UvA-DARE (Digital Academic Repository)

Selective [3+1] Fragmentations of P4 by "P" Transfer from a Lewis Acid Stabilized [RP4]- Butterfly Anion

Borger, J.E.; Ehlers, A.W.; Lutz, M.; Slootweg, J.C.; Lammertsma, K.

DOI

10.1002/anie. 201607234
10.1002/ange. 201607234

Publication date
2017
Document Version
Final published version
Published in
Angewandte Chemie, International Edition
License
Article 25fa Dutch Copyright Act
Link to publication

Citation for published version (APA):

Borger, J. E., Ehlers, A. W., Lutz, M., Slootweg, J. C., \& Lammertsma, K. (2017). Selective [3+1] Fragmentations of P_{4} by " P " Transfer from a Lewis Acid Stabilized $\left[\mathrm{RP}_{4}\right.$] Butterfly Anion. Angewandte Chemle, International Edition, 56(1), 285-290.
https://doi.org/10.1002/anie.201607234, https://doi.org/10.1002/ange. 201607234

General rights

It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations

If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You

Selective [3+1] Fragmentations of \mathbf{P}_{4} by " \mathbf{P} " Transfer from a Lewis Acid Stabilized $\left[\mathrm{RP}_{4}\right]^{-}$Butterfly Anion

Jaap E. Borger, Andreas W. Ehlers, Martin Lutz, J. Chris Slootweg, and Koop Lammertsma*

Abstract

Two [3+1] fragmentations of the Lewis acid stabilized bicyclo[1.1.0]tetraphosphabutanide Li[Mes* ${ }_{4}$. $\left.B \mathrm{Ph}_{3}\right] \quad\left(\mathrm{Mes}^{*}=2,4,6-t B u_{3} C_{6} \mathrm{H}_{2}\right)$ are reported. The reactions proceed by extrusion of a P_{1} fragment, induced by either an imidazolium salt or phenylisocyanate, with release of the transient triphosphirene Mes* P_{3}, which was isolated as a dimer and trapped by 1,3-cyclohexadiene as a Diels-Alder adduct. DFT quantum chemical computations were used to delineate the reaction mechanisms. These unprecedented pathways grant access to both $P_{1^{-}}$and $P_{3^{-}}$-containing organophosphorus compounds in two simple steps from white phosphorus.

ThThe conversion of white phosphorus $\left(\mathrm{P}_{4}\right)$ directly into organophosphorus compounds avoids the use of environmentally taxing phosphorus halides, ${ }^{[1]}$ but is hampered by the unpredictable reactivity of the P_{4} tetrahedron. ${ }^{[2]}$ Increased control is possible with a stepwise strategy, in which P_{4} is converted into an "activated" product to enable subsequent selective functionalization. Exemplary are the P_{4}-derived $\mathrm{R}_{2} \mathrm{P}_{5}{ }^{+}$cages \mathbf{A} reported by Weigand and co-workers (Scheme 1a), ${ }^{[3]}$ the carbene-stabilized diphosphene \mathbf{B} reported by Bertrand and co-workers, ${ }^{[4]}$ the transition-metal-activated $\mu, \eta^{1: 1}-\mathbf{P}_{4}$-coordinated diruthenium dication \mathbf{C} of Stoppioni and co-workers, ${ }^{[5]}$ the terminal niobium phosphide \mathbf{D} reported by Figueroa and Cummins, ${ }^{[6]}$ and the bimetallic, butterflytype bicyclo[1.1.0]tetraphosphabutanes \mathbf{E} reported by the research groups of Scheer $(\mathrm{M}=\mathrm{Fe}),{ }^{[7]}$ Scherer $(\mathrm{M}=\mathrm{Fe}),{ }^{[8]}$ and Wolf $(\mathrm{M}=\mathrm{Ni}) \cdot{ }^{[9-11]}$

We discovered that the nucleophilic addition of sterically encumbered aryl lithium reagents to P_{4} in the presence of triarylborane Lewis acids (LAs) grants access to stable Li^{+}

[^0]

Scheme 1. a) Examples of P_{4}-activation products used for subsequent controlled functionalization. b) Lewis acid stabilized $\left[\mathrm{RP}_{4}\right]^{-}$anions and subsequent alkylation reactions. Mes $*=2,4,6-t \mathrm{Bu}_{3} \mathrm{C}_{6} \mathrm{H}_{2}, \mathrm{Dmp}=2,6$ dimesitylphenyl; HOMO of the DFT-optimized geometry of $\mathbf{1} \mathrm{a}^{-}$.
salts 1 of the elusive $\left[\mathrm{RP}_{4}\right]^{-}$butterfly anion (Scheme 1 b). ${ }^{[12]}$ The lone pair at the B-coordinated wing-tip P atom (see HOMO in Scheme 1b) can be alkylated to give the neutral disubstituted bicyclotetraphosphanes \mathbf{F} and \mathbf{H} in high yield. ${ }^{[13]}$ The Lewis acid strength plays an important role in these reactions. That is, the weak Lewis acid BPh_{3} in $\mathbf{1 a}$ spontaneously dissociates from the RP_{4} core upon endocyclic substitution (subsequent isomerization gives \mathbf{F}), ${ }^{[13 b]}$ whereas removal of the strong Lewis acid $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ in $\mathbf{1 b}$ requires an additional step $\left(\mathbf{G} \rightarrow \mathbf{H}\right.$; Scheme 1b). ${ }^{[13 a]}$ The stability of the nonsymmetrical $\mathrm{R}_{2} \mathrm{P}_{4}$ derivatives is governed by steric effects: F with a bulky trityl substituent is indefinitely stable, whereas methyl-substituted \mathbf{H} decomposes in solution. This notion inspired us to target the controlled and selective fragmentation of even smaller tetraphosphabutanes $\mathrm{R}_{2} \mathrm{P}_{4}$.

