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Abstract The quantification of longevity risk in a systematic way requires statis-

tically sound forecasts of mortality rates and their corresponding uncertainty.

Actuarial associations have a long history and continue to play an important role in

the development, application and dispersion of mortality projections for the coun-

tries they represent. This paper gives an in depth presentation and discussion of the

mortality projections as published by the Dutch (in 2014) and Belgian (in 2015)

actuarial associations. The goal of these institutions was to publish a stochastic

mortality projection model in line with both rigorous standards of state-of-the-art

academic work as well as the requirements of practical work such as robustness and

transparency. Constructed by a team of authors from both academia and practice,

the developed mortality projection standard is a Li and Lee type multi-population
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model. To project mortality, a global Western European trend and a country-specific

deviation from this trend are jointly modelled with a bivariate time series model.

We motivate and document all choices made in the model specification, calibration

and forecasting process as well as the model selection strategy. We show the model

fit and mortality projections and illustrate the use of the model in several pension-

related applications.

Keywords Stochastic mortality models � Projected mortality � Stochastic
multi-population mortality � Li and Lee model � Lee and Carter model � Poisson
regression � Pension calculations � Longevity risk � Professional actuarial
associations

1 Introduction

Life insurers, pension funds, health care providers and social security institutions

work every day with life contingent liabilities, that is cash flows depending on a

beneficiary being alive or not. This myriad of institutions faces increasing expenses

due to continuing improvements of mortality rates, as discussed in Albrecher et al.

[1]. Underestimating future mortality improvements implies a risk since it may lead

to incorrect premium, provision and pension cost calculations. The International

Monetary Fund (IMF) already affirmed the importance of this longevity risk in IMF

[31],1 and the European Commission recently examined the possible consequences

in European Commission (DG ECFIN) and Economic Policy Committee (Ageing

Working Group) [27].2 The Commission estimates that in 2060 57.6% of the public

pensioners in the European Union will be aged 75 or older whereas in 2013 this was

only 36%.3 To anticipate these growing ageing costs, various governments have

made important adaptations to their pension systems and legislation. For example,

pension reforms in The Netherlands impose that, from 2022 on, the official yearly

retirement age increase is linked directly to the evolution of the period life

expectancy of a 65-year old.4 In Belgium, the official retirement age will increase to

67 in 2030.5 The Belgian ‘Commissie Pensioenhervorming 2020–2040’, a group of

academics in charge of proposing and preparing durable pension reforms, also

suggests various changes to current pension policies6 and proposes a mechanism to

link career length to period life expectancy in order to ensure sustainable pension

costs in the future.

1 We refer to Chapter 4. The financial impact of longevity risk.
2 We refer to Part II: Long-term projections of age-related expenditure and unemployment benefits.
3 See Table II.1.15 in European Commission (DG ECFIN) and Economic Policy Committee (Ageing

Working Group) [27], p. 79.
4 See, for example, the ‘Algemene Ouderdomswet’ (AOW-law): http://wetten.overheid.nl/

BWBR0002221/. The definition of period life expectancy is given in Sect. 5.1.
5 The specific law was published on 21 August 2015, see http://reflex.raadvst-consetat.be/reflex/pdf/

Mbbs/2015/08/21/131341.pdf.
6 See, for example, their 2014 and 2015 reports: Commissie Pensioenhervorming 2020–2040 [14, 15].
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The quantification of longevity risk in a systematic way requires sound forecasts

of mortality rates and their corresponding uncertainty, as Barrieu et al. [4] indicate.

Actuarial institutions have a long history and continue to play an important and

active role in the development, application and dispersion of mortality tables and

models, at the level of both population and insured portfolio data. For example, the

‘Continuous Mortality Investigation Committee’ (CMI) of the ‘Institute and Faculty

of Actuaries’ (IFA) in the UK has been researching mortality of insured lives, based

on data of associated insurance companies, and publishes mortality tables since

1924.7 The ‘Society of Actuaries’ (SOA) also developed numerous mortality

tables for reserving and valuation purposes which are endorsed by the ‘National

Association of Insurance Commissioners’8 and imposed by many state insurance

regulators in the USA. The Dutch ‘Koninklijk Actuarieel Genootschap’ (KAG) has

a rich history in providing (with regular updates) nation-wide period mortality

tables starting from the 1970’s. Since 2007, KAG also publishes mortality

projections which are currently updated biennially. The KAG 2012 mortality

projection9 uses Dutch smoothed mortality data to project mortality via a

combination of a short and a long term trend model. Both IFA and SOA developed

mortality projection models10 based on smoothed historical mortality improvement

rates of England and Wales and the US respectively. Subsequently, projections

follow by using extrapolation methods combined with smoothing techniques, such

that eventually a steady improvement rate results. The aforementioned approaches

share some characteristics. The KAG 2012, IFA 2012 and SOA 2014 methods all

start from country-specific historical data, transformed and smoothed, upon which a

deterministic projection technique is then applied. This approach has its limitations

in light of risk management with life contingent liabilities since it relies on

extrapolation rather than statistical modelling techniques and only delivers a single

scenario for future mortality rates. Hence, quantification of the uncertainty that

comes with this projection is not possible.

This paper describes the set-up and technical specifications of the mortality

projections published by KAG in 2014 and IAjBE in 2015, which implied major

methodological changes compared to earlier projections by these institutions.

Developed under the guidance of academic researchers, this mortality model is

widely disseminated in practice for premium, reserve and general risk management

calculations. During the development process the preference for a stochastic

approach became clear, since a scenario generator allows to take uncertainty in

forecasts into account and is therefore necessary in managing life contingent risks.

This emphasis on stochastic mortality projection models receives wide coverage in

the state-of-the-art actuarial, demographic and statistical literature, starting from the

seminal work by Lee and Carter (LC) (see [38]). Moreover, a multi-population

projecting model is recommended since it allows to enrich the country-specific data

7 More history on the CMI can be found in Institute of Actuaries and Faculty of Actuaries [33], pp. 1–5.
8 For example, the 2012 IAM and IAR, GAM–83 and GAR–94, see National Association of Insurance

Commissioners [41], section 3.
9 A complete description of the model is in Koninklijk Actuarieel Genootschap [36].
10 We refer to Institute and Faculty of Actuaries [32] and Society of Actuaries [48] for more information.
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with observations from countries with similar characteristics. At the same time

differences in mortality rates between such countries are likely to stabilize over

time, motivating the need for non-diverging multi-population projections. To

accommodate the aforementioned needs, the KAG 2014 (see [37]) and IAjBE 2015

(see [3]) mortality projection models are fully stochastic projection models of Li

and Lee (LL) type, see Li and Lee [40]. A Lee and Carter model is imposed for the

European mortality trend as well as for the country-specific deviation from this

common trend. KAG in 2014 and IAjBE in 2015 preferred this LL model based on a

comparative analysis of stochastic projection models proposed in recent scientific

literature. As part of this comparative exercise KAG and IAjBE studied the single

population mortality models, fitted on country-specific data, from the papers by

Cairns et al. [9], Haberman and Renshaw [29], Börger et al. [5] and Van Berkum

et al. [50], the multi-population mortality models of Li and Lee [40] as well as

additional multi-population models constructed in a similar way as recently

proposed in Haberman et al. [28].11 This collection of mortality models was

evaluated using the criteria proposed in Cairns et al. [9], supplemented with the

institutions’ own points of attention regarding biological reasonableness, robustness,

statistical performance and transparency.

Other tracks in current research on multi-population mortality models include the

country-specific Lee Carter model in D’Amato et al. [17, 18] where the focus is on

inter-population dependency, modeled using a VAR panel sieve approach, the

common age effect specification of Kleinow [35], the copula approach in Chen et al.

[13], and the recent functional data method in Shang [47]. D’Amato et al. [17], Chen

et al. [13] and Shang [47] do not use a Poisson assumption on the number of deaths

and therefore do not explicitly take into account the noise in the data. Moreover, the

focus of these papers, as well as D’Amato et al. [18], is on in-sample accuracy and

not (or only marginally) on the performance of the forecasts which was the main

performance measure for our model.

Initially developed as a mortality forecasting method for The Netherlands, the

model is easily applied to other European countries. We explain the methodology

with a focus on the Dutch and Belgian case, but provide some graphical results for

France and West-Germany in the Appendix. The French and German results are

purely illustrative as we did not include up-to-date data nor went through the

complete model evaluation process for these countries. This paper provides a full

documentation, discussion and validation of the preferred model and points out the

key choices and assumptions involved in the selection process of creating an

industry wide standard for mortality projections. We illustrate typical use of the

scenarios generated by the model in the measurement and management of life

contingent risks. Moreover, as existing literature does not typically elaborate on the

data treatment, we carefully explain how mortality statistics collected from different

sources, each with its own pace of refreshing the data, can be combined.

This paper is organized as follows. The source and extent of the available data as

well as the data manipulations are explained in Sect. 2. A technical description of

11 The multi-population models in this report consist of various combinations of mortality models for the

multi-population trend and the country-specific deviation.
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the model is in Sect. 3. The fitting and projecting results of this model are

documented in Sect. 4. Section 5 presents four applications which demonstrate the

relevance of the stochastic mortality model on policy making and life contingent

calculations. Section 6 concludes. Full parameter estimates and the resulting KAG
2014 and IAjBE 2015 mortality projection for The Netherlands and Belgium are

available online.12

2 Data

2.1 Notation

Let X denote a collection of integer ages and T a collection of integer years. We

denote with qx;t the probability that a person who is alive at 1 January of year t, and

who was born on 1 January of year t � x, will not be alive on 1 January of year

t þ 1, for x 2 X and t 2 T . We call qx;t the mortality rate at exact age x in year t.

