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Abstract We show by elementary means that every Kan fibration in simplicial sets
can be embedded in a univalent Kan fibration.

Mathematics Subject Classification 55R15 · 55R35 · 55U10 · 18C50

1 Introduction

AKan fibration E → U in the category of simplicial sets is universal in case everyKan
fibration Y → X satisfying certain size restrictions is a homotopy pullback of it. In
this context, a typical such size restriction is to require Y → X to have fibers of cardi-
nality strictly less than a fixed regular cardinal. It was Voevodsky who first constructed
such universal Kan fibrations and observed that the ones he constructed satisfied an
additional property he dubbed univalence. Roughly, a Kan fibration E → U in the
category of simplicial sets is univalent if the path space ofU is equivalent to the space
of equivalences between fibers of E → U ; see Sect. 4 below for a precise formulation.
On the type-theoretic side this corresponds to a novel axiom (“the univalence axiom”),
whose consequences are now being explored by many type theorists (see [12]). Fol-
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1338 B. van den Berg, I. Moerdijk

lowing the work by Voevodsky, others have managed to construct, sometimes with
considerable effort, fibrations which are both univalent and universal in other model
categories (see, for example, [2,4,6,7,10,11]).

In this paper we focus on the construction of univalent fibrations, whether universal
or not. Indeed, we show that any fibration can be embedded, via a homotopy pullback,
into a univalent one living in the same set-theoretic universe. The latter will then be
universal whenever the former is.We give an elementary and detailed proof for the case
of simplicial sets and explain in Remark 6 below how our methods can be extended
to other model categories.

It should be pointed out that in the literature related to type theory, one also considers
a stronger notion of universality, where every small fibration is isomorphic (rather
than homotopy equivalent) to a pullback of the universal one. We will comment on
the difference in Remark 2 below.

Although we were partially motivated by work on homotopy theoretic models of
type theory, wewish to emphasize that our paper uses only basic definitions and results
of the homotopy theory of simplicial sets, and is otherwise entirely self-contained.

2 Notation and background on groupoids

In this section we fix some notation and terminology concerning groupoids, actions
by groupoids on other objects (i.e., representations), nerves, etc.

2.1 Actions

For a groupoid G, we write

ar(G)
s

t
ob(G)

for the sets of arrows and objects ofG, and the source and target maps between them.
Composition is denotedm: ar(G)×ob(G) ar(G) → ar(G). A (left) action ofG on a set
X consists of maps π : X → ob(G) and α: ar(G) ×ob(G) X → X satisfying the usual
identities. We usually write g · x for α(g, x) where g: c → d is an arrow inG and x is
an element of X with π(x) = c. This action gives rise to a new groupoid denoted XG,
with ob(XG) = X and ar(XG) = ar(G) ×ob(G) X . In fact, the arrows x → y in XG

are the arrows g:πx → πy inG with g · x = y. This groupoid is known as the action
groupoid for the action of G on X . It comes equipped with a functor (again) denoted
π : XG → G. Note that for each object c in G, there is a pullback of groupoids

Xc XG

π

1 c G
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Univalent completion 1339

where Xc = π−1(c) ⊆ X is viewed as a discrete groupoid (having identity arrows
only).

2.2 Nerves

For a groupoidG, wewrite N (G) for its nerve. It is the simplicial setwhose n-simplices
are strings of composable arrows

c0
g1

c1 . . .
gn

cn (1)

inG. This definition of the nerve makes sense for any category, not just for groupoids.
But for us, it will be convenient to observe that for a groupoid G, the data (1) can
equivalently be represented in the form

ck

h1

h0 hn

c0 c1 . . . ĉk . . . cn

(2)

where hi : ck → ci is the appropriate composition of gi ’s and their inverses. This
representation has the advantage that all the faces di : N (G)n → N (G)n−1 other than
dk are simply given by deleting the arrow ck → ci . (This observation is related to the
fact that N (G) is in fact a symmetric simplicial set, see, for instance, [5].)

IfG acts on X , then N (XG)n = X ×ob(G) N (G)n . This holds for both presentations
(1) and (2). Thus, an n-simplex in N (XG) can be represented as a pair

(x, c0 → c1 → . . . → cn) (3)

with π(x) = c0, similar to (1), or as a pair

ck

(x, c0 ĉk cn)

(4)

with π(x) = ck , as in (2).

2.3 Simplicial groupoids

The definitions above make sense in any ambient category E with pullbacks, giving
rise to groupoid objects in E , actions on maps X → ob(G) in E , and simplicial objects
N (G) and N (XG) in E . If C• is a cosimplicial object in E and E has the necessary
colimits, one can next take the “geometric realization”

− ⊗Δ C•: EΔop → E : Y �→ Y ⊗Δ C•

to get back to E .

