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We study the containment problem for conjunctive queries (CQs) expanded with negated 
atoms or arithmetic comparisons. It is known that the problem is �P

2 -complete [14,16]. 
The aim of this article is to find restrictions on CQs that allow for tractable containment. 
In particular, we consider acyclic conjunctive queries. Even with the most restrictive form 
of acyclicity (Berge-acyclicity), containment is coNP-hard. But for a particular fragment 
of Berge-acyclic CQs with negated atoms or arithmetic comparisons —child-only tree 
patterns— containment is solvable in PTime.

© 2016 Elsevier B.V. All rights reserved.
1. Introduction

We revisit the containment problem for conjunctive 
queries, one of the classical fundamental problems in 
database theory. Conjunctive queries (CQs) correspond to 
select-from-where SQL queries, a class of most frequent 
queries used in practice. The containment problem is to 
decide, given two conjunctive queries Q 1 and Q 2, whether, 
over every database, the answers of Q 1 are contained in 
the answers of Q 2. A well-known result of Chandra and 
Merlin is NP-completeness of the containment problem 
for CQs [4]. Because of relevance to practice, there have 
been a number of papers dedicated to finding syntactic re-
strictions on CQs allowing polynomial-time algorithms for 
containment. Acyclic conjunctive queries have been studied 
as one of the restrictions [17,8].

Conjunctive queries expanded with negated atoms or 
arithmetic comparisons are used in practice as well. The 
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containment problem is harder for these classes than 
for CQs – �P

2 -complete [14,10,15]. There has been little 
work on finding fragments of CQs with negated atoms or 
comparisons that have tractable query containment. Even 
the restriction of acyclicity for CQs has not been consid-
ered in presence of negated atoms or arithmetic compar-
isons. Indeed, acyclicity is a restriction on CQs that allows 
polynomial-time containment and, furthermore, the known 
�P

2 -lower bounds proofs (both in presence of negated 
atoms and comparisons) involve cyclic queries.

In this article we show that in some cases acyclicity 
does make containment easier. We show a coNP upper 
bound for containment of acyclic conjunctive queries with 
negated atoms of bounded arity. Moreover, we show that 
containment for acyclic conjunctive queries with arith-
metic comparisons of the form x op c, where x is a vari-
able, c a constant and op a comparison operator from 
{=, �=, <, >, ≤, ≥}, is also solvable in coNP. We obtain sev-
eral coNP-hardness results for containment of acyclic CQs
with negated atoms or comparisons. These lower bounds 
indicate that the usual notions of acyclicity are not suf-
ficient to obtain tractability, even with the most restric-
tive form of acyclicity – Berge acyclicity [7]. On a positive 
side we show that containment for a particular fragment 
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Table 1
Complexity of the containment problem: known results and the results of 
this article. Here ¬ denotes presence of negated atoms and ACQs denotes 
α-acyclic CQs.

Class Complexity

CQs w. ¬ �P
2 -c [14,16]

CQs w. comparisons �P
2 -c [10,15]

ACQs w. ¬, ACQs w. comparisons coNP-c (Theorem 2, 
Corollary 1)

Child-only tree patterns w. ¬ PTime (Corollary 2)
Child-only tree patterns w. comparisons PTime (Corollary 3)

of Berge-acyclic conjunctive queries with negated atoms, 
namely child-only tree patterns, is decidable in PTime. We 
extend this PTime result to the case with arithmetic com-
parisons. These results are based on the characterization 
of containment in terms of existence of a homomorphism. 
The latter can be checked by reducing to the known effi-
cient algorithms for positive acyclic queries [8].

The contributions of this article are summarized in Ta-
ble 1. In particular,

• We identify a fragment of CQs with negated atoms for 
which containment is coNP-complete: α-acyclic con-
junctive queries with negated atoms of bounded ar-
ity. We derive the same bound for α-acyclic CQs with 
arithmetic comparisons.

• Consider the following three conditions on a conjunc-
tive query Q with negated atoms (resp. with arith-
metic comparisons).

(i) Q contains an atom with a constant as an argu-
ment,

(ii) Q is connected,
(iii) Q is Berge-acyclic.
For every class of CQs with negated atoms (arithmetic 
comparisons) satisfying at most two of the conditions 
(i)–(iii), containment is coNP-hard.

• Although we could not show that CQs with negated 
atoms or comparisons satisfying all of (i)–(iii) have 
a PTime containment problem, we could do that for 
an even further restricted case: CQs corresponding 
to XML tree patterns with multiple labels on the 
nodes [11]. If these tree patterns only contain either 
child or the descendant edges, their expansions with 
negated labels or arithmetic comparisons have a PTime

containment problem.

Related work. For (positive) conjunctive queries, contain-
ment and evaluation problems are equivalent. The PTime

result for evaluation of α-acyclic CQs from [17] implies 
PTime result for containment. Gottlob et al. [8] proved 
that in fact evaluation (and thus containment) is com-
plete for LOGCFL, the class of problems that are logspace 
reducible to a context-free language. This class of prob-
lems allows for efficient parallelizable algorithms. Since 
then there have been a number of papers on generaliz-
ing the acyclicity condition while keeping the evaluation 
and containment problems tractable. Chekuri and Rajara-
man [5] introduced the notion of query width and proved 
that containment for CQs with bounded query width is in 
PTime. The class of α-acyclic queries is exactly the class of 
queries with a query width of 1. Later, Gottlob et al. [9] in-
troduced the notion of hypertree-width. They showed that 
CQs of bounded hypertree-width can also be evaluated ef-
ficiently, and, moreover, this class strictly generalizes the 
class of queries with bounded query width.

Containment for CQs expanded with negated atoms 
and arithmetic comparisons has been considered in [14,
16] and [10,15] respectively. In both cases, containment is 
�P

2 -complete. In either of the expansions, the lower bound 
proofs involved cyclic CQs. There has been little work 
studying restrictions of CQs (in particular, acyclicity) with 
negated atoms or arithmetic comparisons that lower the 
complexity of containment. In [15], van der Meyden con-
sidered monadic CQs with arithmetic comparisons, which 
trivially are a fragment of acyclic CQs with comparisons, 
and argued that containment for this class is solvable in 
PTime.

Tree pattern containment over trees has received con-
siderable attention as well. Child-only tree patterns are 
acyclic queries and thus containment is in PTime. In 
fact, any two-combinations of the child, descendant and 
the wildcard (empty node label) axes allow PTime con-
tainment [2,11]. When all the three axes are allowed, 
the problem becomes coNP-complete [11]. In case label 
negation is added to tree patterns, containment becomes 
PSpace-complete [6].

