
UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

Containment of acyclic conjunctive queries with negated atoms or arithmetic
comparisons

Sherkhonov, E.; Marx, M.
DOI
10.1016/j.ipl.2016.12.005
Publication date
2017
Document Version
Final published version
Published in
Information Processing Letters
License
Article 25fa Dutch Copyright Act

Link to publication

Citation for published version (APA):
Sherkhonov, E., & Marx, M. (2017). Containment of acyclic conjunctive queries with negated
atoms or arithmetic comparisons. Information Processing Letters, 120, 30-39.
https://doi.org/10.1016/j.ipl.2016.12.005

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

Download date:11 Nov 2022

https://doi.org/10.1016/j.ipl.2016.12.005
https://dare.uva.nl/personal/pure/en/publications/containment-of-acyclic-conjunctive-queries-with-negated-atoms-or-arithmetic-comparisons(69ddf06c-70b9-48fd-9975-5a38cde5de3b).html
https://doi.org/10.1016/j.ipl.2016.12.005

Information Processing Letters 120 (2017) 30–39
Contents lists available at ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

Containment of acyclic conjunctive queries with negated

atoms or arithmetic comparisons

Evgeny Sherkhonov a,∗,1, Maarten Marx b

a University of Oxford, Parks Road, OX1 3QD, Oxford, UK
b University of Amsterdam, Science Park 904, 1098XH, Amsterdam, Netherlands

a r t i c l e i n f o a b s t r a c t

Article history:
Received 17 June 2015
Received in revised form 2 November 2016
Accepted 16 December 2016
Available online 23 December 2016
Communicated by Jef Wijsen

Keywords:
Databases
Query containment
Conjunctive query

We study the containment problem for conjunctive queries (CQs) expanded with negated
atoms or arithmetic comparisons. It is known that the problem is �P

2 -complete [14,16].
The aim of this article is to find restrictions on CQs that allow for tractable containment.
In particular, we consider acyclic conjunctive queries. Even with the most restrictive form
of acyclicity (Berge-acyclicity), containment is coNP-hard. But for a particular fragment
of Berge-acyclic CQs with negated atoms or arithmetic comparisons —child-only tree
patterns— containment is solvable in PTime.

© 2016 Elsevier B.V. All rights reserved.
1. Introduction

We revisit the containment problem for conjunctive
queries, one of the classical fundamental problems in
database theory. Conjunctive queries (CQs) correspond to
select-from-where SQL queries, a class of most frequent
queries used in practice. The containment problem is to
decide, given two conjunctive queries Q 1 and Q 2, whether,
over every database, the answers of Q 1 are contained in
the answers of Q 2. A well-known result of Chandra and
Merlin is NP-completeness of the containment problem
for CQs [4]. Because of relevance to practice, there have
been a number of papers dedicated to finding syntactic re-
strictions on CQs allowing polynomial-time algorithms for
containment. Acyclic conjunctive queries have been studied
as one of the restrictions [17,8].

Conjunctive queries expanded with negated atoms or
arithmetic comparisons are used in practice as well. The

* Corresponding author at: Wolfson Building, Parks Road, OX1 3QD, Ox-
ford, UK.

E-mail addresses: evgeny.sherkhonov@cs.ox.ac.uk (E. Sherkhonov),
maartenmarx@uva.nl (M. Marx).

1 This work was done while the author was at University of Amsterdam.
http://dx.doi.org/10.1016/j.ipl.2016.12.005
0020-0190/© 2016 Elsevier B.V. All rights reserved.
containment problem is harder for these classes than
for CQs – �P

2 -complete [14,10,15]. There has been little
work on finding fragments of CQs with negated atoms or
comparisons that have tractable query containment. Even
the restriction of acyclicity for CQs has not been consid-
ered in presence of negated atoms or arithmetic compar-
isons. Indeed, acyclicity is a restriction on CQs that allows
polynomial-time containment and, furthermore, the known
�P

2 -lower bounds proofs (both in presence of negated
atoms and comparisons) involve cyclic queries.

In this article we show that in some cases acyclicity
does make containment easier. We show a coNP upper
bound for containment of acyclic conjunctive queries with
negated atoms of bounded arity. Moreover, we show that
containment for acyclic conjunctive queries with arith-
metic comparisons of the form x op c, where x is a vari-
able, c a constant and op a comparison operator from
{=, �=, <, >, ≤, ≥}, is also solvable in coNP. We obtain sev-
eral coNP-hardness results for containment of acyclic CQs
with negated atoms or comparisons. These lower bounds
indicate that the usual notions of acyclicity are not suf-
ficient to obtain tractability, even with the most restric-
tive form of acyclicity – Berge acyclicity [7]. On a positive
side we show that containment for a particular fragment

http://dx.doi.org/10.1016/j.ipl.2016.12.005
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ipl
mailto:evgeny.sherkhonov@cs.ox.ac.uk
mailto:maartenmarx@uva.nl
http://dx.doi.org/10.1016/j.ipl.2016.12.005
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ipl.2016.12.005&domain=pdf

E. Sherkhonov, M. Marx / Information Processing Letters 120 (2017) 30–39 31
Table 1
Complexity of the containment problem: known results and the results of
this article. Here ¬ denotes presence of negated atoms and ACQs denotes
α-acyclic CQs.

Class Complexity

CQs w. ¬ �P
2 -c [14,16]

CQs w. comparisons �P
2 -c [10,15]

ACQs w. ¬, ACQs w. comparisons coNP-c (Theorem 2,
Corollary 1)

Child-only tree patterns w. ¬ PTime (Corollary 2)
Child-only tree patterns w. comparisons PTime (Corollary 3)

of Berge-acyclic conjunctive queries with negated atoms,
namely child-only tree patterns, is decidable in PTime. We
extend this PTime result to the case with arithmetic com-
parisons. These results are based on the characterization
of containment in terms of existence of a homomorphism.
The latter can be checked by reducing to the known effi-
cient algorithms for positive acyclic queries [8].

The contributions of this article are summarized in Ta-
ble 1. In particular,

• We identify a fragment of CQs with negated atoms for
which containment is coNP-complete: α-acyclic con-
junctive queries with negated atoms of bounded ar-
ity. We derive the same bound for α-acyclic CQs with
arithmetic comparisons.

• Consider the following three conditions on a conjunc-
tive query Q with negated atoms (resp. with arith-
metic comparisons).

(i) Q contains an atom with a constant as an argu-
ment,

(ii) Q is connected,
(iii) Q is Berge-acyclic.
For every class of CQs with negated atoms (arithmetic
comparisons) satisfying at most two of the conditions
(i)–(iii), containment is coNP-hard.

• Although we could not show that CQs with negated
atoms or comparisons satisfying all of (i)–(iii) have
a PTime containment problem, we could do that for
an even further restricted case: CQs corresponding
to XML tree patterns with multiple labels on the
nodes [11]. If these tree patterns only contain either
child or the descendant edges, their expansions with
negated labels or arithmetic comparisons have a PTime

containment problem.

Related work. For (positive) conjunctive queries, contain-
ment and evaluation problems are equivalent. The PTime

result for evaluation of α-acyclic CQs from [17] implies
PTime result for containment. Gottlob et al. [8] proved
that in fact evaluation (and thus containment) is com-
plete for LOGCFL, the class of problems that are logspace
reducible to a context-free language. This class of prob-
lems allows for efficient parallelizable algorithms. Since
then there have been a number of papers on generaliz-
ing the acyclicity condition while keeping the evaluation
and containment problems tractable. Chekuri and Rajara-
man [5] introduced the notion of query width and proved
that containment for CQs with bounded query width is in
PTime. The class of α-acyclic queries is exactly the class of
queries with a query width of 1. Later, Gottlob et al. [9] in-
troduced the notion of hypertree-width. They showed that
CQs of bounded hypertree-width can also be evaluated ef-
ficiently, and, moreover, this class strictly generalizes the
class of queries with bounded query width.

