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Abstract In active perception tasks, an agent aims to select
sensory actions that reduce its uncertainty about one or more
hidden variables. For example, a mobile robot takes sensory
actions to efficiently navigate in a new environment. While
partially observable Markov decision processes (POMDPs)
provide a natural model for such problems, reward functions
that directly penalize uncertainty in the agent’s belief can
remove the piecewise-linear and convex (PWLC) property
of the value function required by most POMDP planners.
Furthermore, as the number of sensors available to the agent
grows, the computational cost of POMDP planning grows
exponentially with it, making POMDP planning infeasible
with traditional methods. In this article, we address a twofold
challenge of modeling and planning for active perception
tasks. We analyze ρPOMDP and POMDP-IR, two frame-
works for modeling active perception tasks, that restore the
PWLC property of the value function. We show the mathe-
matical equivalence of these two frameworks by showing
that given a ρPOMDP along with a policy, they can be
reduced to a POMDP-IR and an equivalent policy (and
vice-versa). We prove that the value function for the given
ρPOMDP (and the given policy) and the reduced POMDP-IR
(and the reduced policy) is the same. To efficiently plan for
active perception tasks, we identify and exploit the indepen-
dence properties of POMDP-IR to reduce the computational
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cost of solving POMDP-IR (and ρPOMDP). We propose
greedy point-based value iteration (PBVI), a new POMDP
planning method that uses greedy maximization to greatly
improve scalability in the action space of an active per-
ception POMDP. Furthermore, we show that, under certain
conditions, including submodularity, the value function com-
puted using greedy PBVI is guaranteed to have bounded error
with respect to the optimal value function. We establish the
conditions under which the value function of an active per-
ception POMDP is guaranteed to be submodular. Finally,
we present a detailed empirical analysis on a dataset col-
lected from a multi-camera tracking system employed in a
shopping mall. Our method achieves similar performance
to existing methods but at a fraction of the computational
cost leading to better scalability for solving active percep-
tion tasks.

Keywords Sensor selection · Long-term planning · Mobile
sensors · Submodularity · POMDP

1 Introduction

Multi-sensor systems are becoming increasingly prevalent
in a wide-range of settings. For example, multi-camera sys-
tems are now routinely used for security, surveillance and
tracking (Kreucher et al. 2005; Natarajan et al. 2012; Spaan
et al. 2015). A key challenge in the design of these sys-
tems is the efficient allocation of scarce resources such as
the bandwidth required to communicate the collected data
to a central server, the CPU cycles required to process that
data, and the energy costs of the entire system (Kreucher
et al. 2005; Williams et al. 2007; Spaan and Lima 2009). For
example, state of the art human activity recognition algo-
rithms require high resolution video streams coupled with
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significant computational resources. When a human opera-
tor must monitor many camera streams, displaying only a
small number of them can reduce the operator’s cognitive
load. IP-cameras connected directly to a local area network
need to share the available bandwidth. Such constraints gives
rise to the dynamic sensor selection problem where an agent
at each time step must select K out of the N available sen-
sors to allocate these resources to, where K is the maximum
number of sensors allowed given the resource constraints
(Satsangi et al. 2015).1

For example, consider the surveillance task, in which a
mobile robot aims to minimize its future uncertainty about
the state of the environment but can use only K of its N
sensors at each time step. Surveillance is an example of an
active perception task, where an agent takes actions to reduce
uncertainty about oneormorehiddenvariables,while reason-
ing about various resource constraints (Bajcsy 1988). When
the state of the environment is static, a myopic approach that
always selects actions that maximize the immediate expected
reduction in uncertainty is typically sufficient. However,
when the state changes over time, a non-myopic approach
that reasons about the long term effects of action selection
performed at each time step can be better. For example, in
the surveillance task, as the robot moves and the state of the
environment changes, it becomes essential to reason about
the long termconsequences of the robot’s actions tominimize
the future uncertainty.

A natural decision-theoreticmodel for such an approach is
the partially observable Markov decision process (POMDP)
(Sondik 1971; Kaelbling et al. 1998; Kochenderfer 2015).
POMDPs provide a comprehensive and powerful frame-
work for planning under uncertainty. They can model the
dynamic and partially observable state and express the goals
of the systems in terms of rewards associated with state-
action pairs. This model of the world can be used to compute
closed-loop, long term policies that can help the agent to
decide what actions to take given a belief about the state
of the environment (Burgard et al. 1997; Kurniawati et al.
2011).

In a typical POMDP reducing uncertainty about the state
is only a means to an end. For example, a robot whose goal
is to reach a particular location may take sensing actions
that reduce its uncertainty about its current location because
doing so helps it determine what future actions will bring
it closer to its goal. By contrast, in active perception prob-
lems reducing uncertainty is an end in itself. For example,
in the surveillance task, the system’s goal is typically to

1 This article extends the research already presented by Satsangi et al.
(2015) at AAAI 2015. In this article, we present additional theoretical
results on equivalence of POMDP-IR and ρPOMDP, a new technique
that exploits the independence properties of POMDP-IR to solve it more
efficiently, and we present a detailed empirical analysis of belief-based
rewards for POMDPs in active perception tasks.

ascertain the state of its environment, not use that knowl-
edge to achieve a goal. While perception is arguably always
performed to aid decision-making, in an active perception
problem that decision is made by another agent such as a
human, that is not modeled as a part of the POMDP. For
example, in the surveillance task, the robot might be able
to detect a suspicious activity but only the human users
of the system may decide how to react to such an activ-
ity.

One way to formulate uncertainty reduction as an end in
itself is to define a reward function whose additive inverse
is some measure of the agent’s uncertainty about the hidden
state, e.g., the entropy of its belief. However this formula-
tion leads to a reward function that conditions on the belief,
rather than the state and the resulting value function is not
PWLC, whichmakesmany traditional POMDP solvers inap-
plicable. There exist online planning methods (Silver and
Veness 2010; Bonet and Geffner 2009) that generate poli-
cies on the fly that do not require the PWLC property of
the value function. However, many of these methods require
multiple ‘hypothetical’ belief updates to compute the opti-
mal policy, whichmakes them unsuitable for sensor selection
where the optimal policy must be computed in a fraction of
a second. There exist other online planning methods that do
not require hypothetical belief updates (Silver and Veness
2010), but since we are dealing with belief based rewards,
they cannot be directly applied here. Here, we address the
case of offline planning where the policy is computed before
the execution of the task.

Thus, to efficiently solve active perception problems, we
must (a) model the problem with minimizing uncertainty as
the objective while maintaining a PWLC value function and
(b) use this model to solve the POMDP efficiently. Recently,
two frameworks have been proposed, ρPOMDP (Araya-
López et al. 2010) and POMDP with Information Reward
(POMDP-IR) (Spaan et al. 2015) to efficiently model active
perception tasks, such that the PWLC property of the value
function is maintained. The idea behind ρPOMDP is to find a
PWLC approximation to the “true” continuous belief-based
reward function, and then solve it with the traditional solvers.
POMDP-IR, on the other hand, allows the agent to make
predictions about the hidden state and the agent is rewarded
for accurate predictions via a state-based reward function.
There is no research that examines the relationship between
these two frameworks, their pros and cons, or their efficacy
in realistic tasks, thus it is not clear how to choose between
these two frameworks to model the active perception prob-
lems.

In this article, we address the problem of efficient mod-
eling and planning for active perception tasks. First, we
study the relationship between ρPOMDP and POMDP-
IR. Specifically, we establish equivalence between them by
showing that any ρPOMDP can be reduced to a POMDP-
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IR (and vice-versa) that preserves the value function for
equivalent policies. Having established the theoretical rela-
tionship between ρPOMDP and POMDP-IR, we model
the surveillance task as a POMDP-IR and propose a new
method to solve it efficiently by exploiting a simple insight
that lets us decompose the maximization over prediction
actions and normal actions while computing the value func-
tion.

Although POMDPs are computationally difficult to solve,
recent methods (Littman 1996; Hauskrecht 2000; Pineau
et al. 2006; Spaan and Vlassis 2005; Poupart 2005; Ji et al.
2007; Kurniawati et al. 2008; Shani et al. 2013) have proved
successful in solving POMDPs with large state spaces. Solv-
ing active perception POMDPs pose a different challenge:
as the number of sensors grows, the size of the action space(N
K

)
grows exponentially with it. Current POMDP solvers fail

to address the scalability in the action space of a POMDP.
We propose a new point-based planning method that scales
much better in the number of sensors for such POMDPs.
The main idea is to replace the maximization operator in
the Bellman optimality equation with greedy maximization
in which a subset of sensors is constructed iteratively by
adding the sensor that gives the largest marginal increase in
value.

We present theoretical results bounding the error in the
value functions computed by this method. We prove that,
under certain conditions including submodularity, the value
function computed using POMDP backups based on greedy
maximization has bounded error. We achieve this by extend-
ing the existing results (Nemhauser et al. 1978) for the
greedy algorithm, which are valid only for a single time
step, to a full sequential decision making setting where
the greedy operator is employed multiple times over mul-
tiple time steps. In addition, we show that the conditions
required for such a guarantee to hold are met, or approx-
imately met, if the reward is defined using negative belief
entropy.

Finally, we present a detailed empirical analysis on a real-
life dataset from a multi-camera tracking system installed
in a shopping mall. We identify and study the critical
factors relevant to the performance and behavior of the
agent in active perception tasks. We show that our pro-
posed planner outperforms a myopic baseline and nearly
matches the performance of existing point-based meth-
ods while incurring only a fraction of the computational
cost, leading to much better scalability in the number of
cameras.

2 Related work

Sensor selection as an active perception task has been stud-
ied in many contexts. Most work focus on either open-loop

or myopic solutions, e.g., Kreucher et al. (2005), Spaan and
Lima (2009), Williams et al. (2007), Joshi and Boyd (2009).
Kreucher et al. (2005) proposes a Monte-Carlo approach
that mainly focuses on a myopic solution. Williams et al.
(2007) and Joshi and Boyd (2009) developed planning meth-
ods that can provide long-term but open-loop policies. By
contrast, a POMDP-based approach enables a closed-loop,
non-myopic approach that can lead to a better performance
when the underlying state of the world changes over time.
Spaan (2008), Spaan and Lima (2009), Spaan et al. (2010)
and Natarajan et al. (2012) also consider a POMDP-based
approach to active perception and cooperative active per-
ception. However, they consider an objective function that
conditions on the state and not on the belief, as the belief-
dependent rewards in POMDP break the PWLC property of
the value function. They use point-basedmethods (Spaan and
Vlassis 2005) for solving the POMDPs. While recent point-
basedmethods (Shani et al. 2013) for solving POMDPs scale
reasonably in the state space of the POMDPs, they do not
address the scalability in the action and observation space of
a POMDP.

In recent years, applying greedymaximization to submod-
ular functions has become a popular and effective approach
to sensor placement/selection (Krause and Guestrin 2005,
2007; Kumar and Zilberstein 2009; Satsangi et al. 2016).
However, such work focuses on myopic or fully observable
settings and thus does not enable the long-term planning
required to cope with the dynamic state in a POMDP.

Adaptive submodularity (Golovin and Krause 2011) is a
recently developed extension that addresses these limitations
by allowing action selection to condition on previous obser-
vations. However, it assumes a static state and thus cannot
model the dynamics of a POMDP across timesteps. There-
fore, in a POMDP, adaptive submodularity is only applicable
within a timestep, during which state does not change but
the agent can sequentially add sensors to a set. In princi-
ple, adaptive submodularity could enable this intra-timestep
sequential process to be adaptive, i.e., the choice of later sen-
sors could condition on the observations generated by earlier
sensors. However, this is not possible in our setting because
(a) we assume that, due to computational costs, all sensors
must be selected simultaneously; (b) information gain is not
known to be adaptive submodular (Chen et al. 2015). Con-
sequently, our analysis considers only classic, non-adaptive
submodularity.