Containment for tree patterns expanded with attribute 
value comparisons has also been studied in the past. At-
tribute value comparisons are specific to XML documents 
(trees), where each node can have a number of asso-
ciated attribute values. In [1] it has been shown that 
containment for this fragment is �P

2 -complete. Notably, 
the lower bound used a reduction from containment of 
CQs with arithmetic comparisons, and used the construct 
@a X = @bY that allows to compare attributes of two dis-
tinct nodes. In [13] it has been shown that if only con-
structs of the form @aop c (op ∈ {=, �=, <, >, ≤, ≥}), i.e., 
comparison with a constant only, are allowed, then con-
tainment remains in coNP.

Overview. Section 2 recalls the needed concepts and no-
tation. Section 3 is about our coNP completeness results. 
Section 4 contains the PTime results for the expanded tree 
patterns. We end with conclusions, open problems and fu-
ture work.

2. Preliminaries

A relational schema S is a set of relational names with 
associated arities. We assume countably infinite disjoint 
sets of variables and constants Var and Const. A term is 
an element from Var ∪ Const. We also assume a dense lin-
ear order < on Const. For tuples of terms x̄ and ȳ, by 
x̄ ⊆ ȳ we denote the fact that every element of x̄ is an el-
ement of ȳ. An instance I over S is a set of facts of the 
form R(a1, . . . , an), where R ∈ S is a relational name of ar-
ity n and each ai ∈ Const. By dom(I) we denote the domain 
of I , i.e., the constants appearing in I . A positive atom (or 
just an atom) and a negated atom are expressions of the 
form R(x1, . . . , xn) and ¬R(x1, . . . , xn) respectively, where 
R ∈ S is a relational name of arity n and each xi is a term.
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For k ≥ 1, an expression Q(x̄) = ∃ ȳϕ(x̄, ȳ), where x̄ is 
a k-tuple of variables, is a k-ary conjunctive query (CQ) 
if ϕ(x̄, ȳ) is a conjunction of positive atoms with vari-
ables from x̄ and ȳ only. We say that Q(x̄) = ∃ ȳϕ(x̄, ȳ)

is a k-ary conjunctive query with negated atoms (CQ¬) if 
ϕ(x̄, ȳ) is a conjunction of atoms and negated atoms. Like-
wise, Q(x̄) = ∃ ȳϕ(x̄, ȳ) is a k-ary conjunctive query with 
arithmetic comparisons (CQcomp ) if ϕ(x̄, ȳ) is a conjunc-
tion of atoms and expressions of the form x op c, where 
op ∈ {=, �=, <, >, ≤, ≥}, x ∈ Var is a variable from x̄, ȳ, and 
c ∈ Const. Note that we do not allow comparisons of the 
form x op y, where x and y are both variables. As usual, 
we stipulate that each variable in x̄ occurs in some con-
junct of ϕ . A 0-ary query is called Boolean. A CQ¬ query 
Q is consistent if an atom and its negation do not appear 
in Q at the same time. We say that a CQcomp query Q is 
consistent if the comparisons of Q are consistent.

For a positive or negated atom P and a conjunctive 
query with negated atoms or arithmetic comparisons Q, 
P ∈ Q denotes the fact that P is a conjunct of Q. We 
denote by V ar(Q), Const(Q) and Term(Q) the sets of vari-
ables, constants and terms occurring in Q. We say that 
Q is connected if for every pair t and t′ of terms in Q, 
there is a sequence of atoms P1, . . . , Pn in Q such that 
t ∈ Term(P1), t′ ∈ Term(Pn) and Term(Pi) ∩ Term(Pi+1) �= ∅, 
for every i, 1 ≤ i < n.

The answer set of a k-ary CQ¬ query Q(x̄) on an in-
stance I is a k-ary relation Ans(Q, I) ⊆ Constk which con-
sists of all tuples θ(x̄) such that θ : V ar(Q) → dom(I) is 
a substitution with the properties that for every positive 
atom R(ū) ∈ Q it holds that R(θ(ū)) ∈ I , and for every 
negated atom ¬P (v̄) ∈ Q it holds that P (θ(v̄)) /∈ I (here 
we assume that θ is identity on Const). The semantics for 
conjunctive queries with comparisons is defined similarly. 
Now instead of preserving negation, a substitution θ must 
preserve the comparisons. That is, if x op c is a comparison 
in Q, then θ(x) op c must hold. For a Boolean query Q, by 
I |= Q we denote the fact that Ans(Q, I) = {〈〉}. If I |= Q, 
we refer to θ that witnesses this fact as a satisfying assign-
ment for Q in I .

Let Q1 and Q2 be CQs of the same arity (with negated 
atoms or comparisons). We say that Q1 is contained in Q2, 
denoted as Q1 ⊆ Q2, if Ans(Q1, I) ⊆ Ans(Q2, I) holds for 
every instance I .

The containment problem for a class of conjunctive 
queries C consists of deciding, given Q1 and Q2 from C , 
whether Q1 ⊆Q2.

We follow [8] in the definition of acyclic CQs. Acyclicity 
is defined using the notion of a hypergraph. A hypergraph
is a pair H = (V , E), where V is a set of vertices and E ⊆
2V a set of hyperedges. Given a hypergraph H = (V , E), 
the GYO-reduct, denoted as GY O (H), is the hypergraph ob-
tained from H by repeatedly applying the following rules 
in exhaustive manner:

• Remove hyperedges that are empty or contained in 
other hyperedges,

• Remove vertices that appear in at most one hyperedge.

A hypergraph H = (V , E) is α-acyclic if GYO(H) is the 
empty hypergraph. The incidence graph of H is the undi-
rected bipartite graph where V ∪ E is the set of vertices 
and (x, R) is an edge if and only if x ∈ R . We say that H
is Berge-acyclic if its incidence graph is acyclic. Note that a 
Berge-acyclic hypergraph is α-acyclic, but not vice versa.

The hypergraph H(Q) = (V , E) of a CQ¬ query Q is 
defined as follows. The set of vertices V = V ar(Q), and for 
each atom R(x̄) or a negated atom ¬P (x̄) in Q, the set E
contains a hyperedge consisting of all the variables occur-
ring in x̄. Then Q is α-acyclic (ACQ¬) (resp. Berge-acyclic), 
if H(Q) is α-acyclic (resp. Berge-acyclic). A CQcomp query 
is α-acyclic (ACQcomp) (resp. Berge-acyclic) if its “relational 
part”, i.e., the CQ obtained by removing the comparisons, 
is α-acyclic (resp. Berge-acyclic). Here we assume that if 
the comparisons of a query entail that x = c, then every 
occurrence of x in the query is replaced by c.