Containment for CQs expanded with negated atoms
and arithmetic comparisons has been considered in [14,
16] and [10,15] respectively. In both cases, containment is
�P

2 -complete. In either of the expansions, the lower bound
proofs involved cyclic CQs. There has been little work
studying restrictions of CQs (in particular, acyclicity) with
negated atoms or arithmetic comparisons that lower the
complexity of containment. In [15], van der Meyden con-
sidered monadic CQs with arithmetic comparisons, which
trivially are a fragment of acyclic CQs with comparisons,
and argued that containment for this class is solvable in
PTime.

Tree pattern containment over trees has received con-
siderable attention as well. Child-only tree patterns are
acyclic queries and thus containment is in PTime. In
fact, any two-combinations of the child, descendant and
the wildcard (empty node label) axes allow PTime con-
tainment [2,11]. When all the three axes are allowed,
the problem becomes coNP-complete [11]. In case label
negation is added to tree patterns, containment becomes
PSpace-complete [6].

Containment for tree patterns expanded with attribute
value comparisons has also been studied in the past. At-
tribute value comparisons are specific to XML documents
(trees), where each node can have a number of asso-
ciated attribute values. In [1] it has been shown that
containment for this fragment is �P

2 -complete. Notably,
the lower bound used a reduction from containment of
CQs with arithmetic comparisons, and used the construct
@a X = @bY that allows to compare attributes of two dis-
tinct nodes. In [13] it has been shown that if only con-
structs of the form @aop c (op ∈ {=, �=, <, >, ≤, ≥}), i.e.,
comparison with a constant only, are allowed, then con-
tainment remains in coNP.

Overview. Section 2 recalls the needed concepts and no-
tation. Section 3 is about our coNP completeness results.
Section 4 contains the PTime results for the expanded tree
patterns. We end with conclusions, open problems and fu-
ture work.

2. Preliminaries

A relational schema S is a set of relational names with
associated arities. We assume countably infinite disjoint
sets of variables and constants Var and Const. A term is
an element from Var ∪ Const. We also assume a dense lin-
ear order < on Const. For tuples of terms x̄ and ȳ, by
x̄ ⊆ ȳ we denote the fact that every element of x̄ is an el-
ement of ȳ. An instance I over S is a set of facts of the
form R(a1, . . . , an), where R ∈ S is a relational name of ar-
ity n and each ai ∈ Const. By dom(I) we denote the domain
of I , i.e., the constants appearing in I . A positive atom (or
just an atom) and a negated atom are expressions of the
form R(x1, . . . , xn) and ¬R(x1, . . . , xn) respectively, where
R ∈ S is a relational name of arity n and each xi is a term.

32 E. Sherkhonov, M. Marx / Information Processing Letters 120 (2017) 30–39
For k ≥ 1, an expression Q(x̄) = ∃ ȳϕ(x̄, ȳ), where x̄ is
a k-tuple of variables, is a k-ary conjunctive query (CQ)
if ϕ(x̄, ȳ) is a conjunction of positive atoms with vari-
ables from x̄ and ȳ only. We say that Q(x̄) = ∃ ȳϕ(x̄, ȳ)

is a k-ary conjunctive query with negated atoms (CQ¬) if
ϕ(x̄, ȳ) is a conjunction of atoms and negated atoms. Like-
wise, Q(x̄) = ∃ ȳϕ(x̄, ȳ) is a k-ary conjunctive query with
arithmetic comparisons (CQcomp) if ϕ(x̄, ȳ) is a conjunc-
tion of atoms and expressions of the form x op c, where
op ∈ {=, �=, <, >, ≤, ≥}, x ∈ Var is a variable from x̄, ȳ, and
c ∈ Const. Note that we do not allow comparisons of the
form x op y, where x and y are both variables. As usual,
we stipulate that each variable in x̄ occurs in some con-
junct of ϕ . A 0-ary query is called Boolean. A CQ¬ query
Q is consistent if an atom and its negation do not appear
in Q at the same time. We say that a CQcomp query Q is
consistent if the comparisons of Q are consistent.

For a positive or negated atom P and a conjunctive
query with negated atoms or arithmetic comparisons Q,
P ∈ Q denotes the fact that P is a conjunct of Q. We
denote by V ar(Q), Const(Q) and Term(Q) the sets of vari-
ables, constants and terms occurring in Q. We say that
Q is connected if for every pair t and t′ of terms in Q,
there is a sequence of atoms P1, . . . , Pn in Q such that
t ∈ Term(P1), t′ ∈ Term(Pn) and Term(Pi) ∩ Term(Pi+1) �= ∅,
for every i, 1 ≤ i < n.

The answer set of a k-ary CQ¬ query Q(x̄) on an in-
stance I is a k-ary relation Ans(Q, I) ⊆ Constk which con-
sists of all tuples θ(x̄) such that θ : V ar(Q) → dom(I) is
a substitution with the properties that for every positive
atom R(ū) ∈ Q it holds that R(θ(ū)) ∈ I , and for every
negated atom ¬P (v̄) ∈ Q it holds that P (θ(v̄)) /∈ I (here
we assume that θ is identity on Const). The semantics for
conjunctive queries with comparisons is defined similarly.
Now instead of preserving negation, a substitution θ must
preserve the comparisons. That is, if x op c is a comparison
in Q, then θ(x) op c must hold. For a Boolean query Q, by
I |= Q we denote the fact that Ans(Q, I) = {〈〉}. If I |= Q,
we refer to θ that witnesses this fact as a satisfying assign-
ment for Q in I .

Let Q1 and Q2 be CQs of the same arity (with negated
atoms or comparisons). We say that Q1 is contained in Q2,
denoted as Q1 ⊆ Q2, if Ans(Q1, I) ⊆ Ans(Q2, I) holds for
every instance I .

The containment problem for a class of conjunctive
queries C consists of deciding, given Q1 and Q2 from C ,
whether Q1 ⊆Q2.

We follow [8] in the definition of acyclic CQs. Acyclicity
is defined using the notion of a hypergraph. A hypergraph
is a pair H = (V , E), where V is a set of vertices and E ⊆
2V a set of hyperedges. Given a hypergraph H = (V , E),
the GYO-reduct, denoted as GY O (H), is the hypergraph ob-
tained from H by repeatedly applying the following rules
in exhaustive manner:

• Remove hyperedges that are empty or contained in
other hyperedges,

• Remove vertices that appear in at most one hyperedge.

A hypergraph H = (V , E) is α-acyclic if GYO(H) is the
empty hypergraph. The incidence graph of H is the undi-
rected bipartite graph where V ∪ E is the set of vertices
and (x, R) is an edge if and only if x ∈ R . We say that H
is Berge-acyclic if its incidence graph is acyclic. Note that a
Berge-acyclic hypergraph is α-acyclic, but not vice versa.

The hypergraph H(Q) = (V , E) of a CQ¬ query Q is
defined as follows. The set of vertices V = V ar(Q), and for
each atom R(x̄) or a negated atom ¬P (x̄) in Q, the set E
contains a hyperedge consisting of all the variables occur-
ring in x̄. Then Q is α-acyclic (ACQ¬) (resp. Berge-acyclic),
if H(Q) is α-acyclic (resp. Berge-acyclic). A CQcomp query
is α-acyclic (ACQcomp) (resp. Berge-acyclic) if its “relational
part”, i.e., the CQ obtained by removing the comparisons,
is α-acyclic (resp. Berge-acyclic). Here we assume that if
the comparisons of a query entail that x = c, then every
occurrence of x in the query is replaced by c.