As a starting point, we focused on protonating $\mathrm{BPh}_{3}{ }^{-}$ stabilized $\mathbf{1}{ }^{[136]}$ and found that the Mes $*{ }_{4}{ }_{4} \mathrm{H}$ formed in situ could be trapped by an N -heterocyclic carbene (NHC) to affect an unprecedented $[3+1]$ fragmentation. After screening various organic carbonyl compounds, we further found that the anionic precursor 1a itself also undergoes [3+1] fragmentation with phenylisocyanate. ${ }^{[14]}$

The protonation of $\mathbf{1}$ a proceeded readily upon addition of the mild proton donor $\left[\mathrm{Me}_{3} \mathrm{NH}\right]\left[\mathrm{BPh}_{4}\right]$ (1.0 equiv) in

Figure 1. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum ($162.0 \mathrm{MHz},\left[\mathrm{D}_{8}\right] \mathrm{THF}, 291 \mathrm{~K}$) recorded directly after mixing 1 a and $\left[\mathrm{Me} \mathrm{e}_{3} \mathrm{NH}\right]\left[\mathrm{BPh} \mathrm{h}_{4}\right]$. Inset shows expanded experimental and simulated (inverted) regions. exo, endo-2: $\left(\delta_{P A}=-82.5, \delta_{P M}=-175.3, \delta_{P X}=-316.5 \mathrm{ppm} ;{ }^{1} \int_{P A, P X}=-202.7,{ }^{1} J_{P M, P X}=-198.5\right.$, ${ }^{2} \int_{\mathrm{PA}, \mathrm{PM}}=19.1,{ }^{1} \mathrm{~J}_{\mathrm{P}, \mathrm{H}}=147.8,{ }^{2} \mathrm{~J}_{\mathrm{P}, \mathrm{H}}$ not resolved, $\left.{ }^{3} \mathrm{~J}_{\mathrm{P}, \mathrm{H}}=17.2 \mathrm{~Hz}\right)$; exo,exo-2 $\left(\delta_{\mathrm{PA}}=-116.9, \delta_{\mathrm{PM}}=-252.9, \delta_{\mathrm{PX}}=-323.5 \mathrm{ppm} ;{ }^{1} \mathrm{JPA}_{\mathrm{PA}, \mathrm{PX}}=-165.5\right.$, ${ }^{1} J_{P M, P X}=-137.0,{ }^{2} J_{P A, P M}=303.9,{ }^{1} J_{P, H}=133.9,{ }^{2} J_{P, H}=11.7,{ }^{3} J_{P, H}=111.1 \mathrm{~Hz}$). The signal marked with an asterisk (*) was assigned to Mes*PH .
$\left[\mathrm{D}_{8}\right]$ THF at room temperature, thus giving full conversion into two isomers of the novel H -substituted bicyclo[1.1.0]tetraphosphabutane 2 (Figure 1). Simulation of the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR resonances ${ }^{[15]}$ revealed AMX_{2} spin systems (inset; inverted) consistent with neutral exo,endo-2 and exo,exo-2 in a 1:0.7 ratio (${ }^{2} J_{\mathrm{PA}, \mathrm{PM}}=19.1$ and 303.9 Hz , respectively). Also, the ${ }^{1} \mathrm{H}$ NMR spectrum confirmed the protonation of anion 1a $\left(\delta\left({ }^{1} \mathrm{H}\right)=-1.34 \quad\left({ }^{1} J_{\mathrm{H}, \mathrm{P}}=147.5 \mathrm{~Hz}, 1 \mathrm{H}\right.\right.$; exo,endo-Mes $\left.{ }^{(} \mathrm{P}_{4} H\right)$ and $0.65\left({ }^{1} \mathrm{~J}_{\mathrm{H}, \mathrm{P}}=133.2 \mathrm{~Hz}, 1 \mathrm{H}\right.$; exo, exoMes $\left.* \mathrm{P}_{4} H\right) \mathrm{ppm}$), which occurred with concurrent $\mathrm{P}-\mathrm{BPh}_{3}$ bond cleavage, as confirmed by the presence of only free BPh_{3} and $\mathrm{Li}\left[\mathrm{BPh}_{4}\right]$ in the ${ }^{11} \mathrm{~B}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum (see the Supporting Information). Thus, the protonation of $\mathbf{1 a}$ provides a unique and facile route to a highly unshielded LA-free $\mathrm{R}_{2} \mathrm{P}_{4}$ derivative to enable the study of its controlled fragmentation.