To our knowledge, our work is the first to establish the
sufficient conditions for the submodularity of POMDP value
functions for active perception POMDPs and thus leverage
greedy maximization to scalably compute bounded approxi-
mate policies for dynamic sensor selection modeled as a full
POMDP.
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3 Background

In this section, we provide background on POMDPs, active
perception POMDPs and solution methods for POMDPs.

3.1 Partially observable Markov decision processes

POMDPs provide a decision-theoretic framework for mod-
eling partial observability and dynamic environments. For-
mally, a POMDP is defined by a tuple 〈S, A,Ω, T, O, R, b0,
h〉. At each time step, the environment is in a state s ∈ S,
the agent takes an action a ∈ A and receives a reward
whose expected value is R(s, a), and the system transitions
to a new state s′ ∈ S according to the transition func-
tion T (s, a, s′) = Pr(s′|s, a). Then, the agent receives an
observation z ∈ Ω according to the observation function
O(s′, a, z) = Pr(z|s′, a). Starting from an initial belief b0,
the agent maintains a belief b(s) about the state which is
a probability distribution over all the possible states. The
number of time steps for which the decision process lasts,
i.e., the horizon is denoted by h. If the agent takes an action
a in belief b and gets an observation z, then then the updated
belief ba,z(s) can be computed using Bayes rule. A policy π

specifies how the agent acts in each belief. Given b(s) and
R(s, a), one can compute a belief-based reward, ρ(b, a) as:

ρ(b, a) =
∑

s

b(s)R(s, a). (1)

The t-step value function of a policy V π
t is defined as

the expected future discounted reward the agent can gather
by following π for next t steps. V π

t can be characterized
recursively using the Bellman equation:

V π
t (b) �

[
ρ(b, aπ ) +

∑

z∈Ω

Pr(z|aπ , b)V π
t−1(b

aπ ,z)

]
, (2)

where aπ = π(b) and V π
0 (b) = 0. The action-value function

Qπ
t (b, a) is the value of taking action a and following π

thereafter:

Qπ
t (b, a) � ρ(b, a) +

∑

z∈Ω

Pr(z|a, b)V π
t−1(b

a,z). (3)

The policy thatmaximizesV π
t is called the optimal policy π∗

and the corresponding value function is called the optimal
value function V ∗

t . The optimal value function V ∗
t (b) can be

characterized recursively as:

V ∗
t (b) = max

a

[
ρ(b, a) +

∑

z∈Ω

Pr(z|a, b)V ∗
t−1(b

a,z)

]
.

(4)
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Fig. 1 Illustration of the PWLC property of the value function. The
value function is the upper surface indicated by the solid lines

We can also define Bellman optimality operator B∗:

(B∗Vt−1)(b) = max
a

[

ρ(b, a)+
∑

z∈Ω

Pr(z|a, b)Vt−1(b
z,a)

]

,

and write (4) as V ∗
t (b) = (B∗V ∗

t−1)(b).
An important consequence of these equations is that the

value function is piecewise-linear and convex (PWLC), as
shown in Fig. 1, a property exploited by most POMDP
planners. Sondik (1971) showed that a PWLC value func-
tion at any finite time step t can be expressed as a set of
vectors: Γt = {α0, α1, . . . , αm}. Each αi represents an |S|-
dimensional hyperplane defining the value function over a
bounded region of the belief space. The value of a given
belief point can be computed from the vectors as: V ∗

t (b) =
maxαi∈Γt

∑
s b(s)αi (s).

3.2 POMDP solvers

Exactmethods likeMonahan’s enumeration algorithm (Mon-
ahan 1982) computes the value function for all possible belief
points by computing the optimal �t . Point-based planners
(Pineau et al. 2006; Shani et al. 2013; Spaan and Vlassis
2005), on the other hand, avoid the expense of solving for all
belief points by computingΓt only for a set of sampled beliefs
B. Since the exact POMDP solvers (Sondik 1971; Mona-
han 1982) are intractable for all but the smallest POMDPs,
we focus on point-based methods here. Point-based methods
compute Γt using the following recursive algorithm.

At each iteration (starting from t = 1), for each action a
and observation z, an intermediate Γ

a,z
t is computed from

�t−1:

Γ
a,z
t = {

α
a,z
i : αi ∈ Γt−1

}
, (5)

Next,Γ a
t is computed only for the sampled beliefs, i.e.,Γ a

t =
{αa

b : b ∈ B}, where:

αa
b = Γ a +

∑

z∈Ω

argmax
α∈Γ

a,z
t

∑

s′
b(s′)α(s′). (6)
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Finally, the best α-vector for each b ∈ B is selected:

αb = argmax
αa
b

∑

s′
b(s′)αa

b (s
′), (7)

Γt = ∪b∈Bαb. (8)

The above algorithm at each timestep t generates
|An||Ω||Γt−1| alpha vectors in O(|S|2|A||Ω||Γt−1|) time
and then reduces them to |B|vectors inO(|S||B||A||Ω||Γt−1|)
(Pineau et al. 2006).

4 Active perception POMDP

The goal in an active perception POMDP is to reduce
uncertainty about a feature of interest that is not directly
observable. In general, the feature of interest may be only
a part of the state, e.g., if a surveillance system cares only
about people’s positions, not their velocities, or higher-level
features derived from the state. However, for simplicity, we
focus on the case where the feature of interest is just the state
s2 of the POMDP. For simplicity, we also focus on pure active
perception tasks in which the agent’s only goal is to reduce
uncertainty about the state, as opposed to hybrid tasks where
the agent may also have other goals. For such cases, hybrid
rewards (Eck and Soh 2012), which combine the advan-
tage of belief-based and state-based rewards, are appropriate.
Although not covered in this article, it is straightforward to
extend our results to hybrid tasks (Spaan et al. 2015).

Wemodel the active perception task as a POMDP inwhich
an agent must choose a subset of available sensors at each
time step. We assume that all selected sensors must be cho-
sen simultaneously, i.e. it is not possible within a timestep to
condition the choice of one sensor on the observations gen-
erated by another sensor. This corresponds to the common
setting where generating each sensor’s observation is time
consuming, e.g., in the surveillance task, because it requires
applying expensive computer vision algorithms, and thus all
the observations from the selected cameras must be gener-
ated in parallel. Formally, an active perception POMDP has
the following components:

– Actions a = 〈a1 . . . aN 〉 are vectors of N binary action
features, each of which specifies whether a given sen-
sor is selected or not. For each a, we also define its set
equivalent a = {i : ai = 1}, i.e., the set of indices of the
selected sensors. Due to the resource constraints, the set
of all actions A = {a : |a| ≤ K } contains only sensor
subsets of size K or less. A+ = {1, . . . , N } indicates the
set of all sensors.

2 We make this assumption without loss of generality. The following
sections clarify that none of our results require this assumption.

Fig. 2 Model for sensor selection problem

– Observations z = 〈z1 . . . zN 〉 are vectors of N observa-
tion features, each of which specifies the sensor reading
obtained by the given sensor. If sensor i is not selected,
then zi = ∅. The set equivalent of z is z = {zi : zi 
=
∅}. To prevent ambiguity about which sensor generated
which observation in z, we assume that, for all i and j ,
the domains of zi and z j share only ∅. This assumption
is only made for notational convenience and does not
restrict the applicability of our methods in any way.

For example, in the surveillance task, a indicates the set
of cameras that are active and z are the observations received
from the cameras in a. The model for the sensor selection
problem for surveillance task is shown in Fig. 2. Here, we
assume that the actions involve only selecting K out of N
sensors. The transition function is thus independent of the
actions, as selecting sensors cannot change the state. How-
ever, as we outline in Sect. 7.4, it is possible to extend our
results to general active perception POMDPs with arbitrary
transition functions, that canmodel, e.g., mobile sensors that,
by moving, change the state.

A challenge in these settings is properly formalizing the
reward function. Because the goal is to reduce the uncer-
tainty, reward is a direct function of the belief, not the state,
i.e., the agent has no preference for one state over another, so
long as it knows what that state is. Hence, there is no mean-
ingful way to define a state-based reward function R(s, a).
Directly defining ρ(b, a) using, e.g., negative belief entropy:
−Hb(s) = ∑

s b(s) log(b(s)) results in a value function that
is not piecewise-linear. Since ρ(b, a) is no longer a con-
vex combination of a state-based reward function, it is no
longer guaranteed to be PWLC, a property most POMDP
solvers rely on. In the following subsections, we describe
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two recently proposed frameworks designed to address this
problem.

4.1 ρPOMDPs

A ρPOMDP (Araya-López et al. 2010), defined by a tuple
〈S, A, T,Ω, O, Γρ, b0, h〉, is a normal POMDP except that
the state-based reward function R(s, a) has been omitted
and Γρ has been added. Γρ is a set of vectors that defines
the immediate reward for ρPOMDP. Since we consider only
pure active perception tasks, ρ depends only on b, not on
a and can be written as ρ(b). Given Γρ , ρ(b) can be com-
puted as: ρ(b) = maxα∈Γρ

∑
s b(s)α(s). If the true reward

function is not PWLC, e.g., negative belief entropy, it can
be approximated by defining Γρ as a set of vectors, each of
which is a tangent to the true reward function. Figure 3 illus-
trates approximating negative belief entropy with different
numbers of tangents.
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Fig. 3 DefiningΓ a
ρ with different sets of tangents to the negative belief

entropy curve in a 2-state POMDP

Solving a ρPOMDP3 requires a minor change to the exist-
ing algorithms. In particular, since Γρ is a set of vectors,
instead of a single vector, an additional cross-sum is required
to computeΓ a

t :Γ
a
t = Γρ⊕Γ

a,z1
t ⊕Γ

a,z2
t ⊕. . . . Araya-López

et al. (2010) showed that the error in the value function com-
puted by this approach, relative to the true reward function,
whose tangents were used to define Γρ , is bounded. How-
ever, the additional cross-sum increases the computational
complexity of computing Γ a

t to O(|S||A||Γt−1||Ω||B||Γρ |)
with point-based methods.

Though ρPOMDP does not put any constraints on the
definition of ρ, we restrict the definition of ρ for an active
perception POMDP to be a set of vectors ensuring that ρ

is PWLC, which in turn ensures that the value function is
PWLC. This is not a severe restriction because solving a
ρPOMDP using offline planning requires a PWLC approxi-
mation of ρ anyway.

4.2 POMDPs with information rewards

Spaan et al. proposed POMDPs with information rewards
(POMDP-IR), an alternative framework for modeling active
perception tasks that relies only on the standard POMDP.
Instead of directly rewarding low uncertainty in the belief,
the agent is given the chance to make predictions about
the hidden state and rewarded, via a standard state-based
reward function, for making accurate predictions. Formally,
a POMDP-IR is a POMDP in which each action a ∈ A is a
tuple 〈an, ap〉 where an ∈ An is a normal action, e.g., mov-
ing a robot or turning on a camera (in our case an is a), and
ap ∈ Ap is a prediction action, which expresses predictions
about the state. The joint action space is thus the Cartesian
product of An and Ap, i.e., A = An × Ap.

Prediction actions have no effect on the states or obser-
vations but can trigger rewards via the standard state-based
reward function R(s, 〈an, ap〉). While there are many ways
to define Ap and R, a simple approach is to create one pre-
diction action for each state, i.e., Ap = S, and give the agent
positive reward if and only if it correctly predicts the true
state:

R(s, 〈an, ap〉) =
{
1, if s = ap
0, otherwise.