Next we give the definition of tree patterns. Essen-
tially, they are tree patterns from [11] where nodes can
have multiple positive and negative labels or attribute
comparisons. As we will see, tree patterns containing
only the child relation can be considered as a fragment
of Berge-acyclic CQs. Let � be a set of node labels.
A tree pattern with label negation P is a node-labeled tree
(N, E, E//, r, l+, l−), where N is the set of nodes, E ∪ E// ⊆
N2 is the edge relation consisting of disjoint child and
descendant relations respectively, r ∈ N is the root, and
l+, l− : N → 2� are positive and negative node labeling
functions. Let additionally A be a set of attribute names. By
�A we denote the set {@aop c | a ∈ A, op ∈ {=, �=, <, >,

≤, ≥}, c ∈ Const}. A tree pattern with attribute comparisons
is a node-labeled tree (N, E, E//, r, l), such that N , E , E//,
r are as above, and l : N → 2�∪�A is a node labeling func-
tion. For a tree pattern P , by Nodes(P) we denote the set
of nodes of P .

We define semantics of tree patterns as follows. Let
G = (dom(G), E ′, r′, ρ) be a graph, where dom(G) is the set
of nodes, E ′ ⊆ dom(G)2 the edge relation, ρ : dom(G) → 2�

is a node labeling function, and r′ ∈ dom(G) is a fixed des-
ignated node. We say that a tree pattern with label nega-
tion P is true in G , or G satisfies P , denoted as G |= P , if
there is a function e : N → dom(G), called embedding of P
in G , such that all of the following hold:

(1) if (x, y) ∈ E , then (e(x), e(y)) ∈ E ′ ,
(2) if (x, y) ∈ E// , then (e(x), e(y)) ∈ E ′ + , where E ′ + is

the transitive closure of E ′ ,
(3) for every x ∈ N , l+(x) ⊆ ρ(e(x)),
(4) for every x ∈ N , l−(x) ∩ ρ(e(x)) = ∅.

We write G |=root P if there is an embedding e of P in G
that additionally satisfies the following condition:

(0) e(r) = r′ .

Semantics of tree patterns with attribute comparisons is
defined over graphs which are additionally equipped with
a partial function att : dom(G) × A → Const. The definition
of G |= P and G |=root P , where P is a tree pattern with
attribute comparisons, is defined similarly to the above
definition, where (3) and (4) are replaced with the follow-
ing conditions:

E. Sherkhonov, M. Marx / Information Processing Letters 120 (2017) 30–39 33
(3’) For every x ∈ N , l(x) ∩ � ⊆ ρ(e(x)),
(4’) For every x ∈ N , if @aop c ∈ l(x), then att(e(x), a) is

defined and att(e(x), a) op c.

We say that a tree pattern with label negation P =
(N, E, E//, r, l+, l−) is consistent if l+(x) ∩ l−(x) = ∅ holds
for every x ∈ N . Similarly, a tree pattern with attribute
comparisons is consistent if the comparisons of every at-
tribute in every node are consistent. Note that a tree pat-
tern P is consistent if and only if there is a graph G
which satisfies P . Furthermore, consistency of a tree pat-
tern can be checked in PTime. For tree patterns with la-
bel negation or comparisons P and Q , we say that P is
contained in Q (resp. root-to-root contained), denoted as
P ⊆ Q (P ⊆root Q), if for every G it holds that G |= P
(G |=root P) implies G |= Q (G |=root Q).

We say that a tree pattern is child-only if the set E//

is empty, and descendant-only if E is empty. In these
cases we omit the relations E// and E respectively. By
a canonical tree for a consistent child-only tree pattern
P = (N, E, r, l+, l−) we mean the tree T P = (N, E, r, l+).
Obviously P is satisfied at the root of its canonical tree,
i.e., T P |=root P .

The containment and root-to-root containment prob-
lems for child-only tree patterns with label negation (with
attribute comparisons) can be reduced to containment for
Boolean CQ¬s (CQcomp s) (cf. [3]) with the following two
translations. For a child-only tree pattern with label nega-
tion P = (N, E, r, l+, l−), we define TR(P) as∧
v∈N,p∈l+(v)

p(v) ∧
∧

u∈N,q∈l−(u)

¬q(u) ∧
∧

〈u,v〉∈E

E(u, v),

where every element in N is an existentially quantified
variable. The result of translation TRr(P) is defined as
TR(P) with the only difference that r is now a constant.
For a child-only tree pattern with attribute comparisons
P = (N, E, r, l), translations TR(P) and TRr(P) are defined
similarly:∧
v∈N,p∈l(v)

p(v) ∧
∧

u∈N,@aop c∈l(u)

(a(u, xu,a) ∧ xu,a op c)

∧
∧

〈u,v〉∈E

E(u, v).

Note that the result of translation of a tree pattern with
label negation (att. comparisons) is a connected Boolean
Berge-acyclic CQ with unary negated atoms (comparisons).
Moreover, negation in this query is guarded (i.e., when for
every negated atom ¬R(x̄) in a query there is an atom
P (ȳ) in the query such that every variable in x̄ occurs
in ȳ).

Proposition 1. Let P1 and P2 be child-only tree patterns with
label negation (attribute comparisons). Then

(i) P1 ⊆ P2 iff TR(P1) ⊆ TR(P2),
(ii) P1 ⊆root P2 iff TRr(P1) ⊆ TRr(P2).

We will use item (i) of the above proposition to derive
lower bounds in Section 3. In Section 4 we show that root-
to-root containment for child-only tree patterns with label
negation or comparisons is in PTime, implying the same
upper bound for the fragment of acyclic CQs corresponding
to the translation of child-only tree patterns, by item (ii).

3. Containment for acyclic conjunctive queries with
negated atoms or comparisons

We first state the known result on the containment for
CQs with negated atoms or comparisons.

Theorem 1. [10,15,12] The containment problem for CQ¬ and
CQcomp queries is �P

2 -complete.

As noted in the Introduction, the known proofs for the
�P

2 lower bound involve conjunctive queries that are cyclic.
In this section we show that containment for α-acyclic

conjunctive queries with negated atoms of bounded arity
(comparisons) is coNP-complete. We also provide several
coNP lower bounds which help to identify the sources of
intractability. Without loss of generality we can consider
containment for Boolean acyclic CQs. Indeed, the contain-
ment problem for non-Boolean CQs can be reduced in
PTime to containment of Boolean CQs while preserving the
acyclicity restriction.

Proposition 2. Let P and Q be ACQ¬s (ACQcomp s). Then there
exist PTime computable Boolean ACQ¬s (Boolean ACQcomp s)
P ′ and Q′ such that

P ⊆ Q iff P ′ ⊆ Q′.
This also holds for Berge-acyclic queries.

Proof. Let P(x̄) and Q(ȳ) be ACQ¬s (ACQcomp s). We
check if P and Q are consistent which can be done
in PTime [16,15]. If P is not consistent, let P ′ = Q′ =
∃x.P (x). Otherwise, if Q is not consistent or the length
of x̄ and the length ȳ are different, let P ′ = ∃x.P1(x) and
Q′ = ∃x.P2(x) for P1 �= P2. Let P and Q now be consis-
tent, x̄ = (x1, . . . , xn) and ȳ = (y1, . . . , yn), and P1, . . . , Pn
unary relational names that do not appear in P or Q.
Then we define P ′ = ∃x̄.P1(x1) ∧ . . . ∧ Pn(xn) ∧ P(x̄) and
Q′ = ∃ ȳ.P1(y1) ∧ . . . ∧ Pn(yn) ∧ Q(ȳ). Clearly, P ′ and Q′
are PTime computable. Moreover, if P and Q are p-acyclic
(p ∈ {α, Berge}), then P ′ and Q′ are p-acyclic as well. It is
straightforward to show that P ⊆Q iff P ′ ⊆Q′ . �

Thus, in the rest of the article we only consider con-
tainment for Boolean acyclic CQs with negated atoms or
comparisons.