Next we give the definition of tree patterns. Essen-
tially, they are tree patterns from [11] where nodes can 
have multiple positive and negative labels or attribute 
comparisons. As we will see, tree patterns containing 
only the child relation can be considered as a fragment 
of Berge-acyclic CQs. Let � be a set of node labels. 
A tree pattern with label negation P is a node-labeled tree 
(N, E, E//, r, l+, l−), where N is the set of nodes, E ∪ E// ⊆
N2 is the edge relation consisting of disjoint child and 
descendant relations respectively, r ∈ N is the root, and 
l+, l− : N → 2� are positive and negative node labeling 
functions. Let additionally A be a set of attribute names. By 
�A we denote the set {@aop c | a ∈ A, op ∈ {=, �=, <, >,

≤, ≥}, c ∈ Const}. A tree pattern with attribute comparisons
is a node-labeled tree (N, E, E//, r, l), such that N , E , E//, 
r are as above, and l : N → 2�∪�A is a node labeling func-
tion. For a tree pattern P , by Nodes(P ) we denote the set 
of nodes of P .

We define semantics of tree patterns as follows. Let 
G = (dom(G), E ′, r′, ρ) be a graph, where dom(G) is the set 
of nodes, E ′ ⊆ dom(G)2 the edge relation, ρ : dom(G) → 2�

is a node labeling function, and r′ ∈ dom(G) is a fixed des-
ignated node. We say that a tree pattern with label nega-
tion P is true in G , or G satisfies P , denoted as G |= P , if 
there is a function e : N → dom(G), called embedding of P
in G , such that all of the following hold:

(1) if (x, y) ∈ E , then (e(x), e(y)) ∈ E ′ ,
(2) if (x, y) ∈ E// , then (e(x), e(y)) ∈ E ′ + , where E ′ + is 

the transitive closure of E ′ ,
(3) for every x ∈ N , l+(x) ⊆ ρ(e(x)),
(4) for every x ∈ N , l−(x) ∩ ρ(e(x)) = ∅.

We write G |=root P if there is an embedding e of P in G
that additionally satisfies the following condition:

(0) e(r) = r′ .

Semantics of tree patterns with attribute comparisons is 
defined over graphs which are additionally equipped with 
a partial function att : dom(G) × A → Const. The definition 
of G |= P and G |=root P , where P is a tree pattern with 
attribute comparisons, is defined similarly to the above 
definition, where (3) and (4) are replaced with the follow-
ing conditions:
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(3’) For every x ∈ N , l(x) ∩ � ⊆ ρ(e(x)),
(4’) For every x ∈ N , if @aop c ∈ l(x), then att(e(x), a) is 

defined and att(e(x), a) op c.

We say that a tree pattern with label negation P =
(N, E, E//, r, l+, l−) is consistent if l+(x) ∩ l−(x) = ∅ holds 
for every x ∈ N . Similarly, a tree pattern with attribute 
comparisons is consistent if the comparisons of every at-
tribute in every node are consistent. Note that a tree pat-
tern P is consistent if and only if there is a graph G
which satisfies P . Furthermore, consistency of a tree pat-
tern can be checked in PTime. For tree patterns with la-
bel negation or comparisons P and Q , we say that P is 
contained in Q (resp. root-to-root contained), denoted as 
P ⊆ Q (P ⊆root Q ), if for every G it holds that G |= P
(G |=root P ) implies G |= Q (G |=root Q ).

We say that a tree pattern is child-only if the set E//

is empty, and descendant-only if E is empty. In these 
cases we omit the relations E// and E respectively. By 
a canonical tree for a consistent child-only tree pattern 
P = (N, E, r, l+, l−) we mean the tree T P = (N, E, r, l+). 
Obviously P is satisfied at the root of its canonical tree, 
i.e., T P |=root P .

The containment and root-to-root containment prob-
lems for child-only tree patterns with label negation (with 
attribute comparisons) can be reduced to containment for 
Boolean CQ¬s (CQcomp s) (cf. [3]) with the following two 
translations. For a child-only tree pattern with label nega-
tion P = (N, E, r, l+, l−), we define TR(P ) as∧
v∈N,p∈l+(v)

p(v) ∧
∧

u∈N,q∈l−(u)

¬q(u) ∧
∧

〈u,v〉∈E

E(u, v),

where every element in N is an existentially quantified 
variable. The result of translation TRr(P ) is defined as 
TR(P ) with the only difference that r is now a constant. 
For a child-only tree pattern with attribute comparisons 
P = (N, E, r, l), translations TR(P ) and TRr(P ) are defined 
similarly:∧
v∈N,p∈l(v)

p(v) ∧
∧

u∈N,@aop c∈l(u)

(a(u, xu,a) ∧ xu,a op c)

∧
∧

〈u,v〉∈E

E(u, v).

Note that the result of translation of a tree pattern with 
label negation (att. comparisons) is a connected Boolean 
Berge-acyclic CQ with unary negated atoms (comparisons). 
Moreover, negation in this query is guarded (i.e., when for 
every negated atom ¬R(x̄) in a query there is an atom 
P ( ȳ) in the query such that every variable in x̄ occurs 
in ȳ).

Proposition 1. Let P1 and P2 be child-only tree patterns with 
label negation (attribute comparisons). Then

(i) P1 ⊆ P2 iff TR(P1) ⊆ TR(P2),
(ii) P1 ⊆root P2 iff TRr(P1) ⊆ TRr(P2).

We will use item (i) of the above proposition to derive 
lower bounds in Section 3. In Section 4 we show that root-
to-root containment for child-only tree patterns with label 
negation or comparisons is in PTime, implying the same 
upper bound for the fragment of acyclic CQs corresponding 
to the translation of child-only tree patterns, by item (ii).

3. Containment for acyclic conjunctive queries with 
negated atoms or comparisons

We first state the known result on the containment for 
CQs with negated atoms or comparisons.

Theorem 1. [10,15,12] The containment problem for CQ¬ and 
CQcomp queries is �P

2 -complete.

As noted in the Introduction, the known proofs for the 
�P

2 lower bound involve conjunctive queries that are cyclic.
In this section we show that containment for α-acyclic

conjunctive queries with negated atoms of bounded arity 
(comparisons) is coNP-complete. We also provide several 
coNP lower bounds which help to identify the sources of 
intractability. Without loss of generality we can consider 
containment for Boolean acyclic CQs. Indeed, the contain-
ment problem for non-Boolean CQs can be reduced in 
PTime to containment of Boolean CQs while preserving the 
acyclicity restriction.

