are tradition-

ally prepared by mixing Carbopol powder and demineralized water leading to a

liquid-like suspension of Carbopol aggregates. Subsequently a NaOH solution was

added to adjust the PH of the Carbopol-water mixture to approximately 7 which

induces polymer swelling and microgel formation. Our sample is homogenized

by gently stirring for one hour then left to rest for one day. The other sample is

stirred at a high rate for more than 20 hours, as was done in [17]. These differences

make for the distinct properties for the two samples. Rheological measurements

are performed with an Anton paar MCR 302 rheometer, in a sand blasted 1◦ cone-

plate geometry (diameter 50mm). Before starting any experiment the samples are

pre-sheared for 30 seconds at γ̇ = 100s−1 and left to rest for another 30 seconds.

6.2.1 Different types of behavior

The flow curves of the two different Carbopol samples are shown in Figure 6.1a.

The samples are 0,25wt% Carbopol Ultrez U10 in water (as used by us [18]) and

0,6wt% Carbopol ETD 2050 (as used by Divoux [17]). These flow curves are ob-

tained by performing an up and down shear rate sweep twice, the waiting time for

each point is 10 seconds (the rapid increase in stress response of the first increas-

ing rate sweep is the elastic response of the material). The sample from us shows
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Figure 6.1: Flow curves of different Carbopol samples. In (a) two samples
that where provided us (Carbopol Ultrez U10) and T. Divoux (Carbopol ETD
2050) [17]. And in (b) 0.6wt% Carbopol Ultrez U10 for different preparation

stirring times at 2000rpm.

no significant hysteresis, while clearly the sample from Divoux shows a hysteresis

between decrease and increasing shear rate sweeps for γ̇ < 5s−1. Roughly the

same yield stress is observed irrespectively of an up or down shear rate sweep. In

addition, figure 6.1b shows the flow curves of Carbopol (Ultrez U10) prepared with

different intensive stirring times during the preparation process. These samples

come from the same Carbopol batch that shows true model yield stress behav-

ior [18]. However, when the stirring time and intensity during the preparation of

the Carbopol is increased, the flow behavior starts to differ from the simple yield

stress behavior. We observe that a hysteresis loop appears and becomes more pro-

nounced for longer stirring times and the yield stress is decreasing simultaneously,

exactly as for the other type of carbopol prepared by Divoux [17], which were also

stirred vigorously. The microgel macroscopic properties therefore depend on the

details of the preparation protocol. The question therefore is what the relation is

between the preparation protocol and the hysteresis in the flow behavior of this

system? Divoux et al. [17] in addition show that they observe transient shear

banding in the hysteretic region of the flow curve.

When we look at start-up measurements, a stress-overshoot is observed for the

hysteretic Carbopol, figure 6.2 shows the start-up measurements for the two Car-

bopol samples at constant imposed shear rates. There is an overlap up to a strain

of 20% showing the linear response of the yielded material after which a constant
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Figure 6.2: Startup of stress as a function of strain for constant imposed
shear rates for (a) a simple yield stress Carbopol sample and (b) Carbopol after

intensive stirring, corresponding flow curves are given in the inset.

stress plateau is reached. In case of the vigorously stirred Carbopol a stress over-

shoot appears that has a maximum at a strain of 50%. The emerging yield peak

directly relates to the observed hysteresis in the flow curve, and shows that the

system ages at a typical timescale τag = γ/γ̇ ≈ 50s. Appendix A shows some more

additional rheological tests. To further investigate this change in the macroscopic

flow behavior we focus on the microstructure of the systems.

6.2.2 Micro structure

Figure 6.3 shows the confocal images that reveal the structures for the two Car-

bopol gels, dyed with rhodamine 6g (from Sigma-Aldrich). Clearly there is a

size and structure difference between the two samples, that were prepared from

the same material and hence should be identical: the only difference is the time of

stirring. For the simple yield stress sample (figure 6.3a) there are large cross-linked

structures visible. On the other hand, for the ”hysteretic” sample, the structures

are permanently broken into smaller parts. At rest, even after several months these

structures remain unchanged. Performing a fast scanning confocal microscopy, we

observe significant thermal motion (Brownian motion of the smallest particles) in

the hysteretic Carbopol. Also in the normal Carbopol, some very small parti-

cles are visible that are thermal, but the thermal behavior is significantly more

pronounced in the hysteretic Carbopol; Brownian motion is observed for many

small polymers (< 1µm, present and visible in the sample). As a consequence

of intensive stirring during the sample preparation the large cross-linked sponges
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Figure 6.3: Confocal fluorescent microscope image of two initially identical
samples of 0.5wt% Carbopol in water (Carbopol is dyed with Rhodamine 6g).
In (a) simple yield stress sample and in (b) after heavy stirring the cross-linked

structures are broken.

are therefore broken permanently into smaller structures thereby creating a more

polydisperse system, that shows pronounced thermal effects. This then explains

the hysteresis: it is well-known that thermal systems can exhibit aging and shear

rejuvenation, which leads to thixotropy. One consequence of such thixotropy is

hysteresis, another one is that there is and unstable part in the flow curve that

is responsible for the shear banding that is generally observed for the thixotropic

systems at low shear rates.

6.2.3 Velocity profiles

To look into the shear banding, velocity profiles are measured using a rheometer

head on top of the confocal microscope (similar to Paredes et al. [19]). The

velocity of the sample at different heights between cone and plate is measured

while imposing a constant shear rate (Fig. 6.4a). The profiles are rescaled by

plotting the normalized velocity v/vc where vc is the velocity of the cone (Fig.

6.4b). We find, as expected that the normal Carbopol sample shows an almost

linear velocity profile. However the hysteretic Carbopol shows a rapid drop in

velocity from the cone. This indicates that the material close to the cone has

a large velocity gradient, whereas close to the plate there is almost no velocity

gradient: this is shear banding. Thus, the thixotropy in the heavily stirred sample

also accounts for the shear banding. Similar velocity profiles are observed by
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Figure 6.4: (a) Velocity profiles at different imposed shear rates for normal
(black symbols) and hysteretic Carbopol (red symbols). The straight gray dot-
ted lines indicate a linear Newtonian velocity profile. (b) Fluid velocity nor-
malized by the cone velocity at different imposed shear rates for normal and

hysteretic Carbopol.

Divoux et al. [17] for Carbopol ETD 2050, they also conclude that the shear band

accounts for the small hysteresis observed in the flow curve.

6.2.4 Model system

A similar effect is also seen in e.g. emulsions with high surfactant concentrations

[20] where the formation of SDS micelles induces attractive depletion forces be-

tween the droplets [21, 22]. This leads to flocculation of the droplets, that is in

a way similar to a colloidal gel formation; building up of a structure that breaks

down under shear, resulting in flow instabilities [23, 24]. We have prepared cas-

tor oil-in-water emulsions with two different SDS concentrations 1wt% and 8wt%

SDS in water. The flow curves are shown in figure 6.5. The emulsion with 1wt%

SDS shows a perfectly reversible flow curve for increasing/decreasing shear rate.

However, the emulsion with 8wt% SDS shows a hysteresis that is similar to the

observations for the hysteretic Carbopol; a negative slope at the first increasing

shear rate sweep. This physical picture of attractive depletion forces can explain

the flow instability at low rates that occurs in the Carbopol; the many small ther-

mal particles (polymers) create an attractive force between the larger polymers.
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Figure 6.5: Flow curves for 70% Castor oil-in-water emulsion for different
SDS concentration in the continuous phase. Filled/empty symbols are increas-

ing/decreasing imposed shear rate.

6.3 Discussion and theoretical model

The above observations provide a consistent picture. We find that the flow proper-

ties of Carbopol depend on the preparation protocol; after intensive stirring during

the preparation process the flow behavior starts to deviate from the initial simple

yield stress behavior and shows a hysteresis loop and decreasing yield stress. The

emerging yield peak in figure 6.2 shows that the vigorously pre-stirred sample ages

on a typical timescale τag = γyield/γ̇ ≈ 50s. The mechanism behind it is revealed

in figure 6.3 the stirring changes the originally simple yield-stress fluid by break-

ing the microgels up in smaller structures, including many submicron Brownian

fragments. The latter will introduce depletion forces between the repulsive larger

fragments which then in absence of stress or at very low imposed rates form a

continuous network. The same is observed for the emulsion were micelles act as

depletants. In line with this, the yield stress decreases with increasing pre-stirring

time and the upward and downward flow curves meet again at imposed rates well

below the observed aging rate τ−1
ag (figure 6.1b and figure 6.2b inset). The insta-

bility in turn allows shear banding in the downward flow curve, as in figure 6.4

(cf. Møller et al. [25]). The model system of figure 6.5 supports the picture of

depletion-induced instability.
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To cast this in a quantitative model we assume that the vigorously pre-stirred

yield-stress fluid still obeys Herschel-Bulkley, with the underlying microscopic

model as in Paredes et al. [26] and chapter 7 of this thesis: σ = σy[1 + (τ γ̇β)].

The relaxation time τ then reflects the ’cage escape’ of the stagnant particle and

will decrease with increasing fragmentation, i.e., increasing γ̇. The competition

between aging and rejuvenation implies an additional shear-thinning mechanism

at rates just above τ−1
ag , so τ = τ(γ̇). Differentiating the resulting HB equation

with respect to γ̇ we see that mechanical instability will occur when dσ/dγ̇ ≤ 0

or dlogτ/dlogγ̇ ≤ −1. If the times τ(0), τag and τ(∞) are well-separated and if

no other additional timescale plays a role, the effective relaxation time τ will in

a range of rates above τ−1
ag decrease power-law with increasing γ̇. This may be

effectively modeled as

τ = τ(∞) +
τ(0)− τ(∞)

1 + (τagγ̇)n
(6.1)

with some positive exponent n. The condition dσ/dγ̇ = 0 for incipient mechanical

instability of the homogeneous flow then becomes, after short algebra, a quadratic

equation in x ≡ (τagγ̇)n; with the shear-thinning ratio R ≡ τ(0)/τ(∞) it reads:

x2 − [n(R− 1)− (R+ 1)]x+R = 0. Depending on the discriminant this equation

may have zero, one or two solutions, so precisely the possibility of either stable

flow or a single Van der Waals loop, with a critical point Rc(n) = [(n+1)/(n−1)]2

above which the instability occurs; so this may happen already for n just above

unity. The mathematics is given in Appendix A. For R � 4/(n − 1)2 the points

of maximum and minimum stress are then given by τagγ̇max ≈ 1/(n − 1)1/n,

τagγ̇min ≈ (n − 1)1/nR1/n. For the system of Figure 6.2 we find from the start-

up experiment τag ≈ 0.5 · 102s and from the flow curve γ̇max = 2 · 10−2s−1,

γ̇min = 10−1s−1, consistent with the proposed picture, with an exponent n ≈ 2,

with Rc ≈ 9 and with R = τ(0)/τ(∞) ≈ 25. As shown in the inset of Figure

6.2. the Herschel-Bulkley shear-thinning curve is indeed shifted to higher rates by

more than one decade, due to the unstable branch.

6.4 Conclusion

In conclusion, we have shown that a simple yield-stress fluid can undergo a tran-

sition to thermally induced shear banding. Our experiments show that a simple
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yield-stress fluid, a Carbopol gel that has an athermal jamming transition, can

be transformed to a shear banding yield-stress fluid by different preparations pro-

tocols. When intensive stirring is applied during the neutralization process the

properties of the microgel change; a hysteresis loop appears in the flow curve.

The Carbopol structures are visualized by confocal fluorescent microscopy and

it appears that the heavy stirring causes the polymers to breakup permanently

into smaller parts. This increases the amount of thermal particles (polymers) in

the system that create depletion forces between the larger polymers, resulting in

shear banding. Similar behavior is observed in emulsions with high surfactant con-

centrations where micelles induce a depletion interaction between droplets. The

underlying physics that causes shear banding is an interesting competition be-

tween thermal and athermal parts dominating the system. We propose a simple

theoretical approach where a shear band is formed in a repulsive yield-stress fluid

if the flow curve for homogeneous flow has a Van der Waals loop. The system

is composed of aggregated particles (aggregating by depletion forces) and has a

typical time scale τc for the competition between aggregating and breaking up of

a composite particle. This particle may itself break down with increasing rate,

thereby leading to an acceleration of the shear thinning; creating a shear band.
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Chapter 7

7.1 Introduction

Understanding and predicting the flow behavior of complex fluids is a subject of

considerable industrial and fundamental interest [1]. Yield-stress fluids are an

important class of complex fluids, and their flow behavior remains incompletely

understood [2, 3]. Most often, yield-stress fluids are a dispersion of one material

in a continuous phase, e.g. suspensions of (soft) particles or polymers, foams

or emulsions. When sufficiently concentrated, these systems show a transition

from mechanically solid-like to fluid-like states when the stress is increased above

some critical value, the yield stress. The yield stress emerges in general when the

volume fraction φ of the dispersed phase is higher than some critical value φc.

This so-called jamming transition is currently a very popular subject in the fluid

dynamics/statistical-mechanics community and has received a lot of attention [4–

12]. However it is not completely clear how generic the jamming description is,

and whether for instance the mechanical behavior of jammed systems as a function

of the volume fraction can be fully described or even predicted by considering the

jamming transition to be analogous to an equilibrium critical phase transition

[9, 10, 13–15]. The idea of jamming as a critical phenomenon, which is inspired

by an observed power-law divergence of mechanical quantities with respect to

the distance from the jamming transition, is what we will investigate here. We

first consider the relevant mechanical properties. For concentrated systems above

the jamming transition, the flow behavior is often successfully described by the

Herschel-Bulkley equation [16]

σ = σy +Kγ̇β = σy[1 + (τHBγ̇)β], (7.1)

where σ is the shear stress, σy is the yield stress, γ̇ the shear rate and where K

and β are adjustable parameters. One can then attempt to describe the vanishing

of the yield stress with decreasing volume fraction as a power law in the distance

to jamming:

σy = σ0|∆φ|∆ (7.2)

with |∆φ| = |φ−φc| and φc the ’critical’ (jamming) point. Below φc, the generically

observed Newtonian-to-shear-thinning behavior with increasing shear rate can be

well described by the Cross equation [17]

σ = ηN γ̇/(1 + Cγ̇1−δ) = ηN γ̇/[1 + (τC γ̇)1−δ] (7.3)
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where C or τC and δ are again adjustable parameters; note that the shear-thinning

regions of 7.1 and 7.3 are of the same form, with δ and C corresponding to β and

ηN/K, respectively. The Newtonian viscosity ηN often satisfies a power law in

|∆φ|, expressed by the Krieger-Dougherty equation [18]

ηN = η0|∆φ|−M , η0 = ηsolφ
M
c ; (7.4)

ηsol is the viscosity of the continuous solvent phase.