Now we show that restricting CQs with negated atoms
to be acyclic and with negated atoms of bounded arity
makes the containment problem coNP-complete.

Theorem 2. The containment problem for α-acyclic conjunctive
queries with negated atoms of bounded arity (or with arithmetic
comparisons), is in coNP.

Proof. Let P and Q be input queries. A coNP algorithm
then works as follows. We first guess a potential coun-
terexample I , and, second, check whether I |= P and

34 E. Sherkhonov, M. Marx / Information Processing Letters 120 (2017) 30–39
I �|=Q. Lemma 1 below guarantees that it is enough to
guess a counterexample of size polynomial in the sizes of
P and Q. By Lemma 2 below, the second step can be done
in PTime. The acyclicity condition is not used in the proof
of Lemma 1, but it is crucial in the proof of Lemma 2. �
Lemma 1. Let Q1 and Q2 be Boolean α-acyclic CQs with
negated atoms of bounded arity (resp. with arithmetic compar-
isons). If Q1 �Q2 , then there is an instance I such that I |=Q1 ,
I �|=Q2 , and the size of I is polynomial in the sizes of Q1, Q2 .

Proof. We first consider the case of CQs with negated
atoms. By the assumption, for every negated atom ¬R
in Q2, the arity of R is bounded by a constant k. Let I ′ be a
counterexample for Q1 ⊆Q2. Since I ′ |=Q1, there is a sat-
isfying assignment θ : V ar(Q1) → dom(I ′). By θ(V ar(Q1))

we denote the range of θ . Furthermore, by θ(Q1) we de-
note the image of positive atoms in Q1 wrt θ , i.e., the set
{R(θ(x̄)) | R(x̄) ∈Q1}. We then define the instance I as the
set

θ(Q1) ∪ {N(θ(y1), . . . , θ(ym))} ∪
∪ {P (ā) ∈ I ′ | P occurs negatively in Q2,

ā ⊆ θ(V ar(Q1)) ∪ Const(Q1) ∪ Const(Q2)},
where N is a fresh relational name and ȳ = y1, . . . , ym are
the variables of Q1 that appear in a negated atom but not
in a positive atom in Q1. We add the N-fact to I in order
to retain the image of the “unsafe” variables appearing in
a negated atom in Q1.

Note that the size of I is bounded by

|Q1| + |V ar(Q 1)| + |Q2| · (|Term(Q1)| + |Const(Q2)|)k.

Firstly, θ is a satisfying assignment for Q1 in I . Indeed,
the positive atoms are preserved since θ(Q1) ⊆ I . Further-
more, no negated atom in Q1 becomes true under θ : if
¬R(x̄) ∈ Q1, then θ(x̄) ∈ dom(I)|x̄| (since every θ(xi) is ei-
ther in a fact from θ(Q1) or in N(θ(ȳ))) and R(θ(x̄)) /∈ I
(since R(θ(x̄)) /∈ I ′ and R �= N).

Secondly, we show I �|= Q2. Suppose the opposite. This
means there is a satisfying assignment h : V ar(Q2) →
dom(I). We show that h is also a satisfying assignment for
Q2 in I ′ which contradicts the assumption.

• Let R(x̄) ∈Q2. Then R(h(x̄)) ∈ I \ {N(θ(ȳ))} ⊆ I ′ .
• Let ¬R(x̄) ∈ Q2. Then R(h(x̄)) /∈ I . Note that h(x̄) ⊆

θ(V ar(Q1)) ∪ Const(Q1) ∪ Const(Q2). Thus, because of
that and the fact that R occurs negatively in Q2, it fol-
lows that R(ā) /∈ I ′ by the definition of I .

We now prove the lemma for the case of arithmetic com-
parisons. Let θ be a satisfying assignment for Q1 in I ′ . We
take I as θ(Q1) = {R(θ(x̄)) | R(x̄) ∈ Q1}. The size of I is
obviously polynomial. I |= Q1 holds because θ is a satis-
fying assignment for Q1 in I . Furthermore, I �|= Q2 holds
since any satisfying assignment for Q2 in I is a satisfying
assignment for Q2 in I ′ . �

The evaluation problem for a class of Boolean queries
C is the following decision problem. Given an instance I ,
a Boolean query Q ∈ C , decide whether Q evaluates to
true in I , i.e., I |=Q.

Lemma 2. The evaluation problem is in PTime for each of the
following classes of Boolean queries:

(i) Boolean α-acyclic conjunctive queries with negated atoms
of bounded arity, and

(ii) Boolean α-acyclic conjunctive queries with arithmetic
comparisons.

Proof. We prove item (i). Let I be an instance and Q a
Boolean α-acyclic CQ where each negated atom is bounded
by a constant k. We make a polynomial reduction to the
evaluation problem for (positive) α-acyclic Boolean CQs
which is known to be in PTime [17,8].

For every relational name R that occurs negatively
in Q, we introduce a new relational name R̃ of the same
arity as R . By Q̃ we denote the result of replacement of
each ¬R(x̄) in Q by R̃(x̄). Note that Q̃ is now an ordinary
CQ. Moreover, Q̃ is α-acyclic because Q is α-acyclic. We
then define the instance

Ĩ = I ∪ {R̃(ā) | ā ⊆ dom(I),¬R(x̄) ∈ Q, and R(ā) /∈ I}.
Note that the size of ̃ I is bounded by |I| + |Q| · |dom(I)|k
which is polynomial in the sizes of I and Q. We claim that
I |=Q if and only if ̃ I |= Q̃.

(⇒). Suppose I |= Q, i.e., there is a satisfying vari-
able assignment θ : V ar(Q) → dom(I). Note that V ar(Q) =
V ar(Q̃) and dom(I) = dom(̃I). We show that θ is a sat-
isfying assignment for Q̃ in Ĩ . The positive atoms from
Q are still preserved since we did not remove any
facts from I . Let R̃(x̄) ∈ Q̃. This means that ¬R(x̄) ∈ Q.
Hence, R(θ(x̄)) /∈ I . Since also θ(x̄) ⊆ dom(I), we have that
R(θ(x̄)) ∈ Ĩ , as needed.

(⇐). Suppose Ĩ |= Q̃, i.e., there is a satisfying assign-
ment θ : V ar(Q̃) → dom(̃I). We show that θ is a satisfying
assignment for Q in I . Positive atoms in Q are preserved
since they are positive atoms in Q̃ as well and θ preserves
them in Ĩ and thus in I . Let ¬R(x̄) ∈ Q. Then R̃(x̄) ∈ Q̃
and R̃(θ(x̄)) ∈ Ĩ . Then by definition of Ĩ , it follows that
R(θ(x̄)) /∈ I , as desired.