The stochastic mortality models discussed in the papers mentioned in Sect. 1 model

(a transformation of) qx;t or the force of mortality, lx;t. We assume a piecewise

constant force of mortality, i.e. lxþs;tþs ¼ lx;t for 0� s\1. The following relation

then holds between qx;t and lx;t:

qx;t ¼ 1� exp ð�lx;tÞ: ð1Þ

Expression (1) enables switching from the force of mortality to the mortality rate,

and vice versa, in a straightforward way. For more details about these concepts and

additional reading material we refer to Pitacco et al. [43].

We denote by dx;t the total death count of people aged x who die in year t before

they reach age xþ 1. The total amount of person years lived by people aged

½x; xþ 1Þ in year ½t; t þ 1Þ is called the ‘exposure to risk’, denoted by Ex;t. The

central death rate mx;t is then

mx;t ¼
dx;t

Ex;t
: ð2Þ

Under the assumption of piecewise constant force of mortality, the maximum

likelihood estimate l̂x;t of the force of mortality is given by

l̂x;t ¼ mx;t: ð3Þ

All the aforementioned quantities are referred to as being in ‘exact age’ or ‘period

age’. They apply to people who have exact age x at exact time t. We illustrate the

concepts of deaths and exposures in the left Lexis diagram in Fig. 1. The straight

lines represent individuals’ life lines as they age through time. For example, life line

z (left graph) stops in year t at an age between x and xþ 1 and will thus be counted

in dx;t. The person has survived in year t for slightly less than half a year and this

12 For the Belgian calibration, see http://www.iabe.be/nl/iabe-mortality-tables. For the Dutch calibration,

see http://www.ag-ai.nl/view.php?action=view&Pagina_Id=480.
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fraction contributes to the exposure Ex;t. The death count dx;t and exposure Ex;t are

therefore measured over all life lines passing through the square surface Sper
x;t in

Fig. 1 (left). Denote with (a, b) a person with exact age a at exact time b. The

surface Sper
x;t is then represented in the following way:

Sper
x;t ¼ ða; bÞ j x� a\xþ 1; t� b\t þ 1f g: ð4Þ

As Cairns et al. [10] indicate, one has to be wary of any data quality issues when

receiving data from different sources or even from the same source at different

times. For example, not all data sources work with these period or exact age defi-

nitions of deaths and exposure, but instead apply ‘cohort’ or ‘completed years’

definitions.13 A cohort refers to all people born in the same year. On 1 January of

year t, a cohort born in year t � x� 1 will have ‘completed’ the exact age x and not

reached age xþ 1. The probability that a person with completed age x at 1 January

of year t dies within 1 year, is called the cohort death rate or mortality rate. The

associated cohort number of deaths, dcohxþ1;t,
14 is the number of people born in the

year t � x� 1 who died in year t. A similar definition applies to the cohort expo-

sures Ecoh
xþ1;t. As the life lines move diagonally through a Lexis diagram, the surface

Scoh
xþ1;t in which the cohort quantities are measured has the shape of a parallelogram,

as illustrated in Fig. 1 (right). A person who is represented by the age-time pair

(a, b) was born at exact time c ¼ b� a. The time of birth c allows for an easy

representation of the cohort surface Scoh
xþ1;t:

Year

Age

t− 1 t t+ 1 t+ 2

x− 1

x

x+ 1

x+ 2

u

y

x

z

v

wSper
x,t

Year

Age

t− 1 t t+ 1 t+ 2

x− 1

x

x+ 1

x+ 2

u

y

x

z

v

w

Scoh
x+1,t

Fig. 1 Lexis diagram with life lines u, v, w, y, z and representation of period (left) and cohort (right)
surfaces. x marks the death of a person, � indicates a person dropping out of the study alive, � specifies a
new person entering the study. In our study, only birth and death are observed

13 For example, these definitions are used by ‘Centraal Bureau voor Statistiek’ (CBS, http://www.cbs.nl/
en-GB/menu/home/default.htm?Languageswitch=on) in The Netherlands and ‘Algemene Directie Sta-

tistiek—Statistics Belgium’ (ADS, http://statbel.fgov.be/en/statistics/figures/) in Belgium.
14 We use the CBS definitions where the age-time subscript ‘x, t’ refers to people born in year t � x.

Other institutions, such as the ADS, use ‘x, t’ to refer to people born in year t � x� 1.
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Scoh
xþ1;t ¼ ða; bÞ j t � x� 1� c\t � x; t� b\t þ 1; c ¼ b� af g: ð5Þ

As some institutions publish data on deaths and exposures only in the cohort rep-

resentation while others use the exact age definitions, it will be necessary to

establish a link between the cohort and period deaths and exposures. Such a link

enables to transform data displayed in the format of the left panel in Fig. 1 to the

format of the right panel, and vice versa. We refer to Sect. 2.3 for the details.

2.2 European data from human mortality database

We construct our multi-population mortality model using data from a pool of

European countries with similar socio-economic characteristics, available from the

human mortality database15 (HMD). According to Niu and Melenberg [42] a

positive dependence exists between mortality rates and gross domestic product

(GDP) per capita. Therefore our approach calibrates the multi-population mortality

model using the European countries with GDP per capita above the Eurozone

average.16 This leads to a pool of 14 countries (from largest exposure to smallest):

West-Germany, France, England and Wales, The Netherlands, Belgium, Sweden,

Austria, Switzerland, Denmark, Finland, Norway, Ireland, Luxembourg and Iceland.

East-Germany, Scotland and Northern Ireland are not included since they were less

economically developed during part of the calibration period (see further) or

because HMD mentioned quality issues with the data. As such we create a multi-

country dataset with a composition as illustrated in Fig. 2. Figure 3 shows the

observed evolution of the period life expectancy at birth, see Sect. 5.1, in the

aforementioned countries over time. The life expectancy of these countries has been

slowly converging since 1970.

From the HMD database we use the tables ‘Deaths’ and ‘Exposure to risk’ in

1� 1 format for the countries listed above. HMD provides these quantities

following the exact age definitions17 which correspond to the square region in Fig. 1

(left). We use an age range X ¼ f0; . . .; 90g and a period range

T ¼ f1970; . . .; 2009g. To enable a proper calibration of the stochastic model

proposed in Sect. 3.1 on old age statistics, the age range is capped at 90 because the

data for ages above 90 has not enough exposure and volatile data result. A calibrated

parametric law will extrapolate the calibrated force of mortality towards higher

ages, also known as ‘closing the life table’. Our strategy to close the resulting

mortality forecasts for old ages is described in Sect. 3.3. The start of the calibration

period is motivated by the increasing convergence in life expectancy between the

relevant countries since 1970, as illustrated in Fig. 3. Moreover, the chosen period is

long enough to allow a stable calibration. For a univariate Lee–Carter (LC)
calibration of Dutch and Belgian mortality data, a starting year around 1970 has

15 This mortality database is available at http://www.mortality.org.
16 Source: World Bank Data for 2013 on GDP per capita in US dollar, http://data.worldbank.org/

indicator/NY.GDP.PCAP.CD.
17 See bottom of page 6 in the HMD protocol: http://www.mortality.org/Public/Docs/MethodsProtocol.

pdf.
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been suggested as a structural break for Dutch males in Van Berkum et al. [50] or as

the start of an optimal calibration period in Denuit and Goderniaux [21]. The last

year for which mortality data is available from HMD for all countries under

consideration was 2009.18

2.3 Official country-specific data: the case of The Netherlands and Belgium

To design a multi-population mortality projection model we combine the most

recent data of the country of interest with a larger data set downloaded from the

HMD. The large multi-country data base (from HMD) is typically refreshed with

significant delay compared to the data published by the official statistics institution

of a single country. We sketch the necessary transformations to go from data in

completed years format (which country-specific institutions may use) to exact age

format (which HMD uses), and vice versa. We illustrate these transformations for

The Netherlands. Similar transformations will be necessary when combining HMD
data with more recent data for other countries.

0e+00

5e+07

1e+08

0         10         20        30         40        50        60         70        80         90
Age

E
xp

os
ur

e

ICE
LUX
IRE
NOR
FIN
DEN
SWI
AUS
SWE
BE
NE
EW
FR
wGER

0e+00

1e+06

2e+06

3e+06

0         10         20        30        40         50        60         70        80        90
Age

D
ea

th
s

ICE
LUX
IRE
NOR
FIN
DEN
SWI
AUS
SWE
BE
NE
EW
FR
wGER

Fig. 2 Combined female and male exposures (left) and deaths (right) for all ages and stacked per
country. The countries are sorted and the country with the highest exposure and deaths is at the bottom of
the graph
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Fig. 3 Evolution from 1920 to 2009 of the period life expectancy for a newborn, female (left) and male
(right). Data is the period ‘Life expectancy at birth’ from HMD (file E0per.txt)

18 Since we reproduce the results and forecasts as published by KAG on 9 September 2014 and by IAjBE
on 18 February 2015 we use the data used by the authors of these publications, as downloaded on 29 May

2014.
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At the time of analysis, the most recent calendar year of data available on HMD
was 2009 for The Netherlands and 2012 for Belgium.19 In order to be able to work

with the most recent data, Dutch deaths (d
ðNEÞ
x;t ) and exposures (E

ðNEÞ
x;t ), for t 2

f2010; 2011; 2012; 2013g were obtained from CBS statistics. Similarly, Belgian

deaths and exposures were procured via ADS statistics. Both institutions provide the

information only in completed years which requires a transformation to the exact

age definition, in order to merge the institutional data with the HMD data from

Sect. 2.2.