Proposition 2. Let P and Q be ACQ¬s (ACQcomp s). Then there 
exist PTime computable Boolean ACQ¬s (Boolean ACQcomp s) 
P ′ and Q′ such that

P ⊆ Q iff P ′ ⊆ Q′.
This also holds for Berge-acyclic queries.

Proof. Let P(x̄) and Q( ȳ) be ACQ¬s (ACQcomp s). We 
check if P and Q are consistent which can be done 
in PTime [16,15]. If P is not consistent, let P ′ = Q′ =
∃x.P (x). Otherwise, if Q is not consistent or the length 
of x̄ and the length ȳ are different, let P ′ = ∃x.P1(x) and 
Q′ = ∃x.P2(x) for P1 �= P2. Let P and Q now be consis-
tent, x̄ = (x1, . . . , xn) and ȳ = (y1, . . . , yn), and P1, . . . , Pn
unary relational names that do not appear in P or Q. 
Then we define P ′ = ∃x̄.P1(x1) ∧ . . . ∧ Pn(xn) ∧ P(x̄) and 
Q′ = ∃ ȳ.P1(y1) ∧ . . . ∧ Pn(yn) ∧ Q( ȳ). Clearly, P ′ and Q′
are PTime computable. Moreover, if P and Q are p-acyclic 
(p ∈ {α, Berge}), then P ′ and Q′ are p-acyclic as well. It is 
straightforward to show that P ⊆Q iff P ′ ⊆Q′ . �

Thus, in the rest of the article we only consider con-
tainment for Boolean acyclic CQs with negated atoms or 
comparisons.

Now we show that restricting CQs with negated atoms 
to be acyclic and with negated atoms of bounded arity 
makes the containment problem coNP-complete.

Theorem 2. The containment problem for α-acyclic conjunctive 
queries with negated atoms of bounded arity (or with arithmetic 
comparisons), is in coNP.

Proof. Let P and Q be input queries. A coNP algorithm 
then works as follows. We first guess a potential coun-
terexample I , and, second, check whether I |= P and 
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I �|=Q. Lemma 1 below guarantees that it is enough to 
guess a counterexample of size polynomial in the sizes of 
P and Q. By Lemma 2 below, the second step can be done 
in PTime. The acyclicity condition is not used in the proof 
of Lemma 1, but it is crucial in the proof of Lemma 2. �
Lemma 1. Let Q1 and Q2 be Boolean α-acyclic CQs with 
negated atoms of bounded arity (resp. with arithmetic compar-
isons). If Q1 �Q2 , then there is an instance I such that I |=Q1 , 
I �|=Q2 , and the size of I is polynomial in the sizes of Q1, Q2 .

Proof. We first consider the case of CQs with negated 
atoms. By the assumption, for every negated atom ¬R
in Q2, the arity of R is bounded by a constant k. Let I ′ be a 
counterexample for Q1 ⊆Q2. Since I ′ |=Q1, there is a sat-
isfying assignment θ : V ar(Q1) → dom(I ′). By θ(V ar(Q1))

we denote the range of θ . Furthermore, by θ(Q1) we de-
note the image of positive atoms in Q1 wrt θ , i.e., the set 
{R(θ(x̄)) | R(x̄) ∈Q1}. We then define the instance I as the 
set

θ(Q1) ∪ {N(θ(y1), . . . , θ(ym))} ∪
∪ {P (ā) ∈ I ′ | P occurs negatively in Q2,

ā ⊆ θ(V ar(Q1)) ∪ Const(Q1) ∪ Const(Q2)},
where N is a fresh relational name and ȳ = y1, . . . , ym are 
the variables of Q1 that appear in a negated atom but not 
in a positive atom in Q1. We add the N-fact to I in order 
to retain the image of the “unsafe” variables appearing in 
a negated atom in Q1.

Note that the size of I is bounded by

|Q1| + |V ar(Q 1)| + |Q2| · (|Term(Q1)| + |Const(Q2)|)k.

Firstly, θ is a satisfying assignment for Q1 in I . Indeed, 
the positive atoms are preserved since θ(Q1) ⊆ I . Further-
more, no negated atom in Q1 becomes true under θ : if 
¬R(x̄) ∈ Q1, then θ(x̄) ∈ dom(I)|x̄| (since every θ(xi) is ei-
ther in a fact from θ(Q1) or in N(θ( ȳ))) and R(θ(x̄)) /∈ I
(since R(θ(x̄)) /∈ I ′ and R �= N).

Secondly, we show I �|= Q2. Suppose the opposite. This 
means there is a satisfying assignment h : V ar(Q2) →
dom(I). We show that h is also a satisfying assignment for 
Q2 in I ′ which contradicts the assumption.

• Let R(x̄) ∈Q2. Then R(h(x̄)) ∈ I \ {N(θ( ȳ))} ⊆ I ′ .
• Let ¬R(x̄) ∈ Q2. Then R(h(x̄)) /∈ I . Note that h(x̄) ⊆

θ(V ar(Q1)) ∪ Const(Q1) ∪ Const(Q2). Thus, because of 
that and the fact that R occurs negatively in Q2, it fol-
lows that R(ā) /∈ I ′ by the definition of I .

We now prove the lemma for the case of arithmetic com-
parisons. Let θ be a satisfying assignment for Q1 in I ′ . We 
take I as θ(Q1) = {R(θ(x̄)) | R(x̄) ∈ Q1}. The size of I is 
obviously polynomial. I |= Q1 holds because θ is a satis-
fying assignment for Q1 in I . Furthermore, I �|= Q2 holds 
since any satisfying assignment for Q2 in I is a satisfying 
assignment for Q2 in I ′ . �

The evaluation problem for a class of Boolean queries 
C is the following decision problem. Given an instance I , 
a Boolean query Q ∈ C , decide whether Q evaluates to 
true in I , i.e., I |=Q.

Lemma 2. The evaluation problem is in PTime for each of the 
following classes of Boolean queries:

(i) Boolean α-acyclic conjunctive queries with negated atoms 
of bounded arity, and

(ii) Boolean α-acyclic conjunctive queries with arithmetic 
comparisons.

Proof. We prove item (i). Let I be an instance and Q a 
Boolean α-acyclic CQ where each negated atom is bounded 
by a constant k. We make a polynomial reduction to the 
evaluation problem for (positive) α-acyclic Boolean CQs
which is known to be in PTime [17,8].