Item (ii) is shown similarly. Now each arithmetic com-
parison x op c that occurs in Q is replaced with a new
unary atom Pop c(x). Let Q̃ be the result of this replace-
ment. Let �c be the constants occurring in the compar-
isons of Q. Note that |�c | ≤ |Q|. We define the instance

Ĩ = I ∪ {Pop c(a) | a ∈ dom(I), c ∈ �c,

op ∈ {=, �=,<,>,≤,≥} and a op c}.
Note that the size of ̃I is bounded by |I| + 6 · |Q| · |dom(I)|,
which is polynomial in the sizes of I and Q. It is straight-
forward to show that I |=Q if and only if ̃ I |= Q̃. �
Lower bound

We show that the corresponding coNP lower bound
for containment already holds for child-only tree patterns
with label negation (or att. comparisons). For this, we first

E. Sherkhonov, M. Marx / Information Processing Letters 120 (2017) 30–39 35
Fig. 1. Queries P ′ and Q ′ from Lemma 3.

show that we can allow disjunction on the right hand
side query of the containment problem. We extend the
definition of containment for unions of tree patterns with
label negation (att. comparisons), i.e., expressions of the
form

∨k
i=1 Q i where each Q i is a tree pattern with la-

bel negation (att. comparisons). Let P be a tree pattern
and Q = ∨k

i=1 Q i a union of tree patterns. We say that
P is contained (resp. root-to-root contained) in Q if for ev-
ery G it holds that G |= P (G |=root P) implies that there is
a j ∈ {1, . . . , k} such that G |= Q j (G |=root Q j).

Lemma 3. Let P be a child-only tree pattern with label nega-
tion (resp. attribute comparisons) and Q = ∨k

i=1 Q i a union of
child-only tree patterns with label negation (attribute compar-
isons). There exist PTime computable child-only tree patterns
with label negation (attribute comparisons) P ′ and Q ′ such that

P ⊆root Q if and only if P ′ ⊆ Q ′.

Proof. The proof is similar to the one of Lemma 3 in [11].
Let a, b be node labels not occurring in P or Q . Let Sb be
the child-only tree pattern corresponding to (written as a
CQ¬) b(x) ∧ ∧k

i=1(E(x, yi) ∧ TR(Q i)), where yi is the vari-
able corresponding to the root of Q i , x is not among the
variables of every TR(Q i) and E is the child relation. We
define P ′ and Q ′ as in Fig. 1. In this figure, a circle de-
notes a node, a triangle denotes the tree pattern written
inside the triangle, and a line connecting two circles (or
a circle and a triangle) denotes the child relation between
the two nodes (resp. between the node and the root of the
tree pattern corresponding to the triangle). Clearly P ′ and
Q ′ are child-only tree patterns with label negation and
PTime computable. We verify that P ⊆root Q if and only
if P ′ ⊆ Q ′ .

(⇒). Assume P ⊆root Q . Let I be a graph such that
I |= P ′ . That means there is an embedding θ : Nodes(P ′) →
dom(I). Note that θ is also an embedding of P in I as well,
since P is a subquery of P ′ . Thus, I |= Q , i.e., there ex-
ists an index j, 1 ≤ j ≤ k, such that I |= Q j . The latter
implies there is an embedding h′ of Q j in I . Moreover,
since the containment of P in Q is root-to-root, we must
have that h′ maps the root of Q j to the θ -image of the
Fig. 2. The instance I ′ from Lemma 3.

root of P . Then we define a mapping θ ′ : Nodes(Q ′) → I
as the composition of h with θ , where h is a mapping
from Nodes(Q ′) to Nodes(P ′) that extends h′ and is de-
fined for the other nodes as follows. For every i, 1 ≤ i ≤ k,
we define h(x′

i) := xk− j+i , h(y′
i) = yk− j+i and the nodes of

Q i (i �= j) in Q ′ are mapped “canonically” to the corre-
sponding nodes in Sb . It is easy to see that θ ′ is indeed an
embedding of Q ′ in I .

(⇐). Assume P ′ ⊆ Q ′ . Let I be an instance such that
I |= P and h an embedding of P in I . Let also Ii be
the canonical tree (instance) of Q i (i.e., the instance con-
taining only the positive atoms of Q i and replacing each
variable by a fresh constant). Then we construct the in-
stance I ′ depicted in Fig. 2. Note that I is connected to
the b-node via the h-image of the root of P . By the as-
sumption, it holds that I ′ |= Q ′ , i.e., there is an embedding
θ : Nodes(Q ′) → dom(I ′). In particular, since a only appears
in the vertical span of 2k − 1 nodes in Fig. 2, the span of
k a-nodes of Q′ can only be mapped on that vertical span
in I ′ . Because of this and the fact that a b-node in Q′ must
be mapped to a b-node in I ′ , there must exist an index j
for which θ is an embedding of Q j in I . Moreover, this
embedding maps the root of Q j to the h-image of the root
of P . Thus, I |=root Q j and, therefore, I |=root Q .

The case of child-only tree patterns with attribute com-
parisons is proved similarly. �
Lemma 4. The containment problem P ⊆root

∨m
i=1 Q i is coNP-

hard for each of the following cases:

(i) P , Q i are child-only tree patterns with label negation,
(ii) P , Q i are descendant-only tree patterns with label nega-

tion,
(iii) P , Q i are child-only tree patterns with attribute compar-

isons.

Proof. (i). We reduce 3SAT to the complement of the con-
tainment problem for the stated fragment. Let ϕ be a
conjunction of clauses Ci = (bi

1 ∨ bi
2 ∨ bi

3), 1 ≤ i ≤ k, over
the variables {x1, . . . , xn}, where bi

j are literals, i.e., vari-
ables or their negations. For every clause Ci we introduce

36 E. Sherkhonov, M. Marx / Information Processing Letters 120 (2017) 30–39
a node label ci . Then we define P and Q i over the node
labels ci , 1 ≤ i ≤ k, and x j , 1 ≤ j ≤ n, as follows. We define
P = ({r}, ∅, ∅, r, l+, l−), l+(r) = {c1, . . . , ck} and l−(r) = ∅;
Q i = ({ri}, ∅, ∅, ri, l+i , l−i), ci ∈ l+(ri), x ∈ l−(ri) if bi

j = x and
x ∈ l+(ri) if bi

j = ¬x for x a variable and every j, j = 1, 2, 3.
We claim that ϕ is satisfiable iff P �root

∨k
i=1 Q i . In-

deed, P �root
∨k

i=1 Q i iff there is a graph G = (dom(G), E ′,
ρ, r′) such that G |=root P and G �|=root Q i for every i ∈
1, . . . , k. This is equivalent to respectively the fact that
{c1, . . . , ck} ⊆ ρ(r′) and for every i, i = 1, . . . , k, it holds
that ci /∈ ρ(r′) or there is a j ∈ {1, 2, 3} such that x ∈ ρ(r′)
when bi

j = x or x /∈ ρ(r′) when bi
j = ¬x. In turn this is

equivalent to the fact that ρ(r′) gives rise to a satisfy-
ing variable assignment for ϕ . Note that P and Q i are
also descendant-only tree patterns with label negation, and
thus item (ii) holds.

Item (iii) is proved as follows. Let ϕ be as above.
A child-only tree pattern P is defined as ({r, m1, . . . , mn},
{〈r, m1〉, . . . , 〈r, mn〉}, r, l), where l(mw) = {pw , @a �= 2} for
every w ∈ {1, . . . , n} and l(r) = ∅. Each Q i is defined as
({ri, n1

i , n
2
i , n

3
i }, {〈ri, n1

i 〉, 〈ri, n2
i 〉, 〈ri, n3

i 〉}, ri, li) with li(ri) =
∅, li(n

j
i) = {pw , Bi

j}, where w is such that bi
j = xw or bi

j =
¬xw in Ci , and Bi

j is (@a = 0) iff bi
j = xw and Bi

j is
(@a �= 0) iff bi

j = ¬xw in Ci . It is straightforward to show
that ϕ is satisfiable iff P �root

∨k
i=1 Q i . Indeed, every

counter-example T for the containment gives rise to a sat-
isfying variable assignment V for ϕ , namely V (xw) = 0
if ρatt(e(mw)) = 0 and V (xw) = 1 otherwise, where ρatt
is the attribute function of T and e an embedding of P
into T . Vice versa, for every satisfying variable assignment
for ϕ , we can construct a canonical tree for P which satis-
fies P and falsifies every Q i . �
Corollary 1. The following problems are coNP-hard:

a) Containment for child-only tree patterns with label nega-
tion (attribute comparisons).

b) Containment for Berge-acyclic queries with unary negated
atoms (with comparisons) that are unconnected and con-
tain a constant.

c) Containment for α-acyclic conjunctive queries with unary
negated atoms (with comparisons) that are connected and
contain a constant.