The above equations, in particular some of the power laws in γ̇ and |∆φ|, have

been verified for many dissimilar systems, with often but not always similar val-

ues for each of the exponents β,∆,δ and M . For instance, the Herschel-Bulkley

and Cross exponents β and δ are generally around 0.5 while for the yield stress

exponent ∆ and the Krieger-Dougherty exponent M typically values between 1

and 3, and regularly close to 2, are reported (see Appendix B for a compilation

of literature data with references). Experimental and simulation studies report a

power law similar to 7.2 also for the static shear modulus of the solid-like phase:

G = G0|∆φ|B. With σY = Gγy this corresponds to a vanishing of the yield strain

γy if B < ∆, as sometimes reported (see e.g. [19]), but B has also been found to

have a similar value as ∆ [20].

All the above equations apply to a steady state; however power-law scaling in time

has also been reported for the transient creeping flow of a broad variety of dense

complex systems close to their yield point but far from steady state. Independent

of the stress the instantaneous effective viscosity η = σ/γ̇ and the cumulative

strain γ(t) often follow the so-called Andrade law [21]

η(t) ∼ tα, γ(t) ∼ t1−α (7.5)

over sometimes remarkably long times t. Such behavior was already observed

by Andrade for metals in 1910 and has since been reported, in the macroscopic

rheology or in corresponding microscopic timescales, for e.g. crystals [13, 22–24]

glasses [25], polymers [26], emulsions [27, 28], gels [27, 28], foams [27, 28], sand [29],

paper [30] and even complex biomaterials [31]. The value of the creep exponent α

equally remarkably then often falls in a narrow interval 0.5-0.7.

Previously, Paredes et al. [20] have investigated the scaling in all the above equa-

tions on a single well-defined yield stress system: a dense soft-sphere emulsion
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with supercritical and subcritical volume fractions φ, and established exponent

values within the mentioned numerical ranges. Paredes et al. showed that by an

appropriate scaling of the stress and rate with only two independent exponents all

supercritical and subcritical flow curves could be mapped onto two master curves

that merge at high shear rates. This was interpreted as evidence for a critical tran-

sition in the dynamics, from fluid to solid-like behavior. Collapse of supercritical

Herschel-Bulkley data, with exponents very close to those of [20], had previously

been reported by Nordstrom et al. for a different soft-colloid system [32]. Ear-

lier, in two-dimensional (2D) simulations of overdamped soft disks, Olsson and

Teitel reported a similar data collapse and a critical transition, but with different

power-law exponents [33]. Simulations by Otsuki and Hayakawa [34, 35] for 2D,

3D and 4D soft spheres with inertial dynamics gave qualitatively similar scaling,

data collapse and transition with density, and could be rationalized with a similar

Scaling-Ansatz approach; however, in this case the exponents and exponent rela-

tions proved independent of dimension and were clearly different from those in the

experiments of [20] and [32] or those in the simulations of [33]. In equilibrium phase

transitions, the exponents and exponent relations depend on dimensionality and

symmetry, but not on details of the interactions. For jamming systems, some ev-

idence of dimension-independent scaling, but with particle-interaction-dependent

exponents different from those in [20], has been given e.g. in static simulations

by O’Hern et al. [9, 10] and/or in flow studies [36, 37]. However, very recently

V̊agberg et al. [38] revisited this point and, based on two different simulation

models, claim for their 2D case universal exponents in the flow of overdamped

shear-driven frictionless systems.

The question is then whether the exponents that characterize the mechanical be-

havior depend on the (details of the) interparticle interactions. Paredes et al.

propose that the critical transition happens because the mechanical behavior of

systems near jamming is governed by a growing lengthscale associated with the

heterogeneous dynamics, well above the lengthscale of the individual particles.

In the loose analogy with equilibrium phase transitions one would then suppose

that the exponent values are universal, i.e. independent of particle or interaction

details. Heterogeneous microscopic dynamics is a frequently reported feature in

various glassy or jamming systems investigated experimentally or by simulation,

with a lengthscale of fluctuating cooperative motion well beyond the single-particle

diameter, with a characteristic timescale of such fluctuations, and with acceler-

ated particle motion under load [33, 39–48]. Several studies report a divergence of
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such properties in approach of the yield stress, with power laws in stress, rate or

distance |∆φ| [38, 42, 49–57]. These observations have suggested that, in spite of

important differences [47, 58–60], close analogies exist between glasses and jammed

systems (see e.g. [11, 44]) and have given support to the idea [9, 10, 13–15] that

the transition from flow to arrest in complex disordered systems under external

load is a dynamic analogue of thermodynamic second-order phase transitions, with

analogous mesoscopic heterogeneity and power-law scaling, and that this transi-

tion is generic to a broad variety of such complex systems. Paredes et al. [20]

outlined a simple microscopic two-state scaling theory that could rationalize the

observed macroscopic flow and transition in terms of a critical divergence in the

microscopic heterogeneous dynamics, with two independent microscopic scaling

exponents only that agreed with their experiments.

The aim of this chapter is threefold. First, we seek more systematic order in the

experimental results by comparing the flow behavior of a number of systems that

are all 3D and overdamped, but have different particle interactions. The focus is

thereby mainly on the supercritical Herschel-Bulkley regime. Second, we elaborate

in more detail the two-state microscopic model that was briefly outlined in [20].

Third, we compare the predictions of this model with our own experimental results

and with a broad range of literature data, ordering the latter in comparable classes.

This chapter is organized as follows. In the next section we experimentally in-

vestigate the steady-state rheology of different systems that exhibit a jamming

transition. First, the difference between emulsions with mobile and rigid droplet

surfaces is considered; second, the flow curves of two other complex liquids, a

foam and a Carbopol gel, are examined. Scaling of the data onto master curves

is investigated and the scaling exponents of the four systems are compared. In

the following section the master-curve scaling and the critical transition from flow

to jamming are described using a Scaling Ansatz, following [33]. To rationalize

this Scaling Ansatz from a more microscopic point of view, we develop a model of

the heterogeneous dynamics. The model results in a number of relations among

the scaling exponents that can be verified experimentally. A comparison with

our own flow-curve data and data from the literature is made. In a final sec-

tion conclusions are summarized, in particular on the microscopic origin of the

observed scaling around the jamming transition and on the universality in this

scaling among different systems.
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7.2 Experimental rheology

In this section the steady-state rheology of four different systems that exhibit a

jamming transition is studied. First two types of yield stress emulsions have been

prepared, one system with mobile particle surfaces and one with rigid surfaces.

In general most type of surfactant-stabilized emulsions are considered as having

mobile droplet surfaces and it is usually assumed that this leads to harmonic

interactions between the drops [19]. Our mobile emulsions were stabilized using

Sodium Dodecyl Sulfate (SDS, from Sigma Aldrich), which is an ionic surfactant

with molar formula CH3(CH2)11SO
−
4 Na

+. The rigid emulsions were stabilized

using a protein solution composed of bovine serum albumin (BSA, from Sigma

Aldrich) and a co-surfactant propylene glycerol alginate (PGA, from Dextra); this

creates rigid surfaces on the droplets [61] and will thereby increase the drops’

resistance to deformation and slow down the drainage of liquid channels between

the droplets. As a consequence, the mechanical properties of the system change

and one would expect to see a difference in the flow curves.

As a third system, SDS-stabilized foam was chosen. Data for this foam were

obtained from previous research of S. Marze et al. [62], who studied the steady

flow of three-dimensional aqueous foams at different volume fractions. The fourth

system is a Carbopol ’gel’, for which different volume fractions were prepared.

7.2.1 Mobile emulsion

The results on the mobile emulsions were already reported in [20]. Flow curves

were obtained by performing a shear-rate sweep as shown in Fig. 7.1(a). From

these flow curves we determined that φc ≈ 0.645; a linear extrapolation of the yield

stress to zero gives φc = 0.648 ± 0.004, whereas a quadratic fit works better and

gives φc = 0.645±0.005. The curves above φc can each be fitted separately with the

Herschel-Bulkley equation (1). However, the data for all these supercritical volume

fractions can also be mapped onto one master curve by plotting σ/|∆φ|∆ versus

γ̇/|∆φ|Γ and fitting ∆ = 2.13 and Γ = 3.84, see Fig. 7.1(b). Interestingly the flow

data below φc then also collapse automatically, onto a curve that coincides with

the supercritical one at high rates. The supercritical master branch accurately

follows the Herschel-Bulkley equation with β = ∆/Γ = 0.55 and K = 0.87. The

branch corresponding to fractions below φc can be fitted to the Cross equation
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Figure 7.1: (a) Flow curves of mobile emulsions: Castor oil in water with 1wt%
SDS, for different internal volume fractions, showing Herschel-Bulkley fittings
for φ > φc ; symbols represent different volume fractions of the internal (oil)
phase. (b) Master curve showing collapse of flow curves onto two branches, one
for samples with φ > φc and one for φ < φc , when plotted as σ/|∆φ|∆ versus
γ̇/|∆φ|Γ; the red lines are supercritical and subcritical branches representing
the Herschel-Bulkley and the Cross fits of the master curve, respectively. Black
symbols correspond to samples with φ > φc and blue symbols correspond to
samples with φ < φc ; fit parameters are given in Table 7.1. Inset in (b): Fit
of the low-shear viscosity to the Krieger-Dougherty equation, giving etasol =

2.2x10−3Pas and M = 1.71 with φc = 0.645 [20].

(3) with δ = β and C = ηN/K, with the same values of β and K as above

φc. The supercritical data can independently be scaled as σ/σy versus γ̇/σ
1/β
y ,

giving a collapse with b = 0.60. All fitted parameters, including the prefactors σ0

and η0 , are summarized with their uncertainties in Table 7.1. Note that in [20]

the Newtonian viscosity ηn was independently measured and found to accurately

satisfy the Krieger-Dougherty equation (4), with an exponent fully consistent with

the above exponent values, i.e. M = Γ −∆ = 1.71 (see the inset of Fig. 7.1(b));

the supercritical shear modulus G was found to vanish with ∆φ with the same

exponent as the yield stress. These linear-response aspects will not be further

discussed here, and we will focus on the flow curves.

7.2.2 Rigid emulsion

The flow curves obtained for the rigid emulsions are shown in Fig. 7.2(a). From

these curves, using again a quadratic fit of the yield stresses versus Dj it is deter-

mined that φc = 0.64 ± 0.006. All flow curves for supercritical volume fractions,

each obeying the Herschel-Bulkley equation, can be rescaled onto one master plot

in the same manner as above, using ∆ = 2.04 and Γ = 3.80; these collapsed data
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Figure 7.2: (a) Flow curves of rigid emulsions: Castor oil in water with 0.4wt%
BSA and 0.4wt% PGA, for different internal volume fractions.(b) Master curve
showing collapse of flow curves onto two branches, one for samples with φ > φc
and one for φ < φc , when plotted as σ/|∆φ|∆ versus γ̇/|∆φ|Γ; the red line
isthe supercritical branches representing the Herschel-Bulkley master fit. Black
symbols correspond to samples with φ > φc and blue symbols correspond to

samples with φ < φc ; fit parameters are given in Table 7.1.

fit to a Herschel-Bulkley equation with β = ∆/Γ = 0.54 and K = 4.25. Once

again all flow data below φc then automatically also collapse with this procedure

onto a single curve, which meets the supercritical one at high rate, Fig. 7.2(b).

However, as is clear from the slopes in Fig. 7.2(a), all subcritical samples are still

shear-thinning even at the lowest rates. As a consequence, no reliable value for

η0 can be obtained from a master fit of the collapsed data to the Cross equation.

Direct scaling of σ/σy versus γ̇/σ
1/β
y also gives β = 0.54. The final results are very

similar to the rescaling found for the mobile emulsions, see Table 7.1.

7.2.3 Foam

All flow curves as measured by S. Marze et al. [62] for different volume fractions

were fitted with the Herschel-Bulkley equation, Fig. 7.3(a). The critical volume

fraction was determined by a quadratic fit of the yield stresses, resulting in φc =

0.68 ± 0.03; this value is somewhat higher than that of random close packing,

which may be due to the larger size polydispersity. Once again all flow curves

can be rescaled and collapsed onto one master curve when plotted as σ/|∆φ|∆

versus γ̇/|∆φ|Γ , for ∆ = 2.21 and Γ = 3.75, Fig. 7.3(b). The Herschel-Bulkley

representation of the latter gives β = ∆/Γ = 0.59 and K = 2.53. Direct scaling

of σ/σy versus γ̇/σ
1/β
y gives β = 0.57, see also Table 7.1.
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Figure 7.3: (a) Flow curves for SDS foams for different liquid volume fractions
(experimental data from [62]). The red lines show Herschel-Bulkley fittings.
(b) Master curve showing the collapse of flow curves onto one, when plotted
as σ/|∆φ|∆ versus γ̇/|∆φ|Γ. The different symbols represent different volume

fractions; fit parameters are given in Table 7.1.

7.2.4 Carbopol

For the Carbopol gels with different volume fraction the flow curves were obtained

by performing the same rheological procedure as for the yield stress emulsions,

Fig. 7.4(a). The considered weight fractions are very low, but due to the strong

pH-dependent swelling of the sponge-like particles a Herschel-Bulkley fit with a

yield stress and shear thinning is showing up at all concentrations. It is hard to

define a meaningful single critical volume fraction for these expanding gels, but

the data for all volume fractions can still be collapsed onto one master curve by

direct scaling with the yield stress, Fig. 7.4(b). The master curve fits the Herschel-

Bulkley equation with β = 0.48 and K = 11.85. The relatively large error bound

of about 30% in b is mainly due to the lowest concentration; if the data for this

concentration are omitted a much better master fit follows, with β = 0.55 and

K = 11.77, see also Table 7.1.