(9)

3 Arguably, there is a counter-intuitive relation between the general
class of POMDPs and the sub-class of pure active perception problems:
on the one hand, the class of POMDPs is amore general set of problems,
and it is intuitive to assume that there might be harder problems in the
class.On the other hand,manyPOMDPproblems admit a representation
of the value function using a finite set of vectors. In contrast, the use of
entropy would require an infinite number of vectors to merely represent
the reward function. Therefore, even though we consider a specific sub-
class of POMDPs, this class has properties that make it difficult to
address using existing methods.
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Fig. 4 Influence diagram for POMDP-IR

Thus, POMDP-IR indirectly rewards beliefs with low
uncertainty, since these enable more accurate predictions
and thus more expected reward. Furthermore, since a state-
based reward function is explicitly defined, ρ can be defined
as a convex combination of R, as in (1), guaranteeing a
PWLC value function, as in a regular POMDP. Thus, a
POMDP-IR can be solved with standard POMDP planners.
However, the introduction of prediction actions leads to a
blowup in the size of the joint action space |A| = |An||Ap|
of POMDP-IR. Replacing |A| with |An||Ap| in the analy-
sis yields a complexity of computing Γ a

t for POMDP-IR of
O(|S||An||Γt−1||Ω||B||Ap|) for point-based methods.

Note that, though not made explicit by Spaan et al. (2015),
several independence properties are inherent to the POMDP-
IR framework, as shown in Fig. 4. Specifically, the two
important properties are (a) in our setting the reward function
is independent of the normal actions; (b) the transition and the
observation function are independent of the normal actions.
Although POMDP-IR can model hybrid rewards, where in
addition to prediction actions, normal actions can reward the
agent as well (Spaan et al. 2015), in this article, because we
focus on pure active perception, the reward function R is
independent of the normal actions. Furthermore, state tran-
sitions and observations are independent of the prediction
actions. In Sect. 6, we introduce a new technique to show
that these independence properties can be exploited to solve a
POMDP-IRmuchmore efficiently and thus avoid the blowup
in the size of the action space caused by the introduction of
the prediction actions. Although the reward function in our
setting is independent of the normal actions, the main results
we present in this article are not dependent on this property
and can be easily extended or applied to cases where the
reward is dependent on the normal actions.

5 ρPOMDP and POMDP-IR equivalence

ρPOMDP and POMDP-IR offer two perspectives on mod-
eling active perception tasks. ρPOMDP starts from a “true”

belief-based reward function such as the negative entropy
and then seeks to find a PWLC approximation via a set of
tangents to the curve. In contrast, POMDP-IR starts from
the queries that the user of the system will pose, e.g., “What
is the position of everyone in the room?” or “How many
people are in the room?” and creates prediction actions that
reward the agent correctly for answering such queries. In
this section we establish the relationship between these two
frameworks by proving the equivalence of ρPOMDP and
POMDP-IR. By equivalence of ρPOMDP and POMDP-IR,
wemean that given aρPOMDPand apolicy,we can construct
a corresponding POMDP-IR and a policy such that the value
function for both the policies is exactly the same. We show
this equivalence by startingwith a ρPOMDPand a policy and
introducing a reduction procedure for both ρPOMDP and the
policy (and vice-versa). Using the reduction procedure, we
reduce the ρPOMDP to a POMDP-IR and the policy for
ρPOMDP to an equivalent policy for POMDP-IR. We then
show that the value function, V π

t for the ρPOMDPwe started
with and the reduced POMDP-IR is the same for the given
and the reduced policy. To complete our proof, we repeat the
same process by starting with a POMDP-IR and then reduc-
ing it to a ρPOMDP. We show that the value function V π

t
for the POMDP-IR and the corresponding ρPOMDP is the
same.

Definition 1 Given a ρPOMDP Mρ = 〈S, Aρ,Ω, Tρ, Oρ,

Γρ, b0, h〉 the reduce- pomdp- ρ- IR(Mρ) produces a
POMDP-IR MIR = 〈S, AIR,Ω, TIR, OIR, RIR, b0, h〉 via the
following procedure.

– The set of states, set of observations, initial belief and
horizon remain unchanged. Since the set of states remain
unchanged, the set of all possible beliefs is also the same
for MIR and Mρ .

– The set of normal actions in MIR is equal to the set of
actions inMρ , i.e., An,IR = Aρ .

– The set of prediction actions Ap,IR in MIR contains one
prediction action for each α

ap
ρ ∈ Γρ .

– The transition and observation functions in MIR behave
the same as in Mρ for each an and ignore the ap, i.e.,
for all an ∈ An,IR: TIR(s, an, s′) = Tρ(s, a, s′) and
OIR(s′, an, z) = Oρ(s′, a, z), where a ∈ Aρ corresponds
to an .

– The reward function in MIR is defined such that ∀ap ∈
Ap, RIR(s, ap) = α

ap
ρ (s), where α

ap
ρ is the α-vector cor-

responding to ap.

For example, consider a ρPOMDP with 2 states, if ρ is
defined using tangents to belief entropy at b(s1) = 0.3 and
b(s1) = 0.7. When reduced to a POMDP-IR, the resulting
reward function gives a small negative reward for correct
predictions and a larger one for incorrect predictions, with
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the magnitudes determined by the value of the tangents when
b(s1) = 0 and b(s1) = 1:

RIR(s, ap) =
{

−0.35, if s = ap
−1.21, otherwise.

(10)

This is illustrated in Fig. 3 (top).

Definition 2 Given a policy πρ for a ρPOMDP, Mρ , the
reduce- policy- ρ- IR(πρ) procedure produces a policyπIR

for a POMDP-IR as follows. For all b,

πIR(b) =
〈

πρ(b), argmax
ap

∑

s

b(s)R(s, ap)

〉

. (11)

That is, πIR selects the same normal action as πρ and the pre-
diction action that maximizes expected immediate reward.

Using these definitions, we prove that solving Mρ is the
same as solvingMIR.

Theorem 1 Let Mρ be a ρPOMDP and πρ an arbitrary
policy for Mρ . Furthermore let MIR = reduce- pomdp- ρ-
IR(Mρ) andπIR = reduce- policy- ρ- IR(πρ). Then, for all
b,

V IR
t (b) = V ρ

t (b), (12)

where V IR
t is the t-step value function for πIR and V ρ

t is the
t-step value function for πρ .

Proof See Appendix. �
Definition 3 Given a POMDP-IR MIR = 〈S, AIR,Ω, TIR,

OIR, RIR, b0, h〉 the reduce- pomdp- IR- ρ(MIR) produces
aρPOMDPMρ = 〈S, Aρ,Ω, Tρ, Oρ, Γρ, b0, h〉 via the fol-
lowing procedure.

– The set of states, set of observations, initial belief and
horizon remain unchanged. Since the set of states remain
unchanged, the set of all possible beliefs is also the same
forMIR and Mρ .

– The set of actions in Mρ is equal to the set of normal
actions inMIR, i.e., Aρ = An,IR.

– The transition and observation functions in Mρ behave
the same as in MIR for each an and ignore the ap,
i.e., for all a ∈ Aρ : Tρ(s, a, s′) = TIR(s, an, s′) and
Oρ(s′, a, z) = OIR(s′, an, z) where an ∈ An,IR is the
action corresponding to a ∈ Aρ .

– The Γρ in Mρ is defined such that, for each prediction
action in Ap,IR, there is a corresponding α vector in Γρ ,
i.e., Γρ = {αap

ρ (s) : α
ap
ρ (s) = R(s, ap) for each ap ∈

Ap,IR}. Consequently, by definition, ρ is defined as:
ρ(b) = max

α
ap
ρ

[∑s b(s)α
ap
ρ (s)].

Definition 4 Given a policy πIR = 〈an, ap〉 for a POMDP-
IR, MIR, the reduce- policy- IR- ρ(πIR) procedure pro-
duces a policy πρ for a POMDP-IR as follows. For all b,

πρ(b) = πn
IR(b), (13)

Theorem 2 Let MIR be a POMDP-IR and πIR = 〈an, ap〉
a policy for MIR, such that ap = argmaxa′

p
b(s)R(s, a′

p).

Furthermore letMρ = reduce- pomdp- IR- ρ(MIR) and πρ

= reduce- policy- IR- ρ(πIR). Then, for all b,

V ρ
t (b) = V I R

t (b), (14)

where V IR
t is the value of following πIR inMIR and V ρ

t is the
value of following πρ inMρ .

Proof See Appendix. �
The main implication of these theorems is that any result

that holds for either ρPOMDP or POMDP-IR also holds for
the other framework. For example, the results presented in
Theorem4.3 inAraya-López et al. (2010) that bound the error
in the value function of ρPOMDP also hold for POMDP-IR.
Furthermore, with this equivalence, the computational com-
plexity of solving ρPOMDP and POMDP-IR comes out to be
the same, since POMDP-IR can be converted into ρPOMDP
(and vice-versa) trivially, without any significant blow-up in
representation. Although we have proved the equivalence of
ρPOMDP and POMDP-IR only for pure active perception
tasks where the reward is solely conditioned on the belief,
it is straightforward to extend it to hybrid active perception
tasks, where the reward is conditioned both on belief and
the state. Although, the resulting active perception POMDP
for dynamic sensor selection is such that the action does
not affect the state, the results from this section do not use
that property at all and thus are valid for active perception
POMDPs where an agent might take an action which can
affect the state in the next time step.

6 Decomposed maximization for POMDP-IR

The POMDP-IR framework enables us to formulate uncer-
tainty as an objective, but it does so at the cost of addi-
tional computations, as adding prediction actions enlarges
the action space. The computational complexity of per-
forming a point-based backup for solving POMDP-IR is
O(|S|2|An||Ap||Ω||Γt−1|) + O(|S||B||An||Γt−1||Ω||Ap|).
In this section, we present a new technique that exploits
the independence properties of POMDP-IR, mainly that the
transition function and the observation function are indepen-
dent of the prediction actions, to reduce the computational
costs. We also show that the same principle is applicable to
ρPOMDPs.
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The increased computational cost of solving POMDP-IR
arises from the size of the action space, |An||Ap|. However,
as shown in Fig. 4, prediction actions only affect the reward
function and normal actions only affect the observation and
transition function. We exploit this independence to decom-
pose the maximization in the Bellman optimality equation:

V ∗
t (b) = max〈an ,ap〉∈A

[∑

s

b(s)R(s, ap)

+
∑

z∈Ω

Pr(z|an, b)V ∗
t−1(b

an ,z)
]

= max
ap∈Ap

∑

s

b(s)R(s, ap)

+ max
an∈An

∑

z∈Ω

Pr(z|an, b)V ∗
t−1(b

an ,z)

These decomposition can be exploited by point-based
methods by computing Γ

a,z
t only for normal actions, an and

αap only for prediction actions. That is, (5) can be changed
to:

Γ
an ,z
t = {

α
an ,z
i : αi ∈ Γt−1

}
. (15)

For each prediction action, we compute the vector specifying
the immediate reward for performing the prediction action in
each state: Γ Ap = {αap }, where αap (s) = R(s, ap) ∀ ap ∈
Ap. The next step is to modify (6) to separately compute the
vectors maximizing expected reward induced by prediction
actions and the expected return induced by the normal action:

α
an
b = argmax

αap∈Γ Ap

∑

s

b(s)αap (s)

+
∑

z

argmax
αan ,z∈Γ

an ,z
t

∑

s

αan ,z(s)b(s).

By decomposing the maximization, this approach avoids
iterating over all |An||Ap| joint actions. At each timestep t ,
this approach generates |An||Ω||Γt−1| + |Ap| backprojec-
tions inO(|S|2|An||Ω||Γt−1|+|S||Ap|) time and thenprunes
them to |B| vectors, with a computational complexity of
O(|S||B|(|Ap| + |An||Γt−1||Ω|)).

The same principle can be applied to ρPOMDP by
changing (6) such that it maximizes over immediate reward
independently from the future return:

αa
b = argmax

αρ∈Γρ

∑

s

b(s)α
ap
ρ (s)

+
∑

z

argmax
αa,z∈Γ

a,z
t

∑

s

αa,z(s)b(s).

The computational complexity of solvingρPOMDPwith this
approach is O(|S|2|A||Ω||Γt−1| + |S||Γρ |) +
O(|S||B|(|Γρ | + |A||Γt−1||Ω|). Thus, even though both

POMDP-IR and ρPOMDP use extra actions or vectors to
formulate belief-based rewards, they can both be solved at
only minimal additional computational cost.