Proof. Item a) follows from Lemmas 3 and 4.
Item b) follows from a). Let P1 ⊆ P2 be an instance of

the containment problem for child-only tree patterns with
label negation (att. comparisons). We then apply Proposi-
tion 1 to obtain the equivalent instance of the containment
problem Q1 ⊆Q2, where Q1 and Q1 are connected Berge-
acyclic queries with unary negated atoms (comparisons).
We then define Q′

i = R(root) ∧Qi , i = 1, 2, where root
is a constant and R a unary relational name. Note that Q′

i
is not a connected query. It is straightforward to show that
Q1 ⊆Q2 if and only if Q′

1 ⊆Q′
2.

For item c) we use a). Let P ⊆ Q be an instance of the
containment problem for child-only tree patterns with la-
bel negation (att. comparisons). We apply Proposition 1,
item (i), to obtain an equivalent problem P ⊆ Q, where
P and Q are Berge-acyclic queries with negated atoms
(comparisons). We construct Boolean α-acyclic conjunc-
tive queries P ′ and Q′ as follows. Let {x1, . . . , xn} be the
variables of P , P a fresh (n + 1)-ary relational name,
root a constant, G a fresh binary relational name, and
r the root (variable) of Q. Then P ′ = P (root, x1, . . . , xn) ∧
P ∧ ∧n

i=1 G(root, xi) and Q′ = G(root, r) ∧Q. Note that
both P ′ and Q′ are α-acyclic queries. In particular, P ′ is
α-acyclic because all its hyperedges are contained in the
hyperedge for P . We show that P ⊆Q iff P ′ ⊆Q′ .

(⇒). Let I be an instance such that I |= P ′ . Thus
there exists a satisfying variable assignment θ : V ar(P ′) →
dom(I). In particular, θ is satisfying for P in I . Let I ′ =
I�θ({x1, . . . , xn}), i.e., the sub-instance of I obtained by re-
stricting the domain to θ({x1, . . . , xn}). Since I ′ |= P , it
holds that I ′ |= Q. Let θ ′ be a satisfying assignment for
Q in I ′ . Then r is mapped to one of θ(x j). Since root
must be mapped to root and G(root, θ(xi)) holds in I
for every i, we have that θ ′ is a satisfying assignment for
Q′ in I .

(⇐). Let I be an instance such that I |= P . Let θ be a
satisfying assignment for P in I . W.l.o.g. we can assume
that I = I�θ(V ar(P)). We then construct the instance I ′ as

I ′ = I ∪ {P (root, θ(x1), . . . , θ(xn)),

G(root, θ(x1)), . . . , G(root, θ(xn))}.
Clearly, θ is a satisfying assignment for P ′ in I ′ . Then
it holds that I ′ |= Q′ . Let θ ′ be a satisfying assignment
for Q′ in I ′ . In particular, V ar(Q) must be mapped to
θ({x1, . . . , xn}) since G is fresh and root is mapped to
root. Thus, θ ′ is a satisfying assignment for Q in I . Thus
I |=Q. �

We say that a conjunctive query with negated atoms or
arithmetic comparisons Q is pointed Berge-acyclic if Q

(i) contains a constant,
(ii) is connected,

(iii) is Berge-acyclic.

Corollary 1 together with Proposition 1 shows that con-
tainment for every class of conjunctive queries with
negated atoms (arithmetic comparisons) that satisfies at
most two of the conditions (i)–(iii) is coNP-hard.

We leave it as an open question whether containment
for pointed Berge-acyclic queries is in PTime. However,
we are able to obtain PTime results for root-to-root con-
tainment of child-only tree patterns with label negation
(comparisons), which by Proposition 1 entails PTime con-
tainment for a particular fragment of pointed Berge-acyclic
queries.

4. Polynomial-time algorithms for containment

In this section we show that root-to-root containment
for child-only tree patterns with label negation is solvable
in PTime. In view of Proposition 1 it implies PTime con-
tainment for a restricted fragment of pointed Berge-acyclic
CQs with negated atoms.

E. Sherkhonov, M. Marx / Information Processing Letters 120 (2017) 30–39 37
We characterize root-to-root containment using homo-
morphisms. Let P = (N, E, r, l+, l−) and Q = (N ′, E ′, r′, l′ +,

l′ −) be child-only tree patterns with label negation. A map-
ping h : N ′ → N is called a homomorphism from Q to P , if
the following are satisfied:

(i) h(r′) = r,
(ii) If (x, y) ∈ E ′ , then (h(x), h(y)) ∈ E ,

(iii) l′ +(x) ⊆ l+(h(x)), for every x ∈ N ′ ,
(iv) l′ −(x) ⊆ l−(h(x)), for every x ∈ N ′ .

Note that the above definition without item (iv) coincides
with the usual definition of homomorphism for tree pat-
terns without negation [11].

Theorem 3. Let P and Q be consistent child-only tree patterns
with label negation. Then P is root-to-root contained in Q if and
only if there exists a homomorphism from Q to P .

Proof. Let P = (N, E, r, l+, l−) and Q = (N ′, E ′, r′, l′ +, l′ −)

be consistent child-only tree patterns with label negation.
(⇐). Assume h : N ′ → N is a homomorphism. Let G =

(dom(G), E ′′, ρ, r′′) be a graph such that G |=root P , i.e.,
there is an embedding e : N → dom(G) with e(r) = r′′ . We
claim that e′ = e ◦ h is an embedding of Q in G . We check
conditions (0)–(4) except (2) (which concerned the transi-
tive closure of E) from the definition of embedding:

(0) e′(r′) = e ◦ h(r′) = e(r) = r′′ ,
(1) Let (x, x′) ∈ E ′ . Then (h(x), h(x′)) ∈ E which implies

(e(h(x)), e(h(x′))) ∈ E ′′ ,
(3) Let x ∈ N ′ and p ∈ l′ +(x). Then p ∈ l+(h(x)), which im-

plies that p ∈ ρ(e(h(x))), as needed,
(4) Let x ∈ N ′ and p ∈ l′ −(x). Then p ∈ l−(h(x)), which im-

plies that p /∈ ρ(e(h(x))), as needed.

(⇒). We show the contrapositive. Suppose there is
no homomorphism from Q to P . We then construct a
counter-example by taking a tree with the same structure
as P . For R a tree pattern and n a node in R , we use R.n
to denote the subtree of R rooted in n. By induction on
depth(P .y), the depth of P .y, we show

(IH) If there is no homomorphism from Q .x to P .y, then
there exists a tree T such that T |=root P .y and
T �|=root Q .x.