For every relational name R that occurs negatively 
in Q, we introduce a new relational name R̃ of the same 
arity as R . By Q̃ we denote the result of replacement of 
each ¬R(x̄) in Q by R̃(x̄). Note that Q̃ is now an ordinary 
CQ. Moreover, Q̃ is α-acyclic because Q is α-acyclic. We 
then define the instance

Ĩ = I ∪ {R̃(ā) | ā ⊆ dom(I),¬R(x̄) ∈ Q, and R(ā) /∈ I}.
Note that the size of ̃ I is bounded by |I| + |Q| · |dom(I)|k
which is polynomial in the sizes of I and Q. We claim that 
I |=Q if and only if ̃ I |= Q̃.

(⇒). Suppose I |= Q, i.e., there is a satisfying vari-
able assignment θ : V ar(Q) → dom(I). Note that V ar(Q) =
V ar(Q̃) and dom(I) = dom(̃I). We show that θ is a sat-
isfying assignment for Q̃ in Ĩ . The positive atoms from 
Q are still preserved since we did not remove any 
facts from I . Let R̃(x̄) ∈ Q̃. This means that ¬R(x̄) ∈ Q. 
Hence, R(θ(x̄)) /∈ I . Since also θ(x̄) ⊆ dom(I), we have that 
R(θ(x̄)) ∈ Ĩ , as needed.

(⇐). Suppose Ĩ |= Q̃, i.e., there is a satisfying assign-
ment θ : V ar(Q̃) → dom(̃I). We show that θ is a satisfying 
assignment for Q in I . Positive atoms in Q are preserved 
since they are positive atoms in Q̃ as well and θ preserves 
them in Ĩ and thus in I . Let ¬R(x̄) ∈ Q. Then R̃(x̄) ∈ Q̃
and R̃(θ(x̄)) ∈ Ĩ . Then by definition of Ĩ , it follows that 
R(θ(x̄)) /∈ I , as desired.

Item (ii) is shown similarly. Now each arithmetic com-
parison x op c that occurs in Q is replaced with a new 
unary atom Pop c(x). Let Q̃ be the result of this replace-
ment. Let �c be the constants occurring in the compar-
isons of Q. Note that |�c | ≤ |Q|. We define the instance

Ĩ = I ∪ {Pop c(a) | a ∈ dom(I), c ∈ �c,

op ∈ {=, �=,<,>,≤,≥} and a op c}.
Note that the size of ̃I is bounded by |I| + 6 · |Q| · |dom(I)|, 
which is polynomial in the sizes of I and Q. It is straight-
forward to show that I |=Q if and only if ̃ I |= Q̃. �
Lower bound

We show that the corresponding coNP lower bound 
for containment already holds for child-only tree patterns 
with label negation (or att. comparisons). For this, we first 
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Fig. 1. Queries P ′ and Q ′ from Lemma 3.

show that we can allow disjunction on the right hand 
side query of the containment problem. We extend the 
definition of containment for unions of tree patterns with 
label negation (att. comparisons), i.e., expressions of the 
form 

∨k
i=1 Q i where each Q i is a tree pattern with la-

bel negation (att. comparisons). Let P be a tree pattern 
and Q = ∨k

i=1 Q i a union of tree patterns. We say that 
P is contained (resp. root-to-root contained) in Q if for ev-
ery G it holds that G |= P (G |=root P ) implies that there is 
a j ∈ {1, . . . , k} such that G |= Q j (G |=root Q j).

Lemma 3. Let P be a child-only tree pattern with label nega-
tion (resp. attribute comparisons) and Q = ∨k

i=1 Q i a union of 
child-only tree patterns with label negation (attribute compar-
isons). There exist PTime computable child-only tree patterns 
with label negation (attribute comparisons) P ′ and Q ′ such that

P ⊆root Q if and only if P ′ ⊆ Q ′.

Proof. The proof is similar to the one of Lemma 3 in [11]. 
Let a, b be node labels not occurring in P or Q . Let Sb be 
the child-only tree pattern corresponding to (written as a 
CQ¬) b(x) ∧ ∧k

i=1(E(x, yi) ∧ TR(Q i)), where yi is the vari-
able corresponding to the root of Q i , x is not among the 
variables of every TR(Q i) and E is the child relation. We 
define P ′ and Q ′ as in Fig. 1. In this figure, a circle de-
notes a node, a triangle denotes the tree pattern written 
inside the triangle, and a line connecting two circles (or 
a circle and a triangle) denotes the child relation between 
the two nodes (resp. between the node and the root of the 
tree pattern corresponding to the triangle). Clearly P ′ and 
Q ′ are child-only tree patterns with label negation and 
PTime computable. We verify that P ⊆root Q if and only 
if P ′ ⊆ Q ′ .

(⇒). Assume P ⊆root Q . Let I be a graph such that 
I |= P ′ . That means there is an embedding θ : Nodes(P ′) →
dom(I). Note that θ is also an embedding of P in I as well, 
since P is a subquery of P ′ . Thus, I |= Q , i.e., there ex-
ists an index j, 1 ≤ j ≤ k, such that I |= Q j . The latter 
implies there is an embedding h′ of Q j in I . Moreover, 
since the containment of P in Q is root-to-root, we must 
have that h′ maps the root of Q j to the θ -image of the 
Fig. 2. The instance I ′ from Lemma 3.

root of P . Then we define a mapping θ ′ : Nodes(Q ′) → I
as the composition of h with θ , where h is a mapping 
from Nodes(Q ′) to Nodes(P ′) that extends h′ and is de-
fined for the other nodes as follows. For every i, 1 ≤ i ≤ k, 
we define h(x′

i) := xk− j+i , h(y′
i) = yk− j+i and the nodes of 

Q i (i �= j) in Q ′ are mapped “canonically” to the corre-
sponding nodes in Sb . It is easy to see that θ ′ is indeed an 
embedding of Q ′ in I .

(⇐). Assume P ′ ⊆ Q ′ . Let I be an instance such that 
I |= P and h an embedding of P in I . Let also Ii be 
the canonical tree (instance) of Q i (i.e., the instance con-
taining only the positive atoms of Q i and replacing each 
variable by a fresh constant). Then we construct the in-
stance I ′ depicted in Fig. 2. Note that I is connected to 
the b-node via the h-image of the root of P . By the as-
sumption, it holds that I ′ |= Q ′ , i.e., there is an embedding 
θ : Nodes(Q ′) → dom(I ′). In particular, since a only appears 
in the vertical span of 2k − 1 nodes in Fig. 2, the span of 
k a-nodes of Q′ can only be mapped on that vertical span 
in I ′ . Because of this and the fact that a b-node in Q′ must 
be mapped to a b-node in I ′ , there must exist an index j
for which θ is an embedding of Q j in I . Moreover, this 
embedding maps the root of Q j to the h-image of the root 
of P . Thus, I |=root Q j and, therefore, I |=root Q .