7 Greedy PBVI

The previous sections allow us to model the active percep-
tion task efficiently, such that the PWLCproperty of the value
function ismaintained.Thus,we cannowdirectly employ tra-
ditional POMDP solvers that exploit this property to compute
the optimal value function V ∗

t .While point-based methods
scale better in the size of the state space, they are still not
practical for our needs as they do not scale in the size of the
action space of active perception POMDPs.

While the computational complexity of one iteration of
PBVI is linear in the size of the action space |A| of a POMDP,
for an active perception POMDP, the action space is modeled
as selecting K out of the N available sensors, yielding |A| =(N
K

)
. For fixed K , as the number of sensors N grows, the size

of the action space and the computational cost of PBVI grows
exponentially with it, making use of traditional POMDP
solvers infeasible for solving active perception POMDPs.

In this section, we propose greedy PBVI, a new point-
based planner for solving active perception POMDPs which
scales much better in the size of the action space. To facilitate
the explication of greedy PBVI, we now present the final step
of PBVI, described earlier in (7) and (8), in a different way.
For each b ∈ B, and a ∈ A, we must find the best αa

b ∈ Γ a
t ,

α
a,∗
b = argmax

αa
b ∈Γ a

t

∑

s

αa
b (s)b(s), (16)

and simultaneously record its value Q(b, a) = ∑
s α

a,∗
b b(s).

Then, for each b we find the best vector across all actions:
αb = αa∗

b , where

a∗ = argmax
a∈A

Q(b, a). (17)

The main idea of greedy PBVI is to exploit greedy maxi-
mization (Nemhauser et al. 1978), an algorithm that operates
on a set function Q : 2X → R. Greedy maximization is
much faster than full maximization as it avoids going over
the

(N
K

)
choices and instead constructs a subset of K elements

iteratively. Thus, we replace the maximization operator in
the Bellman optimality equation with greedy maximization.
Algorithm 1 shows the argmax variant, which constructs a
subset Y ⊆ X of size K by iteratively adding elements of X
to Y . At each iteration, it adds the element that maximally
increases marginal gain �Q(e|a) of adding a sensor e to a
subset of sensors a:

�Q(e|a) = Q(b, e ∪ a) − Q(b, a). (18)
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Algorithm 1 greedy-argmax(Q, X, K )

Y ← ∅
for m = 1 to K do

Y ← Y ∪ {argmaxe∈X\Y �Q(e|Y )}
end for
return Y

To exploit greedy maximization in PBVI, we need to
replace an argmax over Awithgreedy-argmax. Our alter-
native description of PBVI abovemakes this straightforward:
(17) contains such an argmax and Q(b, .) has been inten-
tionally formulated to be a set function over A+. Thus,
implementing greedy PBVI requires only replacing (17) with

aG = greedy-argmax(Q(b, ·), A+, K ). (19)

Since the complexity of greedy-argmax is only
O(|N ||K |), the complexity of greedy PBVI is only
O(|S||B||N ||K ||Γt−1|) (as compared to O(|S||B|(nk

)
) for

traditional PBVI for computing Γ a
t ).

Using point-based methods as a starting point is essential
to our approach. Algorithms like Monahan’s enumeration
algorithm (Monahan 1982) that rely on pruning operations to
computeV ∗ instead of performing an explicit argmax, cannot
directly use greedy-argmax. Thus, it is precisely because
PBVI operates on a finite set of beliefs that an explicit argmax
is performed, opening the door to using greedy-argmax
instead.

7.1 Bounds given submodular value function

In the following subsections, we present the highlights of
the theoretical guarantees associated with greedy PBVI. The
detailed analysis can be found in the appendix. Specifically,
we show that a value function computed by greedy PBVI is
guaranteed to have bounded error with respect to the opti-
mal value function under submodularity, a property of set
functions that formalizes the notion of diminishing returns.
Then,we establish the conditions underwhich the value func-
tion of a POMDP is guaranteed to be submodular. We define
ρ(b) as negative belief entropy, ρ(b) = −Hb(s) to estab-
lish the submodularity of value function. Both ρPOMDP
and POMDP-IR approximate ρ(b) with tangents. Thus, in
the last subsection, we show that even if belief entropy is
approximated using tangents, the value function computed
by greedy PBVI is guaranteed to have bounded error with
respect to the optimal value function.

Submodularity is a property of set functions that corre-
sponds to diminishing returns, i.e., adding an element to a
set increases the value of the set function by a smaller or
equal amount than adding that same element to a subset. In
our notation, this is formalized as follows. Given a policy π ,

the set function Qπ
t (b, a) is submodular in a, if for every

aM ⊆ aN ⊆ A+ and ae ∈ A+ \ aN ,

�Qb (ae|aM ) ≥ �Qb (ae|aN ), (20)

Equivalently, Qπ
t (b, a) is submodular if for every aM ,

aN ⊆ A+,

Qπ
t (b, aM ∩ aN ) + Qπ

t (b, aM ∪ aN )

≤ Qπ
t (b, aM ) + Qπ

t (b, aN ).

Submodularity is an important property because of the
following result:

Theorem 3 (Nemhauser et al. 1978) If Qπ
t (b, a) is non-

negative, monotone and submodular in a, then for all b,

Qπ
t (b, aG) ≥ (1 − e−1)Qπ

t (b, a∗), (21)

where aG = greedy-argmax(Qπ
t (b, ·), A+, K ) and a∗ =

argmaxa∈A Qπ
t (b, a).

Theorem 3 gives a bound only for a single application of
greedy-argmax, not for applying it within each backup,
as greedy PBVI does.

In this subsection, we establish such a bound. Let the
greedy Bellman operator BG be:

(
BGV π

t−1

)
(b) = G

max
a

[

ρ(b, a) +
∑

z∈Ω

Pr(z|a, b)V π
t−1(b

a,z)

]

,

where maxGa refers to greedy maximization. This immedi-
ately implies the following corollary to Theorem 3:

Corollary 1 Givenanypolicyπ , if Qπ
t (b, a) is non-negative,

monotone, and submodular in a, then for all b,

(
BGV π

t−1

)
(b) ≥ (1 − e−1)

(
B∗V π

t−1

)
(b). (22)

Proof From Theorem 3 since (BGV π
t−1)(b) = Qπ

t (b, aG)

and (B∗V π
t−1)(b) = Qπ

t (b, a∗). �

Next, we define the greedy Bellman equation: VG
t (b) =

(BGVG
t−1)(b), where VG

0 = ρ(b). Note that VG
t is the true

value function obtained by greedy maximization, without
any point-based approximations. Using Corollary 1, we can
bound the error of VG with respect to V ∗.

Theorem 4 If for all policies π , Qπ
t (b, a) is non-negative,

monotone and submodular in a, then for all b,

V G
t (b) ≥ (1 − e−1)2t V ∗

t (b). (23)
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Proof See Appendix. �
Theorem 4 extends Nemhauser’s result to a full sequen-

tial decision making setting where multiple application of
greedy maximization are employed over multiple time steps.
This theorem gives a theoretical guarantee on the perfor-
mance of greedy PBVI. Given a POMDP with a submodular
value function, greedy PBVI is guaranteed to have bounded
error with respect to the optimal value function. Moreover,
this performance comes at a computational cost that is much
less than that of solving the same POMDP with traditional
solvers. Thus, greedy PBVI scales much better in the size
of the action space of active perception POMDPs, while still
retaining bounded error.

The results presented in this subsection are applicable only
if the value function for a POMDP is submodular. In the fol-
lowing subsections, we establish the submodularity of the
value function for the active perception POMDP under cer-
tain conditions.

7.2 Submodularity of value functions

The previous subsection showed that the value function com-
puted by greedy PBVI is guaranteed to have bounded error as
long as it is non-negative, monotone and submodular. In this
subsection, we establish sufficient conditions for these prop-
erties to hold. Specifically, we show that, if the belief-based
reward is negative entropy, i.e., ρ(b) = −Hb(s) + log( 1

|S| )
then under certain conditions Qπ

t (b, a) is submodular, non-
negative and monotone as required by Theorem 4. We point
out that the second part, log( 1

|S| ) is only required (and suffi-
cient) to guarantee non-negativity, but is independent of the
actual beliefs or actions. For the sake of conciseness, in the
remainder of this paper we will omit this term.

We start by observing that Qπ
t (b, a) = ρ(b) + ∑t−1

k=1
Gπ

k (bt , at ), where Gπ
k (bt , at ) is the expected immediate

rewardwith k steps to go, conditioned on the belief and action
with t steps to go and assuming policy π is followed after
timestep t :

Gπ
k (bt , at ) =

∑

zt :k
Pr

(
zt :k |bt , at , π

) (
−Hbk (s

k)
)

,

where zt :k is a vector of observations received in the interval
from t steps to go to k steps to go, bt is the belief at t steps
to go, at is the action taken at t steps to go, and ρ(bk) =
−Hbk (s

k), where sk is the state at k steps to go. To show that
Qπ

t (b, a) is submodular the main condition is conditional
independence as defined below:

Definition 5 The observation set z is conditionally inde-
pendent given s if any pair of observation features are
conditionally independent given the state, i.e.,

Pr(zi , z j |s) = Pr(zi |s)Pr(z j |s), ∀zi , z j ∈ z. (24)

Using above definition, the submodularity of Q(b, a) can
be established as:

Theorem 5 If zt :k is conditionally independent given sk and
ρ(b) = −Hb(s), then Qπ

t (b, a) is submodular in a, for all
π .

Proof See Appendix. �
Theorem 6 If zt :k is conditionally independent given sk and
ρ(b) = −Hb(s) + log( 1

|S| ), then for all b,

V G
t (b) ≥ (1 − e−1)2t V ∗

t (b). (25)

Proof See Appendix. �
In this subsection we showed that if the immediate belief-

based reward ρ(b) is defined as negative belief entropy, then
the value function of an active perception POMDP is guar-
anteed to be submodular under certain conditions. However,
as mentioned earlier, to solve active perception POMDP, we
approximate the belief entropy with vector tangents. This
might interfere with the submodularity of the value func-
tion. In the next subsection, we show that, even though the
PWLC approximation of belief entropy might interfere with
the submodularity of the value function, the value function
computed bygreedyPBVI is still guaranteed to have bounded
error.

7.3 Bounds given approximated belief entropy

While Theorem 6 bounds the error in VG
t (b), it does so only

on the condition that ρ(b) = −Hb(s). However, as discussed
earlier, our definition of active perception POMDPs instead
defines ρ using a set of vectors Γ ρ = {αρ

1 , . . . , α
ρ
m}, each of

which is a tangent to −Hb(s), as suggested by Araya-López
et al. (2010), in order to preserve the PWLC property. While
this can interfere with the submodularity of Qπ

t (b, a), here
we show that the error generated by this approximation is
still bounded in this case.

Let ρ̃(b) denote the PWLC approximated entropy and
Ṽ ∗
t denote the optimal value function when using a PWLC

approximation to negative entropy for the belief-based
reward, as in an active perception POMDP, i.e.,

Ṽ ∗
t (b) = max

a

[

ρ̃(b) +
∑

z∈Ω

Pr(z|b, a)Ṽ ∗
t−1(b

a,z)

]

. (26)

Araya-López et al. (2010) showed that if ρ(b) verifies the
α-Hölder condition (Gilbarg and Trudinger 2001), a general-
ization of the Lipschitz condition, then the following relation
holds between V ∗

t and Ṽ ∗
t :
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||V ∗
t − Ṽ ∗

t ||∞ ≤ Cδα, (27)

where V ∗
t is the optimal value functionwith ρ(b) = −Hb(s),

δ is the density of the set of belief points at which tangent are
drawn to the belief entropy, and C is a constant.

Let Ṽ G
t (b) be the value function computed by greedy

PBVI when immediate belief-based reward is ρ̃(b):

Ṽ G
t (b) = G

max
a

[

ρ̃(b) +
∑

z∈Ω

Pr(z|b, a)Ṽ G
t−1(b

a,z)

]

, (28)

then the error between Ṽ G
t (b) and V ∗

t (b) is bounded as stated
in the following theorem.