Base of induction: depth(P .y) = 0. Then there is no homo-
morphism from Q .x to P .y if either

• there exists a label p ∈ � such that either (i) p ∈ l′ +(x)
and p /∈ l+(y), or (ii) p ∈ l′ −(x) and p /∈ l−(y).
Let T = (N1, E1, r1, ρ1) be the canonical tree of P .y.
Then T |=root P .y. In case (i) holds, T �|=root Q .x since
for every mapping e : Nodes(Q .x) → N1 with e(x) = r1,
we have that p ∈ l′ +(x) and p /∈ ρ1(r1) thus violat-
ing condition (3) in the definition of embedding. In
case (ii) holds, we change T in that we also add p
to the label of r1. Then we still have T |=root P .y
since p /∈ l−(y), and T �|=root Q .x since for every map-
ping e : Nodes(Q .x) → N1 with e(x) = r1, we have that
p ∈ l′ −(x) and p ∈ ρ1(r1) thus violating condition (4)
in the definition of embedding.

• or there exists x′ in N ′ such that (x, x′) ∈ E ′ .
In this case, T �|=root Q .x, since T is of depth 0 and
thus for every mapping e : Nodes(Q .x) → N1 we have
(x, x′) ∈ E ′ and (e(x), e(x′)) /∈ E1, which violates condi-
tion (1) in the definition of embedding.

Step of induction: depth(P .y) > 0 and there is no homo-
morphism from Q .x to P .y. It is because either

• there exists a label p such that either (i) p ∈ l′ +(x)
and p /∈ l+(y), or (ii) p ∈ l′ −(x) and p /∈ l−(y). This
case is treated exactly as the first case in the base of
induction.

• or there exists x′ such that (x, x′) ∈ E ′ and for all yi

with (y, yi) ∈ E it holds that there is no homomor-
phism from Q .x′ to P .yi .
Since depth(P .yi) < depth(P .y) for every such yi , by
the induction hypothesis (IH), it holds that there ex-
ists a tree Ti = (Ni, Ei, ri, ρi) such that Ti |=root P .yi

and Ti �|=root Q .x′ . We can assume that these trees
are pairwise disjoint. We then define the tree T =
(NT , ET , rT , ρT) such that NT = {rT } ∪ ⋃

i Ni , ET =⋃
i(Ei ∪ {(rT , ri)}), and ρ(u) =

{
l+(y) if u = rT ,

ρi(u) if u ∈ Ni .

We claim that T |=root P .y and T �|=root Q .x. The for-
mer is by the construction of T . For the latter, suppose
e is an embedding of Q .x in T with e(x) = rT . In par-
ticular, that means that e is an embedding of Q .x′ to
one of Ti . Thus, Ti |=root Q .x′ , which is a contradiction.

Thus, if there is no homomorphism from Q .r′ to P .r, there
exists a tree such that T |=root P and T �|=root Q . �
Corollary 2. Root-to-root containment for child-only tree pat-
terns with label negation is in PTime.

Proof. Let P ⊆root Q be an instance of the containment
problem, where P and Q are child-only tree patterns with
label negation. We first check if P is consistent. If not, we
output “yes”. If it is consistent, we check if Q is consistent.
If not, we output “no”. Both checks can be done in PTime.
Otherwise, by Theorem 3 it is enough to check existence of
a homomorphism from Q to P . To this purpose, we reduce
the problem to checking existence of a homomorphism for
child-only tree patterns without label negation. The latter
can be done e.g., using a bottom-up procedure [11]. For
each negated label ¬p occurring in P or Q , we introduce
a new label p̃. For a tree pattern with label negation Q ,
by Q̃ we denote the result of replacing each negated label
¬p with the corresponding label p̃. It is straightforward to
verify that there is a homomorphism from Q to P if and
only if there is a homomorphism from Q̃ to P̃ . �

Interestingly, using a similar homomorphism character-
ization, we can prove PTime results for containment of
descendant-only tree patterns with label negation and tree
patterns with attribute comparisons. For each of the cases

38 E. Sherkhonov, M. Marx / Information Processing Letters 120 (2017) 30–39
we introduce the corresponding notion of a homomor-
phism.

Let P = (N, E//, r, l+, l−) and Q = (N ′, E ′
//, r

′, l′ +, l′ −)

be descendant-only tree patterns. A mapping h : N ′ → N
is called a d-homomorphism from Q to P if it satisfies the
conditions (i), (iii) and (iv) of the definition of homomor-
phism, and, furthermore, the following condition:

(ii’) If (x, y) ∈ E ′
// , then (h(x), h(y)) ∈ E+

// .

Let P = (N, E, r, l) and Q = (N ′, E ′, r′, l′) be child-only tree
patterns with attribute comparisons. Then a mapping h :
N ′ → N is called an a-homomorphism from Q to P if it
satisfies the conditions (i), (ii) and (iii’) (where (iii’) is ob-
tained from (iii) by replacing l′ + and l+ with l′ and l), and,
furthermore, the following condition:

(iv’) For every x ∈ N ′ , if @aopc ∈ l′(x) then there must ex-
ist @aop′c′ ∈ l(h(x)) for some op′ and c′ , and, C |=
@a op c, where C is the set of comparisons of a-
attribute in l(h(x)).

The above condition C |= @a op c denotes the fact that the
first-order logic formula

∀x.(
∧

@aop′c′∈C

x op′ c′ → x op c)

is valid with respect to the theory of dense linear orders.
If P and Q are descendant-only tree patterns with at-

tribute comparisons, then h is da-homomorphism from Q
to P if it satisfied the conditions (i), (ii’), (iii’) and (iv’).

The following theorem is proved similarly to Theo-
rem 3.

Theorem 4. The following statements hold.

(i) For P and Q consistent child-only tree patterns with at-
tribute comparisons, it holds that P ⊆root Q if and only if
there exists an a-homomorphism from Q to P .

(ii) For P and Q consistent descendant-only tree patterns
with label negation (resp. with attribute comparisons),
it holds that P ⊆root Q if and only if there exists a d-
homomorphism (resp. da-homomorphism) from Q to P .

Since existence of a d-, da- and a-homomorphism can
be checked in PTime, we obtain the following.

Corollary 3. The root-to-root containment problem is in PTime

for the following classes of queries.

• Descendant-only tree patterns with label negation,
• Descendent-only tree patterns with attribute comparisons,
• Child-only tree patterns with attribute comparisons.

As we mentioned before, child-only tree patterns with
label negation can be viewed as a fragment of pointed
Berge-acyclic conjunctive queries. The precise complexity
for the latter fragment is an open question. In the end of
this section, we give an example showing that the homo-
morphism characterization fails for this fragment.
Example 1. Let Q 1 be the Boolean query R(c, x) ∧ R(c, y) ∧
Q (y)∧ R(z, x) ∧ R(z, w) ∧ ¬Q (w) and Q 2 the Boolean
query R(c, u) ∧ Q (u)∧ R(v, u) ∧ R(v, t) ∧ ¬Q (t), where
c is a constant and all variables are existentially quan-
tified. It can be seen that there is no homomorphism
but the containment holds. Indeed, let I be an instance
such that I |= Q 1, i.e., there is a satisfying variable as-
signment θ : V ar(Q 1) → dom(I). We then define a variable
assignment θ ′ : V ar(Q 2) → dom(I) as the composition of
g : V ar(Q 2) → V ar(Q 1) with θ , where g is defined accord-
ing to the following cases.

• I |= Q (θ(x)). In this case we define g = {u → x, v →
z, t → w}.

• I �|= Q (θ(x)). In this case we define g = {u → y, v →
c, t → x}.

It is straightforward to verify that θ is a satisfying assign-
ment, thus I |= Q 2.

5. Conclusion and future work

In this article we have considered several restrictions
on conjunctive queries with negated atoms or arithmetic
comparisons. We have shown that complexity of contain-
ment can be lowered to coNP if the arity of negated
atoms is bounded. We have also shown several coNP lower
bound proofs that indicate that much stronger restrictions
than α-acyclicity need to be imposed to make containment
tractable. For one particular restricted fragment, namely
child-only tree patterns with label negation, root-to-root
containment is in PTime. We have also shown that root-
to-root containment for child-only tree patterns with at-
tribute comparisons is in PTime. The two main remaining
open problems are:

• What is the complexity of containment for pointed
Berge-acyclic CQs?