As expected, $\mathbf{2}$ decomposed slowly at room temperature; after 2 h only Mes* PH_{2} could be detected by ${ }^{31} \mathrm{P}$ NMR spectroscopy. We envisioned a more controlled fragmentation by the formation of $\mathbf{2}$ in the presence of strong donors, for example, by the use of Brønsted acidic imidazolium chlorides, which produce an NHC in situ. ${ }^{[3 c, 16]}$ Indeed, the addition of [IDippH][Cl] (1.1 equiv; IDipp = 1,3-bis(2,6-diisopropylphe-nyl)imidazol-2-ylidene) to a solution of 1a in THF (Scheme 2) resulted in its instant and complete consumption.

The ${ }^{31} \mathrm{P}$ NMR spectrum of the reaction mixture showed the formation of the phosphinidene adduct 3 (IDipp $=\mathrm{PH}$, 13% by ${ }^{31} \mathrm{P}$ NMR; $\left.\delta\left({ }^{31} \mathrm{P}\right)=-137.4 \mathrm{ppm},{ }^{1} J_{\mathrm{P}, \mathrm{H}}=163.6 \mathrm{~Hz}\right)$, thus suggesting that the fragmentation of $\mathbf{2}$ had occurred by transfer of the wing-tip PH to the carbene. Recently, the

Scheme 2. Fragmentation of 1 a with [IDippH][CI].
research groups of Driess, ${ }^{[17]}$ Grützmacher, ${ }^{[18]}$ and Tamm ${ }^{[19]}$ synthesized $\mathbf{3}$ by using instead a phosphasilene, $\mathrm{Na}[\mathrm{OCP}]$, or $\mathrm{P}\left(\mathrm{SiMe}_{3}\right)_{3}$, respectively. Mes* PH_{2} was the other observable P containing product (8% by ${ }^{31} \mathrm{P}$ NMR; $\delta\left({ }^{31} \mathrm{P}\right)=-132.1 \mathrm{ppm}$), whereas the ${ }^{11} \mathrm{~B}$ NMR spectrum revealed a weak resonance signal at 2.6 and a larger signal at -7.4 ppm originating from [IDippH] $\left[\mathrm{BPh}_{3} \mathrm{Cl}\right]$ and IDipp- BPh_{3}, respectively (see the Supporting Information). The formation of the latter adduct frustrates the conversion into $\mathbf{3}$ and results in the decomposition of remaining labile 2 (see above). ${ }^{[20,21]}$

DFT calculations carried out at the ω B97X-D/6-311+ $\mathrm{G}(2 \mathrm{~d}, \mathrm{p}) / / 6-31 \mathrm{G}(\mathrm{d})$ level by using the phenyl analogue of both exo,endo-2 ($\mathbf{2}^{\prime} ; \mathrm{Ph}$ instead of Mes*) and the NHC (Ph instead of Dipp) provided insight into the remarkable

Scheme 3. Relative ω B97X-D/6-311 $+\mathrm{G}(2 \mathrm{~d}, \mathrm{p}) / / 6-31 \mathrm{G}$ (d) energies (in kcal mol^{-1}) for the computed fragmentation pathway leading from exo,endo- $\mathbf{2}^{\prime}$ to $\mathbf{3}^{\prime}$ and $\mathbf{8}^{\prime}$.
formation of 3 (Scheme 3; comparable energies were obtained for exo,exo-2', see the Supporting Information). Nucleophilic attack of the NHC at the most accessible wingtip P atom was computed to first give van der Waals complex $4^{\prime}\left(\Delta E=-10.3 \mathrm{kcal} \mathrm{mol}^{-1}\right)$, which undergoes cleavage of an edge $\mathrm{P}-\mathrm{P}$ bond with a modest barrier ($8.4 \mathrm{kcalmol}^{-1}$) to afford zwitterionic $5^{\prime}\left(\Delta E=-6.6 \mathrm{kcal} \mathrm{mol}^{-1}\right)$. Extrusion of the NHC-phosphinidene adduct $\mathbf{3}^{\prime}$ with the concomitant formation of triphosphirene $\mathbf{6}^{\prime}$ is endothermic $\left(\Delta E=8.2 \mathrm{kcal} \mathrm{mol}^{-1}\right)$. It is likely that $\mathbf{6}^{\prime}$ dimerizes $\left(\Delta \Delta E=-46.1 \mathrm{kcalmol}^{-1}\right)$ to afford the intriguing hexaphosphane $\mathbf{8}^{\prime}$, which was recently synthesized by Schulz and co-workers ($\mathrm{Ph}=\mathrm{Mes}^{*}$) from P_{1} building blocks. ${ }^{[22]}$ We did not observe $\mathbf{8}$ in the ${ }^{31} \mathrm{P}$ NMR spectrum, probably owing to its complex high-order splitting pattern.