Theorem 7 For all beliefs, the error between Ṽ G
t (b) and

Ṽ ∗
t (b) is bounded, if ρ(b) = −Hb(s), and zt :k is condition-

ally independent given sk .

Proof See Appendix. �
In this subsectionwe showed that if the negative entropy is

approximated using tangent vectors, greedy PBVI still com-
putes a value function that has bounded error. In the next
subsection we outline how greedy PBVI can be extended to
general active perception tasks.

7.4 General active perception POMDPs

The results presented in this section apply to the active per-
ception POMDP in which the evolution of the state over time
is independent of the actions of the agent. Here, we outline
how these results can be extended to general active percep-
tion POMDPs without many changes. The main application
for such an extension is in tasks involving a mobile robot
coordinating with sensors to intelligently take actions to per-
ceive its environment. In such cases, the robot’s actions, by
causing it to move, can change the state of the world.

The algorithms we proposed can be extended to such
settings by making small modifications to the greedy maxi-
mization operator. The greedy algorithm can be run for K +1
iterations and in each iteration the algorithmwould choose to
add either a sensor (only if fewer than K sensors have been
selected), or a movement action (if none has been selected so
far). Formally, using the work of Fisher et al. (1978), which
extends that of Nemhauser et al. (1978) on submodularity to
combinatorial structures such asmatroids, the action space of
a POMDP involving a mobile robot can be modeled as a par-
tition matroid and greedy maximization subject to matroid
constraints (Fisher et al. 1978) can be used to maximize the
value function approximately.

The guarantees associated with greedymaximization sub-
ject to matroid constraints (Fisher et al. 1978) can then be
used to bound the error of greedy PBVI. However, deriving

exact theoretical guarantees for greedy PBVI for such tasks
is beyond the scope of this article. Assuming that the reward
function is still defined as the negative belief entropy, the sub-
modularity of such POMDPs still holds under the conditions
mentioned in Sect. 7.2.

In this section, we presented greedy PBVI, which uses
greedy maximization to improve the scalability in the action
space of an active perception POMDP. We also showed that,
if the value function of an active perception POMDP is sub-
modular, then greedy PBVI computes a value function that is
guaranteed to have bounded error. We established that if the
belief-based reward is defined as the negative belief entropy,
then the value function of an active perception POMDP is
guaranteed to be submodular. We showed that if the neg-
ative belief entropy is approximated by tangent vectors, as
is required to solve active perception POMDPs efficiently,
greedyPBVI still computes a value function that has bounded
error. Finally, we outlined how greedy PBVI and the asso-
ciated theoretical bounds can be extended to general active
perception POMDPs.

8 Experiments

In this section, we present an analysis of the behavior and
performance of belief-based rewards for active perception
tasks, which is the main motivation of our work. We present
the results of experiments designed to study the effect on
the performance of the choice of prediction actions/tangents,
and compare the costs and benefits of myopic versus non-
myopic planning. We consider the task of tracking people
in a surveillance area with a multi-camera tracking system.
The goal of the system is to select a subset of cameras to
correctly predict the position of people in the surveillance
area, based on the observations received from the selected
cameras. In the following subsections, we present results on
real-data collected from amulti-camera system in a shopping
mall andwe present the experiments comparing performance
of greedy PBVI to PBVI.

We compare the performance of POMDP-IR with decom-
posed maximization to a naive POMDP-IR that does not
decompose the maximization. Thanks to Theorems 1 and
2, these approaches have performance equivalent to their
ρPOMDP counterparts. We also compare against two base-
lines. The first is a weak baseline we call the rotate policy
in which the agent simply keeps switching between cameras
on a turn-by-turn basis. The second is a stronger baseline we
call the coverage policy, whichwas developed in earlier work
on active perception (Spaan 2008; Spaan and Lima 2009).
The coverage policy is obtained after solving a POMDP that
rewards the agent for observing the person, i.e., the agent
is encouraged to select the cameras that are most likely to
generate positive observations. Thanks to the decomposed
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Fig. 5 Problem setup for the task of tracking one person. We model
this task as a POMDP with one state for each cell. Thus the person
can move among |S| cells. Each cell is adjacent to two other cells and
each cell is monitored by a single camera. Thus, in this case there are
N = |S| cameras. At each time step, the person can stay in the same
cell as she was in the previous time step with probability p or she can
move to one of the neighboring cells with equal probability. The agent
must select K out of N cameras and the task is to predict the state of the
person correctly using noisy observations from the K cameras. There
is one prediction action for each state and the agent gets a reward of
+1 if it correctly predicts the state and 0 otherwise. An observation is a
vector of N observation features, each of which specifies the person’s
position as estimated by the given camera. If a camera is not selected,
then the corresponding observation feature has a value of null

maximization, the computational cost of solving for the cov-
erage policy and belief-based rewards is the same.

8.1 Simulated setting

We start with experiments conducted in a simulated setting,
first considering the task of tracking a single person with a
multi-camera system and then considering the more chal-
lenging task of tracking multiple people.

8.1.1 Single-person tracking

We start by considering the task of tracking one person walk-
ing in a grid-world composed of |S| cells and N cameras as
shown in Fig. 5. At each timestep, the agent can select only
K cameras, where K ≤ N . Each selected camera generates
a noisy observation of the person’s location. The agent’s goal
is to minimize its uncertainty about the person’s state. In the
experiments in this section, we fixed K = 1 and N = 10.
The problem setup and the POMDP model is shown and
described in Fig. 5.

To compare the performance of POMDP-IR to the base-
lines, 100 trajectories were simulated from the POMDP. The
agent was asked to guess the person’s position at each time
step. Figure 6a shows the cumulative reward collected by all
four methods. POMDP-IR with decomposed maximization
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Fig. 6 a Performance comparison between POMDP-IR with decom-
posed maximization, naive POMDP-IR, coverage policy, and rotate
policy; b runtime comparison between POMDP-IR with decomposed

maximization and naive POMDP-IR; c behavior of POMDP-IR policy;
d behavior of coverage policy (Color figure online)
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and naive POMDP-IR perform identically as the lines indi-
cating their respective performance lie on top of each other
in Fig. 6a. However, Fig. 6b, which compares the runtimes
of POMDP-IR with decomposed maximization and naive
POMDP-IR, shows that decomposed maximization yields
a large computational savings. Figure 6a also shows that
POMDP-IR greatly outperforms the rotate policy and mod-
estly outperforms the coverage policy.

Figures 6c, d illustrate the qualitative difference between
POMDP-IR and the coverage policy. The blue lines mark the
points in trajectory when the agent selected the camera that
observes the person’s location. If the agent selected a camera
such that the person’s location is not covered then the blue
vertical line is not there at that point in the trajectory in the
figure. The agent has to select one out of N cameras and
does not have an option of not selecting any camera. The red
line plots the max of the agent’s belief. The main difference
between the two policies is that once POMDP-IR gets a good
estimate of the state, it proactively observes neighboring cells
to which the person might transition. This helps it to more
quickly find the person when she moves. By contrast, the
coverage policy always looks at the cell where it believes
her to be. Hence, it takes longer to find her again when she
moves. This is evidenced by the fluctuations in themax of the
belief, which often drops below 0.5 for the coverage policy
but rarely does so for POMDP-IR.

Next, we examine the effect of approximating a true
reward function like belief entropy with more and more
tangents. Figure 3 illustrates how adding more tangents
can better approximate negative belief entropy. To test the
effects of this, we measured the cumulative reward when
using between one and four tangents per state. Figure 7
shows the results and demonstrates that, as more tangents
are added, the performance improves. However, performance
also quickly saturates, as four tangents perform no better than
three.

Next, we compare the performance of POMDP-IR to
a myopic variant that seeks only to maximize immediate
reward, i.e., h = 1.We perform this comparison in three vari-
ants of the task. In the highly static variant, the state changes
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Fig. 7 Performance comparison as negative belief entropy is better
approximated

very slowly: the probability of staying is the same state is 0.9.
In the moderately dynamic variant, the state changes more
frequently, with a same-state transition probability of 0.7. In
the highly dynamic variant, the state changes rapidly (with a
same-state transition probability of 0.5). Figure 8 (top) shows
the results of these comparisons. In each setting, non-myopic
POMDP-IR outperforms myopic POMDP-IR. In the highly
static variant, the difference is marginal. However, as the
task becomes more dynamic, the importance of look-ahead
planning grows. Because the myopic planner focuses only
on immediate reward, it ignores what might happen to its
belief when the state changes, which happens more often in
dynamic settings.

We also compare the performance of myopic and non-
myopic planning in a budget-constrained environment. This
specifically corresponds to an energy constrained environ-
ment, where cameras can be employed only a few times over
the entire trajectory. This is augmented with resource con-
straints, so that the agent has to plan not only when to use the
cameras, but also decidewhich camera to select. Specifically,
the agent can only employ the multi-camera system a total
of 15 times across all 50 timesteps and the agent can select
which camera (out of the multi-camera system) to employ
at each of the 15 instances. On the other timesteps, it must
select an action that generates only a null observation. Fig-
ure 8 (bottom) shows that non-myopic planning is of critical
importance in this setting. Whereas myopic planning greed-
ily consumes the budget as quickly as possible, thus earning
more reward in the beginning, non-myopic planning saves
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Fig. 8 (Top) Performance comparison for myopic versus non myopic
policies; (Bottom) performance comparison for myopic versus non
myopic policies in budget-based setting (Color figure online)
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Fig. 9 Performance comparison for myopic versus non myopic poli-
cies when camera system is assisting a moving robot (Color figure
online)

the budget for situations in which it is highly uncertain about
the state.

Finally, we compare the performance of myopic and
non-myopic planning when the multi-camera system can
communicate with a mobile robot that also has sensors. This
setting is typical of a networked robot system (Spaan et al.
2010) in which a robot coordinates with a multi-camera
system to perform surveillance of a building, detect any emer-
gency situations like fire, or help people navigate to their
destination. Here, the task is to minimize uncertainty about
the location of one person who is moving in the space mon-
itored by the robot and the cameras. The robot’s sensors are
assumed to be more accurate than the stationary cameras.
Specifically, the sensors attached to the robot can detect if
a person is in the current cell with 90% accuracy compared
to the stationary cameras, each of which has an accuracy
of 75% of detecting a person in the cell it observes. The
robot’s sensor can observe the presence or absence of a per-
son only for the cell that the robot occupies. In addition to
using its sensors to generate observations about its current
cell, the robot can also move forward or backward to an
adjacent cell or choose to stay at the current cell. To model
this task, the action vector introduced earlier is augmented
with another action feature that indicates the direction of the
robot’s motion, which can take three values: forward, back-
ward or stay.

Performance is quantified as the total number of times
the correct location of the person is predicted by the sys-
tem. Figure 9, which shows the performance of myopic and
non-myopic policies for this task, demonstrates that when
planning non-myopically the agent is able to utilize the
accurate sensors more effectively as to compared to when
planning myopically.

8.1.2 Multi-person tracking

To extend our analysis to a more challenging problem, we
consider a simulated setting inwhichmultiple peoplemust be
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Fig. 10 (Top) Multi-person tracking performance for POMDP-IR and
coverage policy; (Bottom) performance of POMDP-IR and coverage
policy when only important cells must be tracked (Color figure online)

tracked simultaneously. Since |S| grows exponentially in the
number of people, the resulting POMDP quickly becomes
intractable. Therefore, we compute instead a factored value
function

Vt (b) =
∑

i

V i
t (b

i ), (29)

where V i
t (b

i ) is the value of the agent’s current belief bi

about the i-th person. Thus, V i
t (b

i ) needs to be computed
only once, by solving a POMDP of the same size as that in
the single-person setting. During action selection, Vt (b) is
computed using the current bi for each person. This kind of
factorization corresponds to the assumption that each per-
son’s movement and observations is independent of that of
other people. Although violated in practice, such an assump-
tion can nonetheless yield good approximations.