7.2.5 Summary of the experimental data

Different systems were investigated and rescaled with simple power laws in the

distance to jamming, giving supercritical and (where accessible) subcritical master

curves. As indicated before by Paredes et al. [20], the combined Herschel-Bulkley

and Cross equations nicely describe such flow behavior for a single simple yield
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Figure 7.4: (a) Flow curves of Carbopol for different internal volume fractions.
The red lines show the Herschel-Bulkley fittings. (b) Master curve showing

collapse of all flow curves onto one, when plotted as σ/σy versus γ̇/σ
1/β
y . The

different symbols represent different volume fractions; fit parameters are given
in Table 7.1.

stress emulsion. We have shown here that these combined equations can be used

to successfully describe the flow behavior near jamming for four different systems:

mobile and rigid emulsions, foam and Carbopol. All of the individual systems are

rescaled onto one single master curve by plotting σ/|∆φ|∆ versus γ̇/|∆φ|Γ, with

fitting parameters as shown in Table 7.1. As a remarkable result, all different

systems can be rescaled with exponents that within numerical uncertainty have

common values: ∆ ≈ 2.1, Γ ≈ 3.8 and β = ∆/Γ ≈ 0.55. This strongly supports

the conclusion that the flow behavior of such overdamped yield-stress materials

can be described by one universal scaling form, independent of the mechanical

properties of the system. A similar claim was made recently by V̊agberg et al.

[38], based on two simulated 2D systems.

7.3 Scaling and microscopic model

7.3.1 Scaling ansatz

The collapse of all rheological data on two master curves by the scaling of the

two axes with the appropriate power laws in |∆φ|, as demonstrated in Figs. 7.1-

7.4, leads to the assumption that the rheology above and below the jamming

concentration has one common origin. Such a collapse was already shown for
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Table 7.1: Overview of all rescaling parameters for the four systems: mobile
and rigid emulsions, foam, and Carbopol. The factor in the lowest row of the
table is added as a numerical consistency check: the scaling approach to be

discussed below shows that it should be of order unity.

Parameter Mobile emulsions Rigid emulsion Foam Carbopol

φc 0.645± 0.005 0.64± 0.006 0.68± 0.03
∆ 2.13± 0.11 2.04± 0.13 2.21± 0.21
Γ 3.84± 0.44 3.80± 0.34 3.75± 0.20
β = ∆/Γ 0.55± 0.07 0.54± 0.06 0.59± 0.07
β (from σy scaling) 0.60± 0.08 0.54± 0.08 0.57± 0.09 0.48± 0.14

0.55± 0.04∗

K 0.87 4.25± 0.39 2.53± 0.12 11.85± 0.11
11.77± 0.18∗

σ0 [Pa] 1100 2315± 59 497± 10
η0 [Pa s] 0.001

σ1−β
0 ηβ0 /K 0.60

* Leaving out the lowest concentration of 0.10 wt% (see text).

other soft-colloid dispersions [32] and also seen in simulations [33–35, 63]. The

assumption is mathematically expressed by a Scaling Ansatz [33] similar to the

Widom scaling for equilibrium critical phase transitions:

σ = σ0|∆φ|∆F±(ηN γ̇/σy) = σ0|∆φ|∆F±(η0γ̇/σ0|∆φ|Γ) (7.6)

Here F±(z) is a crossover function that modifies the supercritical linear-elastic

behavior depending on the ratio of viscous to elastic stresses, both for supercritical

(+) and for subcritical (-) concentrations. So for z � 1 we must have F+(z) = 1

and F−(z) = z; for z � 1 we get F±(z) = Azβ , with β = ∆/Γ to ensure that

it is independent of concentration in the critical limit φ = φc; A is an unspecified

constant of order unity. The equation for large z corresponds to the shear-thinning

regime, since it implies σ = Aσ0(η0γ̇/σ0)β. It expresses that here the super- and

subcritical systems become indistinguishable. This is obviously the case at the

critical concentration, but as the argument of the crossover function shows the

critical regime widens at high rate, with crossover rates for critical shear-thinning

behavior at either side of φc satisfying (apart from a constant of order unity):

γ̇co = (σ0/η0)|∆φ|Γ (7.7)

Identifying the above results with the power laws in the empirical Herschel-Bulkley,
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Cross and Krieger-Dougherty equations we have β = δ, K = ηN/C = Aσ1−β
0 ηβ0 ,

M = Γ −∆. Note that apart from a constant of order unity the relaxation rates

1/τHB and 1/τc of the Herschel-Bulkley and Cross equations equal the critical

crossover rate 7.7. While the Scaling Ansatz is thus able to reproduce with only

two independent scaling exponents the phenomenology of the observed rheology

scaling across the critical concentration, both in the linear and shear-thinning

regimes, a microscopic model is still needed to explain it.

7.3.2 Microscopic model of heterogeneous dynamics

Based on the experimentally observed scalings we propose a simple model of mi-

croscopic heterogeneous dynamics to explain the macroscopic rheology around the

critical concentration for jamming. As mentioned in the introduction, the observed

flow mechanics is common to many experimental and simulated systems for which

such heterogeneous dynamics has been reported and has led to the suggestion that

the underlying cause is a generic second-order critical transition in the dynamics,

between a stagnant and a fluid phase. We follow this suggestion and attempt to

explain the data from a simple two-state model for such a transition. Here we

repeat the main idea of the model as it has been already described by Paredes et

al. [20] and we elaborate in more detail in Appendix B.

When our yield-stress materials are under stress above the yield stress the stagnant

phase starts flowing. We assume that under stress a fraction s of the particles

remains stagnant in neighbor cages while the fraction (1 − s) becomes fluidized.

This simple two-state picture represents what are in reality two sides of a very

broad mobility distribution. In view of the observations we make an analogy with

the linear regime and assume that the lengthscale ξ of correlated, heterogeneous

dynamics diverges when s approaches a critical value sc where macroscopic flow

halts. Following the idea that the divergence is similar to that near a second-

order phase transition, we can then choose the divergent lengthscale as the single

dominant variable that governs macroscopic behavior, while the other variables

exhibit a power law dependence on ξ:

ξ ∼ |1− s/sc|−ν (7.8)

Subsequently, we assign the local viscosity, ηf , to the fluidized phase and treat the

arrested domains as a dispersed solid phase. Hence we postulate the viscosity η
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with the same exponent m as in the low-shear limit below φc:

η = ηf (1− s/sc)−m (7.9)

This interpretation is a logical generalization of 7.4 if we choose the same exponent

m = M as in the Krieger-Dougherty equation. The associated diverging time scale,

τη(s), is much shorter than the lifetime of the fluctuating heterogeneity pattern,

τhet(s), i.e., the time τA in which mobile particles get arrested again is:

τA(s) ∼ (1− s/sc)−n (7.10)

with n > m. The time evolution of the stagnant fraction s(t) can then be given

by a simple first-order kinetic equation:

ds/dt = − s

τR
+

1− s
τA

(7.11)

with 1/τR the relaxation rate for the arrested particles to become mobile and 1/τA

the rate with which mobile particles become arrested again. The relaxation rate

1/τR can be determined as the sum or maximum of either the Eyring-type rate

[64] for stress-induced escape out of a cage or the rate γ̇ = σ/η at which the

average cage vanishes. The Eyring-type rate has a deep minimum at σ = 0 and a

steep increase towards a plateau value for increasing σ. The ratio τA(0)/τR(0) is

effectively zero above φc, but increases rapidly below φc.

The full flow curve follows from the steady state solution ds/dt = 0, which gives

the correlation between s and σ and subsequently the shape of the flow curve:

η(σ) ∼ τA(s)m/n (7.12)

We can recognize two limiting cases: when s approaches sc from below (τR �
τA(0)), and when s approaches 0 (τR � τA(0)). For σ approaching 0, we find:

η

ηf
=

[
τR(0)

τA(0)

]m/n
(7.13)

this implies an infinite viscosity and hence a yield stress above φc. For σ > σy the

function 7.13 equals γ̇−1, from which we can derive the shear-thinning regime σ =

Kγ̇β of the Herschel-Bulkley expression with K = ηf/[τa(0)]m/n and β = 1−m/n.

Since m = Γ − ∆ we can make the identification n ≡ Γ. The yield stress itself
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follows from γ̇ = 1/τR(σ), with the result that the crossover rate to shear thinning

decreases to effectively zero for decreasing σy and |∆φ|. Below φc a very similar

analysis can be done but now the ratio τR(0)/τA(0), i.e., the low-stress viscosity is

finite and decreases rapidly with decreasing φ. In this case shear thinning starts

at γ̇ = 1/τR(0), which increases again with |∆φ|.

In order to understand the origin of the heterogeneity time scale and the associated

exponent n > m we make a variation on Mott’s argument for explaining creep via

dislocation motion in metals [65]. We consider a collective rearranging region of

N particles that share a collective free volume v to make rearrangements possible.

Over a time τη the N particles will, on average, have move to a neighboring

position. Consequently, each particle will experience an individual free volume

change δv, which will typically scale as v/N . If we assume the fluctuations to be

random (δv will be of either sign), we have for the average over time 〈
∑
δv〉 = 0,

while the average squared fluctuation will scale with 〈(
∑
δv)2〉 = 〈

∑
(δv)2〉 ∼

N(v/N)2 ∼ 1/N . In the critical limit of diverging N this will also vanish and

within the considered time τη nothing of consequence happens: the rearrangements

will continue. However, the squared Gaussian fluctuations keep adding up linearly

with time, so after a time τA = Nτη we have 〈Σ(δv)2〉 ∼ v2. At this point the

free-volume distribution has become such that there is a finite probability of the

region to arrest, so τA is the lifetime of the mobile region. With N ∼ ξd, we then

find n ≡ Γ = m+dν or ∆ = dν. Note that ∆ is the yield stress exponent and that

we derive it here from the rheology, without considering the elastic interaction.

In conclusion, the model explains the experimentally observed yield stresses (above

φc) versus the Newtonian-liquid behavior (below φc) at low rates, and the continu-

ity across φc in the power-law shear-thinning regime at high rates, with microscopic

interpretations of the scaling exponents.

7.4 Comparing the model to experimental data

7.4.1 Universal steady-state rheology

To judge the merits of the model we first note that it gives a microscopic basis

for the Scaling Ansatz 7.6, which is accurately satisfied by the experimental data

in figures 7.1-7.4. As is clear from Table 7.1, the microscopic exponents m =
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Γ −∆ and n = Γ or m/n = 1 − β derived from the fits show little difference for

the different experimental systems, notably for the two emulsions with strongly

different particle interactions. Considering the numerical errors the exponents

may well be universal to such 3D shear-driven dissipative systems, with typical

values m = 1.7 and n = 3.8. The two microscopic timescales τa and τb that can

be derived from our data in each case differ by many orders of magnitude: τb

can be estimated from the crossover rate to shear thinning; on the other hand

the high-rate Newtonian regime IV above τ−1
a is nowhere within reach, and as a

consequence the asymptotic parameters τa and ηa cannot be determined from the

data. Since the spatial heterogeneity has not been measured the third microscopic

exponent ν cannot be determined either. In the literature a value around 0.7

has been suggested more than once [14, 20, 33, 52]; together with our model

prediction ∆ = dν this would result in a realistic value d = 3.0. Furthermore, as

shown already in [20] the soft emulsion gives within experimental accuracy a single

power-law exponent∆ = B for the yield stress and shear modulus, respectively,

and consequently a nonvanishing yield strain near φc.

7.4.2 Literature data

In the literature many other jamming systems have already been analyzed for their

mechanical, rheological or microstructural scaling laws, with a broad range of ex-

ponent values, partly at variance with the present data. For instance, in several

papers [9, 10, 34–37] it is suggested that exponents should be independent of spa-

tial dimension, but sensitively dependent on the type of interparticle interaction;

also the exponent ∆ for the vanishing yield stress is claimed to be larger than the

exponent B for the vanishing shear modulus, with a consequent vanishing of the

yield strain near φc. These suggestions are supported by simulation data; how-

ever, it is not clear that the assumptions underlying these simulations would hold

for all kinds of studied systems. Apart from the spatial dimension one should a

priori distinguish e.g. athermal versus Brownian systems and crossovers between

the two [58–60, 66, 67], dry or wet systems with inertial effects and a subcriti-

cal Bagnold regime [34, 35], and (quasi-)static simulated systems that are fully

energy-minimized [9, 10]; in particular the conclusions of interaction-dependent

and dimension-independent exponents and of a vanishing yield strain are reached

in the latter cases. Beyond the variety in studied systems is the problem of often

limited data range and accuracy, which may lead to practical curve fits rather
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than asymptotic scaling analysis, with correspondingly inaccurate exponents. In

Appendix B we have collected measured or simulated exponent values for a broad

range of systems (Table C-I), with similar systems grouped there together. In the

present discussion we compare in Table 7.2 our experimental data and model only

with those systems that are clearly overdamped and athermal. Where possible

and relevant we have added in red (light grey) italics additional exponent values

that would result from applying our model to the published exponent values.

The flow-curve scaling demonstrated by [32] for an athermal soft suspension gives

exponents very comparable to those in figures 7.1-7.4: Γ = 4.1, ∆ = 2.1, so

m = 2.0, n = 4.1. By contrast, the scaling around the jamming transition of

overdamped simulated disks [33] gives ∆ = 1.2, M = 1.65, hence β = 0.42, and

thus markedly different exponents m = 1.65, n = 2.85 in dimension 2; in a later

study on the same 2D system by partly the same authors [38] a slightly lower

value β ≈ 0.30 is reported but still the exponents are argued to be universal for

overdamped systems, so independent of details of particle interactions. The same

authors also comment on the deviating results and conclusions of [36].

The simulated value ν = 0.73 in [52] connects well with our equation ∆ = dν

and a yield stress exponent ∆ = 2.1 as obtained here, while in the 2D simulations

of [33] the values of ∆ and d are different but the model prediction ∆ = dν is

still satisfied. In the 2D study of [33] there is also an accurately satisfied Scaling

Ansatz for ξ vs. σ, with a consequential relation ξ ∼ σ−ν/∆ in the critical regime;

with our identification ∆ = n−m this relation is the same as (13). In the related

study of [38] ξ has been measured near φc as a power of γ̇−1, with the result

ν/Γ = ν/n = 1/5.6; within the reported numerical accuracy for ν this is consistent

with the exponents of [33]. In the 3D simulation of [55] ξ has been measured close

to φc as a power of γ̇−1, with an exponent 0.23; for our emulsions, assuming

ν = 0.7, equation (13) would give an exponent 0.18. The model assumption that

for concentrations above φc the correlation length diverges on approach of the yield

stress, i.e., that the scale of the heterogeneous dynamics becomes of the system

size L in the quasistatic limit, has been confirmed in the simulations of [53, 54, 68].