Next, we wondered whether [3+1] fragmentation of the anionic precursor $\mathbf{1 a}$ would also be feasible and whether P_{3} compounds would be isolable. Neutral heteroallenes, such as isocyanates, emerged from substrate screening as suitable reagents. In fact, the treatment of $\mathbf{1 a}$ in THF with excess phenylisocyanate ($\mathrm{PhNCO} ; 20$ equiv) afforded directly spirophosphoranide $\operatorname{Li}[7]\left(100 \%\right.$ by ${ }^{31} \mathrm{P}$ NMR; $\delta\left({ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}\right)=$ $-62.6 \mathrm{ppm})$ as well as the tricyclic hexaphosphane Mes* ${ }_{2} \mathrm{P}_{6}$ $\left(8 ; 19 \%\right.$ by ${ }^{31} \mathrm{P}$ NMR; $\delta\left({ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}\right)=-96.1 \quad(\mathrm{~m}, \quad \mathrm{P} 2 / \mathrm{P} 3)$, -107.2 ppm (m, P1); Scheme 4). ${ }^{[22]}$ The two compounds

Scheme 4. Fragmentation of 1 a with PhNCO.
were isolated as analytically pure white powders in $80(\mathrm{Li}[7])$ and 18% yield (8); they were fully characterized by multinuclear NMR spectroscopy, HRMS, and X-ray crystal-structure determination (see the Supporting Information for $\mathbf{8}$).

The molecular structure of $\mathrm{Li}[7]$ revealed a distorted trigonal-bipyramidal geometry around the central phospho-

Figure 2. Polymeric coordination chain of $\mathrm{Li}[7]$ in the crystal (ellipsoids at 30% probability; hydrogen atoms are omitted for clarity; only the major disorder component is shown). ${ }^{[23]}$ Selected bond lengths $[\AA \AA]$ and angles [${ }^{\circ}$]: $\mathrm{P} 1-\mathrm{C} 2 / \mathrm{C} 161.768(8) / 1.855(6), \mathrm{P} 1-\mathrm{N} 1 / \mathrm{N} 31.979(5) / 1.911$ (5), Li1-O1 1.866(10), Li1-O3' 1.870(9); C2-P1-N1 85.3(3), N3-P1-C16 $85.5(3)$, C16-P1-C2 96.8(3), N1-P1-N3 168.3(3). Symmetry codes i: $x+0.5,0.5-\gamma, 1-z$; ii: $x-0.5,0.5-\gamma, 1-z$.
rus atom (Λ-isomer; Figure 2), with the most apicophilic nitrogen atoms in the axial positions and the carbonyl groups and the P lone pair in the equatorial plane. Ion pairing through complexation of the Li^{+}cation to the oxygen atoms of the anion ($\mathrm{Li} 1 \cdots \mathrm{O} 1=1.866(10) \AA$) creates along the crystallographic a-axis a stable (m.p.: $149^{\circ} \mathrm{C}$) one-dimensional coordination polymer, which was found to be insoluble in THF. The formation of $\operatorname{Li}[7]$ from $\mathbf{1} \mathbf{a}$ is fully reminiscent of the reaction of $\mathrm{Na}[\mathrm{OCP}]$ with $\mathrm{RNCO}(\mathrm{R}=\mathrm{Ph}, \mathrm{Cy}, n \mathrm{Bu}),{ }^{[24]}$ in which the 2-phosphaethynolate anion acts as a formal " P^{-}" source, with CO as the leaving group, akin to Mes $* \mathrm{P}_{3}$ in our case. Note that $\mathrm{Na}[\mathrm{OCP}]$ provides the living isocyanate trimerization catalyst $[7]^{-}$as the unstable Na^{+}salt, whereas $\mathrm{Li}[7]$ showed only slight decomposition in $\left[\mathrm{D}_{6}\right] \mathrm{DMSO}$ over a 24 h period.

We resorted again to DFT calculations to provide detailed insight into the fragmentation of $\mathrm{Li}\left[\mathrm{PhP}_{4} \cdot \mathrm{BPh}_{3}\right] \quad\left(\mathbf{1} \mathbf{a}^{\prime}\right.$; Scheme 5; Li^{+}countercations are included, but not shown). Our proposed mechanism starts with the coordination of PhNCO to $\mathbf{1} \mathbf{a}^{\prime}$ to give complex $\mathbf{9}^{\prime}\left(\Delta E=-21.2 \mathrm{kcalmol}^{-1}\right),{ }^{[25]}$ which affords $\mathbf{1 0}^{\prime}$ after $\mathrm{P}-\mathrm{C}$ bond formation ($\Delta E=0.0 \mathrm{kcal}$ $\mathrm{mol}^{-1} ; \Delta E_{a}=15.9 \mathrm{kcal} \mathrm{mol}^{-1}$) at the BPh_{3}-coordinated wingtip phosphorus atom. The anionic carboxamide group of $\mathbf{1 0}^{\prime}$ then attacks the electrophilic C atom of a second phenylisocyanate molecule to give $\mathbf{1 2}^{\prime}\left(\Delta E_{\text {total }}=-36.4 \mathrm{kcal} \mathrm{mol}^{-1}\right)$ via coordination complex $\mathbf{1 1}^{\prime} .{ }^{[25,26]}$ In $\mathbf{1 2}^{\prime}$, the nucleophilic N 2 atom and the wing-tip P 4 atom are in close proximity (2.08 \AA), which enables $\mathrm{P}-\mathrm{N}$ bond formation with concurrent $\mathrm{P}-\mathrm{P}$ bond cleavage $\left(\mathbf{T S}_{11^{2} \cdot 13} ; \Delta E_{\mathrm{a}}=12.0 \mathrm{kcal} \mathrm{mol}^{-1}\right)$. Fragmentation of the resulting compound $\mathbf{1 3}^{\prime}$ generates the BPh_{3} adduct of heterocycle $\mathbf{1 4}^{\prime}$ and triphosphirene $\mathbf{6}^{\prime}$. Whereas this step is energetically uphill ($\Delta E=21.2 \mathrm{kcalmol}^{-1}$), it is significantly moderated by the dimerization of $\mathbf{6}^{\prime}(\Delta E=$ $-46.1 \mathrm{kcal} \mathrm{mol}^{-1}$) as well as by the nucleophilic addition of $\mathbf{1 4}^{\prime}$ to two additional PhNCO molecules to afford the spiro compound $\mathrm{Li}\left[7^{\prime}\right]$ with the liberation of $\mathrm{BPh}_{3}(\Delta E=$ $\left.-29.1 \mathrm{kcalmol}^{-1} ; \Delta E_{\text {overall }}=-90.4 \mathrm{kcalmol}^{-1}\right)$.