• What is the complexity of containment for α-acyclic
CQs with negated atoms (with no bound on the arity
of negated atoms)?

Acknowledgements

We thank the anonymous referees for their valuable
comments. This research was supported by NWO under
project number 612.001.012 (DEX). First author is sup-
ported by EPSRC under an Impact Acceleration Award
(IAA).

References

[1] F.N. Afrati, S. Cohen, G.M. Kuper, On the complexity of tree pattern
containment with arithmetic comparisons, Inf. Process. Lett. 111 (15)
(2011) 754–760.

[2] S. Amer-Yahia, S. Cho, L. Lakshmanan, D. Srivastava, Tree pattern
query minimization, VLDB J. 11 (2002) 315–331.

[3] M. Benedikt, W. Fan, G.M. Kuper, Structural properties of XPath frag-
ments, Theor. Comput. Sci. 336 (1) (2005) 3–31.

[4] A.K. Chandra, P.M. Merlin, Optimal implementation of conjunctive
queries in relational data bases, in: Proc. 9th ACM Symp. on Theory
of Computing, 1977.

http://refhub.elsevier.com/S0020-0190(16)30186-7/bib616672613A636F6D703131s1
http://refhub.elsevier.com/S0020-0190(16)30186-7/bib616672613A636F6D703131s1
http://refhub.elsevier.com/S0020-0190(16)30186-7/bib616672613A636F6D703131s1
http://refhub.elsevier.com/S0020-0190(16)30186-7/bib616D65723A747265653032s1
http://refhub.elsevier.com/S0020-0190(16)30186-7/bib616D65723A747265653032s1
http://refhub.elsevier.com/S0020-0190(16)30186-7/bib62656E653A737472753035s1
http://refhub.elsevier.com/S0020-0190(16)30186-7/bib62656E653A737472753035s1
http://refhub.elsevier.com/S0020-0190(16)30186-7/bib6368616E3A6F7074693737s1
http://refhub.elsevier.com/S0020-0190(16)30186-7/bib6368616E3A6F7074693737s1
http://refhub.elsevier.com/S0020-0190(16)30186-7/bib6368616E3A6F7074693737s1

E. Sherkhonov, M. Marx / Information Processing Letters 120 (2017) 30–39 39
[5] C. Chekuri, A. Rajaraman, Conjunctive query containment revisited,
Theor. Comput. Sci. 239 (2) (2000) 211–229.

[6] A. Facchini, Y. Hirai, M. Marx, E. Sherkhonov, Containment for condi-
tional tree patterns, Log. Methods Comput. Sci. 11 (2) (2015) 4.

[7] R. Fagin, Degrees of acyclicity for hypergraphs and relational data-
base schemes, J. ACM 30 (3) (1983) 514–550.

[8] G. Gottlob, N. Leone, F. Scarcello, The complexity of acyclic conjunc-
tive queries, J. ACM 48 (3) (2001) 431–498.

[9] G. Gottlob, N. Leone, F. Scarcello, Hypertree decompositions and
tractable queries, J. Comput. Syst. Sci. 64 (3) (2002) 579–627.

[10] A.C. Klug, On conjunctive queries containing inequalities, J. ACM
35 (1) (1988) 146–160.

[11] G. Miklau, D. Suciu, Containment and equivalence for a fragment of
XPath, J. ACM 51 (1) (2004) 2–45.
[12] W. Nutt, Ontology and database systems: foundations of database
systems, teaching material, http://www.inf.unibz.it/~nutt/Teaching/
ODBS1314/ODBSSlides/3-conjQueries.pdf, 2013.

[13] E. Sherkhonov, M. Marx, Containment for tree patterns with attribute
value comparisons, in: WebDB 2013, 2013.

[14] J.D. Ullman, Information integration using logical views, Theor. Com-
put. Sci. 239 (2) (2000) 189–210.

[15] R. van der Meyden, The complexity of querying indefinite data about
linearly ordered domains, J. Comput. Syst. Sci. 54 (1) (1997) 113–135.

[16] F. Wei, G. Lausen, Containment of conjunctive queries with safe nega-
tion, in: ICDT 2003, 2003, pp. 343–357.

[17] M. Yannakakis, Algorithms for acyclic database schemes, in: Proc. 7th
Internat. Conf. on Very Large Data Bases, 1981, pp. 82–94.

http://refhub.elsevier.com/S0020-0190(16)30186-7/bib6368656B3A636F6E6A3030s1
http://refhub.elsevier.com/S0020-0190(16)30186-7/bib6368656B3A636F6E6A3030s1
http://refhub.elsevier.com/S0020-0190(16)30186-7/bib666163633A636F6E743135s1
http://refhub.elsevier.com/S0020-0190(16)30186-7/bib666163633A636F6E743135s1
http://refhub.elsevier.com/S0020-0190(16)30186-7/bib666167693A646567723833s1
http://refhub.elsevier.com/S0020-0190(16)30186-7/bib666167693A646567723833s1
http://refhub.elsevier.com/S0020-0190(16)30186-7/bib676F74743A616379633031s1
http://refhub.elsevier.com/S0020-0190(16)30186-7/bib676F74743A616379633031s1
http://refhub.elsevier.com/S0020-0190(16)30186-7/bib676F74743A687970653032s1
http://refhub.elsevier.com/S0020-0190(16)30186-7/bib676F74743A687970653032s1
http://refhub.elsevier.com/S0020-0190(16)30186-7/bib6B6C75673A636F6E6A3838s1
http://refhub.elsevier.com/S0020-0190(16)30186-7/bib6B6C75673A636F6E6A3838s1
http://refhub.elsevier.com/S0020-0190(16)30186-7/bib6D696B6C3A636F6E743034s1
http://refhub.elsevier.com/S0020-0190(16)30186-7/bib6D696B6C3A636F6E743034s1
http://www.inf.unibz.it/~nutt/Teaching/ODBS1314/ODBSSlides/3-conjQueries.pdf
http://www.inf.unibz.it/~nutt/Teaching/ODBS1314/ODBSSlides/3-conjQueries.pdf
http://refhub.elsevier.com/S0020-0190(16)30186-7/bib736865723A636F6E743133s1
http://refhub.elsevier.com/S0020-0190(16)30186-7/bib736865723A636F6E743133s1
http://refhub.elsevier.com/S0020-0190(16)30186-7/bib756C6C6D3A696E666F3030s1
http://refhub.elsevier.com/S0020-0190(16)30186-7/bib756C6C6D3A696E666F3030s1
http://refhub.elsevier.com/S0020-0190(16)30186-7/bib6D6579643A636F6D703937s1
http://refhub.elsevier.com/S0020-0190(16)30186-7/bib6D6579643A636F6D703937s1
http://refhub.elsevier.com/S0020-0190(16)30186-7/bib7765693A636F6E743033s1
http://refhub.elsevier.com/S0020-0190(16)30186-7/bib7765693A636F6E743033s1
http://refhub.elsevier.com/S0020-0190(16)30186-7/bib79616E6E3A616379633831s1
http://refhub.elsevier.com/S0020-0190(16)30186-7/bib79616E6E3A616379633831s1

	Containment of acyclic conjunctive queries with negated atoms or arithmetic comparisons
	1 Introduction
	2 Preliminaries
	3 Containment for acyclic conjunctive queries with negated atoms or comparisons
	Lower bound

	4 Polynomial-time algorithms for containment
	5 Conclusion and future work
	Acknowledgements
	References