The divergence of the microscopic timescales τη and τhet has little been studied in

a direct and quantitative manner. In the simulations by [52] of a 3D overdamped

system a power-law divergence of the heterogeneity timescale was indeed found,

with an exponent n = 3.3 somewhat below our value 3.8 for Γ. The simulations

in [55] of the velocity autocorrelation and the spatial correlations imply a ratio
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of exponents m/n = 0.27, so indeed a strong separation of the two timescales,

although this actual value is below our ratio of ca. 0.45. The samples of [32]

that showed much similarity to ours in the scaling of flow curves, have also been

investigated for their microscopic and heterogeneous dynamics [56]. Data covering

the shear-thinning regime as well as the plateau regime show a single power-law

relation between the mass of cooperative regions and the single-particle relaxation

time, strengthening the concept of one dominant variable close to the critical

transition. Using our equality τhet = Nτη these results translate into a fairly low

Herschel-Bulkley exponent β = 1 − m/n = 0.24, much lower also than earlier

reported [32] from flow-curve scaling. The authors also report a very accurate

scaling of the mass and relaxation time with the product of variables γ̇|∆φ|4 cannot

be explained by our model; we expect the dependence on these two variables to be

different. The origin of the discrepancy remains unclear, but we note that in the

measurements a significant stress and rate gradient was present over the larger

cooperative domains, thus making the relation between the domain size and a

single value for the order parameter s meaningless.

In sum, table 7.2 shows that there is often good agreement when comparing the

present theory and emulsion data with the steady-state rheology of other over-

damped and athermal literature systems, especially as regards the existence of the

scaling laws. The exponent values in the table support the idea that the scaling

around the jamming transition is universal for such systems, being only dependent

on the spatial dimension but not on details of the interaction. The larger collec-

tion of data in Appendix B, table B.1 reveals much more variety in the exponent

values, partly due to numerical inaccuracy but, more importantly, as a result of

different underlying mechanisms or simulation assumptions.

In this chapter the main focus is on steady-state rheology. However, one of the

key issues in the behavior of yield-stress fluids is the creep behavior, which as

shown above can also be covered by the model. It was demonstrated recently

[27, 28] that creep was the reason for sometimes wrongly interpreted ”liquid like”

behavior of yield-stress materials below σ ; in fact the creep is then so slow that

a steady state is not reached within experimental timescales and so the apparent

”viscosity” keeps on increasing in time, following the Andrade law (5). From the

exponents m and n that characterize the steady-state rheology, our model predicts

the exponent for the transient Andrade creep as α = m/(n− 1). This prediction

was tested on the soft emulsion with volume fraction φ = 0.66, just above φc [20].
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The steady-state data predict α = 0.60, whereas the creep data accurately satisfy

α = 0.6, in close correspondence also with many observations in the literature.

7.5 Conclusion

We have determined and numerically analyzed the experimental steady-state flow

behavior of four different yield stress systems: two emulsions, with mobile and

rigid particle surfaces respectively, a 3D foam and a Carbopol gel. While the par-

ticle interactions of all four overdamped systems can be assumed rather different,

their rheology near and across the critical jamming transition was found to obey

universality: by appropriate scaling with the distance to jamming all systems al-

lowed a data collapse onto supercritical Herschel-Bulkley and (where accessible)

subcritical Cross master curves that meet at critical shear thinning; moreover the

four sets of two independent scaling exponents proved the same within numerical

error. To rationalize such critical scaling we have presented a simple microscopic

two-state theory in which the steady state is a balance between stagnant and flu-

idized particles and where the stagnant fraction is the internal order parameter

that is driven to criticality. Heterogeneous microscopic dynamics is at the heart of

this theory and the two empirical scaling exponents could be related to exponents

for two diverging timescales: for the single-particle fluidity and for the lifetime of

the fluctuating heterogeneous domains. A third microscopic exponent describes

the critical divergence of the heterogeneity length scale, not only near the jamming

point but along the full yield-stress line. A heuristic argument based on fluctua-

tions in the local free volume explains the origin of the heterogeneous dynamics

and is able to give a scaling relation among the exponents. The theory also predicts

power-law creep. The experimentally determined exponents and the predictions

of the microscopic model have been compared with a large set of literature data,

giving additional support both for the model and for the assumed universality

among overdamped frictionless yield-stress systems of the same dimension.
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Chapter 8

8.1 Introduction

The transition between solid-like and liquid-like behavior in yield-stress fluids is

a well-known phenomenon [1, 2], which remains difficult to understand quantita-

tively [3, 4]. Interestingly, thermal (e.g. glassy colloidal suspension) and athermal

systems (e.g. foams and most emulsions) share important similarities at the rheo-

logical level. Both have a critical volume fraction φc at which solidity emerges, i.e.,

above this concentration the amorphous solid behaves elastically for small defor-

mation but flows when a stress larger than the yield stress is applied. Below φc the

material is a fluid whose viscosity increases rapidly with φ. Thermal systems have

a glass transition φc = φG ∼ 0.58, while purely athermal ones have a jamming

transition φc = φJ ∼ 0.64. Flow properties of both types of systems are often

well described by the Herschel-Bulkley equation σ = σy +Kγ̇β (above φc) and the

Cross equation σ = ηN γ̇/(1 + Cγ̇1−δ) (below φc)
1. In case of athermal jamming,

the yield stress and the crossover rate to shear thinning are regularly reported to

have a power-law dependence on the distance to φc, with power-law exponents in

the same range: σy = σ0|∆φ|∆ and γ̇co = γ̇0|∆φ|Γ, with |∆φ| = |φ − φc|. Ols-

son and Teitel [5] were the first to suggest, based on numerics, that for a single

system this can lead to a collapse of all concentration-dependent flow curves onto

one supercritical and one subcritical branch, which merge in the shear-thinning

region.

In theory the scaling exponents for athermal systems depend on the details of the

interactions between particles [6–9], whereas experiments in the previous chapter

suggest that it is rather universal. In the previous chapter we have shown exper-

imentally that athermal jamming data collapse onto single super- and subcritical

master-curve branches, with universal scaling exponents across a range of systems.

An interesting follow-up question is: Can we define a universal rescaling of flow

curves for thermal and athermal systems? This question is supported by several

interesting findings from previous studies. Bonn et al. [10] show that the flow

curves of thermal and athermal particles are very similar. Van der Vaart et al.

[11] compare soft and hard-sphere thermal systems and also suggest that they

behave similarly, only with different stress scales. Ikeda et al. [12, 13] simulate

the cross-over between thermal en athermal systems and suggest that the effect of

different stress scales is simply additive.

1Here σ is the shear stress, σy is the yield stress, γ̇ the shear rate, ηN the newtonian viscosity,
and K, β, C and δ are adjustable parameters.
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In the case of athermal jamming the characteristic stress and time scales originate

from the interaction energy (ε) of the particles. We consider compressed, elastic

emulsions that have an repulsive interaction energy which is due to the deformation

of the droplets. The energy scale is therefore set by the surface tension and the

stress scale is given by the Laplace pressure:

σ0 =
ε(R)

R3
=

Σ

R
(8.1)

with Σ the surface tension and R the particle radius. The corresponding time

scale is:

τ0 =
η0

σ0

(8.2)

with η0 the solvent-viscosity. Likewise, we can define the stress and time scales

for Brownian motion with the thermal energy kBT :

σT =
kBT

R3
(8.3)

τT = η0
R3

kBT
(8.4)

From the above expressions it becomes clear that the thermal and mechanical

stress are comparable when kBT ≈ ε, while they become increasingly separated in

the athermal limit when kBT � ε [13].

In the previous chapter we showed experimental jamming data that collapse onto

a single master curve, with universal scaling exponents across a range of systems,

and present a model to describe the microscopic dynamics underlying the critical

transition and these scaling laws. In this chapter we extend those studies and

investigate the cross-over between thermal and athermal yield-stress regimes, by

comparing the experimental flow curves of a variety of thermal and athermal sys-

tems. First we show that the flow curves of three different athermal emulsions, with

different inter-particle interactions, can be collapsed with respect to the jamming

transition, by using the Laplace pressure as the stress scale and with a common set

of exponent values. Secondly, we show that the flow curves of thermal systems can

be scaled in a similar way as the athermal systems and with very similar common

exponent values. However now the scaling is achieved with respect to the glass

transition and with the osmotic pressure as the stress scale. Finally we demon-

strate that all yield stress flow curves of both thermal and athermal systems, over
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Figure 8.1: (a) Flow curves of athermal emulsions with different interactions
(mobile and rigid particle surfaces and soft electrostatic repulsion). All are
castor oil-in-water emulsions with different volume fractions φ (from bottom to
top with increasing φ). (b) Rescaled flow curves for athermal emulsions. The
stress and rate are scaled with the Laplace pressure (σ0 = Σ/R) times a power
law of the distance to jamming (|∆φJ | = |φ− φJ | where φJ = 0.64). The black
line and black dotted line are fits to the Herschel-Bulkley and Cross equation,

respectively.

a full concentration range of the glass and jamming regimes, can be collapsed onto

a single master curve.

8.2 Athermal systems

First we consider athermal systems, and study the steady-state rheology of three

different athermal emulsions. The emulsions are castor oil-in-water emulsions and

have a radius of R ∼ 1.6µm (with a polydispersity of 20%). The continuous phase

consists of demineralized water (mili-QR©) and different surfactants, creating dif-

ferent interactions between the droplet surfaces: 1wt% SDS in water (creating

mobile surfaces), 0.4wt% BSA and 0.4wt% PGA (creating rigid surfaces) [14], and

1wt% SDS in 0.05M NaCl (creating softer electrostatic interaction). More details

about the interaction and preparation are described in chapter 2. Emulsions with

different volume fractions were prepared and the corresponding flow curves are

Table 8.1: Parameters for the different systems at T = 25oC.

PMMA Emulsion Emulsion Emulsion Emulsion Emulsion Emulsion
250nm 530nm 740nm mobile rigid soft

R[m] 1.83 · 10−7 2.50 · 10−7 530 · 10−7 7.40 · 10−7 1.6 · 10−6 1.6 · 10−6 1.6 · 10−6

Σ[Nm/s] - 9.80 · 10−3 9.80 · 10−3 9.80 · 10−3 1.50 · 10−3 3.60 · 10−3 1.40 · 10−3

σ0 - 3.92 · 104 1.85 · 104 1.32 · 104 9.38 · 102 2.25 · 103 8.75 · 102

σT 2.90 · 103 9.10 · 103 9.55 · 102 3.51 · 102 3.47 · 101 3.47 · 101 3.47 · 101
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plotted in figure 8.1(a). In chapter 7 we have shown that the flow curves of the

individual systems can be collapsed onto two separate master curves; one for the

super-critical data and one for the sub-critical data. The critical volume fraction

chosen as φJ = 0.64, which is at random close packing (RCP) [15]. Here we fo-

cus on how all these individual systems can be collapsed onto the same master

curve. The flow properties of compressed emulsions depend on the packing and

deformation of droplets and their intrinsic elasticity [16]. The elasticity of the

droplets and their deformation under compression are controlled by the Laplace

pressure, σ0 = Σ/R (the parameters for the different systems are given in Ta-

ble 8.1). By plotting σ/σ0|∆φJ |∆ versus γ̇/σ0|∆φJ |Γ all the flow curves of the

compressed emulsions can be collapsed onto one curve2 (figure 8.1(b)). For each

system and volume fraction the exponents ∆ and Γ are adjusted to achieve the

collapse, but their values remain in a narrow range; the mean values with standard

deviation are ∆ = 2.08± 0.14 and Γ = 3.87± 0.36. Using the same exponents the

sub-critical flow curves (corresponding to fractions below φJ) collapse automati-

cally also. The super-critical master curve can be fit with the Herschel-Bulkley

equation with β = 0.54 and K = 0.065 and the sub-critical branch can be fitted

to the Cross equation with δ = β and C = ηN/K = 0.023 (both K and C in SI

units).

8.3 Thermal systems

Remarkably similar flow curves are observed for thermal mono-disperse emulsions

[16] and a PMMA hard-sphere colloidal glass [17], however the main difference is

that thermal fluctuations are important and a glass transition can be observed

to occur around φG ≈ 0.58. Here we find that thermal emulsions and colloidal

hard-spheres show very similar behavior, indicating that this transition appears

independently of the interactions or hardness of the particles. The flow curves of

all thermal systems are shown in figure 8.2(a). First only the flow curves that are

purely thermal are considered (φG < φ < φJ); all these flow curves can be collapsed

using a similar scaling as for the athermal systems, but now with respect to the

glass transition and with the stress scale given by thermal fluctuations kBT/R
3.

Figure 8.2(b) shows this rescaling of flow curves, with strikingly similar values for

2Note that for a correct dimension of the rate-scaling the solvent-viscosity η0 should be
included, however for now this can be neglected (η0 ∼ 1mPa · s for all studied systems here).
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Figure 8.2: (a) Flow curves of thermal systems: different droplets sizes of
silicone oil-in-water emulsions and PMMA particles (from bottom to top with
increasing φ). (b) Data collapse of thermal systems with φG < φ < φJ , plotted
with the same parameters as for the athermal systems, but with respect to the
glass transition (|∆φG| = |φ − φG| where φG = 0.58) and the osmotic pressure

due to thermal fluctuations (σT = αkBT/R
3, with α = 35000).

∆ and Γ as for the athermal flow curves. The stress scale to achieve the rescaling

and normalize the stress plateau is given by σT = αkBT/R
3 with α = 35000. The

physical meaning and value of α is not entirely clear, but a large prefactor for

thermal yield stress glasses is also reported in the literature [11, 18].

8.4 Universal scaling and cross-over

The yield stress that is observed for the thermal systems for φG < φ < φJ ,

has an entropic nature and is dominated by the osmotic pressure [12]. However,

for φ > φJ the nature of the yield stress changes from being entropic to being

controlled by the elastic deformation of the particles. Both the glassy yield point

and the jamming yield point can be understood in terms of particle cage escape

across a microscopic stress barrier, as pictured in our microscopic model for the

critical transition (chapter 7). In a combined treatment of both transitions it is

then natural to add the entropic and enthalpic parts of the characteristic barrier

stress, and in view of the relation between characteristic stresses and timescales,

to add up also the characteristic cage-escape rates (this is further explained in

8.4.1).