The case of child-only tree patterns with attribute com-
parisons is proved similarly. �
Lemma 4. The containment problem P ⊆root

∨m
i=1 Q i is coNP-

hard for each of the following cases:

(i) P , Q i are child-only tree patterns with label negation,
(ii) P , Q i are descendant-only tree patterns with label nega-

tion,
(iii) P , Q i are child-only tree patterns with attribute compar-

isons.

Proof. (i). We reduce 3SAT to the complement of the con-
tainment problem for the stated fragment. Let ϕ be a 
conjunction of clauses Ci = (bi

1 ∨ bi
2 ∨ bi

3), 1 ≤ i ≤ k, over 
the variables {x1, . . . , xn}, where bi

j are literals, i.e., vari-
ables or their negations. For every clause Ci we introduce 
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a node label ci . Then we define P and Q i over the node 
labels ci , 1 ≤ i ≤ k, and x j , 1 ≤ j ≤ n, as follows. We define 
P = ({r}, ∅, ∅, r, l+, l−), l+(r) = {c1, . . . , ck} and l−(r) = ∅; 
Q i = ({ri}, ∅, ∅, ri, l+i , l−i ), ci ∈ l+(ri), x ∈ l−(ri) if bi

j = x and 
x ∈ l+(ri) if bi

j = ¬x for x a variable and every j, j = 1, 2, 3.
We claim that ϕ is satisfiable iff P �root

∨k
i=1 Q i . In-

deed, P �root
∨k

i=1 Q i iff there is a graph G = (dom(G), E ′,
ρ, r′) such that G |=root P and G �|=root Q i for every i ∈
1, . . . , k. This is equivalent to respectively the fact that 
{c1, . . . , ck} ⊆ ρ(r′) and for every i, i = 1, . . . , k, it holds 
that ci /∈ ρ(r′) or there is a j ∈ {1, 2, 3} such that x ∈ ρ(r′)
when bi

j = x or x /∈ ρ(r′) when bi
j = ¬x. In turn this is 

equivalent to the fact that ρ(r′) gives rise to a satisfy-
ing variable assignment for ϕ . Note that P and Q i are 
also descendant-only tree patterns with label negation, and 
thus item (ii) holds.

Item (iii) is proved as follows. Let ϕ be as above. 
A child-only tree pattern P is defined as ({r, m1, . . . , mn},
{〈r, m1〉, . . . , 〈r, mn〉}, r, l), where l(mw) = {pw , @a �= 2} for 
every w ∈ {1, . . . , n} and l(r) = ∅. Each Q i is defined as 
({ri, n1

i , n
2
i , n

3
i }, {〈ri, n1

i 〉, 〈ri, n2
i 〉, 〈ri, n3

i 〉}, ri, li) with li(ri) =
∅, li(n

j
i ) = {pw , Bi

j}, where w is such that bi
j = xw or bi

j =
¬xw in Ci , and Bi

j is (@a = 0) iff bi
j = xw and Bi

j is 
(@a �= 0) iff bi

j = ¬xw in Ci . It is straightforward to show 
that ϕ is satisfiable iff P �root

∨k
i=1 Q i . Indeed, every 

counter-example T for the containment gives rise to a sat-
isfying variable assignment V for ϕ , namely V (xw) = 0
if ρatt(e(mw)) = 0 and V (xw) = 1 otherwise, where ρatt
is the attribute function of T and e an embedding of P
into T . Vice versa, for every satisfying variable assignment 
for ϕ , we can construct a canonical tree for P which satis-
fies P and falsifies every Q i . �
Corollary 1. The following problems are coNP-hard:

a) Containment for child-only tree patterns with label nega-
tion (attribute comparisons).

b) Containment for Berge-acyclic queries with unary negated 
atoms (with comparisons) that are unconnected and con-
tain a constant.

c) Containment for α-acyclic conjunctive queries with unary 
negated atoms (with comparisons) that are connected and 
contain a constant.

Proof. Item a) follows from Lemmas 3 and 4.
Item b) follows from a). Let P1 ⊆ P2 be an instance of 

the containment problem for child-only tree patterns with 
label negation (att. comparisons). We then apply Proposi-
tion 1 to obtain the equivalent instance of the containment 
problem Q1 ⊆Q2, where Q1 and Q1 are connected Berge-
acyclic queries with unary negated atoms (comparisons). 
We then define Q′

i = R(root) ∧Qi , i = 1, 2, where root
is a constant and R a unary relational name. Note that Q′

i
is not a connected query. It is straightforward to show that 
Q1 ⊆Q2 if and only if Q′

1 ⊆Q′
2.

For item c) we use a). Let P ⊆ Q be an instance of the 
containment problem for child-only tree patterns with la-
bel negation (att. comparisons). We apply Proposition 1, 
item (i), to obtain an equivalent problem P ⊆ Q, where 
P and Q are Berge-acyclic queries with negated atoms 
(comparisons). We construct Boolean α-acyclic conjunc-
tive queries P ′ and Q′ as follows. Let {x1, . . . , xn} be the 
variables of P , P a fresh (n + 1)-ary relational name, 
root a constant, G a fresh binary relational name, and 
r the root (variable) of Q. Then P ′ = P (root, x1, . . . , xn) ∧
P ∧ ∧n

i=1 G(root, xi) and Q′ = G(root, r) ∧Q. Note that 
both P ′ and Q′ are α-acyclic queries. In particular, P ′ is 
α-acyclic because all its hyperedges are contained in the 
hyperedge for P . We show that P ⊆Q iff P ′ ⊆Q′ .

(⇒). Let I be an instance such that I |= P ′ . Thus 
there exists a satisfying variable assignment θ : V ar(P ′) →
dom(I). In particular, θ is satisfying for P in I . Let I ′ =
I�θ({x1, . . . , xn}), i.e., the sub-instance of I obtained by re-
stricting the domain to θ({x1, . . . , xn}). Since I ′ |= P , it 
holds that I ′ |= Q. Let θ ′ be a satisfying assignment for 
Q in I ′ . Then r is mapped to one of θ(x j). Since root
must be mapped to root and G(root, θ(xi)) holds in I
for every i, we have that θ ′ is a satisfying assignment for 
Q′ in I .