As illustrated in Fig. 1, the cohort, or completed age, definition counts the

number of deaths and exposures in a parallelogram instead of a square. To transform

cohort data into period, or exact age, data, we follow the HMD protocol.20 Consider

the Dutch case and denote the CBS cohort death counts21 with d
ðCBSÞ
xþ1;t , and the HMD

period death counts with d
ðNEÞ
x;t . These quantities have the same starting point (x, t) in

the Lexis age-time diagram, as illustrated by the bullet (�) in Fig. 4. We divide the

parallelogram and the square, over which the deaths are counted, into triangles as

visualized in Fig. 4. The upper triangle from the period death count then

corresponds to the lower triangle of the cohort death count. In line with the HMD

protocol, the death counts d
ðCBSÞ
x;t and d

ðNEÞ
x;t are assumed to be spread uniformly over

the surfaces. By rearranging the triangles, the cohort death counts are then

transformed into period death counts as follows:

d
ðNEÞ
x;t ¼ 1

2
d
ðCBSÞ
x;t þ 1

2
d
ðCBSÞ
xþ1;t if x[ 0 ð6Þ

d
ðNEÞ
0;t ¼ d

ðCBSÞ
0;t þ 1

2
d
ðCBSÞ
1;t ; ð7Þ

where d
ðCBSÞ
0;t is the death count of people born in year t who died before 1 January

of year t þ 1.

To combine data from the parallelogram display with data in the square display

we also need to calculate the exposure over the square region in Fig. 5. CBS
provides data on the population px;t per age x at 1 January of year t and the deaths in

the upper and lower triangle of the square, denoted by d
ðUÞ
x;t and d

ðLÞ
x;t in Fig. 4. Let

Nxþ1;t be the number of people who attain age xþ 1 during year t. Ignoring

emigration and immigration,22 the following formula holds:

19 On 30 December 2015, data until 2012 for both The Netherlands and Belgium was available on HMD.
This data was used to stay as close as possible to the original dataset used by KAG and IAjBE.
20 This protocol is available from http://www.mortality.org/Public/Docs/MethodsProtocol.pdf.
21 The number of deaths per year, age and gender are available at http://alturl.com/dz7mc.
22 Data from, for example, CBS shows that the yearly net migration in recent years is around 0.2% of the

total population and for specific ages is almost always less than 2%. We consider these effects small

enough to not have a significant impact on the calculations. Population data from http://statline.cbs.nl/

Statweb/publication/?DM=SLNL&PA=7461BEV&D1=0&D2=1-2&D3=1-100&D4=45-66&HDR=

G1,G3,T&STB=G2&VW=T and migration data from http://statline.cbs.nl/Statweb/publication/?DM=

SLNL&PA=03742&D1=3&D2=1-2&D3=1-96&D4=0&D5=0&D6=a&HDR=G3,T,G1,G5&STB=

G4,G2&VW=T.
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Nxþ1;t ¼ px;t � d
ðUÞ
x;t : ð8Þ

Assuming that the birthdays of people reaching age xþ 1 in year t are distributed

uniformly over the year, the average amount of time a person from the group of
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Fig. 4 Comparison between one year period (left) and cohort (right) death counts starting with all people
aged [0, 3) at exact time t
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Fig. 5 Graphical representation of population metrics in the Lexis diagram. The population size of the
cohort aged ½x; xþ 1Þ on 1 January of year t is represented by px;t and the population reaching exact age x

at year ½t; t þ 1Þ is Nx;t
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Nxþ1;t people spends in the upper triangle d
ðUÞ
x;t is half a year. The contribution of

people aged x reaching their next birthday in year t to the exposure in the upper

triangle (E
ðUÞ
x;t ) is then

1
2
Nxþ1;t. The contribution to the exposure E

ðUÞ
x;t of the people

not surviving until their next birthday can be derived using a geometrical argument.

Because of the assumption of a uniform distribution of deaths over the triangles, the

barycenter of the deaths within the upper triangle is the age-time point (xþ 2
3
; t þ 1

3
).

Thus, someone who dies in the upper triangle d
ðUÞ
x;t contributes 1

3
years on average to

the exposure in the upper triangle E
ðUÞ
x;t . Adding the exposure of the deceased to the

exposure of the people surviving the upper triangle, we obtain the following formula

for the exposure within the upper triangle:

E
ðUÞ
x;t ¼ 1

2
Nxþ1;t þ

1

3
d
ðUÞ
x;t ð9Þ

¼ð8Þ 1
2
px;t �

1

6
d
ðUÞ
x;t ð10Þ

¼ð6Þ 1
2
px;t �

1

6

1

2
d
ðCBSÞ
xþ1;t

� �
if x[ 0 ð11Þ

E
ðUÞ
0;t ¼

ð7Þ 1

2
p0;t �

1

6
d
ðCBSÞ
1;t : ð12Þ

Similar arguments hold for the exposure in the lower triangle EL
x;t. Recombining the

triangle exposures into square period exposures leads to the following formulas:

E
ðNEÞ
x;t ¼ E

ðUÞ
x;t þ E

ðLÞ
x;t ð13Þ

¼ð11Þ 1
2

px;t þ px;tþ1

� �
þ 1

12
d
ðCBSÞ
x;t � d

ðCBSÞ
xþ1;t

� �
if x[ 0 ð14Þ

E
ðNEÞ
0;t ¼ð12Þ 1

2
p0;t þ p0;tþ1

� �
þ 1

6
d
ðCBSÞ
0;t � 1

2
d
ðCBSÞ
1;t

� �
: ð15Þ

For the case of Belgium, ADS uses the same cohort definition as CBS but with a

slightly different notation. This implies minor changes to the above formula’s. See

Antonio et al. [3] for more details.

3 Model set-up, calibration and projection

This section presents the model set-up, calibration and projection strategy of our

stochastic multi-population model. It should be emphasized that the goal of the

Dutch and Belgian institutions was the development of an industry standard for

country-specific projections of mortality, relevant for life contingent calculations.

More specifically, it was required to build a stochastic mortality projection model on
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the complete age range (starting from age 0, running up to age 120) in line with both

the rigorous standards of state-of-the-art academic work (see [9]) as well as the

requirements of practical work such as robustness, biological reasonableness,

interpretability and transparency.

The use of a stochastic model integrating data from multiple populations was key

in the model selection process, as motivated in Sect. 1. Additionally, statistical

performance of a wide range of mortality models was evaluated with the Bayesian

Information Criterion (BIC, see [46]) and proper scoring rules for count data, see

Czado et al. [16].23 As such, the model from Li and Lee [40] performed very well on

this set of criteria and outperformed the models listed in Cairns et al. [9], Haberman

and Renshaw [29], Börger et al. [5], Van Berkum et al. [50] and Haberman et al.

[28] which were also part of the comparative study. Haberman et al. [28] and Cairns

and El Boukfaoui [11] did not prefer the LL model in their study of basis risk

because—for certain ages—near-perfect correlation may be present between the

reference population and the smaller book population. This may indeed create

problems when assessing basis risk, where projections should reflect possibly

different evolutions in the mortality trend of a reference population and a book of

insureds. The goal in our case is not to assess basis risk, but to assess the quality of

country-specific mortality projections. Hence, other criteria such as robustness and

biological reasonableness were deemed more important. For example, in models

with cohort effects, the cohort turned out to be hard to estimate and project in a

robust way, with similar problems as indicated in Plat [44] and Renshaw and

Haberman [45]. Thus, eventually, the group of academics and practitioners behind

Koninklijk Actuarieel Genootschap [37] and Antonio et al. [3] selected the model

specification of Li and Lee [40] to develop their industry standard. Full details are

given in this section.

3.1 Model set-up

The force of mortality of the country under consideration is denoted by lðcÞx;t , the

European force of mortality by lðEUÞx;t , and the country’s deviation from the European

force of mortality by elðcÞ
x;t . In the case of KAG or IAjBE, c 2 fNE;BEg refers to The

Netherlands and Belgium respectively. We emphasize that the model is fitted

separately for Dutch and Belgian data. In line with the goals of the national actuarial

associations, the model, as presented in this paper, is designed to project and evaluate

the mortality of one country at a time as it does not jointly model the deviations of all

individual countries together. The Li and Lee (LL) mortality model specifies the

logarithm of the force of mortality for the country under consideration, lðcÞx;t , as follows

23 Proper scoring rules are out-of-sample evaluation criteria. They are used to assess model predictions

by allocating a score for each prediction, based on its accuracy and sharpness. Examples of these scores

are the predictive deviance, the squared Pearson residuals or the Dawid–Sebastiani scoring rule from

Dawid and Sebastiani [19].
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ln lðcÞx;t ¼ lnlðEUÞx;t þ ln elðcÞ
x;t ð16Þ

ln lðEUÞx;t ¼ Ax þ BxKt ð17Þ

ln elðcÞ
x;t ¼ aðcÞx þ bðcÞx jðcÞt : ð18Þ

We recognize two times a Lee and Carter specification; Eq. (17) is a LC model for

the European evolution of mortality (driven by lðEUÞx;t ) and (18) is a LC model for the

country-specific deviation from this common trend (specified by elðcÞ
x;t ). All param-

eters with superscript (c) are country-specific and will therefore change when fitting

the model for a different country under consideration. We discuss the methodology

used to calibrate the parameters in (17) and (18) in Sect. 3.2. In order to project the

fitted force of mortality into the future, we approach the fitted time dependent

effects (Kt and jðcÞt ) as realizations of a bivariate time series. This choice of time

series and projection strategy is documented and motivated in Sect. 3.3. We project

the time series, Kt and jðcÞt , using the following specification:

Ktþ1 ¼ Kt þ hðcÞ þ �
ðcÞ
tþ1

ð19Þ

jðcÞtþ1 ¼ aðcÞjðcÞt þ dðcÞtþ1: ð20Þ

The dynamics of the common period effect (see (19)), Kt, are modelled with a

random walk with drift (RWD), where hðcÞ is the drift. The country-specific period

effect (see (20)), jðcÞt , follows an AR(1) process without intercept, as in Li and Lee

[40]. The error terms, ð�ðcÞtþ1; d
ðcÞ
tþ1Þ, for the time series are possibly correlated

Gaussian random variables with an independent and identical distribution over time.