Scheme 5. Relative ω B97X-D/6-311 $+\mathrm{G}(2 \mathrm{~d}, \mathrm{p}) / / 6-31 \mathrm{G}(\mathrm{d})$ energies (in kcal mol^{-1}) for the computed fragmentation pathway leading from $\mathbf{1} \mathrm{a}^{\prime}$ to $\mathbf{7}^{\prime}, 8^{\prime}$, and BPh_{3}. $\mathrm{A} \mathrm{Li}^{+}$countercation was included in all anionic species, but is not shown.
1
1a $+[I D i p p H][\mathrm{Cl}] \frac{1,3-\mathrm{CHD}(\mathrm{xs})}{-\mathrm{BPh}_{3}, \mathrm{LiCl}}$

II
1a +PhNCO $\xrightarrow[-\mathrm{BPh}^{2}]{1,3-\mathrm{CHD}(\mathrm{xs})}$

15

Scheme 6. Fragmentation reactions in the presence of 1,3-CHD. Dipp $=2,6-\mathrm{iPr}_{2} \mathrm{C}_{6} \mathrm{H}_{3}$, Mes* $=2,4,6-t \mathrm{Bu}_{3} \mathrm{C}_{6} \mathrm{H}_{2}$. I) [IDippH][Cl] (1.1 equiv), THF, room temperature; II) PhNCO (4 equiv), THF, room temperature.

To confirm the intermediacy of triphosphirene Mes $* \mathrm{P}_{3}$ in the reactions, ${ }^{[27,28]}$ we sought to trap this important P_{3} building block by a Diels-Alder reaction with 1,3-cyclohexadiene (1,3CHD). Satisfyingly, the addition of an excess amount of 1,3CHD (50 equiv) to the reaction mixture of $\mathbf{1 a}$ and either [IDippH][Cl] or PhNCO (Scheme 6) afforded the desired cycloaddition product 15 in $27\left({ }^{31} \mathrm{P}\right.$ NMR) and 69% yield (isolated), respectively, in addition to the " P "-transfer products 3 (30% by ${ }^{31} \mathrm{P}$ NMR) and $\mathrm{Li}[7]$ ($>99 \%$ isolated).

The two ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR resonances of $\mathbf{1 5}$ at -160.9 (P1) and $-195.2 \mathrm{ppm}\left(\mathrm{P} 2 / \mathrm{P} 3\right.$) show a second-order AB_{2} spin system with ${ }^{1} J_{\text {PA,PB }}$ coupling constants of $192.0 \mathrm{~Hz} .{ }^{[15]}$ The molecular structure (Figure 3) reveals a 1-aryl-2,3-dialkyl-substituted