Figure 10 (top), which compares POMDP-IR to the cov-
erage policy with one, two, and three people, shows that the
advantage of POMDP-IR grows substantially as the number
of people increases. Whereas POMDP-IR tries to maintain
a good estimate of everyone’s position, the coverage policy
just tries to look at the cells where the maximum number of
people might be present, ignoring other cells completely.

Finally, we compare POMDP-IR and the coverage policy
in a setting in which the goal is only to reduce uncertainty
about a set of “important cells” that are a subset of the whole
state space. For POMDP-IR, we prune the set of prediction
actions to allow predictions only about important cells. For
the coverage policy, we reward the agent only for observ-
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Fig. 11 Sample tracks for all the cameras. Each color represents all
the tracks observed by a given camera. The boxes denote regions of
high overlap between cameras (Color figure online)

ing people in important cells. The results, shown in Fig. 10
(bottom), demonstrate that the advantage of POMDP-IR over
the coverage policy is even larger in this variant of the task.
POMDP-IRmakes use of information coming from cells that
neighbor the important cells (which is of critical importance
if the important cells do not have good observability), while
the coverage policy does not. As before, the difference gets
larger as the number of people increases.

8.2 Real data

Finally, we extended our analysis to a real-life dataset col-
lected in a shopping mall. This dataset was gathered over
4 hours using 13 CCTV cameras located in a shopping mall
(Bouma et al. 2013). Each camera uses a FPDW (Dollar et al.
2010) pedestrian detector to detect people in each camera
image and in-camera tracking (Bouma et al. 2013) to gener-
ate tracks of the detected people’s movements over time.

The dataset consists of 9915 tracks each specifying one
person’s x–y position over time. Figure 11 shows the sample
tracks from all of the cameras.

To learn a POMDP model from the dataset, we divided
the continuous space into 20 cells (|S| = 21: 20 cells plus
an external state indicating the person has left the shopping
mall). Using the data, we learned amaximum-likelihood tab-
ular transition function. However, we did not have access to
the ground truth of the observed tracks so we constructed
them using the overlapping regions of the camera.

Because the cameras have many overlapping regions
(see Fig. 11), we were able to manually match tracks
of the same person recorded individually by each cam-
era. The “ground truth” was then constructed by taking a
weighted mean of the matched tracks. Finally, this ground
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Fig. 12 Performance of POMDP-IR and the coverage policy on the
shopping mall dataset (Color figure online)

truth was used to estimate noise parameters for each cell
(assuming zero-mean Gaussian noise), which was used as
the observation function. Figure 12 shows that, as before,
POMDP-IR substantially outperforms the coverage pol-
icy for various numbers of cameras. In addition to the
reasons mentioned before, the high overlap between the
cameras contributes to POMDP-IR’s superior performance.
The coverage policy has difficulty ascertaining people’s
exact locations because it is rewarded only for observing
them somewhere in a camera’s large overlapping region,
whereas POMDP-IR is rewarded for deducing their exact
locations.

8.3 Greedy PBVI

To empirically evaluate greedy PBVI, we tested it on the
problem of tracking either one person or multiple people
using a multi-camera system.

The reward function is described as a set of |S| vectors,
Γ ρ = {α1 . . . α|S|}, with αi (s) = 1 if s = i and αi (s) = 0
otherwise. The initial belief is uniform across all states. We
planned for horizon h = 10 with a discount factor γ = 0.99.

As baselines, we tested against regular PBVI and myopic
versions of both greedy and regular PBVI that compute a
policy assuming h = 1 and use it at each timestep. Fig-
ure 13 shows runtimes under different values of N and K .
Since multi-person tracking uses the value function obtained
by solving a single-person POMDP, single and multi-person
tracking have the same runtimes. These results demonstrate
that greedy PBVI requires only a fraction of the computa-
tional cost of regular PBVI. In addition, the difference in
the runtime grows quickly as the action space gets larger:
for N = 5 and K = 2 greedy PBVI is twice as fast, while
for N = 11, K = 3 it is approximately nine times as fast.
Thus, greedy PBVI enables much better scalability in the
action space. Figure 14, which shows the cumulative reward
under different values of N and K for single-person (top) and
multi-person (bottom) tracking, verifies that greedy PBVI’s
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Fig. 14 Cumulative reward for single-person (top) and multi-person
(bottom) tracking (Color figure online)

speedup does not come at the expense of performance, as
greedy PBVI accumulates nearly as much reward as regu-
lar PBVI. They also show that both PBVI and greedy PBVI
benefit from non-myopic planning. While the performance
advantage of non-myopic planning is relatively modest, it
increases with the number of cameras and people, which
suggests that non-myopic planning is important to making
active perception scalable.

Furthermore, an analysis of the resulting policies showed
that myopic and non-myopic policies differ qualitatively. A
myopic policy, in order to minimize uncertainty in the next
step, tends to look where it believes the person to be. By con-
trast, a non-myopic policy tends to proactively look where
the person might go next, so as to more quickly detect her
new location when she moves. Consequently, non-myopic
policies exhibit less fluctuation in belief and accumulate
more reward, as illustrated in Fig. 15. The blue lines mark
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Fig. 15 Behavior of myopic versus non-myopic policy (Color figure
online)

when the agent chooses the camera that can observe the
cell occupied by the person. The red line plots the max of
the agent’s belief. The difference in fluctuation in belief is
evident, as the max of the belief often drops below 0.5 for
the myopic policy but rarely does so for the non-myopic
policy.

9 Discussion and conclusions

In this article, we addressed the problem of active perception,
in which an agent must take actions to reduce uncertainty
about a hidden variable while reasoning about various con-
straints. Specifically, we modeled the task of surveillance
with multi-camera tracking systems in large urban spaces
as an active perception task. Since the state of the envi-
ronment is dynamic, we model this task as a POMDP to
compute closed-loop non-myopic policies that can reason
about the long-term consequences of selecting a subset of
sensors.

Formulating uncertainty reduction as an end in itself is
a challenging task, as it breaks the PWLC property of the
value function,which is imperative for solving POMDPs effi-
ciently. ρPOMDP and POMDP-IR are two frameworks that
allow formulating uncertainty reduction as an end in itself
and do not break the PWLC property.

We showed that ρPOMDP and POMDP-IR are two equiv-
alent frameworks formodeling active perception tasks. Thus,
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results that apply to one framework are also applicable to the
other one. While ρPOMDP does not restrict the definition of
ρ to a PWLC function, in this work we restrict the definition
of ρPOMDP to a casewhere ρ is approximatedwith a PWLC
function, as it is not feasible to efficiently solve a ρPOMDP
where ρ is not a PWLC function.

We model the action space of the active perception
POMDP as selecting K out of N sensors, where K is the
maximum number of sensors allowed by the resource con-
straints. Recent POMDPsolvers enable scalability in the state
space. However, for active perception, as the number of sen-
sors grow, the action space grows exponentially.Weproposed
greedy PBVI, a POMDP planning method, that improves
scalability in the action space of a POMDP. While we do
not directly address the scaling in the observation space, we
believe recent ideas on the factorization of the observation
space (Veiga et al. 2014) can be combined with our approach
to improve scalability in the state, action and observation
spaces to solve active perception POMDPs.

By leveraging the theoryof submodularity,we showed that
the value function computed by greedy PBVI is guaranteed
to have bounded error. Specifically, we extend Nemhauser’s
result on greedy maximization of submodular functions to
long-term planning. To apply these results to the active per-
ception task, we showed that under certain conditions the
value function of an active perception POMDP is submodu-
lar. One such condition requires that the series of future of
observations be independent of each other given the state.
While this is a strong condition, it is only a sufficient condi-
tion and not may not be a necessary one. Thus, one line of
future work is to attempt to relax this condition for proving
the submodularity of the value function. Finally, we showed
that, evenwith a PWLCapproximation to the true value func-
tion, which is submodular, the error in the value function
computed by greedy PBVI remains bounded, thus enabling
us to compute efficiently value functions for active percep-
tion POMDPs.

Greedy PBVI is ideally suited for active perception
POMDPs for which the value function is submodular. How-
ever, in real-life situations submodularity of value function
might not always hold. For example, when there is occlu-
sion in our setting, it is possible for combinations of sensors
that when selected together yield higher utility than the sum
of their utilities when selected individually. Similar cases
can arise when a mobile robot is trying to sense the best
point of view to observe a scene that is occluded. Thus
in cases like these, greedy PBVI might not return the best
solution.

Our empirical analysis established the critical factors
involved in the performance of active perception tasks. We
showed that a belief-based formulation of uncertainty reduc-
tion beats a corresponding state-based reward baseline as
well as other simple policies. While the non-myopic policy

beats the myopic one, in certain cases the gain is marginal.
However, in cases involving mobile sensors and budgeted
constraints, non-myopic policies become critically impor-
tant. Finally, experiments on a real-world dataset showed
that the performance of greedy PBVI is similar to the exist-
ingmethods but requires only a fraction of the computational
cost, leading to much better scalability for solving active per-
ception tasks.
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Appendix

Results from Sect. 4

Theorem 1 Let Mρ be a ρPOMDP and πρ an arbitrary
policy for Mρ . Furthermore let MIR = reduce- pomdp- ρ-
IR(Mρ) andπIR = reduce- policy- ρ- IR(πρ). Then, for all
b,

V IR
t (b) = V ρ

t (b), (30)

where V IR
t is the t-step value function for πIR and V ρ

t is the
t-step value function for πρ .

Proof By induction on t . To prove the base case, we observe
that, from the definition of ρ(b),

V ρ
0 (b) = ρ(b) = max

α
ap
ρ ∈Γρ

∑

s

b(s)α
ap
ρ (s).

Since MIR has a prediction action corresponding to each
α
ap
ρ , thus the ap corresponding to α = argmax

α
ap
ρ ∈Γρ

∑
s

b(s)α
ap
ρ (s), must also maximize

∑
s b(s)R(s, ap). Then,

V ρ
0 (b) = max

ap

∑

s

b(s)RIR(s, ap)

= V IR
0 (b).

(31)
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For the inductive step, we assume that V IR
t−1(b) = V ρ

t−1(b)
and must show that V IR

t (b) = V ρ
t (b). Starting with V IR

t (b),

V IR
t (b) =max

ap

∑

s

b(s)R(s, ap)

+
∑

z

Pr
(
z|b, πn

IR(b)
)
V IR
t−1(b

πn
IR(b),z),

(32)

where πn
IR(b) denotes the normal action of the tuple specified

by πIR(b) and:

Pr
(
z|b, πn

IR(b)
)

=
∑

s

∑

s′′
OIR

(
s′′, πn

IR(b), z
)
TIR

(
s, πn

IR(b), s′′) b(s).

Using the reduction procedure, we can replace TIR and
OIR and πn

IR(b) with their ρPOMDP counterparts on right
hand side of the above equation:

Pr
(
z|b, πn

IR(b)
)

=
∑

s

∑

s′′
Oρ(s′′, πρ(b), z)Tρ

(
s, πρ(b), s′′) b(s)

= Pr(z|b, πρ(b)).

Similarly, for the belief update equation,

bπn
IR(b),z = OIR

(
s′, πn

IR(b), z
)

Pr
(
z|πn

IR(b), b
)

∑

s

b(s)TIR
(
s, πn

IR(b), s′)

= Oρ(s′, πρ(b), z)
Pr(z|πρ(b), b)

∑

s

b(s)Tρ(s, πρ(b), s′)

= bπρ(b),z.