123



1340 B. van den Berg, I. Moerdijk

We will only be interested in the case where E is the category sSets of simplicial
sets itself and C• is the cosimplicial object of standard simplices, Cn = Δ[n]. In this
case, EΔop

is the category bisSets of bisimplicial sets and the geometric realization
is (isomorphic to) the diagonal, which we write as

δ∗: bisSets → sSets.

It sends a bisimplicial set Y = {Yp,q} to its diagonal δ∗(Y ) given by δ∗(Y )n = Yn,n .
We shall have occasion to use the left adjoint to δ∗,

δ!: sSets → bisSets

which is completely determined by its effect on representables,

δ!(Δ[n]) = Δ[n] × Δ[n].

If G is a simplicial groupoid (a groupoid object in sSets) its nerve is a bisimplicial
set, and the diagonal thereof is denoted

BG:= δ∗(NG)

and referred to as the classifying space of G (using “space” as synonymous for sim-
plicial set). In particular, if G acts on a map π : X → ob(G) of simplicial sets, one
obtains a map

π : B(XG) → B(G)

of classifying spaces. Since both nerve and diagonal preserve pullbacks, one obtains
for each object c in G a pullback of simplicial sets

Xc BXG

π

1 BG

(5)

where 1 = Δ[0] is the one-point simplicial set and Xc = π−1(c) ⊆ X .

3 Fibration properties of simplicial groupoids

We will now list some conditions under which simplicial groupoids and their actions
give rise to Kan complexes and Kan fibrations. These statements are all rather ele-
mentary and will be proved in detail.

Theorem 1 Let G be a groupoid in sSets, and (for part (ii)) let G act from the left
on X → ob(G).

123



Univalent completion 1341

(i) If ob(G) is a Kan complex and s: ar(G) → ob(G) is a Kan fibration then BG is
a Kan complex.

(ii) If π : X → ob(G) is a Kan fibration then so is B(XG) → BG.
(iii) If G is transitive, i.e., if (s, t): ar(G) → ob(G) × ob(G) is surjective, then this

map (s, t): ar(G) → ob(G) × ob(G) is a Kan fibration.
(iv) If (s, t): ar(G) → ob(G)×ob(G) is aKanfibration, then for anyobject c ofG, i.e.,

any vertex c in ob(G), there is a natural weak equivalenceG(c, c) → Ω(BG, c).

Remark 1 Part (iii) is what remains for groupoids of the classical fact that simplicial
groups are Kan complexes [3,8]. In part (iv), Ω(BG, c) denotes the loop space of BG
at the base point c. It can be calculated inside simplicial sets as the evident subspace
of BGΔ[1] in case BG is Kan, cf. (i). Part (iv) is well known for simplicial groups,
of course. As to the proofs, we will see that (i) and (ii) can be verified by direct
inspection, while (iv) is an immediate consequence of (ii). The proof of (iii) is slightly
more involved.

Proof of Theorem 1, part (i) The case n = 1 being trivial (since Δ[0] ⊆ Δ[1] is a
retract), choose n > 1 and 0 ≤ k ≤ n, and consider an extension problem of the form

Λk[n] ϕ
BG

Δ[n]
?

By adjointness of δ! and δ∗, this is equivalent to an extension problem of the form

δ!Λk[n] ψ
NG

δ!Δ[n]
?

(6)

in the category of bisimplicial sets. Also, by symmetry of the nerve of a groupoid
[cf. (1) and (2) in Sect. 2 above] it suffices to consider the case k = 0, and represent
n-simplices in the nerve conveniently in the form

c0
gn

g2

g1

c1 c2 . . . cn

(7)

Thus, the data provided by ψ in (6) are matching faces which are diagrams in Gn−1
of the form

123



1342 B. van den Berg, I. Moerdijk

di c0
di gn

di gi

di g1

di c1 ˆdi ci . . . di cn

(8)

for all 0 < i ≤ n, and the problem is to extend this to a diagram (7). (The notation in
(8) is suggestive and should not lead to confusion: we are given these di c j and di g j ,
but not the c j and g j themselves.) Since ob(G) is assumed to be Kan, we can first
extend the di c0, i > 0, to an object c0 in Gn ,

Λ0[n] f
ob(G)