Figure 3. Molecular structure of 15 in the crystal (ellipsoids at 50\% probability; hydrogen atoms are omitted for clarity). ${ }^{[23]}$ Only the major form of the disordered tert-butyl group is shown. Selected bond lengths [\AA] and torsion angles [${ }^{\circ}$]: P1-P2/P3 2.2096(5)/2.2139(5), P2P3 2.1755(6), P1-C1 1.8766(14), P2-C22 1.9210(16), P3-C19 1.9149(16), C23-C24 1.332(2), C21-C20 1.538(2); P1-P2-P3-C19 101.35(6).
organotriphosphirane with a shorter $\mathrm{P} 1-\mathrm{C} 1$ bond (1.8766(14) \AA) than the P2-C22 and P3-C19 bonds (1.9210(16) and $1.9149(16) \AA$, respectively) owing to the different hybridization of their carbon substituents $\left(\mathrm{sp}^{2}\right.$ versus $\left.\mathrm{sp}^{3}\right)$. The product was formed as a single (endo) stereoisomer with the $\mathrm{C}=\mathrm{C}$ double bond (C23-C24 1.332(2) \AA; C20-C21 1.538(2) \AA) positioned opposite to the P1 lone pair. Also, DFT calculations, again at the ω B97X-D/6-311 + G (2d,p)//6-31G(d) level, revealed endo- $\mathbf{1 5}^{\prime}\left(\mathrm{Mes}^{*}=\mathrm{Ph}\right)$ to be thermodynamically and kinetically favored over exo- $\mathbf{1 5}^{\prime}(\Delta E=-34.2$ versus $-30.4 \mathrm{kcalmol}^{-1} ; \Delta E_{\mathrm{a}}=3.5$ versus $6.3 \mathrm{kcal} \mathrm{mol}^{-1}$, respectively), which may be attributed to secondary orbital interactions in the transition state leading to the endo adduct (see the Supporting Information). ${ }^{[29]}$ Diels-Alder adduct 15 is a unique example of a nonsymmetrically substituted tris(organyl) P_{3} species derived directly from P_{4}; as well as the obtained P_{1} products, the formation of adduct $\mathbf{1 5}$ illustrates the versatility of $\mathbf{1 a}$ as a platform for the stepwise preparation of organophosphorus compounds from white phosphorus.

In conclusion, we have shown that the P_{4}-derived Lewis acid stabilized bicyclo[1.1.0]tetraphosphabutanide compound 1a can be utilized as a source of $\mathrm{P}_{1^{-}}$and P_{3}-containing organophosphorus compounds through unprecedented [3+1] fragmentation reactions. Their formation proceeds by the extrusion of a P_{1} fragment, as induced by either an imidazolium salt or isocyanate, with concurrent release of the transient triphosphirene Mes $* \mathrm{P}_{3}$, which can be isolated as a dimer or trapped with 1,3-cyclohexadiene. The latter approach afforded the unique tris(organyl) triphosphirane 15. We anticipate the presented chemistry of $\mathbf{1 a}$ to be a versatile entry point for the design of selective strategies for the fragmentation and functionalization of P_{4}.

Acknowledgements

This research was supported by the Council for Chemical Sciences of the Netherlands Organization for Scientific Research (NWO/CW).

Keywords: anions • fragmentation • Lewis acids organophosphorus compounds • phosphorus

How to cite: Angew. Chem. Int. Ed. 2017, 56, 285-290 Angew. Chem. 2017, 129, 291-296
[1] D. E. C. Corbridge, Phosphorus 2000, Elsevier, Amsterdam, 2000.
[2] For reviews, see: a) M. Peruzzini, L. Gonsalvi, A. Romerosa, Chem. Soc. Rev. 2005, 34, 1038-1047; b) B. M. Cossairt, N. A. Piro, C. C. Cummins, Chem. Rev. 2010, 110, 4164-4177; c) M. Caporali, L. Gonsalvi, A. Rossin, M. Peruzzini, Chem. Rev. 2010, 110, 4178-4235; d) M. Scheer, G. Balázs, A. Seitz, Chem. Rev. 2010, 110, 4236-4256; e) N. A. Giffin, J. D. Masuda, Coord. Chem. Rev. 2011, 255, 1342-1359.