Substituting the above result in (32) yields:

V IR
t (b) = maxap

∑

s
b(s)R(s, ap)

+
∑

z
Pr(z|b, πρ(b))V IR

t−1(b
πρ(b),z). (33)

Since the inductive assumption tells us that V IR
t−1(b) =

V ρ
t−1(b) and (31) shows that ρ(b) = maxap

∑
s b(s)

R(s, ap):

V IR
t (b) =

[

ρ(b) +
∑

z

Pr(z|b, πρ(b))V ρ
t−1(b

πρ(b),z)

]

= V ρ
t (b). (34)

�
Theorem 2 Let MIR be a POMDP-IR and πIR = 〈an, ap〉
an policy forMIR, such that ap = maxa′

p
b(s)R(s, a′

p). Fur-

thermore let Mρ = reduce- pomdp- IR- ρ(MIR) and πρ =
reduce- policy- IR- ρ(πIR). Then, for all b,

V ρ
t (b) = V I R

t (b), (35)

where V IR
t is the value of following πIR inMIR and V ρ

t is the
value of following πρ inMρ .

Proof By induction on t . To prove the base case, we observe
that, from the definition of ρ(b),

V I R
0 (b) = max

ap

∑

s
b(s)R(s, ap)

=
∑

s
b(s)α(s)

{

where α(s) is the α(s)

corresponding to ap = argmaxa′
p

∑

s
b(s)R(s, a′

p).

}

= ρ(b)

= V ρ
0 (b)

(36)

For the inductive step, we assume that V ρ
t−1(b) = V I R

t−1(b)
and must show that V ρ

t (b) = V I R
t (b). Starting with V ρ

t (b),

V ρ
t (b) = ρ(b) +

∑

z

Pr(z|b, πρ(b))V ρ
t−1(b

πρ(b),z), (37)

where πn
IR(b) denotes the normal action of the tuple specified

by πIR(b) and:

Pr(z|b, πρ(b)) =
∑

s

∑

s′′
Oρ

(
s′′, πρ(b), z

)
Tρ

(
s, πρ(b), s′′) b(s).

(38)

From the reduction procedure, we can replace Tρ and Oρ and
πρ(b) with their POMDP-IR counterparts:

Pr(z|b, πρ(b))

=
∑

s

∑

s′′
OIR

(
s′′, πn

IR(b), z
)
TIR

(
s, πn

IR(b), s′′) b(s)
= Pr (z|b, πIR(b)) . (39)

Similarly, for the belief update equation,

bπρ(b),z = Oρ(s′, πρ(b), z)
Pr(z|πρ(b), b)

∑

s

b(s)Tρ(s, πρ(b), s′)

= OIR
(
s′, πn

IR(b), z
)

Pr
(
z|πn

IR(b), b
)

∑

s

b(s)TIR
(
s, πn

IR(b), s′)

= bπIR(b),z. (40)

Substituting the above result in (37) yields:

V ρ
t (b) = ρ(b) +

∑

z

Pr(z|b, πIR(b))V IR
t−1(b

πIR(b),z). (41)

Since the inductive assumption tells us that V ρ
t−1(b) =

V IR
t−1(b) and (36) shows thatmaxap

∑
s b(s)R(s, ap) =ρ(b):
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V ρ
t (b) =

[

max
ap

∑

s

b(s)R(s, ap)

+
∑

z

Pr(z|b, πIR(b))V I R
t−1(b

πIR(b),z)

]

= V I R
t (b).

�

Results from Sect. 7.1

The following Lemma proves that the error in the value func-
tion remains bounded after application of BG .

Lemma 1 If for all b, ρ(b) ≥ 0,

V π
t (b) ≥ (1 − ε)V ∗

t (b), (42)

and Qπ
t (b, a) is non-negative, monotone, and submodular in

a, then, for ε ∈ [0, 1],
(
BGV π

t

)
(b) ≥ (1 − e−1)(1 − ε)

(
BGV ∗

t

)
(b). (43)

Proof Starting from (42) and, for a given a, on both sides
multiplying γ ≥ 0, taking the expectation over z, and adding
ρ(b) (since ρ(b) ≥ 0 and ε ≤ 1):

ρ(b) + Ez|b,a
[
V π
t (ba,z)

]

≥ (1 − ε)
(
ρ(b) + Ez|b,a

[
V ∗
t (ba,z)

])
.

From the definition of Qπ
t (3), we thus have:

Qπ
t+1(b, a) ≥ (1 − ε)Q∗

t+1(b, a) ∀a. (44)

From Theorem 3, we know

Qπ
t+1

(
b, aGπ

)
≥ (1 − e−1)Qπ

t+1

(
b, a∗

π

)
, (45)

where aGπ = greedy-argmax(Qπ
t+1(b, ·), A+, K ) and

a∗
π = argmaxa Qπ

t+1(b, a). SinceQ
π
t+1(b, a

∗
π ) ≥ Qπ

t+1(b, a)
for any a,

Qπ
t+1

(
b, aGπ

)
≥ (1 − e−1)Qπ

t+1

(
b, aG∗

)
, (46)

where aG∗ = greedy-argmax(Q∗
t (b, ·), A+, K ). Finally,

(44) implies that Qπ
t+1(b, a

G∗ ) ≥ (1 − ε)Q∗
t+1(b, a

G∗ ), so:

Qπ
t+1

(
b, aGπ

)
≥ (1 − e−1)(1 − ε)Q∗

t+1

(
b, aG∗

)

(
BGV π

t

)
(b) ≥ (1 − e−1)(1 − ε)

(
BGV ∗

t

)
(b).

(47)

�

UsingCorollary 1 andLemma 1,we can prove Theorem4.

Theorem 4 If for all policies π , Qπ
t (b, a) is non-negative,

monotone and submodular in a, then for all b,

V G
t (b) ≥ (1 − e−1)2t V ∗

t (b). (48)

Proof By induction on t . The base case, t = 0, holds because
VG
0 (b) = ρ(b) = V ∗

0 (b).
In the inductive step, for all b, we assume that

VG
t−1(b) ≥ (1 − e−1)2t−2V ∗

t−1(b), (49)

and must show that

VG
t (b) ≥ (1 − e−1)2t V ∗

t (b). (50)

Applying Lemma 1 with V π
t = VG

t−1 and (1 − ε) = (1 −
e−1)2t−2 to (49):

(
BGVG

t−1

)
(b) ≥ (1 − e−1)2t−2(1 − e−1)

(
BGV ∗

t−1

)
(b)

VG
t (b) ≥ (1 − e−1)2t−1

(
BGV ∗

t−1

)
(b).

Now applying Corollary 1 with V π
t−1 = V ∗

t−1:

VG
t (b) ≥ (1 − e−1)2t−1(1 − e−1)

(
B∗V ∗

t−1

)
(b)

VG
t (b) ≥ (1 − e−1)2t V ∗

t (b).
(51)

�

Results from Sect. 7.2

Proving that Qπ
t (b, a) is submodular in a requires three steps.

First, we show thatGπ
k (bt , at ) equals the conditional entropy

of bk over sk given zt :k and at . Second, we show that, under
certain conditions, conditional entropy is a submodular set
function. Third, we combine these two results to show that
Qπ

t (b, a) is submodular.

Lemma 2 If ρ(b) = −Hb(s), then the expected reward at
each time step equals the negative discounted conditional
entropy of bk over sk given zt :k:

Gπ
k (bt , at ) =

(
Hbk (s

k |zt :k, at )
)

=
(
Hat

bk (sk |zt :k)
)

∀ π.

Proof To prove the above lemma, we take help of some addi-
tional notations and definitions, first wemust elaborate on the
definition of bk :
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bk(sk) � Pr
(
sk |bt , at , π, zt :k

)
= Pr(zt :k, sk |bt , at , π)

Pr(zt :k |bt , at , π)
.

(52)

For notational convenience, we also write this as:

bk(sk) �
Prπ

bt ,at (z
t :k, sk)

Prπ
bt ,at (z

t :k)
. (53)

The entropy of bk is thus:

Hbk (s
k) =

∑

sk

Prπ
bt ,at (z

t :k, sk)
Prπ

bt ,at (z
t :k)

log

(
Prπ

bt ,at (z
t :k, sk)

Prπ
bt ,at (z

t :k)

)

,

and the conditional entropy of bk over sk given zt :k is:

Hat

bk (sk |zt :k) =
∑

sk

∑

zt :k
Prπ

bt ,at (z
t :k , sk) log

(
Prπ

bt ,at (z
t :k , sk)

Prπ
bt ,at (z

t :k)

)

.

Then, by definition of Gπ
k (bt , at ),

Gπ
k (bt , at ) =

(
−

∑

zt :k
Prπ

bt ,at (z
t :k)Hbk (s

k)

)

By definition of entropy,

= ∑
zt :k Pr

π
bt ,at (z

t :k)
[

∑
sk

Prπ
bt ,at

(zt :k ,sk )
Prπ

bt ,at
(zt :k) log

(
Prπ

bt ,at
(zt :k ,sk )

Prπ
bt ,at

(zt :k)

)]

=
∑

zt :k

[ ∑

sk

Prπ
bt ,at (z

t :k, sk) log
( Prπ

bt ,at (z
t :k, sk)

Prπ
bt ,at (z

t :k)

)]

By definition of conditional entropy,

=
(

− Hat

bk (sk |zt :k)
)

. �
Lemma 3 If z is conditionally independent given s then
−H(s|z) is submodular in z, i.e., for any two observations
zM and zN ,

H(s|zM ∪zN )+H(s|zM ∩zN ) ≥ H(s|zM )+H(s|zN ). (54)

Proof By Bayes’ rule for conditional entropy (Cover and
Thomas 1991):

H(s|zM ∪ zN ) = H(zM ∪ zN |s) + H(s) − H(zM ∪ zN ). (55)

Using conditional independence, we know H(zM ∪ zN |s) =
H(zM |s) + H(zN |s). Substituting this in (55), we get:

H(s|zM ∪ zN ) = H(zM |s) + H(zN |s) + H(s) − H(zM ∪ zN ). (56)

By Bayes’ rule for conditional entropy:

H(s|zM ∩ zN ) = H(zM ∩ zN |s)+H(s)−H(zM ∩ zN ). (57)

Adding (55) and (57):

H(s|zM ∩ zN ) + H(s|zM ∪ zN )

= H(zM |s) + H(zN |s)
+ H(zM ∩ zN |s) + 2H(s)

− H(zM ∪ zN ) − H(zM ∩ zN ).

(58)

By Bayes’ rule for conditional entropy:

H(zM |s) = H(s|zM ) + H(zM ) − H(s), and

H(zN |s) = H(s|zN ) + H(zN ) − H(s)
(59)

Substituting H(zM |s) and H(zN |s) in (58):

H(s|zM ∩ zN ) + H(s|zM ∪ zN )

= H(s|zM ) + H(s|zN )

+ H(zM ∩ zN |s) + [H(zM )

+ H(zN ) − H(zM ∪ zN ) − H(zM ∩ zN )].

Since entropy is submodular [H(zM )+ H(zN )− H(zM ∪
zN ) − H(zM ∩ zN )] is positive and since entropy is positive,
H(zM ∩ zN |s) is positive. Thus,

H(s|zM ∩ zN ) + H(s|zM ∪ zN ) = H(s|zM ) + H(s|zN )

+ a positive term.

This implies H(s|zM ∪ zN ) + H(s|zM ∩ zN ) ≥ H(s|zM ) +
H(s|zN ). �

Lemma 4 If zt :k is conditionally independent given sk and
ρ(b) = −Hb(s), then Gπ

k (bt , at ) is submodular in at ∀ π .