Δ[n],
c0

where f = {di c0}i>0 is the map sending for each i > 0 the face opposite the i th vertex
to di c0. Next, for a fixed j > 0, we are given di g j : di c0 → di c j for all i �= 0, j .
Let Λ0, j [n] → Δ[n] be the union of all the faces except the ones opposite the 0th
and j th vertex (i.e., the union of all the faces containing these two vertices). Then
Λ0, j [n] → Δ[n] is an anodyne extension. Since s: ar(G) → ob(G) is assumed to be
a fibration, we can complete the diagram

Λ0, j [n] {di g j }i
ar(G)

s

Δ[n] c0

g j

ob(G)

where j is fixed and i ranges over all 1, . . . , ĵ , . . . , n, to get a map g j :Δ[n] → ar(G)

as indicated. Doing this for each j > 0 completes the family (8) into a diagram of the
form (7). This proves part (i) of the theorem.

Proof of Theorem 1, part (ii) We have to solve a lifting problem of the form

Λk[n] δ∗N (XG)

Δ[n] δ∗N (G)

(9)

for each n ≥ 0 and each 0 ≤ k ≤ n. Again by symmetry, it suffices to prove
this for k = 0, and we can conveniently represent simplices in the nerves of the
form (1) and (3) of Sect. 2. So the data provided by diagram (9) are an n-simplex

c0
g0

c1 . . .
gn

cn in N (G)n and for each i > 0 an element xi ∈ Xn−1

123



Univalent completion 1343

with π(xi ) = di c0, agreeing on overlapping faces. In particular, diagram (9) provides
us with a commutative square

Λ0[n] {xi }
X

π

Δ[n]

x

c0
ob(G)

(10)

Since π is assumed to be a fibration, there exists a diagonal x :Δ[n] → X in (10),
which defines an n-simplex (x, c0 → · · · → cn) in N (XG) and hence a diagonal in
(9).

Before proving Part (iii), we observe the following elementary properties of Kan
fibrations.

Lemma 1 (“Descent”) Consider a pullback diagram of simplicial sets

Y ′

p′

Y

p

X ′
f

X

in which f is surjective. If p′ is a Kan fibration, then so is p.

Proof Immediate from the definitions.

Lemma 2 (“Quotients”) In a diagram

Z
p

g

Y

f

X,

if g = f ◦ p is a Kan fibration and p is a surjective Kan fibration, then f is a Kan
fibration.

Proof (See also [1, Proposition 4.1]) Consider a lifting problem as on the left

Λk[n] b

i

Y

f

Δ[n] a

?

X

Δ[0]
k

Z

p

Λk[n]
b

c

Y

Let k:Δ[0] → Λk[n] be the k-th vertex. Then by assumption, b ◦ k lifts to Z and we
can next fill the square on the right. Since g is a Kan fibration and gc = ai , there exists
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1344 B. van den Berg, I. Moerdijk

a map h:Δ[n] → Z with gh = a and hi = c. Then ph:Δ[n] → Y is the required lift
in the square on the left above.

Lemma 3 Let H be a simplicial group acting freely on a simplicial set E. Then
E → E/H is a Kan fibration.

Proof Let us write X = E/H and q: E → X for the quotient map. Then the lemma
simply states that the principal H -bundle E → X is a Kan fibration. This is well
known, but here is an elementary proof. Consider the diagram

H H × E
θ

π2

E ×X E

π2

E

q

Δ[0] E = E X

where θ is the isomorphism θ(h, e) = (h · e, e). Since simplicial groups are Kan,
H → Δ[0] is a fibration, and hence so are its pullback H×E → E and the isomorphic
map π2: E ×X E → E . By Lemma 1, q: E → X is a Kan fibration.

Proof of Theorem 1, part iii) Fix a vertex c in ob(G), and write H for the simplicial
group G(c, c). Consider the pullback

E

s

ar(G)

(s,t)

ob(G)
(1,c)

ob(G) × ob(G).

So E = G(−, c) is the simplicial set of arrows into c. The group H acts on E by
composition, and this defines a principal H -bundle. Indeed, as for any groupoid, this
action is free and transitive on the fibres of s. Moreover, these fibres are non-empty by
the assumption that (s, t) is surjective. In particular, s: E → ob(G) is a Kan fibration
by Lemma 3.

The group H also acts freely on the product E × E by the diagonal action, so by
the same lemma, E × E → (E × E)/H is also a Kan fibration. But (E × E)/H is
isomorphic to ar(G) by an isomorphism that fits into

(E × E)/H
∼= ar(G)

(s,t)

E × E
s×s

ob(G) × ob(G)

The diagonal is a Kan fibration by Lemma 2, and hence so is the map on the right.