[3] a) M. H. Holthausen, J. J. Weigand, J. Am. Chem. Soc. 2009, 131, 14210-14211; b) J. J. Weigand, M. Holthausen, R. Fröhlich, Angew. Chem. Int. Ed. 2009, 48, 295-298; Angew. Chem. 2009, 121, 301 -304; c) M. H. Holthausen, S. K. Surmiak, P. Jerabek, G. Frenking, J. J. Weigand, Angew. Chem. Int. Ed. 2013, 52, 11078-11082; Angew. Chem. 2013, 125, 11284-11288; d) M. H. Holthausen, J. J. Weigand, Chem. Soc. Rev. 2014, 43, 6639-6657.
[4] J. D. Masuda, W. W. Schoeller, B. Donnadieu, G. Bertrand, Angew. Chem. Int. Ed. 2007, 46, 7052-7055; Angew. Chem. 2007, 119, 7182-7185; for other examples of carbene activation by the group of Bertrand, see: a) O. Back, G. Kuchenbeiser, B. Donnadieu, G. Bertrand, Angew. Chem. Int. Ed. 2009, 48, 5530 5533; Angew. Chem. 2009, 121, 5638-5641; b) C. D. Martin, C. M. Weinstein, C. E. Moore, A. L. Rheingold, G. Bertrand, Chem. Commun. 2013, 49, 4486-4488.
[5] P. Barbaro, C. Bazzicalupi, M. Peruzzini, S. S. Costantini, P. Stoppioni, Angew. Chem. Int. Ed. 2012, 51, 8628-8631; Angew. Chem. 2012, 124, 8756-8759.
[6] a) J. S. Figueroa, C. C. Cummins, J. Am. Chem. Soc. 2003, 125, 4020-4021; b) J. S. Figueroa, C. C. Cummins, Angew. Chem. Int. Ed. 2004, 43, 984-988; Angew. Chem. 2004, 116, 1002-1006; c) J. S. Figueroa, C. C. Cummins, J. Am. Chem. Soc. 2004, 126, 13916-13917; d) N. A. Piro, J. S. Figueroa, J. T. McKellar, C. C. Cummins, Science 2006, 313, 1276-1279.
[7] a) M. Scheer, S. Deng, O. J. Scherer, M. Sierka, Angew. Chem. Int. Ed. 2005, 44, 3755-3758; Angew. Chem. 2005, 117, 3821 3825 ; b) S. Deng, C. Schwarzmaier, C. Eichhorn, O. Scherer, G. Wolmershäuser, M. Zabel, M. Scheer, Chem. Commun. 2008, 4064-4066; c) C. Schwarzmaier, S. Heinl, G. Balázs, M. Scheer, Angew. Chem. Int. Ed. 2015, 54, 13116-13121; Angew. Chem. 2015, 127, 13309-13314.
[8] a) O. J. Scherer, T. Hilt, G. Wolmershäuser, Organometallics 1998, 17, 4110-4112; b) O. J. Scherer, T. Hilt, G. Wolmershäuser, Angew. Chem. Int. Ed. 2000, 39, 1425-1427; Angew. Chem. 2000, 112, 1483-1485.
[9] a) S. Pelties, D. Herrmann, B. de Bruin, F. Hartl, R. Wolf, Chem. Commun. 2014, 50, 7014-7016; b) S. Pelties, A. W. Ehlers, R. Wolf, Chem. Commun. 2016, 52, 6601-6604.
[10] For other examples of P_{4}-derived bicyclo[1.1.0]tetraphosphabutane derivatives, see: a) R. Riedel, H.-D. Hausen, E. Fluck, Angew. Chem. Int. Ed. Engl. 1985, 24, 1056 1057; Angew. Chem. 1985, 97, 1050; b) M. B. Power, A. R. Barron, Angew. Chem. Int. Ed. Engl. 1991, 30, 1353-1354; Angew. Chem. 1991, 103, 1403-1404; c) J.-P. Bezombes, P. B. Hitchcock, M. F. Lappert, J. E. Nycz, Dalton Trans. 2004, 499501; d) A. R. Fox, R. J. Wright, E. Rivard, P. P. Power, Angew. Chem. Int. Ed. 2005, 44, 7729-7733; Angew. Chem. 2005, 117, 7907-7911; e) B. M. Cossairt, C. C. Cummins, New J. Chem. 2010, 34, 1533-1536; f) D. Holschumacher, T. Bannenberg, K. Ibrom, C. G. Daniliuc, P. G. Jones, M. Tamm, Dalton Trans. 2010, 39, 10590-10592; g) S. Khan, R. Michel, J. M. Dieterich, R. A. Mata, H. W. Roesky, J.-P. Demers, A. Lange, D. Stalke, J. Am.