We calibrate the parameters in these time series specifications on the estimated Kt

and jðcÞt parameters for t 2 T , and use these dynamics to project lðcÞx;t for future t.

Since the calibration methodology allows for possible correlation between the two

time series, the parameters in (19) and (20) (including the drift hðcÞ) change when a

different country of interest is used. We further explain this in Sect. 3.3.

3.2 Calibration, goodness-of-fit and robustness

We calibrate the parameters (Ax, Bx, Kt, a
ðcÞ
x , bðcÞx and jðcÞt ) in the LL specification

using maximum likelihood estimation (MLE). Following the seminal paper by

Brouhns et al. [6] we assume a Poisson distribution for the number of deaths random

variable Dx;t, with mean Ex;t � lx;t and Ex;t the observed exposure to risk. To avoid

identification problems in the LL model we use a conditional maximum likelihood

approach as in Li [39]. We calibrate the common parameters (i.e. Ax, Bx and Kt) on

aggregated European data in a first step, followed by the calibration of the country-

specific parameters (i.e. aðcÞx , bðcÞx and jðcÞt ) using country-specific data in a second

step. We explain this process in more detail below.
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1. We obtain observed deaths, d
ðEUÞ
x;t , and corresponding exposures to risk, E

ðEUÞ
x;t ,

to calibrate the European trend by aggregating deaths and exposures

downloaded from HMD (see Sect. 2) over the 14 selected countries, using

X ¼ f0; . . .; 90g and �T ¼ f1970; . . .; tðEUÞmaxg where t
ðEUÞ
max is the most recent

calendar year for which data is available for the whole set of countries. In our

case t
ðEUÞ
max ¼ 2009, as outlined in Sect. 2.2. We maximize the following Poisson

likelihood

max
fAx; Bx; Ktg

Y
x2X

Y
t2 �T

ðEðEUÞ
x;t lðEUÞx;t Þd

ðEUÞ
x;t � exp ð�E

ðEUÞ
x;t lðEUÞx;t Þ=ðdðEUÞx;t !Þ; ð21Þ

with lðEUÞx;t ¼ exp ðAx þ BxKtÞ. We apply the usual Lee and Carter parameter

constraints to identify parameters in a unique way, namelyX
t2 �T

Kt ¼ 0 and
X
x2X

Bx ¼ 1: ð22Þ

These constraints are applied immediately after every update of both the Kt and

the Bx in the iterative optimization procedure, in correspondence with the

LifeMetrics code on which our calibration program is based (see [7]). We

refer to Chapter 5 in Pitacco et al. [43] for the precise Newton–Raphson

formulas in the updating scheme. This step only requires data aggregated at

European level and will thus lead to the same results irrespective of the country

of interest.

2. For the country of interest, denoted with superscript (c), we want to use the

most recent set of data when calibrating the mortality model. Since not all

countries update their data at the same pace, a discrepancy will arise between

the most recent year of data available for the specific country and for every

other country in the set. Therefore, if data for the country of interest is available

up to year t
ðcÞ
max, we need to extend the parameter estimates for Kt to the years

ftðEUÞmax þ 1; . . .; t
ðcÞ
maxg. For this we use linear extrapolation which is justified by

the linear trend observed in the Kt estimates (see top right corner of Fig. 6),

namely

KtEUmaxþs ¼ KtðEUÞmax þ sðKtðEUÞmax � K1970Þ=ðtðEUÞmax � 1970Þ;

with s 2 f1; . . .; tðcÞmax � t
ðEUÞ
maxg. For The Netherlands and Belgium the data

was, at the moment of publishing the IAjBE and KAG mortality prognoses,

available from HMD up to 2012 and supplemented by data from national

institutions up to t
ðcÞ
max ¼ 2013.

3. We calibrate the country-specific parameters (i.e. aðcÞx , bðcÞx and jðcÞt ) by

maximizing the following Poisson likelihood, conditional on lðEUÞx;t as estimated

in steps 1 and 2 of this procedure. Thus,
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max
faðcÞx ; bðcÞx ; jðcÞt g

Y
x2X

Y
t2T

ðEðcÞ
x;t l

ðcÞ
x;t Þd

ðcÞ
x;t � exp ð�E

ðcÞ
x;t l

ðcÞ
x;t Þ=ðdðcÞx;t !Þ; ð23Þ

where lðcÞx;t ¼ lðEUÞx;t � exp ðaðcÞx þ bðcÞx jðcÞt Þ. We calibrate the country-specific

parameters on ages x 2 X ¼ f0; . . .; 90g and years t 2 T ¼ f1970; . . .; tðcÞmaxg.
Once again we normalize the estimated parameters after every iteration by

imposing X
t2T

jðcÞt ¼ 0 and
X
x2X

bðcÞx ¼ 1: ð24Þ

We apply this calibration strategy separately for male and female data as in Carter

and Lee [12] and Brouhns et al. [6]. We illustrate the resulting parameter estimates

for female data in Fig. 6 with the common parameters in the top, Dutch parameters

in the middle and Belgian parameters in the bottom row.24

We illustrate the goodness-of-fit of ourmodelwith a heatmap of Pearson residuals25 in

Fig. 7. The model captures quite well the period and age effects where the residuals

behave randomly. For cohorts, however, Fig. 7 exhibits aneffect forBelgian and, slightly
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Fig. 6 Estimated parameters for the common trend (top row, Ax, Bx, Kt), Dutch deviation (middle row,

aðNEÞx , bðNEÞx and jðNEÞt ) and Belgian deviation (bottom row, aðBEÞx , bðBEÞx and jðBEÞt ), female data, ages 0–90,

years 1970–2013

24 A complete set of all Dutch parameters can be found at the last pages of http://www.ag-ai.nl/

download/20470-Prognosetafel?14-Appendix?A.pdf. The full set of Belgian parameters can be found at

http://www.iabe.be/sites/default/files/bijlagen/mortality_tables_iabe_2015_parameters.xls.

25 The Pearson residuals for the Poisson regression in our model are defined as
d
ðcÞ
x;t �E

ðcÞ
x;t l̂

ðcÞ
x;tffiffiffiffiffiffiffiffiffiffiffi

E
ðcÞ
x;t l̂

ðcÞ
x;t

p .
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less pronounced, Dutch data. Our experiments with the inclusion of cohort effects in the

model specification, revealed difficulties to find reasonable forecasts of these cohort

effects, and problems with the robustness of the model. Van Berkum et al. [50] report

similar problems for cohort effects in their study of different mortality models for The

Netherlands and Belgium.We therefore opted not to include cohort effects in our model.

Figure 8 shows the robustness of our model with respect to the calibration period used.

All parameters exhibit the same behaviour and trend for the different calibration periods

investigated, with a slight increase of parameter variability for Belgian data.

3.3 Projection

Calibrating the time series models The mortality model specified in Sect. 3.2

together with the time dynamics from (19) and (20) allow us to generate future

scenarios of mortality and hence take uncertainty in these scenarios into account

when performing life contingent calculations. The use of a RWD process for the

common trend and an AR(1) process for the country-specific deviation enhances

coherent forecasts in the sense that the mortality of the different countries will not

diverge from the common trend, if the AR(1) process is stationary. For the country-
specific deviation, any unstationary time series, such as RWD, will lead to

divergence from the common trend and is therefore ruled out on biological grounds.

The choice for the RWD and AR(1) processes and the concept of coherence is

further motivated in Li and Lee [40] and Hyndman et al. [30].