123



Univalent completion 1345

Proof of Theorem 1, part (iv) Again fix an object c in G, and now consider the pull-
back

D

t

ar(G)

(s,t)

ob(G)
(c,1)

ob(G) × ob(G)

So D = G(c,−) is the simplicial set of arrows out of c. Then t : D → ob(G) is a Kan
fibration since (s, t) is assumed to be. Composition of G defines a left action by G

on D, so by Part (ii) of the theorem we obtain a Kan fibration B(DG) → B(G) with
fibre Dc = G(c, c) [cf. the pullback square (5) in Sect. 2]. But DG is the simplicial
groupoid c/G which has an initial object. So B(DG) is contractible, and the fibre of
B(DG) → B(G) is the loop space.

4 Universal Kan fibrations and univalence

Let us call a simplicial set small if it is countable, and a map small if it has countable
fibres. (Countability is irrelevant here, in the sense that it could be replaced by any
other bound by an infinite regular cardinal.)

Note that if f : Y → X is small, then Quillen’s small object argument [3] gives a
factorisation of f into an anodyne extension Y → Y ′ and a small fibration Y ′ → X .
More generally, any small f fits into a square

Y
∼

f

Y ′

f ′

X
∼

X ′

with horizontal anodyne extensions and a small fibration Y ′ → X ′ into aKan complex.

Definition 1 A small fibration π : E → U is called universal if every small fibration
Y → X fits into a homotopy pullback

Y E

X U.

(That is, the map from Y to the pullback is a (weak) homotopy equivalence.)

Remark 2 As mentioned in the introduction, type theorists also consider a stronger
notion of universality where every small fibration is isomorphic (rather than homotopy
equivalent) to a pullback of the universal E → U . Let us call an E → U with this
property strictly universal. Obviously every strictly universal fibration is universal. But
strictly universal maps are not very well behaved from the point of view of homotopy

123



1346 B. van den Berg, I. Moerdijk

theory [(cf. Proposition 1. (iv) below]. Moreover, since weakly equivalent objects
become isomorphic types in type theory, the weaker notion defined above suffices
for most type-theoretic applications. This applies, for example, to the construction of
models of CZF, or to the fact that univalence implies function extensionality.

We now state some elementary properties of universal fibrations. We omit the
proofs, which are all obvious.

Proposition 1 (i) If
E

p

E ′

p′

U U ′

is a homotopy pullback where p and p′ are small fibrations, then p′ is universal
whenever p is.

(ii) In particular, any small universal fibration E → U can be “completed” into
another one E ′ → U ′ with a Kan complex U ′ as base, as in

E
∼

E ′

U
∼

U ′.

(iii) In a homotopy pullback square as in (i), if U
∼

U ′ is a weak equivalence and
U is Kan then p is universal whenever p′ is.

(iv) In particular, as a property of small fibrations with a Kan complex as a base,
being universal is invariant under (weak) homotopy equivalence.

Let E → U be any fibration. We write End(E) → U × U for the fibration
constructed as the exponential π∗

2 (E)π
∗
1 (E) → U × U in sSets/U × U . Thus, the

fibre over a pair (x, y) of vertices ofU is EEx
y = Hom(Ex , Ey). This fibration contains

a subfibration Eq(E) → U ×U of weak equivalences between fibres. More explicitly,
an n-simplex of Eq(E) over (x, y):Δ[n] → U×U is aweak equivalence x∗E → y∗E
over Δ[n]. (The map Eq(E) → U ×U is again a fibration, since a map x∗E → y∗E
as above is a weak equivalence iff it is one over one or all vertices of Δ[n].)

Next, consider the “constant path” inclusion U → UΔ[1] and its pullback along
UΔ[1] ×U E → UΔ[1]. Both these maps are strong deformation retracts, hence trivial
cofibrations, so the diagonal filling in the diagram below

U E
1

E

UΔ[1] UΔ[1] ×U E

∇

U

123



Univalent completion 1347

gives a “connection” ∇:UΔ[1] ×U E → E overU , orUΔ[1] → End(E) overU ×U ,
which is easily seen to factor through Eq(E) ⊆ End(E). The fibration E → U is said
to be univalent [7] if this map UΔ[1] → Eq(E) is a weak equivalence.