We find that an additive combination of the characteristic glass and jamming

stresses and rates enables to collapse all thermal flow curves, see figure 8.3, by
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Figure 8.3: Collapse of all thermal and athermal flow curves for φ > φG.
By plotting σ/[αkBT

R3 |∆φG|∆ + θΣ
R |∆φJ |

∆] versus γ̇/[αkBT
R3 |∆φG|Γ + θΣ

R |∆φJ |
Γ],

with ∆ = 2.07 and Γ = 3.85. The black line shows a Herschel-Bulkley fit
σ = 1.0 + 0.07γ̇0.54.

plotting σ/[σT |∆φG|∆+θσ0|∆φJ |∆] versus γ̇/[σT |∆φG|Γ+θσ0|∆φJ |Γ], with θ being

a step function with θ = 0 if φ < φJ and θ = 1 if φ > φJ . Accordingly, the flow

curves of all thermal systems for φ > φG collapse. Automatically this scaling

works for the athermal emulsions, since in the limit of large R the scaling reduces

to the athermal scaling in figure 8.1 because σ0 � σT . The striking conclusion is

that in this way all the flow curves, both thermal and athermal, collapse onto a

single master curve with universal values for the scaling exponents ∆ and Γ within

the experimental accuracy. Even tough there is some variation in the exponents of

the individual systems, it is remarkable that they all follow the same slope given

by β (see figure 8.4). Also remarkable is that this allows us to predict the yield

stress and flow behavior using only the volume fraction, particle size and surface

tension in a universal fashion.

8.4.1 Extension of the microscopic model to thermal glassy

behavior

The microscopic model of heterogeneous dynamics that we describe in chapter

7, assumes the existence of two characteristic microscopic timescales of the fluid:
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Figure 8.4: ∆ versus Γ for the different thermal and athermal systems with
corresponding standard deviation.

τη proportional to the viscosity η for the single-particle mobility, and τhet for the

lifetime of the fluctuating pattern of stagnant and mobile regions. Both time scales

increase and become widely separated when the stagnant fraction increases, with

τhet � τη. Like in second-order critical transitions the characteristic length scale

ξ of the heterogeneous domains diverges as a power-law in approach of the yield-

stress line and becomes the dominant variable. All the other variables then have

again a power-law dependence on ξ:

ξ(s)

ξ(0)
=

[
τη(s)

τη(0)

]ν/m
=

[
τhet(s)

τhet(0)

]ν/n
=

[
1− s

sc

]−ν
(8.5)

with n > m. Here s is the fraction of particles arrested in cages, and sc the critical

fraction where macroscopic flow halts. The viscosity η = σ/γ̇ is proportional to

τη and hence the macroscopic rheology follows similarly:

η(s) = η(0)[1− s/sc]−m. (8.6)

The stress-dependent steady-state value of s follows from a balance between stress-

induced cage escape and arrest through free-volume fluctuations. The average

cage-escape rate can then be equated to the decay rate of the heterogeneity pat-

terns; the escape rate contains two terms and is dominated by whichever is the

fastest:

s

[
1

τb
f(σ/σy) + γ̇

]
=

1

τhet(s)
. (8.7)
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The two terms between square brackets cover two extreme cases, the static and

collective-flow limits, respectively. The first term represents the stress-induced

escape of a stagnant particle from the static cage of particles surrounding it, the

second term represents the case where the cage itself is flowing with the particle.

The first term 1/τb = σy/ηN = (σ0/η0)|∆φ|∆+M is a characteristic rate for barrier

crossing, with σy = σ0|∆φ|∆ the yield stress and ηN = η0|∆φ|−M the Newtonian

viscosity. Below σy no cage escape is possible, so 1/τb has to be multiplied by

a function f(σ/σy) that is zero if its argument is below unity. Above σy the

probability of barrier crossing rapidly increases, so above unity f(σ/σy) will be a

steeply increasing function of its argument. Crossover to collective shear-thinning

flow of all particles takes over when the typical rate for barrier crossing, 1/τb,

becomes of the order of the average rate, i.e. equal to the second term between

square brackets; so the crossover rate γ̇co equals 1/τb = (σ0/η0)|∆φ|Γ, with ∆ +

M = Γ. At this crossover point the excess (viscous) stress σ − σy becomes of the

order of the elastic stress, i.e. of order σy, so f(2) can be chosen of order unity.

For still higher stresses f(σ/σy) saturates around that level and the first term

between square brackets becomes irrelevant. So typically f(x) = 0 when x < 1

and f(x) = 2(x− 1)p/[1 + (x− 1)p] when x ≥ 1.

In chapter 7 we show how the solution of the above balance equation for s at

given stress or rate leads to the correct asymptotic high- and low-rate forms of

the Herschel-Bulkley and Cross equations, and their merging at high rates. The

macroscopic exponents are found to follow from the microscopic ones through the

identification m ≡ M = Γ − ∆ and n ≡ Γ. Moreover we derive from a scaling

of free-volume fluctuations that ∆ ≡ n − m = dν, with d the (possibly fractal)

dimension of the heterogeneous domains; in the literature a correlation-length

exponent ν ∼= 0.7 is regularly reported, this would lead to ∆ ∼= 2.1 in case d = 3

(see chapter 7 and references therein).

If we postulate that the above microscopic mechanisms of heterogeneous dynamics

and critical behavior applies both to the glass and the jamming transition, with

the same critical exponents, we only need to choose in each case the appropriate

characteristic stress (σ0 or σT ), characteristic timescale (σ0/η0 or σT/ηT ), and

relevant critical volume fraction (φJ or φG). When considering the two transitions

simultaneously it is logical to take the barrier stress for cage escape σy as the sum

of both the random entropic thermal stress and the enthalpic deformational stress.

Accordingly, when rescaling the experimental stress data one should then use the
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additive yield stresses as the scale factor:

σco = σT |∆φG|∆ + θσ0|∆φJ |∆ (8.8)

with θ = 0 below φJ and θ = 1 above φJ .

Equation (8.7) shows that to rescale the experimental flow rates one should then

use the added yield stresses as the scale factor for the glass and jamming cases:

γ̇co = (σT/η0)|∆φG|Γ + θ(σ0/η0)|∆φJ |Γ (8.9)

So we conclude that this microscopic two-state picture of a balance between caged

and flowing particles can be applied both to the jamming and the glass transition.

8.5 Conclusion

We have investigated the flow behavior of yield-stress fluids and colloidal glasses for

a range of different volume fractions, particle size and interactions. First we show

that the flow curves of three athermal emulsions, having different inter-particle

interactions, can be scaled onto a universal curve with respect to the jamming

transition and with the Laplace pressure as stress scale. Secondly, we investigated

the cross-over between thermal and athermal yield-stress regimes. Thereby we

show that the flow curves of thermal systems can be collapsed in a similar way as

the athermal systems, with respect to the glass transition instead of the jamming

transition. All yield stress flow curves can be collapsed using the Laplace pressure

as stress scale for the athermal systems and the osmotic pressure for the thermal

systems. An additive combination of glass and jamming stresses, respectively

rates, is sufficient to achieve this.

The extension from jamming to the glass transition can be very logically based

on our microscopic model. The reason being that the model in first instance does

not discuss the volume-fraction dependence but the dependence on the fraction s

of stagnant caged particles, which itself satisfies a balance equation and thereby

becomes a function of the distance to the yield-stress line. The macroscopic flow-

rate dependence of the stress then follows from the microscopic rate of stress-

induced cage escape and its relation to a length scale of cooperative motion. This

heterogeneity length scale diverges as a power-law in |s−sc| when approaching the
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critical yield stress, implying that we consider a second-order dynamical critical

transition.

In conclusion, we propose a scaling that applies for both thermal and athermal

systems, finding universal exponents for the jamming and glass effects. Amaz-

ingly we can predict, rather then fit, characteristic stress and rate prefactors from

material properties.
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Appendix A

Thermally induced shear banding

In continuation of Chapter 6 we here show some additional rheological tests and

mathematics. The model and the mathematics that is described here and in

chapter 6 is in collaboration with Thijs Michels1.

A.1 Additional rheological tests

Detailed rheological tests are done to investigate the appearance of the hysteresis

loop or shear band in the Carbopol. To determine whether a steady state is

reached in the hysteretic carbopol viscosity bifurcation measurements are done,

figure A.1 shows the viscosity in time for constant imposed stresses. Generally, in

these experiments there is a deviation between liquid-like and mechanically solid-

like behavior; the viscosity reaches a constant value at imposed stresses above the

yield stress, and the viscosity increases to infinitely high values for stresses below

the yield stress. For the simple yield stress Carbopol there is a sharp deviation

between the two regimes (figure. A.1a), however for the hysteretic Carbopol this

is less clear (figure A.1b). These results represent thixotropic behavior as shown

in previous work on thixotropic materials [1].

The buildup of the viscosity in time at constant imposed shear rates reveals a

first significant insight (figure A.2). We see the elastic response of the yielded

material, that at some point reaches a constant viscosity plateau (figure A.2a).

1From Eindhoven University of Technology, Theory of Polymers and Soft Matter, Department
of Applied Physics.
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Figure A.1: Viscosity bifurcation measurements: viscosity as a function of
time for constant imposed stresses for (a) a simple yield stress carbopol sample

and (b) a hysteretic carbopol sample (both 0,6wt% Ultrez U10 in water).

In the case of the hysteretic sample a stress overshoot is observed (figure A.2b).

This directly relates to the observed hysteresis loop from the flow curves. A more

instructive way to present this data is in a stress versus strain plot (figure A.3),

where there is an overlap up to a strain of 20% showing the linear response of

the yielded material from a startup flow. For the hysteretic carbopol the stress

overshoot appears and has a maximum at 50%, after which a constant plateau is

reached. The corresponding flow curves are shown in figure A.4. The underlying

mechanism causing this overshoot is revealed by confocal microscopy. A time video

of the both carbopol samples shows that there are thermal parts present in the

carbopol. There is an increase in thermal composites in the hysteretic carbopol

(after heavy stirring), that causes shear banding.

Figure A.2: Viscosity as a function of time for constant imposed shear rates
for (a) a simple yield stress carbopol and (b) hysteretic carbopol (both 0,6wt%

Ultrez U10 in water).
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Thermally induced shear banding

Figure A.3: Startup of stress as a function of strain for constant imposed
shear rates for (a) a simple yield stress Carbopol sample and (b) Carbopol after

intensive stirring.

Figure A.4: Flow curve of different Carbopol samples, corresponding to figure
A.3.

A.2 Theoretical approach

To do the mathematics of the quantitative model we simplify the notation by in-

troducing the dimensionless rate x = (τagγ̇)n and considering the R ≡ τ(0)/τ(∞).

A large value of R corresponds with a strong drop in intrinsic relaxation time.

Thus we get:

x2 − [n(R− 1)− (R + 1)]x+R = 0 (A.1)

with the roots

x± =
[n(R− 1)− (R + 1)]

2

(
1±

√
1− 4R

[n(R− 1)− (R + 1)]2

)
(A.2)
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These roots will be real, allowing a Van der Waals loop, if

[n(R− 1)− (R + 1)]2 ≥ 4R (A.3)

or

R ≥ Rc(n) ≡
(
n+ 1

n− 1

)2

(A.4)

Here we divided out a factor (R–1), using R > 1. So a Van der Waals loop can

indeed be realized above the critical ratio of relaxation times Rc(n). For positive

roots x± we have to choose n > 1. In the limit R � 4/(n − 1)2 the positions of

the maximum and minimum of the Van der Waals loop are approximated by:

x− ≡ xmax ≈
1

n− 1
, x+ ≡ xmin ≈ (n− 1)R (A.5)

with max and min referring to the maximum and minimum of the stress, so

xmax < xmin. Note that the factor (n− 1)n/1 remains bounded and of order unity

for n > 2, while it vanishes for n ↓ 1.
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Universal rescaling: microscopic

model

Here we discuss in more detail the microscopic model that is described in chapter 7,

and give a broad range of literature data. The model is developed in collaboration

with Thijs Michels1.

B.1 Microscopic model

B.1.1 Two-state heterogeneous dynamics

The power-law divergence of the Newtonian viscosity and the power-law vanishing

of the shear modulus or yield stress are commonly understood from the existence

of a diverging lengthscale ξ that characterizes correlated motion, i.e., the typical

length over which particle displacements cannot be considered independent. In

experiments [1–6] and simulations [7–14] such a divergent lengthscale has been

observed both in the linear regime around φc and when approaching the yield

stress line of quasi-static flow at higher concentrations φ.

Since under stresses above the yield stress the stagnant phase starts flowing, we

assume that under stress a fraction s of the particles remains stagnant in neighbor

cages while the fraction (1 − s) becomes fluidized. This simple two-state picture

1From Eindhoven University of Technology, Theory of Polymers and Soft Matter, Department
of Applied Physics.
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represents what are in reality two sides of a very broad mobility distribution. In

view of the observations we make an analogy with the linear regime and assume

that the lengthscale ξ of correlated, heterogeneous dynamics diverges when s ap-

proaches a critical value sc where macroscopic flow halts. Following the idea that

the divergence is similar to that near a second-order phase transition, we can sub-

sequently choose the divergent lengthscale as the single dominant variable that

governs macroscopic behavior. Mathematically this single relevant variable im-

plies that ξ can only diverge power-law in the distance ∆s = |s− sc| from critical

jamming and that other variables in their dependence on s near sc derive from ξ

again as power laws, with similar critical behavior. In particular this applies to

the lifetime τhet of the fluctuating heterogeneity pattern and to the average time τη

for the single-particle mobility, i.e. the time for the average particle to move over

a distance of its own diameter. The latter timescale τη is directly proportional to

the average viscosity η of the system. So in fact ξ(s), τhet(s), τη(s), η(s) are all

interrelated by power laws in ∆s. Normalizing them to their values at s = 0 and

introducing critical exponents ν , m and n we can then write:

ξ(s)/ξa = [τhet(s)/τa]
ν/n = [τη(s)/τa]

ν/m = [η(s)/ηa]
ν/m = |1− s/sc|−ν (B.1)

The lengthscale ξa is of the order of the single-particle diameter. The limiting

times τη(0) and τhet(0) will have a similar scale and have for simplicity been taken

equal to a single time τa; however, for an increasing fraction s of stagnant particles

the heterogeneity lifetime τhet will become much larger than the fluidity time τη,

so its associated exponent will be larger: n > m. Since the ratio τhet/τη of the

two microscopic timescales diverges near sc we can interpret ηa = η(s = 0) as

the asymptotic viscosity of a fully fluidized phase and treat the arrested domains

as a dispersed solid phase. Note that in this interpretation the last equality in

(B.1) is a logical generalization of (4) if we choose the same exponent m = M

as in the Krieger-Dougherty equation. This supposes a deep relation between the

linear and the nonlinear rheology, with the same physics in (4) and (B.1); indeed

a deep connection is already implied by the empirical collapse of data over the

full dynamic range in Figs. 7.1-7.4, with a direct relation between the empirical

exponents M , Γ and ∆, viz. M = Γ − ∆. We will return to this point later.