First, we calibrate the time series models to the parameter estimates fðKt; j
ðcÞ
t Þ j t 2

T g with T ¼ f1970; . . .; 2013g. We assume a bivariate normal distribution for the

error terms ð�ðcÞt ; dðcÞt Þwithmean (0, 0) and covariancematrixVðcÞ. The error terms are
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Fig. 7 Pearson residual heatmaps for the model fitted on Dutch (top row) and Belgian (bottom row),
female (left column) and male (right column) data, ages 0–90, years 1970–2013
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independent and identically distributed for all t. The parameters hðcÞ, aðcÞ andVðcÞ, used
in the time series specifications, are estimated using maximum likelihood.26 Since we

incorporate correlation between the time series in the estimation procedure, the drift

hðcÞ and the covariancematrixVðcÞ will change if another country of interest is chosen.
Modeling the multivariate time series of all country-specific deviations in the

European data set simultaneouslywith the common trend,would be away to overcome

this feature. This approach is outside the scope of this paper. The resulting parameter

estimates (for male and female data) follow in Table 1 for both the Dutch and Belgian

calibration. For Dutch females and Belgian males the AR(1) parameter a is very close

to, but strictly smaller than, one resulting in a stationary time series and coherent

forecasts. Sect. 6 outlines several strategies, such as constrained optimization or

Bayesian calibration, that can be used in case a calibration on different data leads to

unstationary time series. In a case study with Austria, Belgium, Denmark, Sweden,

Switzerland and Czechia, Enchev et al. [26] discuss the use of a RWD for country-

specific period effects. Using this time series specification, they give up the

requirement of coherence in multi-population forecasting, leading to divergent

mortality rates of the different countries over time. Although hðcÞ represents the drift of
the common trendKt, it will change slightly when calibrating the model for a different
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Fig. 8 Estimated parameters for the common trend (top row, Ax, Bx, Kt), Dutch deviation (middle row,

aðNEÞx , bðNEÞx and jðNEÞt ) and Belgian deviation (bottom row, aðBEÞx , bðBEÞx and jðBEÞt ), female data, ages 0–90,

for three calibration periods: parameters estimated on 1960–2013 data are denoted with a straight line (–),
on 1970–2013 data with dots (�) and on 1980–2013 data with a dashed line (–). For the Belgian 1980–
2013 calibration, bx and jt have been rescaled by - 12 and - 1/12 respectively to enable a good
comparison

26 In R we use Seemingly Unrelated Regression through the package systemfit, we use the function

systemfit with options method=‘‘SUR’’ and methodResidCov=‘‘noDfCor’’.

Producing the Dutch and Belgian mortality projections\ldots 313

123



country, as is visible fromTable 1. This is due to the dependency between the common

and country-specific time series.

Generating future scenarios of mortality For each country of interest, future

mortality scenarios can be generated using the following step by step approach. We

label a future scenario by j ¼ 1; . . .;N, and let t run from 2014 to some specific end

year T.

1. We simulate future values of ðKðjÞ
t ; jðc;jÞt Þ using the time dynamics specified in

(19) and (20), with the parameter estimates listed in Table 1. We start with

ðK2013; j
ðcÞ
2013Þ as obtained from the calibration strategy in Sect. 3.2. We generate

i.i.d. (�
ðc;jÞ
t ; dðc;jÞt ) from a bivariate normal distribution with mean (0, 0) and

covariance matrix VðcÞ listed in Table 1.

2. From the simulated ðKðjÞ
t ; jðc;jÞt Þ for t ¼ 2014; . . .; T , we obtain lðjÞx;t as in (16),

(17) and (18) using the age-specific parameters ðAx; a
ðcÞ
x ;Bx;b

ðcÞ
x Þ.

Figure 9 illustrates the projection of the time dependent parameters Kt (left) and jt
(right) for females, Dutch (top) and Belgian (bottom) calibration. We generate

10,000 scenarios and show the corresponding fan charts (formed by the median, 0.5

and 99.5% quantiles of the generated scenarios).

Closing for old ages We use Kannistö [34] to close each mortality scenario for

old ages, say x 2 f91; 92; . . .; 120g. This mortality law is chosen from a

comparative analysis of techniques to close mortality tables, documented in

Antonio [2]. The parametric approach of Kannistö [34] specifies the force of

mortality in each scenario j, for ages x[ 90 and a specific year t, as follows:

lðc;jÞx;t ¼ /ðc;j;tÞ
1 exp ð/ðc;j;tÞ

2 xÞ
1þ /ðc;j;tÞ

1 exp ð/ðc;j;tÞ
2 xÞ

: ð25Þ

We estimate ð/ðc;j;tÞ
1 ;/ðc;j;tÞ

2 Þ for each scenario j and year t from the relation (as in

[24])

Table 1 Time series parameter estimates for data on males and females for both The Netherlands and

Belgium

Belgium The Netherlands

hðBEÞ aðBEÞ VðBEÞ hðNEÞ aðNEÞ VðNEÞ

Male - 2.0372 0.9996 1.7603 - 0.1584 - 2.2333 0.9881 1.7891 0.3733

- 0.1584 0.0649 0.3733 0.2904

Female - 2.0029 0.8645 2.4939 - 0.0190 - 1.9368 0.9956 2.4988 - 0.2829

- 0.0190 0.0057 - 0.2829 1.3729

European data from 1970–2009 and Dutch, Belgian data from 1970–2013, ages 0–90
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logit lðc;jÞx;t ¼ log ð/ðc;j;tÞ
1 Þ þ /ðc;j;tÞ

2 x; ð26Þ

using OLS on the ages x 2 f80; 81; . . .; 90g. The estimates for ð/ðc;j;tÞ
1 ;/ðc;j;tÞ

2 Þ are

then used in (25) to determine the generated mortality scenario for ages x[ 90.

Finally, we can switch to scenarios for future mortality rates with the

transformation in (1), using

q
ðc;jÞ
x;t ¼ 1� exp ð�lðc;jÞx;t Þ; ð27Þ

for t 2 f2014; 2015; . . .; Tg and x 2 f0; 1; . . .; 120g.

4 Results

4.1 Fitted and simulated mortality rates

Figure 10 shows the calibrated q̂
ðcÞ
x;t for Dutch and Belgian males for a selection of

ages, namely x 2 f25; 45; 65; 85g. To explore the performance of the proposed

model, we add extra examples with data from France and West-Germany, calibrated

using the principles of Sect. 3. We show the median and 99% pointwise confidence

intervals based on 10,000 scenarios of projected mortality rates. The black dots in

this figure are the observed mortality rates q
ðcÞ
x;t . The blue lines indicate the mortality

rates fitted with the model specified in Sect. 3.1. The red lines are the calibrated

mortality rates q̂
ðcÞ
x;t from a country-specific Lee–Carter model. Our model is able to

capture country-specific dynamics well due to the extended model specification

compared to a LC model. The use of extra parameters is appropriate in view of the

1980 2000 2020 2040 2060

−
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0
−

10
0

−
50

0

Common Factor Kt − NE BE − RW with drift

Year

1980 2000 2020 2040 2060

−
20

−
10

0
10

20
30

40

NE Female κt
(NE) − AR(1) without intercept

Year

1980 2000 2020 2040 2060

−
0.

5
0.

0
0.

5

BE Female κt
(BE) − AR(1) without intercept

Year

Fig. 9 Projection of time dependent parameters: Kt (left) and jðcÞt (right) for female Dutch and Belgian
data. We plot 0:5% quantile, median and 99:5% quantile obtained from 10,000 simulations. The graph on
the left, with the EU trend, has two sets of quantiles due to the slightly different parameter estimation for
the Dutch and Belgian data as in Table 1
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larger set of data. For example, the non-linear evolution for Dutch 85-, Belgian 25-

and French 25-year old males are features which are not captured with a standard

LC calibration. The French and, to a lesser extent, West-German 25-year old

evolution illustrates that our model also can be a valuable improvement over the LC
method for large countries with significantly larger datasets than The Netherlands or

Belgium.

4.2 The best estimate tables

Based on this model, we provide point estimates of the mortality rates for all ages

and years. We define the best estimate force of mortality l̂ðcÞx;t for a specific age and

year as the median of the underlying distribution. These best estimates for the period

effects result from (19) and (20) with noise terms �
ðcÞ
t ¼ 0 ¼ dðcÞt for all future t. We

close the mortality tables obtained in this way with Kannistö [34] such that l̂ðcÞx;t for

x 2 f0; 1; . . .; 120g and t 2 f2014; . . .; 2060g are found. The corresponding mortal-

ity rates q̂
ðcÞ
x;t follow from (1). The projected mortality tables obtained with this

method result in the ‘KAG 2014 projection table’ and ‘IAjBE 2015 mortality

projection for the Belgian population’. The mortality tables are published online.27

4.3 Backtesting the mortality model

One of the evaluation criteria used in the process of selecting a mortality model, is

its performance in backtests (see [9, 25]). We illustrate the performance of our

model in two types of backtests. In the first and second row of Fig. 11 we calibrate

the model on female data from 1970 to 2000 and use it to project mortality rates q
ðcÞ
x;t

where t 2 f2001; . . .; tmaxg, with tmax ¼ 2013 for The Netherlands and Belgium and

tmax ¼ 2009 for France and West-Germany. The third and fourth row of Fig. 11

visualizes the results of the backtest with calibration period 1970–2000, when the

object of interest is the period life expectancy for a female aged 0 or 65. Section 5.1

gives the formal definition of the period life expectancy. The slower increase of life

expectancy for The Netherlands between 1980 and 2000 has no major influence on

the quality of the projections as the observed mortality rates and period life

expectancies for The Netherlands are within the confidence intervals of the model.28

bFig. 10 Estimated (blue) and projected (grey fan chart) mortality rates, qx;t , for The Netherlands (far left)

and Belgium (middle left), male data, ages 25, 45, 65 and 85 (top to bottom). For illustration purposes, we
added graphs for France (middle right) and West-Germany (far right). We plot 0:5% quantile, median and
99:5% quantile obtained from 10,000 simulations. The red line represents the single country LC
calibration with the same calibration period and the black dots are the observed mortality rates

27 For the Dutch tables, see http://www.ag-ai.nl/view.php?action=view&Pagina_Id=480. For the Belgian

tables, see http://www.iabe.be/nl/iabe-mortality-tables.
28 The Dutch calibration for this backtest initially led to an unstable AR(1) parameter in the country

specific time series: a[ 1. The results shown here are with an inequality constrained calibration for the

time series to keep them stationary.
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Overall, our model performs well in this backtest with most observations lying

within the displayed quantiles for the displayed countries.