(⇐). Let I be an instance such that I |= P . Let θ be a 
satisfying assignment for P in I . W.l.o.g. we can assume 
that I = I�θ(V ar(P)). We then construct the instance I ′ as

I ′ = I ∪ {P (root, θ(x1), . . . , θ(xn)),

G(root, θ(x1)), . . . , G(root, θ(xn))}.
Clearly, θ is a satisfying assignment for P ′ in I ′ . Then 
it holds that I ′ |= Q′ . Let θ ′ be a satisfying assignment 
for Q′ in I ′ . In particular, V ar(Q) must be mapped to 
θ({x1, . . . , xn}) since G is fresh and root is mapped to 
root. Thus, θ ′ is a satisfying assignment for Q in I . Thus 
I |=Q. �

We say that a conjunctive query with negated atoms or 
arithmetic comparisons Q is pointed Berge-acyclic if Q

(i) contains a constant,
(ii) is connected,

(iii) is Berge-acyclic.

Corollary 1 together with Proposition 1 shows that con-
tainment for every class of conjunctive queries with 
negated atoms (arithmetic comparisons) that satisfies at 
most two of the conditions (i)–(iii) is coNP-hard.

We leave it as an open question whether containment 
for pointed Berge-acyclic queries is in PTime. However, 
we are able to obtain PTime results for root-to-root con-
tainment of child-only tree patterns with label negation 
(comparisons), which by Proposition 1 entails PTime con-
tainment for a particular fragment of pointed Berge-acyclic 
queries.

4. Polynomial-time algorithms for containment

In this section we show that root-to-root containment 
for child-only tree patterns with label negation is solvable 
in PTime. In view of Proposition 1 it implies PTime con-
tainment for a restricted fragment of pointed Berge-acyclic 
CQs with negated atoms.
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We characterize root-to-root containment using homo-
morphisms. Let P = (N, E, r, l+, l−) and Q = (N ′, E ′, r′, l′ +,

l′ −) be child-only tree patterns with label negation. A map-
ping h : N ′ → N is called a homomorphism from Q to P , if 
the following are satisfied:

(i) h(r′) = r,
(ii) If (x, y) ∈ E ′ , then (h(x), h(y)) ∈ E ,

(iii) l′ +(x) ⊆ l+(h(x)), for every x ∈ N ′ ,
(iv) l′ −(x) ⊆ l−(h(x)), for every x ∈ N ′ .

Note that the above definition without item (iv) coincides 
with the usual definition of homomorphism for tree pat-
terns without negation [11].

Theorem 3. Let P and Q be consistent child-only tree patterns 
with label negation. Then P is root-to-root contained in Q if and 
only if there exists a homomorphism from Q to P .

Proof. Let P = (N, E, r, l+, l−) and Q = (N ′, E ′, r′, l′ +, l′ −)

be consistent child-only tree patterns with label negation.
(⇐). Assume h : N ′ → N is a homomorphism. Let G =

(dom(G), E ′′, ρ, r′′) be a graph such that G |=root P , i.e., 
there is an embedding e : N → dom(G) with e(r) = r′′ . We 
claim that e′ = e ◦ h is an embedding of Q in G . We check 
conditions (0)–(4) except (2) (which concerned the transi-
tive closure of E) from the definition of embedding:

(0) e′(r′) = e ◦ h(r′) = e(r) = r′′ ,
(1) Let (x, x′) ∈ E ′ . Then (h(x), h(x′)) ∈ E which implies 

(e(h(x)), e(h(x′))) ∈ E ′′ ,
(3) Let x ∈ N ′ and p ∈ l′ +(x). Then p ∈ l+(h(x)), which im-

plies that p ∈ ρ(e(h(x))), as needed,
(4) Let x ∈ N ′ and p ∈ l′ −(x). Then p ∈ l−(h(x)), which im-

plies that p /∈ ρ(e(h(x))), as needed.

(⇒). We show the contrapositive. Suppose there is 
no homomorphism from Q to P . We then construct a 
counter-example by taking a tree with the same structure 
as P . For R a tree pattern and n a node in R , we use R.n
to denote the subtree of R rooted in n. By induction on 
depth(P .y), the depth of P .y, we show

(IH) If there is no homomorphism from Q .x to P .y, then 
there exists a tree T such that T |=root P .y and 
T �|=root Q .x.

Base of induction: depth(P .y) = 0. Then there is no homo-
morphism from Q .x to P .y if either

• there exists a label p ∈ � such that either (i) p ∈ l′ +(x)
and p /∈ l+(y), or (ii) p ∈ l′ −(x) and p /∈ l−(y).
Let T = (N1, E1, r1, ρ1) be the canonical tree of P .y. 
Then T |=root P .y. In case (i) holds, T �|=root Q .x since 
for every mapping e : Nodes(Q .x) → N1 with e(x) = r1, 
we have that p ∈ l′ +(x) and p /∈ ρ1(r1) thus violat-
ing condition (3) in the definition of embedding. In 
case (ii) holds, we change T in that we also add p
to the label of r1. Then we still have T |=root P .y
since p /∈ l−(y), and T �|=root Q .x since for every map-
ping e : Nodes(Q .x) → N1 with e(x) = r1, we have that 
p ∈ l′ −(x) and p ∈ ρ1(r1) thus violating condition (4) 
in the definition of embedding.

• or there exists x′ in N ′ such that (x, x′) ∈ E ′ .
In this case, T �|=root Q .x, since T is of depth 0 and 
thus for every mapping e : Nodes(Q .x) → N1 we have 
(x, x′) ∈ E ′ and (e(x), e(x′)) /∈ E1, which violates condi-
tion (1) in the definition of embedding.

Step of induction: depth(P .y) > 0 and there is no homo-
morphism from Q .x to P .y. It is because either

• there exists a label p such that either (i) p ∈ l′ +(x)
and p /∈ l+(y), or (ii) p ∈ l′ −(x) and p /∈ l−(y). This 
case is treated exactly as the first case in the base of 
induction.