Both τa and ηa will be continuous functions ofφ near φc and in comparison with

the functions that depend power-law on |∆φ| they may be treated as constants

sufficiently close to φc; together they define a characteristic asymptotic high stress

σa = ηa/τa.
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The internal parameter of our model, the stagnant fraction s, is determined by a

competition between stress-induced escape of arrested particles from their cages,

and fluctuation-induced arrest of mobile particles; the latter arrest mechanism

will be dependent on this internal variable s and will be detailed later. The time

evolution of the stagnant fraction s(t) can then be given by a simple first-order

kinetic equation:

ds/dt = −s/τR + (1− s)/τA (B.2)

with 1/τR the relaxation rate for the arrested particles to become mobile and 1/τA

the rate with which mobile particles become arrested again.

The relaxation rate 1/τR can be considered as resulting from either of two typical

mechanisms. For low stress we may consider that particles are caged by a large

energy barrier ε and that the applied stress, thermal energy, or a combination of

both, facilitates barrier crossing of single particles; this process is characterized

by a typical barrier stress σb. Subsequently, with increasing stress and hence

increasing number of such crossings a collective flow process develops in which

the cage itself vanishes; the latter process takes over when the average rate γ̇

becomes of the order of the single-particle escape rate or larger. So in a simple

approximation we can write:

1/τR = (1/τb)f(σ/σb) + γ̇ (B.3)

with τb the typical time for barrier crossing at stresses near σb; around the solid-

fluid transition that we are interested in this timescale will be orders of magnitude

larger than τa. In fact, the ratio τb/τa , still a function of φ , will be the dominant

large parameter in the model and will be much larger than any dimensionless

experimental timescale (τaγ̇exp)
−1 in the limit φ ↑ φc and beyond.

For athermal jamming systems repulsive energies dominate over thermal energies,

and the limit of zero temperature has to be assumed before applying shear [15–

17]. The barrier stress σb is then a sharply defined yield stress σy(φ) below which

the deformation is elastic and no flow is possible; it scales as εvact , with vact

some local activation volume needed for a single relaxation event, and vanishes

below the critical volume fraction φc. So above φc we can assume the simple form

f+(x) = (x− 1)p for x > 1 and f+(x) = 0 for x < 1, with some positive exponent

p to be discussed later. Below φc we can take f−(x) = 1 since at low stress the
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rheology should be Newtonian. Note that there is continuity in f(x) across the

jamming point φc along the line x = 2, i.e., ∆σ = σy.

For high but finite ratios ε/kbT thermal processes may at very large timescales still

relax the elastic stress in the solid within experimental timescales. This interme-

diate case between glassy dynamics and jamming may be described by adding up

the probabilities for stress-induced and thermally induced cage escape, i.e., adding

to (B.3) the rate for thermal barrier crossing. That process is an Eyring-type cage

escape [[18]], for which the characteristic time constant τb is the equilibrium α-

relaxation time and the typical barrier stress σb is kbT/vact . The stress dependence

above φc is in the Eyring model given by f+(x) = x−1sinhx; it crosses over from

parabolic at low stress to exponential at high stress. This thermal scenario ap-

plies to glasses, i.e., when shear is applied before considering the limit of low

temperatures [15–17, 19, 20]. Heterogeneous dynamics, accelerated dynamics in

approach of the yield point and subsequent flow of monomers has also been stud-

ied in polymer glasses, and the analogy with jamming has been noted [21–24].

An Eyring-type near-Gaussian decrease of the single-particle relaxation time with

stress, as discussed around equation (B.3) is revealed in simulations [[25]]. In view

of the nature of the systems that we studied experimentally we henceforth con-

sider the athermal limit of frictionless repulsive particles only. Effects of particle

friction and attraction will change the local dynamics and bulk rheology and have

been studied e.g. in [26, 27]. With the expression (B.3) a deep connection is

again assumed between the dynamics near equilibrium and far in the nonlinear

regime. It is worthwhile noting that a similar expression was introduced to explain

strain-rate/frequency superposition in the rheology of soft materials [28].

B.1.2 The steady-state

The steady-state stagnant fraction s, and hence the viscosity (B.1), follows as a

function of σ or γ̇ by putting the left-hand side of (B.2) equal to zero, which gives

the rate balance s/τR = (1 − s)/τA; either of these terms may now be taken as

the rate 1/τhet with which the heterogeneity pattern fluctuates. So we get as the

steady-state condition for s and η:

s[(τa/τb)f(σ/σy) + τaγ̇] = (1− s/sc)n = (ηa/η)n/m (B.4)
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Solving this set of equations we can derive the flow curve of σ versus γ̇, or equiva-

lently the viscosity η versus σ, and simultaneously have insight in the underlying

microscopic heterogeneity through the instantaneous stagnant fraction s = s(σ).

The mathematics is worked out in [29]. In the solution four different regimes of

flow are recognized: (I) Newtonian flow at low rate in absence of a yield stress,

so for subcritical concentrations; (II) a stress plateau ending in the yield stress at

vanishing rate, so for supercritical concentrations; (III) power-law shear-thinning

flow that makes the distinction between the two low-rate regimes (I) and (II) van-

ish at rates above 1/τb; and (IV) a second Newtonian regime above the very high

relaxation rate 1/τa, for both concentration domains. The regimes I-III are easily

identified as those seen in the experimental data of Figs. 7.1-7.4. The regime IV

may well be inaccessible experimentally for many systems, but is predicted by our

model; it will not be discussed here further. For the regimes I-III the model pre-

dictions coincide with the empirical Herschel-Bulkley and Cross equations (1) and

(3) when we make the identifications ηN = ηa(τb/τa)
m/n, K = ηN/C = ηa/τ

m/n
a ,

β = δ = 1−m/n = 1/p.

B.1.3 Recovering the scaling ansatz

The model describes the different regimes around the solid-fluid transition in a

unified manner. It focuses on the dependence on flow rate γ̇ and, via the stress-

or rate-dependent order parameter s, on the relation with the heterogeneity in

the microscopic kinetics; in particular the power laws involving the exponents

m and n relate to diverging microscopic timescales. So far, the mathematical

solution makes no connection with the dependence on the concentration φ or

with the empirical exponents Γ, ∆, M = Γ − ∆. This connection is now easily

made by employing the assumed relation between the microscopic physics of the

quasistatic and nonlinear regimes; the equations (4) and (B.1) for η , valid in

these two regimes respectively, both express the dependence of a fluid viscosity

on solids content, so the exponents may be identified: M = m. From the result

∆/Γ = β = 1 −m/n we then immediately get Γ = n, ∆ = n −m. Having thus

found the macroscopic exponents in terms of the microscopic ones we can also

incorporate the φ-dependence by equating the macroscopic crossover rate (7.7)

to 1/τb, which gives τb = (η0/σ0)|∆φ|−n. Inserting this into the expression just

found for ηN we recover the Krieger-Dougherty result (4), with the asymptotic

high-rate viscosity ηa now also related to the yield stress prefactor σ0 and to the
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solvent viscosity ηsol = η0/φ
M
c , i.e. to the parameters of the linear response:

ηa = η0(τaσ0/η0)m/n. The equation (2) for the dependence of the yield stress on φ

is now automatically implied, since it was used to derive (B.2) and hence τb; the

prefactor σ0 in this equation relates to the elastic deformation, which is discussed

in chapter 8 for emulsions. In summary, with all these identifications we have

recovered the full Scaling Ansatz (7.6) from the microscopic model.

B.1.4 Heterogeneous dynamics around the critical transi-

tion

The development of the heterogeneous dynamics as a function of stress and con-

centration σ and φ is recovered from the model by using the relation (B.4) of the

microscopic order parameter s with the viscosity η = η(σ, φ). In particular it gives

in the low-rate Newtonian regime, and hence also at the crossover (co), a linear

scaling of |∆s| with |∆φ|:

|∆s/sc| = |∆sco/sc| = (η0/σ0τa)
−1/n|∆φ| (B.5)

This shows that our two-state model predicts even in the low-rate Newtonian

regime a finite and increasing heterogeneity on approach of φc . In reality this dis-

crete heterogeneity should be interpreted as a strong broadening of the continuous

mobility distribution. Similarly the heterogeneity lengthscale ξ and timescale τhet

follow from the solution of η(σ, φ) by using (B.1). In particular at the critical

concentration, and by extension also in the regime of critical shear thinning, they

are found to diverge in a power-law fashion for vanishing stress or rate:

ξ/ξa = [τhet/τa]
ν/n = [ηa/τaσ]ν/(n−m) = (τaγ̇)−ν/n (φ = φc) (B.6)

We will come back to this result later. A more extensive discussion of near-critical

heterogeneous dynamics and the nature of the critical transition is given in [29].

B.1.5 Origin of the heterogeneous dynamics

Based on evidence from experiments and simulations we have so far assumed that

there are two diverging microscopic timescales, τη, for the single-particle mobility

and τhet � τη for the lifetime of the heterogeneous mobility pattern, the latter
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associated with a diverging correlation length ξ. Their dependence on the distance

|∆s| from criticality is given in our model by the power laws in B.1, with critical

exponents m, n > m and ν, respectively. However, the origin of the growing

heterogeneity in the dynamics upon approach of the critical point s = sc has not

yet been discussed here. Fundamental aspects of this heterogeneous dynamics

are still a subject of active research in the literature (see e.g. [30–33], [34, 35]),

both for glasses and jammed systems, and a detailed explanation is far beyond

the scope of the present paper. For glasses at rest extensive simulations have been

made from which both timescales could be recovered by analyzing the four-point

dynamic correlation [36–39]. These simulations not only show the growing length-

and timescales, but also their power-law interdependence.

Here we limit ourselves to a rather heuristic reasoning to understand the origin of

the heterogeneity timescale and the associated exponent n > m. As is classically

done for glasses [40] we consider a collectively rearranging region (CRR) of N

particles and assume that they share one collective free volume v, of the order

of a single-particle volume, to make rearrangements possible. We define a time τ

such that all N particles will on average each have moved to a neighbor position.

Associated with this, each particle will have experienced an individual free-volume

change δv. For the statistics of this free-volume redistribution we now invoke

a simple argument that is a variation on Mott’s argument to explain creep by

dislocation motion in metals [41] (see also ref.s [42]; Mott actually considers stress

redistribution rather than free-volume redistribution). The fluctuations δv will

scale as v/N and will be of either sign. If we assume them to be Gaussian, the

average over a time t = τ the CRR-summed fluctuation will vanish,〈Σδv〉, while the

average squared fluctuation will scale as 〈(Σδv)2〉 = 〈Σ(δv)2〉 ∼ N(v/N)2 ∼ 1/N .

In the critical limit of diverging N this will also vanish and within the considered

time τ nothing dramatic happens: the rearrangements will continue. However,

the squared Gaussian fluctuations keep adding up linearly with time, so after a

time τ ′ = Nτ we have 〈Σ(δv)2〉 ∼ v2. At this point the free-volume distribution

has become such that there is a finite probability of arrest, so τ ′ is the lifetime τA

of the mobile region. The rates 1/τ and 1/τ ′ refer to particles that are a priori

taken as mobile, so 1/τη = (1−s)/τ ′ and 1/τhet = (1−s)/τ ′. Accordingly we have

τhet = Nτη. This argument shows that the large-scale fluctuating heterogeneity is a

natural consequence of local fluctuations in the free volume and that in the critical

limit in particular the ratio τhet/τηdiverges, whence n > m. If we characterize the

CRR by its typical size ξ and (possibly fractal) dimension d we get with B.1:
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N = (ξ/ξa)
d = |1− s/sc|−νd = |1− s/sc|m−n (B.7)

This gives us the relation n = m+dν between the critical exponents. If we use this

in (13) we see that the dependence of the size ξ of heterogeneous domains on the

applied stress takes a very simple form at the critical concentration φ = φc , and

by extension then also in the full critical shear-thinning region [29]: σξd = σaξ
d
a

constant. It expresses that the domain mass varies inversely proportional to the

applied stress, the total energy supplied to a domain thus remaining constant.

With the above exponent relation also the empirical yield stress exponent ∆ =

Γ − M = n − m takes the very simple form ∆ = dν. We have derived this

yield stress exponent without considering the elastic phase explicitly, but only

considering that the crossover should take place when σvisc ≈ σel ≈ σy. It is

intriguing to note that in [43] an exponent ∆ of the same form is proposed for the

elastic modulus near the critical gelation point of gels with entropic elasticity.

B.1.6 Power-law creep

So far, we only discussed the steady-state solution of equation B.2. However, as

discussed in the introduction, transient creeping flow under non-steady conditions

is a generic feature of simple yield-stress fluids and many other materials. In fact,

when the fluid is first exposed to a steady high stress and subsequently the stress

is lowered to below the yield stress, a stress-independent viscosity develops that

keeps increasing power-law in time [44, 45]. In terms of our model this means

that a system with φ > φc is initially brought to a value s(t) for the stagnant

fraction that is well below sc . In the rate equation B.2 the dominant last term for

particle arrest then rapidly brings s up near sc again when the stress is lowered

below σy , whereupon further arrest slows down. A time-dependent creep regime

thus develops below σy in which (1 − s/sc) is already small but the arrest rate

1/τA still dominates over the relaxation rate 1/τR. In this regime the timescales

τA and τR have strongly increased and are well-separated while the heterogeneity

lengthscale ξ has correspondingly grown large. Just as in the steady state this

heterogeneity scale will govern the dynamics and the same power laws apply, with

the time entering via the nonconserved order parameter s(t). So we get from B.2:

ds/dt ≈ (1− s)/τA ≈ (1− sc)(1− s/sc)n/τa, (|∆s� sc|) (B.8)
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This is trivially integrated, with the result that for τ � τa the distance from

criticality 1− s/sc scales as an inverse power of time. Hence all power laws in this

distance, or equivalently in ξ, also become power laws in time. In particular we

get for the viscosity of the creeping flow in the limit τ � τa the functional form

(5) proposed by Andrade [46] and verified for many different systems [44, 45, 47–

55]: η(t) ∼ (t/τa)
m/(n−1). So the Andrade creep exponent α can be expressed in

terms of our exponents m and n as α = m/(n − 1). Note that the creeping-flow

viscosity is indeed independent of the subcritical stress, due to the fact that far

from steady state the stress-dependent relaxation term in the rate equation B.2

could be ignored. Accordingly the exponent α differs from the linear-response

exponent 1 − β = m/n that would follow from the steady-state shear-thinning

viscosity η ∼ γ̇β−1.