5 Applications

We discuss four possible applications of the model: the calculation and projection of

life expectancies (period and cohort) to enhance insight in their future evolution, the

calculation of actuarial pension corrections as suggested by the Belgian Commissie

Pensioenhervorming 2020–2040 [14], the computations behind the Dutch legal

retirement age updating mechanism, as well as the reserve calculations in a pension

portfolio. These applications show that a carefully designed stochastic mortality

model brings necessary input and tools for policy making and decision taking in the

presence of life contingent risks. For all applications, our model is able to provide a

(single) best estimate scenario, while—when used as a scenario generator—the

model also allows to quantify uncertainty through simulations. To ease the notation,

we drop the superscript (c) on the country-specific force of mortality and mortality

rate.

5.1 Life expectancy: period and cohort

Using the assumption of a piecewise constant force of mortality (see (1)), the period

life expectancy for an x-year old in year t is

eperx;t ¼
1� exp ð�lx;tÞ

lx;t
þ
X
k� 1

Yk�1

j¼0

exp ð�lxþj;tÞ
 !

1� exp ð�lxþk;tÞ
lxþk;t

; ð28Þ

and the cohort life expectancy for an x-year old in year t is

ecohx;t ¼
1� exp ð�lx;tÞ

lx;t
þ
X
k� 1

Yk�1

j¼0

exp ð�lxþj;tþjÞ
 !

1� exp ð�lxþk;tþkÞ
lxþk;tþk

; ð29Þ

see, for example, Pitacco et al. [43].29 The period definition only uses the forces of

mortality of one specific year t. As such, when mortality data is available for that

particular year, the corresponding period life expectancy can immediately be cal-

culated using (28). In contrast, the cohort definition uses forces of mortality from

not only year t but also the future years. To obtain numerical results for (29)

bFig. 11 Backtests with calibration period 1970–2000 for the mortality rates and period life expectancies
of females aged 0 and 65, data from The Netherlands (far left) and Belgium (middle left). For illustration
purposes, we added graphs for France (middle right) and West-Germany (far right). The black dots
represent observed mortality rates and life expectancies, the black and red dashed lines are the calibrated
rates and life expectancy and the fan charts represent the projections. We plot 0:5% quantile, median and
99:5% quantile obtained from 10,000 simulations

29 We note that the KAG uses a slightly different definition of life expectancies, available on page 34 of

Koninklijk Actuarieel Genootschap [37].
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mortality data and forecasts are necessary for several subsequent years. Since a

person experiences mortality rates over successive years, the cohort life expectancy

is a more appropriate concept when quantifying the amount of years an individual is

expected to live. We therefore encourage the use of the cohort definition when

addressing life expectancy. From the mortality scenarios generated as described in

Sect. 3.3 we obtain simulations of the period and cohort expectancy, e
per
x;t and ecohx;t .

When calculating cohort life expectancies in, say, 2060, we need to project the

mortality rates over a horizon of 120 years beyond 2060. Next to the paths generated

for the period and cohort life expectancy, the best estimate table, introduced in

Sect. 4.2, generates a point estimate of these quantities.

Figure 12 shows the observed period life expectancy (black dots) for a 0 and a

65-year old Dutch, Belgian, French and West-German female and male, the

calibrated period life expectancy (red line) and confidence intervals of the projected

period and cohort life expectancies: e
per
0;t , e

per
65;t, ecoh0;t and ecoh65;t for

t 2 f2014; . . .; 2060g. The model captures the observed, in-sample period life

expectancies for different countries very well.

Tables 2 and 3 list the 0.5, 50 and 99.5% quantiles of ecohx;t for specific choices of

x and t for the Dutch and Belgian calibration. Dutch males have higher best estimate

cohort life expectancy than their Belgian counterparts whereas for females the

differences are in favour of the Belgians, though considerably smaller. The Dutch

projections have significantly wider confidence intervals because the variance of the

country-specific time series jt is larger for The Netherlands than for Belgium for

both genders, as the covariance matrix in Table 1 underpins.

5.2 Pension cost and actuarial corrections

Pension liabilities are increasing because of decreasing mortality rates and hence

increasing life expectancies. It is imperative to use scenarios generated by a

carefully designed mortality model to obtain sound forecasts of the evolution of

pension liabilities. These forecasts bring insight in the consequences of retirement at

a specific age and allow institutions to take appropriate measures to keep pension

costs sustainable. For some illustrations in this section, we use period life

expectancy instead of its cohort counterpart because it is known for past years and

relies on a smaller projection horizon for future years. Therefore uncertainty is

smaller for the period than for the cohort life expectancy.

The model presented in this paper can readily be used to picture the evolution of

pension costs. We hereby assume constant interest rates in order to remove the

interest rate risk and to focus exclusively on longevity risk. Let us consider an x-

cFig. 12 Period (black dots and red lines) and cohort (blue) life expectancy for a 0-year old (row 1 and 3)
and 65-year old (row 2 and 4) for The Netherlands (far left) and Belgium (middle left), female (top rows)
and male (bottom rows) data. For illustration purposes, we added graphs for France (middle right) and
West-Germany (far right). We plot 0:5% quantile, median and 99:5% quantile obtained from 10,000
simulations
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year old Belgian pensioner in year t who receives a yearly pension of €10,000. The
present value of the cash flow which represents his yearly future pension allowance

is expressed as follows, see Dickson et al. [23]:

PVx;tð10;000Þ ¼ 10;000 � €ax;t ð30Þ

¼ 10;000 �
X
k� 1

1þ g

1þ i

� �k Yk�1

l¼0

ð1� qxþl;tþlÞ; ð31Þ

where g is the inflation or indexation factor, i is the interest rate and ð1� qxþl;tþlÞ is
the one-year survival probability of an xþ l-year old in year t þ l. Using (31) and

the mortality projections from our model, we obtain the evolution of the pension

cost PV65;tð10;000Þ of a 65-year old Belgian over time, visualized by the blue band

in Fig. 13 (left).30 We see a fast increase of the pension cost PV65;tð10;000Þ over the
years as the life expectancy increases. To design sustainable pension systems in an

era of increasing expenses, governments are currently implementing different types

of measures, as mentioned in Sect. 1. An increase of the legal pension age, like in

Belgium, linking the legal pension age to the evolution of the life expectancy and

adjustments to the benefits, as in The Netherlands, are typical examples of such

measures. As a first illustration of the measures suggested by the Belgian ‘Com-

missie Pensioenhervorming 2020–2040’, we show how to develop career sensitive

actuarial corrections which adjust the pension costs for people who retire earlier or

later than the ‘normal pension age’. The latter is the age at which one reaches a ‘full

career’, for example, after having worked for 45 years.31 To calculate fair cor-

rections we take the ratio of (31) for two different ages and years. We consider the

situation where the full career of an individual corresponds to retirement at the

normal pension age xn in year tn, whereas his actual situation corresponds to

retirement age xr reached in year tr. For this specific individual we then have

tn ¼ tr þ ðxn � xrÞ. With the inflation rate g equal to the interest rate i we represent

a situation with constant purchasing power, which leads to the following equation:

PVxn;tnð10;000Þ
PVxr ;trð10;000Þ

¼
P

k� 1

Qk�1
l¼0 ð1� qxnþl;tnþlÞP

k� 1

Qk�1
l¼0 ð1� qxrþl;trþlÞ

: ð32Þ

The two quantities on the right hand side of (32) are closely related to the cohort life

expectancies from (29).32 As such, in case of early retirement, xr\xn and the

numerator of (32) is smaller than the denominator. Hence, the ratio becomes smaller

than 1, indicating increasing pension costs due to retiring before the normal pension

age. For xr [ xn the reverse conclusions apply.

30 The interest rate i is set to a constant 1% and inflation g is ignored, i.e. 0%. The red band in the left

panel of Fig. 13 are period calculations of PV65;tð10;000Þ, obtained by replacing qxþl;tþl in (31) with

qxþl;t.
31 The age at which one reaches a full career, i.e. the normal pension age, can be different from person to

person depending, amongst others, on the age one starts working and any period of inactivity on the way.
32 The quantities are actually ‘curtate’ cohort life expectancies, see, for example, Dickson et al. [23].
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In order to compensate the increased pension cost due to early retirement, the

Belgian ‘Commissie Pensioenhervorming 2020–2040’ suggests to apply an actuarial

correction c in the following way:

Bxr ;tr ¼ 10;000 � c ¼ 10;000 � s � exn;tn
exr ;tr

; ð33Þ

where Bxr ;tr is the adjusted benefit corresponding to retirement at age xr in year tr,

where 10,000—in our example—is the benefit one would receive in case of

retirement without any correction,33 ex;t is the period life expectancy at age x in year

t and s is a factor determining the strength of the actuarial correction with s ¼ 1

leading to a full correction. In this example we will assume s ¼ 1. The period life

expectancy is used here to calculate the right hand side of (33) since this demo-

graphic marker is observable (every year) and its forecasts do not rely on a long

forecasting horizon. The ratio of period life expectancies ex;t in (33) serves the same

purpose as the ratio in (32). As such, with the adjusted benefit Bxr ;tr obtained from