Remark 3 If x, y ∈ U are two vertices in the same component of U then ∇ provides
a (zigzag of) weak equivalence(s) Ex → Ey . Suppose, conversely, that there is no
weak equivalence Ex → Ey if x and y belong to different components ofU . Then by
the long exact sequence of a fibration, univalence is equivalent to the statement that
∇ induces for each base point x0 ∈ U a weak equivalence

∇:Ω(U, x0) → Eq(Ex0),

where Ω(U, x0) is the loop space of U at x0 (constructed as the homotopy fibre of
UΔ[1] → U ×U , or simply as the fibre if U is Kan) and Eq(Ex0) is the simplicial set
of self-equivalences of Ex0 . Indeed, in order to compare the (homotopy) fibres of

UΔ[1] Eq(E)

U ×U

wecan restrict ourselves to diagonal base points, because the (homotopy)fibre of either
map over (x, y) is non-empty iff x and y belong to the same connected component.

Remark 4 Univalence is invariant under (weak) homotopy equivalence, in the sense
that if

E

p

∼
E ′

p′

U
∼

U ′

is a weak equivalence between two fibrations p and p′, then p is univalent iff p′ is.
Vice versa, if E → U and E ′ → U ′ are two univalent universal fibrations then they
fit into such a square. In this sense, “the” universal univalent fibration is unique up to
homotopy.

5 Univalent completion

In this section, we will show that any fibration can be embedded into a univalent one,
in the following sense.

Theorem 2 Let E → U be a fibration. Then there exists a homotopy pullback square

E

p

E ′

p′

U U ′

123



1348 B. van den Berg, I. Moerdijk

where p′ is univalent and U → U ′ is mono. Moreover, if p is small then so is p′, and
if p is universal then so is p′.

Remark 5 It will be obvious from the construction that p′ is small whenever p is.
Moreover, universality of p′ follows from that of p by Proposition 1. Note that, in
contrast, any universal fibration E → U can be trivially embedded into a universal
fibration which is not univalent, such as E+Y → U+X where Y → X is an arbitrary
fibration satisfying the size restrictions.

Proof of Theorem 2 Fix p: E → U , and choose a minimal fibration inside E [3,8]:

M
i

E

U.

Thus, M is a fibrewise deformation retract of E . Moreover, by minimality, any weak
equivalence Mx → My between fibres of M is an isomorphism. Thus, we obtain
maps

Iso(M) = Eq(M)
∼ Eq(E),

and M → U is homotopy equivalent to E → U hence universal whenever E → U
is. Thus, to prove the theorem, we might as well assume that E → U is a minimal
fibration, as we will now do.

Let G be the simplicial groupoid with ob(G) = U and ar(G) = Iso(E). In other
words, ann-simplex in ar(G) is a triple (x, y, α)where x, y:Δ[n] → U andα: x∗E →
y∗E is an isomorphism over Δ[n]. ThenG acts on E → U in the obvious way, so we
obtain a pullback square of simplicial sets

E
j

p

B(EG)

p′

U
i

BG.

Themap p′ on the right is aKan fibration by Theorem 1.(ii).Moreover, since ar(G) →
ob(G) × ob(G) is the Kan fibration Iso(E) = Eq(E) → U × U , it follows from
Theorem 1.(iv) that there is a weak equivalence G(x0, x0) → Ω(BG, x0) for any
vertex x0 in U . But G(x0, x0) = Iso(Ex0) = Eq(Ex0), so this proves that p′ is
univalent provided the condition on connected components is satisfied (cf. Remark 3
above). We conclude the proof by checking this condition: The map i :U → BG is an
isomorphism on vertices, and the fibre of p′ over a vertex i(x) is Ex . If x and y are
in the same connected component of BG then they are related by a weak equivalence
provided by a “connection” ∇ for p′. And conversely, if Ex and Ey are related by a
weak equivalence, then by construction there is an arrow in G from x to y, hence x
and y are in the same connected component of BG. This completes the proof.
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Univalent completion 1349

Remark 6 It is perhaps of interest to remark that it is possible to avoid the use of
minimal fibrations in the proof of Theorem 2. Instead, one can use the following
version of the “group completion theorem” from [9], concerning a category object C
in sSets (rather than a groupoid object G considered before) and an action by C on a
Kan fibration X → Ob(C).

Theorem 3 If C acts on X by weak equivalences, then each pullback square

Xc BXC

1 c BC

is a homotopy pullback.

This is stated in [9, Theorem 2.1] for a category object C with ob(C) discrete, but this
plays no rôle in the proof given there. To say that C acts by weak equivalences simply
means that for each arrow α: c → d in C0, the induced map Xc → Xd is a weak
equivalence. Theorem 2 can now be proved by applying Theorem 3 to the category C
defined by ob(C) = U and ar(C) = Eq(E), the space of equivalences between fibres
of E → U .

This line of proof also applies to versions of Theorem 2 in model categories such
as categories of simplicial presheaves.
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