B.2 Table of literature data

In Table B.1 we have collected experimental or simulated exponent values for a

broad range of systems, with similar systems grouped together to ease comparison.

In spite of the variety in all these values some observations can still be made in

addition to those already discussed in the main text for athermal overdamped

systems. The table includes additional overdamped experimental systems [1, 6,

20, 56] which are supposed to be influenced, at least in part, by thermal effects.

The exponent values from flow-curve scaling for inertial systems with Bagnold scal-

ing below φc , both obtained theoretically and by simulation [57, 58] are clearly

different from those of the overdamped systems, and turn out to be interaction-

dependent and dimension-independent. In [59] the flow-curve scaling for a sim-

ulated inertial system gave exponents somewhat different from [57, 58] but still

clearly interaction-dependent and different from ours. Note that athermal systems

with weak viscous damping may also crossover to an inertia-dominated shear-

thickening Bagnold regime very close to φc [60]. Such systems should be modeled

by particle exchange between three rather than two microscopic states. However,

extension from the present model is not straightforward since the inertial dynamics

introduces important new mechanisms beyond what is covered in the rate equation

(9) with (8) and (10).
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As is clear also from Table B.1 there are broad indications for heterogeneous

dynamics as also assumed in our model, with a diverging associated lengthscale ξ

when φc is approached from below [1, 3, 4, 6, 8, 61, 62]. Note that the definition

of ξ may vary here; in particular both two-point and four-point correlations have

been considered. Often there is evidence for a power-law divergence in |∆φ|,
with the associated exponent ν generally below unity. Interestingly a correlation-

length exponent around 0.7 is obtained both in overdamped and inertial 2D and

3D systems.

Heterogeneous dynamics is also frequently observed in liquids approaching the

thermal glass transition, with a growing correlation length and a separation of

two timescales; power laws are often assumed. However, as pointed out [15–17, 20]

both the microscopic dynamics, the critical concentration and the rheology scal-

ing are different then. Combined fits can even be made of the glass and jamming

singularities [15, 16, 19], although this may influence an accurate determination

of the separate rheological exponents. For glasses at rest (not included in the

table) power-law relations between a heterogeneity lengthscale and well-separated

microscopic timescales have been accurately established by simulations, with im-

plied exponent ratios n/m = 1.5 and n/ν = 5.4 for soft spheres [36, 37, 39] and

n/m = 1.75 for 2D colloids [38].
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Table B.1: Experimental, simulated or predicted scaling exponents from a broad range of rheological and microscopic data. In the
third column aspects are indicated in which systems essentially differ from the yield-stress fluids studied in this thesis.

Ref System

Exponents of flow-curve scaling Linear-response Exponents of microscopic time- and lengthscales

Yield

Stress

Cross-

over rate

Shear

thinning
Viscosity

Shear

Modulus

Single-

particle

mobility

Coopera-

tive

dynamics

Correlation length

∆ Γ β M B m n ν below φc above φc

This

work

Model prediction all d n−m n 1 −m/n m (n−m)/d
ζ ∼ L

at σ = σy

soft emulsion ∼ 3.2µm

d = 3

2.13 3.84 0.55 1.71 2.1
(data from [63] )

rigid emulsion 2.04 3.80 0.54

foam (data from [64]) 2.21 3.75 0.57

Carbopol gel 0.48/0.55∗

[65] NiPa ∼ 1µm

d = 3

2.1 4.1 0.48

[62] overdamped simulations

harmonic interaction

3.3 0.73

[66] 0.64 m/n = 0.27, ν/n = 0.23

[59]
overdamped simulations

unspecified interaction
1.7

[56] NiPa ∼ 0.6− 1.0µm

d = 3

NCRR ∼ τ0.31η

[6] NiPa ∼ 0.6− 0.8µm 0.5

[20] NiPa ∼ 0.6µm 2.6 5.0-5.6 0.52-0.46 1.0

[1] NiPa ∼ 0.1µm 2.25
ζ ∼ L

at σ = 0, φ = φc

[16] range of literature data

d = 3

1.0-2.0 0.4-0.6 2.0

[19] emulsion ∼ 0.5− 1.1µm 1.2 0.82

[15]
overdamped simulations

1.2 0.4 2.0
harmonic interactions
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BRef System

Exponents of flow-curve scaling Linear-response Exponents of microscopic time- and lengthscales

Yield

Stress

Cross-

over rate

Shear

thinning
Viscosity

Shear

Modulus

Single-

particle

mobility

Coopera-

tive

dynamics

Correlation length

∆ Γ β M B m n ν below φc above φc

[7]

overdamped simulations

harmonic interaction
d = 2

1.2 1.65 0.6

[67] 1.08 0.30 ν = 0.18n at φ = φc

[8] 0.9
ξ ∼ L

at σ = σy

[9]
1.05 ξ ∼ L

at σ = σy

[68]

0.5

overdamped model

harmonic interaction
3/2 1/2 1/2

inertial model

all d

1 5/2
harmonic interactions

∆/Γ 2Γ−∆
[57] inertial model

3/2 11/4
[58] hertzian interactions

inertial simulations
d = 2 − 4 1.0 2.5 0.4 4.0

harmonic interactions

[59]

inertial simulations

d = 3

1.2 1.9
harmonic interactions

inertial simulations
1.8 2.4

hertzian interactions

[5] air-driven beads
d = 2

1.7

[4] air-fluidized beads 1.03 0.72

[61]

quasistatic simulations

d = 2,3

0.5
0.71

harmonic interactions at σ = 0

quasistatic simulations
1.0

0.71

hertzian interactions at σ = 0

136



Universal rescaling

References

[1] D. A. Sessoms, I. Bischofsberger, L. Cipelletti, and V. Trappe. Multiple

dynamic regimes in concentrated microgel systems. Trans. Roy. Soc. A,

367:5013, 2009.

[2] S. Maccarone, G. Brambilla, O. Pravaz, A. Duri, M. Ciccotti, J.-M. Fro-

mental, E. Pashkovski, A. Lips, D. Sessoms, V. Trappe, and L. Cipelletti.

Ultra-long range correlations of the dynamics of jammed soft matter. Soft

Matter, 6:5514, 2010.

[3] A. S. Keys, A. R. Abate, S. C. Glotzer, and D. J. Durian. Measurement of

growing dynamical length scales and prediction of the jamming transition in

a granular material. Nat. Phys., 3:260, 2007.

[4] A. R. Abate and D. J. Durian. Topological persistence and dynamical het-

erogeneities near jamming. Phys. Rev. E, 76:021306, 2007.

[5] F. Lechenault, O. Dauchot, G. Biroli, and J. P. Bouchaud. Critical scaling

and heterogeneous superdiffusion across the jamming/rigidity transition of a

granular glass. EPL, 83:46003, 2008.

[6] Y. Rahmani, K. van der Vaart, B. van Dam, Z. Hu, V. Chikkadi, and P. Schall.

Dynamic heterogeneity in hard and soft sphere colloidal glasses. Soft Matter,

8:4264, 2012.

[7] P. Olsson and S. Teitel. Critical scaling of shear viscosity at the jamming

transition. Phys. Rev. Lett., 99:178001, 2007.

[8] C. Heussinger, L. Berthier, and J.-L. Barrat. EPL, 90:20005, 2010.

[9] C. Heussinger and J.-L Chaudhuri, P. and. Barrat. Fluctuations and corre-

lations during the shear flow of elastic particles near the jamming transition.

Soft Matter, 6:3050, 2010.

[10] M. Wyart, S. R. Nagel, and T. A. Witten. Geometric origin of excess low-

frequency vibrational modes in weakly connected amorphous solids. Europhys.

Lett., 72:486, 2005.

[11] W. G. Ellenbroek, E. Somfai, M. van Hecke, and W. van Saarloos. Critical

scaling in linear response of frictionless granular packings near jamming. Phys.

Rev. Lett., 97:258001, 2006.

137



Appendix B

[12] C. Heussinger and J.-L. Barrat. Jamming transition as probed by quasistatic

shear flow. Phys. Rev. Lett., 102:218303, 2009.

[13] K. Martens, L. Bocquet, and J.-L. Barrat. Connecting diffusion and dynami-

cal heterogeneities in actively deformed amorphous systems. Phys. Rev. Lett.,

106:156001, 2011.

[14] C. P. Goodrich, W. G. Ellenbroek, and A. J. Liu. Stability of jammed packings

i: the rigidity length scale. Soft Matter, 9:10993, 2013.

[15] A. Ikeda, L. Berthier, and P. Sollich. Unified study of glass and jamming

rheology in soft particle systems. Phys. Rev. Lett., 109:018301, 2012.

[16] A. Ikeda, L. Berthier, and P. Sollich. Disentangling glass and jamming physics

in the rheology of soft materials. Soft Matter, 9:7669, 2013.

[17] P. Olsson and S. Teitel. Athermal jamming versus thermalized glassiness in

sheared frictionless particles. Phys. Rev. E., 88:010301(R), 2013.

[18] H. Eyring. Viscosity, plasticity, and diffusion as examples of absolute reaction

rates. J. Chem. Phys., 4:283, 1936.

[19] F. Scheffold, F. Cardinaux, and T. G. Mason. Linear and nonlinear rheology of

dense emulsions across the glass and the jamming regimes. J. Phys. Condens.

Matter, 25:502101, 2013.

[20] A. Basu, Y. Xu, T. Still, P. E. Arriata, Z. Zhang, K. N. Nordstrom, J. M.

Rieser, J. P. Gollub, D. J. Durian, and A. G. Yodh. Rheology of soft col-

loids across the onset of rigidity: scaling behavior, thermal, and non-thermal

responses. Soft Matter, 10:3027, 2014.

[21] R. A. Riggleman, H.-N. Lee, M. D. Ediger, and J. J. de Pablo. Free volume and

finite-size effects in a polymer glass under stress. Phys. Rev. Lett., 99:215501,

2007.

[22] H.-N. Lee, K. Paeng, S. F. Swallen, and M. D. Ediger. Direct measurement

of molecular mobility in actively deformed polymer glasses. Science, 323:231,

2009.

[23] R. A. Riggleman, H.-N. Lee, M. D. Ediger, and J. J. de Pablo. Heterogeneous

dynamics during deformation of a polymer glass. Soft Matter, 6:287, 2010.

138



Universal rescaling

[24] H.-N. Lee and M. D. Ediger. Mechanical rejuvenation in poly (methyl

methacrylate) glasses? molecular mobility after deformation. Macro-

molecules, 43:5863, 2010.

[25] R. A. Riggleman, K. S. Schweizer, and J. J. de Pablo. Nonlinear creep in a

polymer glass. Macromolecules, 41:4969, 2008.

[26] M. Grob, C. Heussinger, and A. Zippelius. Jamming of frictional particles: A

nonequilibrium first-order phase transition. Phys. Rev. E, 89:050201, 2014.

[27] E. Irani, P. Chaudhuri, and C. Heussinger. Impact of attractive interactions

on the rheology of dense athermal particles. Phys. Rev. Lett., 112:188303,

2008.

[28] H. M. Wyss, K. Miyazaki, J. Mattsson, Z. Hu, D. R. Reichman, and D. A.

Weitz. Strain-rate frequency superposition: A rheological probe of structural

relaxation in soft materials. Phys. Rev. Lett., 98:238303, 2007.

[29] M. Dinkgreve, J. Paredes, M. A. J. Michels, and D. Bonn. Universal rescaling

of flow curves for yield-stress fluids close to jamming. Physical Review E,

92(1):012305, 2015.

[30] L. Berthier, G. Biroli, J.-P. Bouchaud, L. Cipelletti, and W. van Saarloos. Dy-

namical Heterogeneities in Glasses, Colloids, and Granular Materials. Oxford

University Press, 2011.

[31] G. Biroli, J.-P. Bouchaud, K. Miyazaki, and D. R. Reichman. Inhomogeneous

mode-coupling theory and growing dynamic length in supercooled liquids.

Phys. Rev. Lett., 97:195701, 2006.

[32] D. Hajnal and M. Fuchs. Flow curves of colloidal dispersions close to the

glass transition. Eur. Phys. J. E, 28:125, 2009.

[33] E. Flenner and G. Szamel. Dynamic heterogeneity in a glass forming fluid:

Susceptibility, structure factor, and correlation length. Phys. Rev. Lett.,

105:217801, 2010.

[34] C. Fusco, T. Albaret, and A. Tanguy. Eur. Phys. J. E, 37:43, 2014.

[35] J. Lin, E. Lerner, A. Rosso, and M. Wyart. Scaling description of the yielding

transition in soft amorphous solids at zero temperature. Proc. Natl. Acad. Sci.

U.S.A., 111:14382, 2014.

139



Appendix B

[36] K. Kim and S. Saito. Multiple time scales hidden in heterogeneous dynamics

of glass-forming liquids. Phys. Rev. E, 79:060501(R), 2009.

[37] K. Kim and S. Saito. Multi-time density correlation functions in glass-forming

liquids: Probing dynamical heterogeneity and its lifetime. J. Chem. Phys.,

133:044511, 2010.

[38] H. Tanaka, T. Kawasaki, H. Shintani, and K. Watanabe. Critical-like be-

haviour of glass-forming liquids. Nat. Mater., 9:324, 2010.

[39] K. Kim and S. Saito. Multiple length and time scales of dynamic hetero-

geneities in model glass-forming liquids: A systematic analysis of multi-point

and multi-time correlations. J. Chem. Phys., 138:12A506, 2013.

[40] G. Adam and J. H. Gibbs. On the temperature dependence of cooperative

relaxation properties in glass-forming liquids. J. Chem. Phys., 43:139, 1965.

[41] N. F. Mott. Lxxviii. a theory of work-hardening of metals ii: Flow without

slip-lines, recovery and creep. Philos. Mag., 44:742, 1953.

[42] F. Louchet and P. Duval. Andrade creep revisited. Int. J. Mater. Res.,

100:1433, 2009.

[43] X. Xing and P. M. Mukhopadhyay, S. andGoldbart. Scaling of entropic shear

rigidity. Phys. Rev. Lett., 93:225701, 2004.

[44] P. C. F. Møller, A. Fall, and D. Bonn. Origin of apparent viscosity in yield

stress fluids below yielding. EPL (Europhysics Letters), 87(3):38004, 2009.

[45] P. Moller, A. Fall, V. Chikkadi, D. Derks, and D. Bonn. An attempt to

categorize yield stress fluid behaviour. Philosophical Transactions of the

Royal Society of London A: Mathematical, Physical and Engineering Sciences,

367(1909):5139–5155, 2009.