(33), the actuarial present value of his future benefits PVxr ;trðBxr ;trÞ is equal to the

actuarial present value of his benefits PVxn;tnð10;000Þ, in case of retirement at the

normal pension age. This correction will financially penalize people who retire

before the normal pension age, because their higher life expectancy will lead to

reduced benefits, and reward people who work longer than the normal pension age

while keeping a fair balance in the total costs for one person. The Belgian
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Fig. 13 Left: evolution from 2013 to 2060 of the pension cost of a 65-year old Belgian with a yearly
pension of €10,000, no inflation applied and a constant interest rate of 1%. The blue band represent cohort
calculations as in (31) and the red band represent period calculations using mortality rates from one year
at a time. Right: Actuarial corrections over time on pension benefits for two cohorts of people: with
normal pension age 65 in year 2018 (light red) and with normal pension age 65 in year 2023 (dark red).
All simulations of the period life expectancy of a 65-year old retiring in 2018 and 2023 respectively were
taken as a reference point and combined with all other simulations. Reference points are denoted by � and
I in both panels. We plot 0:5% quantile, median and 99:5% quantile obtained from 10,000 simulations

33 This is the benefit one would receive in case of retiring at normal pension age xn in year tn but

calculated using the individual’s situation regarding pension variables (such as career length, social

security status,. . .) at age xr in year tr . Thus, only the timing/mortality aspect of benefits is taken into

account.
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‘Commissie Pensioenhervorming 2020–2040’ suggests to calculate the normal

pension age xn and the subsequent actuarial corrections c on an individual basis.34

Consider two individuals, one aged 60 in 2013 and the other aged 60 in 2018 with

normal pension age xn ¼ 65 in year tn ¼ 2018 respectively 2023. With the period

life expectancy of a 65-year old in 2018 respectively 2023 as reference point (i.e.

e
per
65;2018 and e

per
65;2023), we calculate the actuarial corrections c in the right graph of

Fig. 13, similar to the procedure in Devolder and Maréchal [22] (see Tableau 3), but

making use of the simulations of our model. If the person, aged 60 in 2013, retires in

2013, he will receive only 84–89% of his yearly unadjusted benefit whereas if he

decides to delay his pension to the age of 70 in 2023 he will receive 114–126% of

the yearly unadjusted benefit. The uncertainty is due to the uncertainty in the ref-

erence point e
per
65;2018 and the uncertainty in period life expectancies in years

2014–2023.35 For 60-year olds in 2018, similar conclusions can be drawn for the

correction factors, showing that this calculation of correction factors ensures soli-

darity within individual cohorts of people with the same birth year and normal

pension age, but not between different cohorts.

In the previous illustration, all people retiring at the normal pension age will

receive full benefits. Hence, pension costs continue to increase due to an increasing

life expectancy, as shown in Fig. 13 (left). The actuarial corrections c can also be

applied to keep pension costs more stable over time, with respect to the pension cost

for a pensioner who retires at age xn in a fixed reference year tn. That is the point of

view developed in our second illustration. By fixing the reference year tn for the

whole population, irrespective of year of birth or when one reaches the normal

pension age xn, the correction factor in (33) will ensure that the total pension cost

for an individual aged xr in year tr is fixed at PVxn;tnðBxr ;trÞ for all xr and tr.
36 We

calculate the correction factors c in (33) for people retiring at age 60 (black), 65

(red), 67 (blue) and 70 (orange) in future years with the reference life expectancy

exn;tn fixed at the observed period life expectancy for age xn ¼ 65 in year tn ¼ 2013.

Figure 14 (left) shows the evolution of pension costs over time for different ages if

no actuarial correction is applied. The case of a 65-year old (red band) is the same as

for the period calculations in Fig. 13 (left). We calculate the actuarial corrections

with the period life expectancy of a 65-year old in 2013 as reference point in Fig. 14

(right). An early retirement at the age of 60 before 2020 will decrease the pension

benefits by almost 20% and more in later years. In contrast, retirement at the age of

70 in 2013 gives a 25% increase in pension benefits, but retiring at the age of 70 in

2060 will probably lead to a decrease in pension benefits driven by increasing life

34 As such, it is possible that one person has a normal pension age of 67 while another has a normal

pension age of 62, depending on career length, type of profession, etc. See Commissie Pensioenher-

vorming 2020–2040 [14] for more information.
35 Since there are 10,000 simulations for the reference point and 10,000 simulations for all period life

expectancies from 2014 onwards, the quantiles were calculated on 10;000� 10;000 evaluations of the

correction factor c. For the year 2013, only 10,000 evaluations were necessary since e
per
60;2013 is known and

observed.
36 Of course, the benefit Bxr ;tr is still dependent on the situation of the underlying individual, but the

numerator numerator of the actuarial correction c in (33) is now the same for the whole population.
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expectancy, all relative to the reference point of the period life expectancy of a 65

years old in year 2013.

The ‘Commissie Pensioenhervorming 2020–2040’ also stresses that socially

motivated adjustments to this system will be necessary because life expectancy is

not homogeneous over the whole population. For example, blue-collar workers like

construction workers tend to have a significantly lower life expectancy than white-

collar workers. With proper data the methods laid out in this paper are readily

extendable to profession specific mortality calculations. Villegas and Haberman

[51] use related models to quantify the mortality differences in the UK between

subpopulations with different socio-economic backgrounds.

5.3 Evolution of the Dutch retirement age

As discussed in Sect. 1, the legal retirement age in The Netherlands is linked to the

evolution of the period life expectancy (PLE) of a 65-year old via the AOW-law.37

In this section we use our model to project the Dutch legal retirement age in

accordance with the current Dutch law. The model allows us to capture both the best

estimate evolution and the uncertainty of projections of the legal retirement age. De

Waegenaere et al. [20] present an initial discussion of this policy using the LC
model, and Stevens [49] compares different retirement age policies, based on the LC
and Cairns et al. [8] model.

Starting from 2013, the legal retirement age in The Netherlands will increase

from the age of 65 to the age of 67 in 2021. This increase is deterministic and

Fig. 15 (see years 2013–2021 in the graphs) illustrates the specific legal retirement
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Fig. 14 Left: period calculations of the evolution from 2013 to 2060 of the pension cost of a 60 (black),
65 (red), 67 (blue) and 70 (orange) year old Belgian with a yearly pension of €10,000, no inflation applied
and a constant interest rate of 1%. Right: actuarial corrections on pensions for retiring at the age of 60
(black), 65 (red), 67 (blue) and 70 (orange) with the scenario of a 65-year old retiring in 2013 as a
reference point, denoted by � in both panels. We plot 0:5% quantile, median and 99:5% quantile obtained
from 10,000 simulations

37 This section is based on the Dutch retirement law (AOW-law) as consulted on 29 April 2016: http://

wetten.overheid.nl/BWBR0002221/.
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age Pt for every year t, set by the Dutch legislators. From 2022 onwards, the

retirement age Pt for year t is linked to the PLE as follows:

Pt ¼ Pt�1 þ Vt with P2021 ¼ 67 ð34Þ

V 0
t ¼ ðeper65;t � 18:26Þ � ðPt�1 � 65Þ ð35Þ

Vt ¼ 0 � IðV 0
t\0:25Þ þ 0:25 � IðV 0

t � 0:25Þ; ð36Þ

where Ið�Þ is the indicator function, eper65;t refers to the PLE of a 65-year old in year t

as in (28). V 0
t captures the increase in PLE with respect to the average PLE of a 65-

year old in 2000–2009, that is e
per
65;2000:2009 ¼ 18:26. This way, if eper65;t [ 18:26 in a

future year t and this is not compensated by a similarly higher retirement age Pt�1

(from the previous year) compared to P2000:2009 ¼ 65, (35) will be positive and lead

to an increased retirement age Pt according to (34). Equation (36) limits the

increase in pension age such that either no increase or an increase of three months

occurs. We refer to this as the restricted increase. When the yearly increase Vt in

(34) is calculated using V 0
t instead of Vt, we refer to it as the unrestricted increase.

The reference point e
per
65;2000:2009 ¼ 18:26 in the mechanism presented in (34)–(36)

was determined by CBS. The CBS is in charge of the calculation of the legal

retirement age and has to determine the retirement age Pt five years up front. For

example, on 1 January 2017, CBS will estimate e
per
65;2022 and together with P2021 ¼

67 and (34)–(36), this leads to the retirement age P2022. This illustrates the necessity

for a careful projection methodology, as presented in this paper.

Using the formulas for e
per
x;t from (28) and our mortality scenario generator we

calculate the restricted and unrestricted yearly increases Vt and V 0
t and

subsequently the future retirement age Pt for 10,000 simulations. For this

2020 2030 2040 2050 2060

66
68

70
72

2020 2030 2040 2050 2060

Calendar year

P
t

Fig. 15 Left: simulated evolution of retirement age Pt according to our model, using the formulas and
restrictions of the AOW-law (34–36). Right: simulated evolution of retirement age Pt according to our
model, using the formulas of the AOW-law, but without restrictions on the maximum or minimum yearly
increase (not taking into account (36)). We plot 0:5% quantile, median and 99:5% quantile obtained from
10,000 simulations
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application, the model was calibrated on the aggregated female and male datasets

to obtain a unisex approach.38 The retirement age Pt in the restricted case, as in

the AOW-law, is plotted in the left panel of Fig. 15. The median retirement age

over all scenarios predicts subsequent three month increases in the legal

retirement age Pt from 2022 to 2024 because the period life expectancy for a

65-year old in 2022 (e
per
65;2022) and beyond is significantly higher than 20.26 in most

simulations.39 A retirement age of Pt ¼ 68 is reached in 2026 with the median

scenario. The right panel of Fig. 15 shows the retirement age Pt in the unrestricted

case. An immediate, relatively large increase is observed in 2022 which is in

accordance with the restricted case where multiple sequential increases are

necessary to accommodate this first jump in the unrestricted case. After the first

jump, the retirement age increases at a steady rate.