Proof Let atM and atN be two actions and zt :kM and zt :kN the
observations they induce. Then, from Lemma 2,

Gπ
k

(
bt , atM

) =
(
−Hat

bk

(
sk |zt :kM

))
. (60)

From Lemma 3,

Hat

bk

(
sk |zt :kM ∪ zt :kN

)
+ Hat

bk

(
sk |zt :kM ∩ zt :kN

)

≥ Hat

bk

(
sk |zt :kM

)
+ Hat

bk

(
sk |zt :kN

)

Using definition of G

Gπ
k

(
bt , atM ∪ atN

) + Gπ
k

(
bt , atN ∩ atM

)

≤ Gπ
k

(
bt , atM

) + Gπ
k

(
bt , atN

)
. �

Theorem 5 If zt :k is conditionally independent given sk and
ρ(b) = −Hb(s), then Qπ

t (b, a) is submodular in a, for all
π .
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Proof ρ(b) is trivially submodular in a because it is inde-
pendent of a. Furthermore, Lemma 4 shows that Gπ

k (bt , at )
is submodular in at . Since a positively weighted sum of sub-
modular functions is also submodular (Krause and Golovin
2014), this implies that

∑t−1
k=1 G

π
k (bt , at ) and thus Qπ

t (b, a)
are also submodular in a. �

Lemma 5 If V π
t is convex over the belief space for all t ,

then Qπ
t (b, a) is monotone in a, i.e., for all b and aM ⊆ aN ,

Qπ
t (b, aM ) ≤ Qπ

t (b, aN ).

Proof By definition of Qπ
t (b, a),

Qπ
t (b, aM ) = [

ρ(b) + EzM

[
V π
t−1(b

aM ,zM )|b, aM
]]

. (61)

Since ρ(b) is independent of aM , we need only show that the
second term is monotone in a. Let aP = aN \ aM and

Fπ
b (aN ) = EzN

[
V π
t−1(b

aN ,zN )||b, aN
]
. (62)

Since aN = {aM ∪ aP },

Fπ
b (aN ) = E{zM ,zP }

[
V π
t−1(b

{aM ,aP },{zM ,zP })|b, {aM , aP }
]
.

Separating expectations,

Fπ
b (aN )

= EzM

[
EzP

[
V π
t−1(b

{aM ,aP },{zM ,zP })|b, aP
]
|b, aM

]

Applying Jensen’s inequality, since V π
t−1 is convex,

Fπ
b (aN ) ≥ EzM

[
V π
t−1

(
EzP

[
baM ,aP ,zM ,zP |b, aP

]) ||b, aM
]

Since the expectation of the posterior is the prior,

Fπ
b (aN ) ≥ EzM

[
V π
t−1

(
baM ,zM

) |b, aM
]

Fπ
b (aN ) ≥ Fπ

b (aM ).
(63)

Consequently, we have:

ρ(b) + Fπ
b (aN ) ≥ ρ(b) + Fπ

b (aM )

Qπ
t (b, aN ) ≥ Qπ

t (b, aM ).
(64)

�

Lemma 5 requires that V π
t be convex in belief space. To

establish this for VG
t , we must first show that BG preserves

the convexity of the value function:

Lemma 6 If ρ and V π
t−1 are convex over the belief simplex,

then BGV π
t−1 is also convex.

Proof

BGV π
t−1(b) = G

max
a

[

ρ(b) +
∑

z

Pr(z|b, a)V π
t−1(b

a,z)

]

= ρ(b) +
∑

z

Pr(z|b, aG)V π
t−1(b

aG ,z).

The updated belief is ba
G ,z(s) = Pr(z,s|aG ),b

Pr(z|aG ,b)
, which is the

same as ω in Lemma A.1 in Araya-López et al. (2010). Thus
by direct application of Lemma A.1 in Araya-López et al.
(2010), BGV π

t−1(b) is convex. �

Theorem 6 If zt :k is conditionally independent given sk and
ρ(b) = −Hb(s) + log( 1

|S| ), then for all b,

V G
t (b) ≥ (1 − e−1)2t V ∗

t (b). (65)

Proof Follows from Theorem 4, given QG
t (b, a) is non-

negative, monotone and submodular. For ρ(b) = −Hb(s) +
log( 1

|S| ), it is easy to see that QG
t (b, a) is non-negative, as

entropy is always positive (Cover and Thomas 1991) and is
maximum when b(s) = 1

|S| for all s (Cover and Thomas

1991). Theorem 5 showed that QG
t (b, a) is submodular if

ρ(b) = −Hb(s). The monotonicity of QG
t follows the fact

that −Hb(s) is convex (Cover and Thomas 1991): since
Lemma 6 shows that BG preserves convexity, VG

t is con-
vex if ρ(b) = −Hb(s); Lemma 5 then shows that QG

t (b, a)
is monotone in a. �

Results from Sect. 7.3

Lemma 7 For all beliefs b, the error between V G
t (b) and

Ṽ G
t (b) is bounded by Cδα . That is, ||VG

t − Ṽ G
t ||∞ ≤ Cδα .

Proof Follows exactly the strategy by Araya-López et al.
(2010) used to prove (27), which places no conditions on π

and thus holds as long asBG is a contraction mapping. Since
for any policy the Bellman operator Bπ defined as:

(
BπVt−1

)
(b)

=
[

ρ(b, aπ ) +
∑

z∈Ω

Pr(z|aπ , b)Vt−1(b
aπ ,z)

]

,

is a contraction mapping (Bertsekas 2007), the bound holds
for Ṽ G

t . �
Letη=Cδα and Q̃∗

t (b, a)= ρ̃(b)+∑
z Pr(z|b, a)Ṽ ∗

t−1(b
a,z)

denote the value of taking action a in belief b under an opti-
mal policy. Let Q̃G

t (b, a) = ρ̃(b)+∑
z Pr(z|b, a)Ṽ G

t−1(b
a,z)

be the action-value function computed by greedy PBVI with
immediate reward being ρ̃(b). Also, let
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Q̃π
t (b, a) = ρ̃(b) +

∑

z

Pr(z|b, a)Ṽ π
t−1(b

a,z),

Ṽ π
t (b) = ρ̃(b) +

∑

z

Pr(z|b, aπ )Ṽ π
t−1(b

aπ ,z),
(66)

denote the value function for a given policy π , when the
belief based reward is ρ̃(b). As mentioned before, it is not
guaranteed that Q̃G

t (b, a) is submodular. Instead, we show
that it is ε-submodular:

Definition 6 The set function f (a) is ε-submodular in a, if
for every aM ⊆ aN ⊆ A+, ae ∈ A+ \ aN and ε ≥ 0,

f (ae ∪ aM ) − f (aM ) ≥ f (ae ∪ aN ) − f (aN ) − ε.

Lemma 8 If ||V π
t−1 − Ṽ π

t−1||∞ ≤ η, and Qπ
t (b, a) is sub-

modular in a, then Q̃π
t (b, a) is ε′-submodular in a for all b,

where ε′ = 8η.

Proof Since, ||V π
t−1 − Ṽ π

t−1||∞ ≤ η, then for all beliefs b,

V π
t−1(b) − Ṽ π

t−1(b) ≤ η, (67)

For a given a, on both sides, take the expectation over z and
since ρ(b) − ρ̃(b) ≤ η, ,

ρ(b) − ρ̃(b) + Ez|b,aV π
t−1(b) − Ez|b,aṼ π

t−1(b) ≤ 2η

Therefore for all b, a,

Qπ
t (b, a) − Q̃π

t (b, a) ≤ 2η (68)

Now since Qπ
t (b, a) is submodular, it satisfies the following

equation,

Qπ
t (b, ae ∪ aM ) − Qπ

t (b, aM ) ≥ Qπ
t (b, ae ∪ aN ) − Qπ

t (b, aN ), (69)

for every aM ⊆ aN ⊆ A+, ae ∈ A+ \ aN For each
action that appear in (69), that is, {ae ∪ aM }, aM , {ae ∪ aN }
and aN , the value computed by Q̃π

t for belief b will be
an approximation to Qπ

t . Thus the inequality in (69) that
holds for Qπ

t , may not hold for Q̃π
t . The worst case possible

is, for some combination of b, {ae ∪ aM }, aM , {ae ∪ aN },
Q̃π

t (b, ae ∪ aM ) and Qπ
t (b, aN ) underestimates the true

value of Qπ
t (b, ae ∪ aM ) and Q̃π

t (b, aN ) by 2η each and
Q̃π

t (b, aM ) and Q̃π
t (b, ae ∪ aN ) overestimates the value

of Qπ
t (b, aM ) and Qπ

t (b, ae ∪ aN ) by 2η each. This can
be written formally as: Q̃π

t (b, ae ∪ aM ) − Q̃π
t (b, aM ) ≥

Q̃π
t (b, ae ∪ aN ) − Q̃π

t (b, aN ) − 8η. �
Lemma 9 If Q̃π

t (b, a) is non-negative, monotone and
ε-submodular in a, then

Q̃π
t (b, aG) ≥ (1 − e−1)Q̃π

t (b, a∗) − 4χK ε, (70)

where χK = ∑K−1
p=0 (1 − K−1)p.

Proof Let a∗ be the optimal set of action features of size K ,
a∗ = argmaxa Q̃π

t (b, a) and let al be the greedily selected set
of size l, that is, al = greedy-argmax(Q̃π

t (b, ·), A+, l)
Also, let a∗ = {a∗

1 . . . a∗
K } be the elements of set a∗. Then,

By monotonicity of Q̃π
t (b, a)

Q̃π
t (b, a∗) ≤ Q̃π

t (b, a∗ ∪ al)

Re-writing as a telescoping sum

= Q̃π
t (b, al) +

K∑

j=1

�Q̃b

(
a∗
j |al ∪ {a∗

1 . . . a∗
j−1}

)

Using Lemma 8, since Q is ε′ − submodular

≤ Q̃π
t (b, al) +

K∑

j=1

�Q̃b
(a∗

j |al) + 4K ε

As al+1 is built greedily from al in order to maximize �Q̃b

≤ Q̃π
t (b, al) +

K∑

j=1

(
Q̃π

t (b, al+1) − Q̃π
t (b, al)

)
+ 4K ε

As |a∗| = K

= Q̃π
t (b, al) + K

(
Q̃π

t (b, al+1) − Q̃π
t (b, al)

)
+ 4K ε

Let δl :=Q̃π
t (b, a∗) − Q̃π

t (b, al), which allows us to rewrite
above equation as: δl ≤ K (δl − δl+1) + 4K ε. Hence,
δl+1 ≤ (1 − 1

K )δl + 4ε. Using this relation recursively, we

can write, δK ≤ (1 − 1
K )K δ0 + 4

∑K−1
p=0 (1 − 1

K )pε. Also,

δ0 = Q̃π
t (b, a∗)− Q̃π

t (b, a0) and using the inequality 1−x ≤
e−x , we can write δK ≤ e− K

K Q̃π
t (b, a∗) + 4

∑K−1
p=0 (1 −

K−1)ε. Substituting δK and rearranging terms (Also χK =∑K−1
p=0 (1− 1

K )p): Q̃π
t (b, aG) ≥ (1−e−1)Q̃π

t (b, a∗)−4χK ε.

�
Theorem 7 For all beliefs, the error between Ṽ G

t (b) and
Ṽ ∗
t (b) is bounded, if ρ(b) = −Hb(s), and zt :k is condition-

ally independent given sk .

Proof Theorem 6 shows that, if ρ(b) = −Hb(s), and zt :k is
conditionally independent given sk , then QG

t (b, a) is sub-
modular. Using Lemma 8, for V π

t = VG
t , Ṽ π

t = Ṽ G
t ,

Qπ
t (b, a) = QG

t (b, a) and Q̃π
t (b, a) = Q̃G

t (b, a), it is easy
to see that Q̃G

t (b, a) is ε-submodular. This satisfies one con-
dition of Lemma 9. The convexity of Ṽ G

t (b) follows from
Lemma 6 and that ρ̃(b) is convex. Given that Ṽ G

t (b) is con-
vex, the monotonicity of Q̃G

t (b, a) follows from Lemma 5.
Since ρ̃(b) is non-negative, Q̃G

t (b, a) is non-negative too.
Now we can apply Lemma 9 to prove that the error gener-
ated by aone-time application of the greedyBellmanoperator
to Ṽ G

t (b), instead of the Bellman optimality operator, is
bounded. It is thus easy to see that the error between Ṽ G

t (b),
produced by multiple applications of the greedy Bellman
operator, and Ṽ ∗

t (b) is bounded for all beliefs. �
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