• or there exists x′ such that (x, x′) ∈ E ′ and for all yi

with (y, yi) ∈ E it holds that there is no homomor-
phism from Q .x′ to P .yi .
Since depth(P .yi) < depth(P .y) for every such yi , by 
the induction hypothesis (IH), it holds that there ex-
ists a tree Ti = (Ni, Ei, ri, ρi) such that Ti |=root P .yi

and Ti �|=root Q .x′ . We can assume that these trees 
are pairwise disjoint. We then define the tree T =
(NT , ET , rT , ρT ) such that NT = {rT } ∪ ⋃

i Ni , ET =⋃
i(Ei ∪ {(rT , ri)}), and ρ(u) =

{
l+(y) if u = rT ,

ρi(u) if u ∈ Ni .

We claim that T |=root P .y and T �|=root Q .x. The for-
mer is by the construction of T . For the latter, suppose 
e is an embedding of Q .x in T with e(x) = rT . In par-
ticular, that means that e is an embedding of Q .x′ to 
one of Ti . Thus, Ti |=root Q .x′ , which is a contradiction.

Thus, if there is no homomorphism from Q .r′ to P .r, there 
exists a tree such that T |=root P and T �|=root Q . �
Corollary 2. Root-to-root containment for child-only tree pat-
terns with label negation is in PTime.

Proof. Let P ⊆root Q be an instance of the containment 
problem, where P and Q are child-only tree patterns with 
label negation. We first check if P is consistent. If not, we 
output “yes”. If it is consistent, we check if Q is consistent. 
If not, we output “no”. Both checks can be done in PTime. 
Otherwise, by Theorem 3 it is enough to check existence of 
a homomorphism from Q to P . To this purpose, we reduce 
the problem to checking existence of a homomorphism for 
child-only tree patterns without label negation. The latter 
can be done e.g., using a bottom-up procedure [11]. For 
each negated label ¬p occurring in P or Q , we introduce 
a new label p̃. For a tree pattern with label negation Q , 
by Q̃ we denote the result of replacing each negated label 
¬p with the corresponding label p̃. It is straightforward to 
verify that there is a homomorphism from Q to P if and 
only if there is a homomorphism from Q̃ to P̃ . �

Interestingly, using a similar homomorphism character-
ization, we can prove PTime results for containment of 
descendant-only tree patterns with label negation and tree 
patterns with attribute comparisons. For each of the cases 
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we introduce the corresponding notion of a homomor-
phism.

Let P = (N, E//, r, l+, l−) and Q = (N ′, E ′
//, r

′, l′ +, l′ −)

be descendant-only tree patterns. A mapping h : N ′ → N
is called a d-homomorphism from Q to P if it satisfies the 
conditions (i), (iii) and (iv) of the definition of homomor-
phism, and, furthermore, the following condition:

(ii’) If (x, y) ∈ E ′
// , then (h(x), h(y)) ∈ E+

// .

Let P = (N, E, r, l) and Q = (N ′, E ′, r′, l′) be child-only tree 
patterns with attribute comparisons. Then a mapping h :
N ′ → N is called an a-homomorphism from Q to P if it 
satisfies the conditions (i), (ii) and (iii’) (where (iii’) is ob-
tained from (iii) by replacing l′ + and l+ with l′ and l), and, 
furthermore, the following condition:

(iv’) For every x ∈ N ′ , if @aopc ∈ l′(x) then there must ex-
ist @aop′c′ ∈ l(h(x)) for some op′ and c′ , and, C |=
@a op c, where C is the set of comparisons of a-
attribute in l(h(x)).

The above condition C |= @a op c denotes the fact that the 
first-order logic formula

∀x.(
∧

@aop′c′∈C

x op′ c′ → x op c)

is valid with respect to the theory of dense linear orders.
If P and Q are descendant-only tree patterns with at-

tribute comparisons, then h is da-homomorphism from Q
to P if it satisfied the conditions (i), (ii’), (iii’) and (iv’).

The following theorem is proved similarly to Theo-
rem 3.

Theorem 4. The following statements hold.

(i) For P and Q consistent child-only tree patterns with at-
tribute comparisons, it holds that P ⊆root Q if and only if 
there exists an a-homomorphism from Q to P .

(ii) For P and Q consistent descendant-only tree patterns 
with label negation (resp. with attribute comparisons), 
it holds that P ⊆root Q if and only if there exists a d-
homomorphism (resp. da-homomorphism) from Q to P .

Since existence of a d-, da- and a-homomorphism can 
be checked in PTime, we obtain the following.

Corollary 3. The root-to-root containment problem is in PTime

for the following classes of queries.

• Descendant-only tree patterns with label negation,
• Descendent-only tree patterns with attribute comparisons,
• Child-only tree patterns with attribute comparisons.

As we mentioned before, child-only tree patterns with 
label negation can be viewed as a fragment of pointed 
Berge-acyclic conjunctive queries. The precise complexity 
for the latter fragment is an open question. In the end of 
this section, we give an example showing that the homo-
morphism characterization fails for this fragment.
Example 1. Let Q 1 be the Boolean query R(c, x) ∧ R(c, y) ∧
Q (y)∧ R(z, x) ∧ R(z, w) ∧ ¬Q (w) and Q 2 the Boolean 
query R(c, u) ∧ Q (u)∧ R(v, u) ∧ R(v, t) ∧ ¬Q (t), where 
c is a constant and all variables are existentially quan-
tified. It can be seen that there is no homomorphism 
but the containment holds. Indeed, let I be an instance 
such that I |= Q 1, i.e., there is a satisfying variable as-
signment θ : V ar(Q 1) → dom(I). We then define a variable 
assignment θ ′ : V ar(Q 2) → dom(I) as the composition of 
g : V ar(Q 2) → V ar(Q 1) with θ , where g is defined accord-
ing to the following cases.

• I |= Q (θ(x)). In this case we define g = {u → x, v →
z, t → w}.

• I �|= Q (θ(x)). In this case we define g = {u → y, v →
c, t → x}.

It is straightforward to verify that θ is a satisfying assign-
ment, thus I |= Q 2.

5. Conclusion and future work

In this article we have considered several restrictions 
on conjunctive queries with negated atoms or arithmetic 
comparisons. We have shown that complexity of contain-
ment can be lowered to coNP if the arity of negated 
atoms is bounded. We have also shown several coNP lower 
bound proofs that indicate that much stronger restrictions 
than α-acyclicity need to be imposed to make containment 
tractable. For one particular restricted fragment, namely 
child-only tree patterns with label negation, root-to-root 
containment is in PTime. We have also shown that root-
to-root containment for child-only tree patterns with at-
tribute comparisons is in PTime. The two main remaining 
open problems are:

• What is the complexity of containment for pointed 
Berge-acyclic CQs?

• What is the complexity of containment for α-acyclic 
CQs with negated atoms (with no bound on the arity 
of negated atoms)?
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