Chem. Soc. 2011, 133, 17889-17894; h) N. A. Giffin, A. D. Hendsbee, T. L. Roemmele, M. D. Lumsden, C. C. Pye, J. D. Masuda, Inorg. Chem. 2012, 51, 11837-11850; i) S. Heinl, S. Reisinger, C. Schwarzmaier, M. Bodensteiner, M. Scheer, Angew. Chem. Int. Ed. 2014, 53, 7639-7642; Angew. Chem. 2014, 126, 7769-7773; j) C. Schwarzmaier, A. Y. Timoshkin, G. Balázs, M. Scheer, Angew. Chem. Int. Ed. 2014, 53, 9077 -9081; Angew. Chem. 2014, 126, 9223-9227; k) S. Heinl, M. Scheer, Chem. Sci. 2014, 5, 3221 - 3225.
[11] For two cationic examples prepared from P_{1} building blocks, see: a) M. Donath, E. Conrad, P. Jerabek, G. Frenking, R. Fröhlich, N. Burford, J. J. Weigand, Angew. Chem. Int. Ed. 2012, 51, $2964-$ 2967; Angew. Chem. 2012, 124, 3018-3021; b) J. Bresien, K. Faust, A. Schulz, A. Villinger, Angew. Chem. Int. Ed. 2015, 54, 6926-6930; Angew. Chem. 2015, 127, 7030-7034.
[12] The anion has never been isolated, but was detected by ${ }^{31} \mathrm{P}$ NMR spectroscopy by Baudler et al., who after the reduction of P_{4} with Na / K naphthalenide observed $\left[\mathrm{HP}_{4}\right]^{-}$at low temperature; $\left[\mathrm{HP}_{4}\right]^{-}$was also recently detected by Mézailles and co-workers by the use of borohydrides: a) M. Baudler, C. Adamek, S. Opiela, H. Budzikiewicz, D. Ouzounis, Angew. Chem. Int. Ed. Engl. 1988, 27, 1059-1061; Angew. Chem. 1988, 100, 1110-1111; b) K. X. Bhattacharyya, S. Dreyfuss, N. Saffon-Merceron, N. Mézailles, Chem. Commun. 2016, 52, 5179-5182.
[13] a) J. E. Borger, A. W. Ehlers, M. Lutz, J. C. Slootweg, K. Lammertsma, Angew. Chem. Int. Ed. 2014, 53, 12836-12839; Angew. Chem. 2014, 126, 13050-13053; b) J. E. Borger, A. W. Ehlers, M. Lutz, J. C. Slootweg, K. Lammertsma, Angew. Chem. Int. Ed. 2016, 55, 613-617; Angew. Chem. 2016, 128, 623-627.
[14] Note that the reaction of $\mathbf{1 a}$ with the metal carbonyl complex $\left[(\mathrm{MeCN}) \mathrm{W}(\mathrm{CO})_{5}\right]$ affords anionic $\mathrm{Li}\left[\mathrm{Mes} * \mathrm{P}_{4} \cdot\left(\mathrm{~W}(\mathrm{CO})_{5}\right)_{2}\right]$ (see Ref. [13b]).
[15] Spectral parameters were determined by iterative full line-shape analysis by using the gNMR simulation program: P.H.M. Budzelaar, gNMR, version 5.0.6.0, 2006.
[16] J. D. Masuda, W. W. Schoeller, B. Donnadieu, G. Bertrand, J. Am. Chem. Soc. 2007, 129, 14180-14181.
[17] K. Hansen, T. Szilvási, B. Blom, S. Inoue, J. Epping, M. Driess, J. Am. Chem. Soc. 2013, 135, 11795-11798.
[18] A. M. Tondreau, Z. Benkő, J. R. Harmer, H. Grützmacher, Chem. Sci. 2014, 5, 1545-1554; P_{4} has also been directly converted into 3: M. Cicač-Hudi, J. Bender, S. H. Schlindwein, M. Bispinghoff, M. Nieger, H. Grützmacher, D. Gudat, Eur. J. Inorg. Chem. 2016, 649-658.
[19] A. Doddi, D. Bockfeld, T. Bannenberg, P. G. Jones, M. Tamm, Angew. Chem. Int. Ed. 2014, 53, 13568-13572; Angew. Chem. 2014, 126, 13786-13790.
[20] $\mathrm{IDipp}-\mathrm{BPh}_{3}$ can be considered as a quenched frustrated Lewis pair (FLP) in equilibrium with its constituents.
[21] For a related FLP system in which the Lewis acid $B\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ was used to activate dihydrogen, see: D. Holschumacher, T. Bannenberg, C. G. Hrib, P. G. Jones, M. Tamm, Angew. Chem. Int. Ed. 2008, 47, 7428-7432; Angew. Chem. 2008, 120, 7538-7542.
[22] J. Bresien, A. Schulz, A. Villinger, Chem. Eur. J. 2015, 21, 18543 18546.
[23] CCDC 1491988, 1491989, and 1491990 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre.
[24] D. Heift, Z. Benkő, H. Grützmacher, A. R. Jupp, J. M. Goicoechea, Chem. Sci. 2015, 6, 4017-4024.
[25] Complexes $\mathbf{9}^{\prime}$ and $\mathbf{1 1}^{\prime}$ feature a $\mathrm{PhNCO} \cdots \mathrm{Li}^{+}$interaction, the energy of which is overestimated and is moderated in solution by the coordination of THF solvent molecules to the Li^{+}cation.
[26] The addition reactions are templated by the Li^{+}cation.
[27] A similar diphosphene intermediate was proposed by Weigand for the NHC-induced $[3+2]$ fragmentation of an $\left[\mathrm{RP}_{5} \mathrm{Cl}\right]^{+}$cage
cation (see Ref. [3c]) and by Bertrand for the reaction of P_{4} with cyclic (alkyl)(amino)carbenes (CAACs; see Ref. [4]).
[28] The triphenyltin analogue was isolated previously through liberation of the corresponding phosphene from a niobium precursor: B. M. Cossairt, C. C. Cummins, Angew. Chem. Int Ed. 2010, 49, 1595-1598; Angew. Chem. 2010, 122, 1639-1642.
[29] This selectivity was also observed by Cossairt and Cummins: a) B. M. Cossairt, C. C. Cummins, Angew. Chem. Int. Ed. 2008

47, 8863-8866; Angew. Chem. 2008, 120, 8995-8998; b) Ref. [28].

Manuscript received: July 26, 2016
Final Article published: November 30, 2016

[^0]: [*] J. E. Borger, Dr. A. W. Ehlers, Dr. J. C. Slootweg,
 Prof. Dr. K. Lammertsma
 Department of Chemistry and Pharmaceutical Sciences Vrije Universiteit Amsterdam
 De Boelelaan 1083, 1081 HV Amsterdam (The Netherlands)
 E-mail: K.Lammertsma@vu.nl
 Dr. M. Lutz
 Crystal and Structural Chemistry
 Bijvoet Center for Biomolecular Research, Utrecht University
 Padualaan 8, 3584 CH Utrecht (The Netherlands)
 Dr. A. W. Ehlers, Prof. Dr. K. Lammertsma
 Department of Chemistry, University of Johannesburg
 Auckland Park, Johannesburg, 2006 (South Africa)
 Dr. A. W. Ehlers, Dr. J. C. Slootweg
 Current address: Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam (The Netherlands)
 (-) Supporting information for this article can be found under: http://dx.doi.org/10.1002/anie. 201607234.