[46] E. N. C. Andrade. On the viscous flow in metals, and allied phenomena.

Proceedings of the Royal Society of London. Series A, Containing Papers of

a Mathematical and Physical Character, pages 1–12, 1910.

[47] M. Miguel, A. Vespignani, M. Zaiser, and S. Zapperi. Dislocation jamming

and andrade creep. Physical review letters, 89(16):165501, 2002.

140



Universal rescaling

[48] M. Miguel, P. Moretti, M. Zaiser, and S. Zapperi. Statistical dynamics of dis-

locations in simple models of plastic deformation: Phase transitions and re-

lated phenomena. Materials Science and Engineering: A, 400:191–198, 2005.

[49] M. Miguel, L. Laurson, and M. J. Alava. Material yielding and irreversible

deformation mediated by dislocation motion. The European Physical Journal

B-Condensed Matter and Complex Systems, 64(3):443–450, 2008.

[50] L. Laurson, M. Miguel, and M. J. Alava. Dynamical correlations near dislo-

cation jamming. Physical review letters, 105(1):015501, 2010.

[51] M. Siebenbürger, M. Ballauff, and T. Voigtmann. Creep in colloidal glasses.

Physical review letters, 108(25):255701, 2012.

[52] G. B. McKenna. Mechanical rejuvenation in polymer glasses: Fact or fallacy?

Journal of Physics: Condensed Matter, 15(11):S737, 2003.

[53] J. W. Dudley, M. T. Myers, R. D. Shew, M. M. Arasteh, et al. Measur-

ing compaction and compressibilities in unconsolidated reservoir materials by

time-scaling creep. SPE Reservoir Evaluation & Engineering, 1(05):430–437,

1998.

[54] J. Rosti, J. Koivisto, L. Laurson, and M. J. Alava. Fluctuations and scaling

in creep deformation. Physical review letters, 105(10):100601, 2010.

[55] C. D. Agosti, K. M. Bell, D. J. Plazek, J. Larson, J. D. Kang, L. G. Gilbertson,

and P. Smolinski. Analysis of power law models for the creep of nucleus

pulposus tissue. Biorheology, 47:143, 2010.

[56] K. N. Nordstrom, J. P. Gollub, and D. J. Durian. Dynamical heterogeneity

in soft-particle suspensions under shear. Phys. Rev. E, 84:021403, 2011.

[57] M. Otsuki and H. Hayakawa. Universal scaling for the jamming transition.

Prog. Theor. Phys., 121:647, 2009.

[58] M. Otsuki and H. Hayakawa. Critical behaviors of sheared frictionless granular

materials near the jamming transition. Phys. Rev. E., 80:011308, 2009.

[59] T. Hatano. Scaling properties of granular rheology near the jamming transi-

tion. Phys. Soc. Jpn., 77:123002, 2008.

141



Appendix B
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Summary

Traffic jams are a common phenomenon on highways; when there are too many

cars on the road the traffic gets stuck. A similar jamming phenomenon also occurs

in yield-stress fluids that consist of a dispersion of a material in a liquid, such as

suspensions of particles or polymers, foams or emulsions. At high concentrations,

these materials behave like solids (like in traffic jams there is no flow), and they

only start to flow when enough stress is applied. For example, toothpaste behaves

like a solid at rest but it starts to flow when you squeeze it out of the tube. This

threshold stress that is needed to initiate flow is called the yield stress, hence the

name yield-stress material. It is important to understand these kinds of properties

and the flow behavior (rheology) of these materials since they are widely applied

in the cosmetic, oil and food industry. We seek to understand the transition

from mechanically solid-like to fluid-like behavior on a fundamental level. The

associated jamming transition between solid and liquid ”states” has similarities to

classical phase transitions like those between solid, liquid, gas and plasma phases.

However it is not completely clear how general the jamming description is, and to

what extent the mechanical behavior of jammed materials can be fully described by

considering the jamming transition to be analogous to a classical phase transition.

In this thesis we study the flow behavior (the rheology) of a variety of yield-stress

materials in the aim of describing, understanding and predicting the rheology of

jamming.

Chapter 1 gives the motivation for this research and a general introduction to

the main topics related to this thesis are explained: the jamming phase diagram,

rheology and yield-stress materials. In chapter 2 the experimental techniques

and the different materials that were used are discussed. Rheology was the main

method used to understand the flow properties of the different materials and a

variety of rheological tests is described in detail.



Summary

Since the notion of a yield-stress fluid was introduced by Bingham in 1922, these

fluids have become more and more popular. However, in the nineties Barnes

and Walters published a provocative paper entitled ”the yield stress myth?” from

which a huge discussion arose whether the yield stress really existed or that it

was just an experimental artifact. In chapter 3 we review the definition of the

yield stress and demonstrate the significance of the pre-yielding behavior through

a number of elementary measurements, showing that the yield stress is real. Sec-

ondly, in chapter 4, we compare different methods of measuring the yield stress

with conventional rheometers that have been used in the literature on a variety

of materials. Subsequently, an overview is given of the different values that are

found for the yield stress and yield strain.

In chapter 5 we investigate the stability of Laponite-stabilized Pickering emul-

sions under shear. Often, colloidal particles are used to make Pickering emulsions

that have been reported to be very stable. Commonly the stabilization is a com-

bined effect of particles adsorbing at the fluid interface and a particle network in

the continuous phase, however the contribution of each to the overall stability is

difficult to assess. To clarify the structure of the emulsion and the role of the clay

particles, we fluorescently label the clay particles by adsorbing the dye onto the

particle surfaces. This allows us to show directly by using confocal microscopy,

that the clay particles are not only located at the interface but also aggregate and

form a gel in the continuous aqueous phase. This reveals that the formation of

the emulsions with clay particles only, without surfactant, is mostly due to gel

formation of the clay particles in the continuous phase, rather than that the clay

is an emulsifier.

In chapter 6 we demonstrate experimentally that a simple yield-stress fluid, can

undergo a transition to thermally induced shear banding. The experiments suggest

that both types of behavior may be found in the same type of material, however

the presence of thermal parts in addition to athermal jamming leads to a depletion

interaction that causes an apparent shear band to appear. A set of rheological test

are done to study this transition in a Carbopol gel. Flow visualization experiments,

with fluorescently labelled Carbopol, elucidate the difference between simple and

shear banding behavior and reveal the presence of thermal particles in the system.

We therefore show that a simple yield-stress fluid can be transformed to a shear

banding yield-stress fluid by different preparation protocols.
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In chapter 7 we aim to describe, understand and predict the flow behavior (stress

vs. shear rate) of simple yield-stress fluids. The experimental flow curves of four

different athermal yield-stress fluids are studied near the jamming point. By scal-

ing with the distance to the jamming volume fraction all rheology data can be

collapsed onto master curves below and above jamming. A two-state microscopic

theory of heterogeneous dynamics is presented to rationalize the observed tran-

sition. Finally the experimental data and the microscopic theory are compared

with much of the literature data for yield-stress systems. We conclude that all our

athermal yield-stress materials can be described by one universal scaling form, in-

dependent of the mechanical properties of the system, but a discrepancy between

theory and simulations remains.

In this last chapter (chapter 8) we investigate the cross-over between thermal and

athermal yield-stress regimes, by looking at the effect of volume fraction, particles

size and the inter-particle interactions on the flow behavior. Interestingly, the flow

curves of thermal systems can be scaled onto a universal curve in a similar way as

the athermal systems, with respect to the glass transition instead of the jamming

transition. In addition, we find that all yield stress flow curves of both thermal and

athermal systems can be collapsed, using the Laplace pressure as stress scale for

athermal systems and osmotic pressure as the stress scale for the thermal systems.

In conclusion, we can predict, rather then fit, characteristic stress and rate scales

from material properties.
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Samenvatting

Files zijn een algemeen fenomeen op snelwegen; als er teveel auto’s op de weg zijn

loopt het verkeer vast. Een soortgelijk file-effect komt ook voor in yield-stress

vloeistoffen, dit zijn vloeistoffen die bestaan uit een dispersie van een materiaal

in een vloeistof, zoals suspensies van deeltjes of polymeren, emulsies of schuim.

Bij hoge concentraties gedragen deze materialen zich als een “vaste stof” (zoals in

een file zit het materiaal vast), en ze beginnen alleen te stromen als er een druk

op uitgeoefend wordt. Bijvoorbeeld, tandpasta gedraagt zich in rust als een vaste

stof, maar begint te stromen als je in de tube knijpt. De druk of afschuifspan-

ning (in het Engels ‘stress’) die nodig is om stroming te initiëren wordt de yield

stress genoemd, vandaar de naam yield-stress materiaal. Het is belangrijk om dit

soort eigenschappen en het stromings gedrag (de rheologie) van deze materialen te

begrijpen omdat yield-stress materialen een brede toepassing hebben in zowel de

cosmetische-, olie- en voedselindustrie. We proberen de overgang van mechanisch

vloeistof achtig naar vaste stof-achtig gedrag op een fundamenteel niveau te begrij-

pen. De geassocieerde jamming overgang tussen vaste stof en vloeistof toestanden

heeft vergelijkingen met klassieke faseovergangen zoals tussen vaste stof, vloeistof,

gas en plasma. Echter is het nog niet geheel duidelijk hoe algemeen de jamming

overgang is, en of deze volledig beschreven kan worden aan de hand van klassieke

faseovergangen. In dit proefschrift onderzoeken wij het stromingsgedrag (d.m.v.

rheologie metingen) van een aantal verschillende yield-stress materialen, met als

doel om de rheologie van jamming te kunnen beschrijven, begrijpen en uiteindelijk

te kunnen voorspellen.



Samenvatting

Hoofdstuk 1 geeft de motivatie voor dit onderzoek en een algemene introduc-

tie van de hoofdonderwerpen die hieraan gerelateerd zijn: de jamming fasedia-

gram, rheologie en yield-stress vloeistoffen. In hoofdstuk 2 worden de exper-

imentele technieken en gebruikte materialen besproken. Rheologie is de belan-

grijkste metho-de om het stromingseigenschappen van de verschillende materi-

alen te onderzoeken en de verschillende rheologische testen worden nauwkeurig

beschreven.

Sinds het begrip van een yield-stress vloeistof voor het eerst was gëıntroduceerd

door Bingham in 1922, zijn deze vloeistoffen steeds populairder geworden. Echter,

in de jaren negentig verscheen er een provocerend artikel van Barnes en Walters

genaamd “de yield stress mythe” waarna er een discussie ontstond of de yield stress

echt bestaat of slechts een experimenteel artefact is. In hoofdstuk 3 bespreken

we de definitie van de yield stress en demonstreren het belang van het pre-yielding

gedrag aan de hand van een aantal elementaire metingen, die laten zien dat de

yield stress echt is. In hoofdstuk 4 vergelijken we verschillende methodes en

metingen om de yield stress te meten en geven een overzicht van de verschillende

waardes van de yield stress die worden gevonden.

In hoofdstuk 5 onderzoeken we de rol van Laponiet kleideeltjes bij het stabiliseren

van geconcentreerde Pickering-emulsies. Vaak worden kleine collöıdale deeltjes ge-

bruikt om emulsies te stabiliseren en deze blijken zeer stabiel te zijn. Over het

algemeen is de stabilisatie een gecombineerd effect van geabsorbeerde deeltjes aan

het druppeloppervlak en de netwerkvorming van deeltjes in de continue vloeistof-

fase, echter de bijdrage van elk effect is moeilijk vast te stellen. Om de structuur

van de emulsies en de rol van de kleideeltjes daarin te verduidelijken, markeren we

de kleideeltjes met fluorescerende moleculen die aan de kleideeltjes hechten. Door

middel van confocale microscopie laten we zien dat de kleideeltjes niet alleen op

het oppervlak van de druppels zit maar ook aggregeren en een gel vormen in de

continue waterfase. Dit toont aan dat de formatie van emulsies gestabiliseerd met

enkel kleideeltjes, voornamelijk het gevolg is van de gel-vorming van de kleideeltjes

in plaats van dat de deeltjes als een emulgator optreden.

In hoofdstuk 6 demonstreren we met experimentele data dat een vermoedelijk

simpele yield-stress vloeistof, een transitie kan ondergaan tot thermisch gëınduceerde

shear banding. De experimenten laten zien dat beide soorten gedrag gevonden kun-

nen worden in hetzelfde materiaal, echter de aanwezigheid van thermische deeltjes

in aanvulling op de athermische jamming leidt tot een depletie interactie die een
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schijnbare shear banding laat zien. We hebben een serie aan rheologiemetingen

gedaan om deze transitie in een Carbopol-gel te onderzoeken. Stromingsvisuali-

satie metingen met gelabelde Carbopol onthullen de aanwezigheid van thermische

deeltjes in het systeem. We laten daarmee zien dat het stromingsgedrag van een

Carbopol gel floeistof afhangt van het voorbereidingsprotocol.

In hoofdstuk 7 streven we er naar om het stromingsgedrag van simpele yield-

stress vloeistoffen te beschrijven, te begrijpen en te voorspellen. We onderzoeken

de stromingscurves (afschuifspanning vs. afschijfsnelheid) van vier verschillende

athermische yield-stress vloeistoffen. Door de rheologiedata te schalen met de

afstand tot de jammingconcentratie vallen alle stromingscurves over elkaar op twee

master curves; onder en boven de jamming concentratie. We presenteren een twee-

toestanden microscopische theorie voor heterogene dynamica om de geobserveerde

transitie te rationaliseren. Tot slot vergelijken we het theoretische model met de

experimentele data en een groot deel van de literatuur over yield-stress vloeistoffen.

We concluderen dat onze athermische yield-stress materialen beschreven kunnen

worden door een universele schalingsform, die onafhankelijk is van de mechanische

interacties van de systemen.

In het laatste hoofdstuk (hoofdstuk 8), onderzoeken we de crossover van ther-

mische en athermische regimes door te kijken naar het effect van de volumefractie,

deeltjes grootte en de interacties tussen deeltjes op het stromingsgedrag. Inter-

essant genoeg, kunnen de stromingscurves van thermische systemen op eenzelfde

manier geschaald worden als de athermische systemen, met betrekking tot de

glasovergang in plaats van de jammingovergang. Alle yield stress stromingscurves

kunnen voor zowel thermisch als athermisch worden geschaald, met de Laplace

druk als stress schaal voor de athermische systemen en de osmotische druk als

stress schaal voor de thermische. Ten slotte, zijn we in staat om te voorspellen

aan de hand van de materiaaleigenschappen wat de karakteristieke afschuifspan-

ning en afschuifsnelheid schalen zijn.
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