5.4 Cashflow projections for stylized portfolios

It is imperative for insurance companies and pension funds to accurately predict

their future liabilities and to hedge these liabilities with sufficient assets. To

illustrate the impact of the mortality scenarios from our model on books with life

contingent liabilities, we determine the future cashflows of six stylized portfolios.

The strategy outlined below can be used by pension funds or insurance companies to

evaluate the impact of future mortality scenarios on their liabilities. The portfolios

under consideration, taken from Koninklijk Actuarieel Genootschap [37], hold three

types of liabilities summarized below.

• Lifelong pension benefits or main benefits (MB). These are yearly benefits,

payable from retirement on until the passing of the insured.

• Latent lifelong partner benefits (lPB). These are yearly benefits, payable to the

partner of the insured upon the death of the insured, regardless of the age of the

insured or the partner. The payments stop when the partner dies. Both the

insured and partner are still alive at the starting point so no payments have been

incurred yet.

• Lifelong partner benefits already incurred (iPB). Similar to the latent partner

benefits but the payments have already started due to the death of the insured.

Koninklijk Actuarieel Genootschap [37] gives the composition of the portfolios and

distinguishes a young, middle aged and old portfolio, per gender.40 Figure 16

visualizes the number of insureds (further denoted as ‘exposure’) in the different

portfolios per age class and per type of benefit. The young portfolios have more

exposure in the younger age classes and less exposure in the older age classes when

38 This approach is slightly different from the unisex methodology of CBS.
39 The value 20.26 is obtained by filling in P2021 ¼ 67 in (35) and simplifying, leading to e

per
65;2022 being

compared with 18:26þ 2. If the predicted PLE is significantly higher than this number (e.g. 8 months

higher), subsequent yearly three month increases are necessary to compensate for this difference.
40 See Appendix B of the English version of the KAG publication: http://www.ag-ai.nl/view.php?action=

view&Pagina_Id=625.
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compared to the old portfolios. The middle aged portfolio exposures are in between

the other ones.

We generate scenarios of future cashflows for these portfolios via the simulations

for future mortality rates as discussed in Sect. 3.3. To ease the portfolio

calculations, we use a set of assumptions listed in Table 4.

Denote with C ¼ f1; . . .; 7g the different age classes of the portfolio and for each

class c 2 C, xc 2 f30; 40; . . .; 90g is the age of the people in class c which is rounded
down to the decade.41 Ec;l is the exposure of liability l 2 fMB; lPB; iPBg in class c.

Using this notation, the present value (in year 2014) of a cashflow in year 2014þ t

per type of liability in a specific male portfolio, is calculated as follows (see [23]):
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Fig. 16 Exposures per age class and per benefit type for the young (Y), middle aged (M), and old
(O) portfolios. Male portfolios (top) and female portfolios (bottom)

Table 4 Assumptions made on the portfolio calculations of Sect. 5.4

# Assumption

1 The retirement age xr is fixed at 65

2 Nobody becomes older than 121

3 We assume a 100% partner frequency of opposite gender. Partner benefits for the male portfolios are

therefore paid to their female partners and vice versa

4 In each couple, the male is always 3 years older than the female

5 No lapses

6 The liability is 1 per head and paid at 1 January every year

7 The starting date is 1 January 2014

8 We assume realistic interest rates provided by the Dutch National Bank

41 For example, all people in the portfolio aged 40-49 are in class c ¼ 2 and have their age rounded to

xc ¼ 40. This is assumed because we do not have full portfolio data but only exposures per age class.
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MBt ¼
X
c2C

Iðxc þ t� 65Þ � Ec;MB � tpMxc;2014 �
1

1þ it

� �t

; ð37Þ

lPBt ¼
X
c2C

Ec;lPB � tpFxc�3;2014 � ð1� tp
M
xc;2014

Þ � 1

1þ it

� �t

; ð38Þ

iPBt ¼
X
c2C

Ec;iPB � tpFxc�3;2014 �
1

1þ it

� �t

; ð39Þ

with Ið�Þ the indicator function and it the interest rate at time 2014þ t using the

interest rate curve of 31 May 2014 published by the Dutch National Bank.42 tp
G
x;2014

is the probability that an x-year old in 2014 of gender ‘G’ will live for another t

years, which follows from the mortality rates of Sect. 3.3:

tpx;2014 ¼
Yt�1

l¼0

ð1� qxþl;2014þlÞ: ð40Þ

To obtain (37)–(39) for the female portfolios, the genders F and M have to be

switched and the male partner is considered to be three years older than the female

partner. Every simulation of future mortality rates leads to a scenario of survival

probabilities tpx;2014 and subsequently to one expected cashflow scenario. We do not

consider interest rate risk so the interest rate curve is the same for all scenarios. This

way, the uncertainty reported in the following graphs and table is only due to

uncertainty in future mortality.

Figure 17 shows the present values of the cashflows of the male portfolios for the

main benefits MBt, the summed partner benefits lPBt þ iPBt and the total benefits.

The first row shows the undiscounted expected cashflows (with it ¼ 0 in (37)–(39))

and the second row contains the same cashflows discounted to 1 January 2014. The

upward jumps occur when a new age class reaches the retirement age every 10

years. They are an artefact of the composition of our portfolios, where ages are

rounded down to the decade. The old portfolios reach their peak expected cashflows

earlier than the young portfolios because more insureds are already retired or close

to retirement at the start of the calculations. Over time the expected cashflows from

the middle and young portfolio overtake the old portfolio’s expected cashflows.

Since partner benefits are paid regardless of the age of the partner, these graphs

show a more continuous evolution over time. The total expected cashflow is

obtained by summing (37), (38) and (39) over time. This cashflow for a specific

portfolio is the present value of all future payments (PVFP). If no premiums are

earned, it is the capital the fund should hold in order to cover its future liabilities, if

the assumptions in the technical basis are met. Figure 18 (right) gives statistics on

the simulated PVFP of the middle aged male portfolio relative to its best estimate,

i.e. the PVFP calculated with the best estimate table from Sect. 4.2. The 99.5%

quantile of the PVFP is 2.6% larger than the best estimate PVFP. Figure 18 (left)

42 As in Table 1.3.1 on http://www.dnb.nl/statistiek/statistieken-dnb/financiele-markten/rentes/index.jsp.
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shows kernel density estimates of the PVFP of the middle male portfolio for the

different liabilities, relative to the best estimate PVFP. It is important for insurance

companies and pension funds to quantify the impact of a range of plausible

mortality scenarios through an appropriate stochastic mortality model in order to

take well informed risk management decisions. After all, the capital buffer a

company should hold is greatly affected by the calculation of the PVFP.
Additionally, new data has to be incorporated every year to evaluate the impact

on the capital buffers.

6 Conclusions

This article documents the process of creating an industry wide standard for

mortality projections in The Netherlands and Belgium, an assignment given to the

joint team of authors of this paper by the Dutch (in 2014) and Belgian (2015)

professional actuarial bodies. The resulting stochastic mortality model is a multi-

population model of Li and Lee type on the complete age range which combines an

overall European trend with a country specific deviation from this trend. Apart from

explaining historical mortality data, the model acts as a generator of scenarios for

future mortality. The paper illustrates four possible applications of such scenarios;

the calculation and projection of demographic indicators (e.g. life expectancy) with

focus on their future evolution, the calculation of actuarial pension corrections

correcting for early or late retirement, the computations in a legal retirement age

updating mechanism that is linked to evolutions in life expectancy, and the

calculation of liabilities in a pension portfolio. These applications readily

demonstrate the potential impact of our work on life contingent calculations in

society.

Our contributions are threefold. First, we carefully explain how mortality

statistics collected from different sources, each with its own pace of refreshing and

bFig. 17 Portfolio cashflows over time for the benefits of the 3 male portfolios. The young portfolio
cashflow is in red, the middle in blue and the old in grey. The first row contains the undiscounted
cashflows and the second row represents the cashflows discounted to 1 January 2014. We plot 0:5%
quantile, median and 99:5% quantile obtained from 10,000 simulations
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MB PB Total
Best Est. 74,422 31,214 105,636
mean 74,392 (99.96%) 31,230 (100.05%) 105,622 (99.99%)
sd 1,627 (2.2%) 989 (3.2%) 1,094 (1.0%)
75% 75,491 (101.5%) 31,892 (102.2%) 106,371 (100.7%)
95% 77,074 (103.6%) 32,866 (105.3%) 107,377 (101.6%)
99.5% 78,499 (105.5%) 33,820 (108.3%) 108,385 (102.6%)

Fig. 18 Left: kernel density estimates of the middle male portfolio PVFP relative to the best estimate
PVFP. Total portfolio PVFP (black), main benefit PVFP (red) and partner benefit PVFP (blue) based on
10,000 simulations. Right: Absolute values of the best estimate PVFP (first row) and basic statistics and
quantiles of the 10,000 simulated PVFP of the middle male portfolio. Percentages indicate the value
relative to the best estimate PVFP. PB refers to the sum of both the latent and the already incurred
partner benefits
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own data reporting standards, can be combined using concepts from Lexis diagrams.

Second, using a set of criteria inspired by academic literature as well as practical

concerns, we motivate why we opt for the Li and Lee model. We highlight the in-

and out-of-sample performance of this model, the plausibility of the scenarios it

generates and its status as a consensus between academic and practical insights. We

carefully document the many model choices made during the development process:

the set of countries used in the multi-population setting, the calibration and

projection methodology, and the technique to close the resulting mortality rates for

old ages.

The evaluation of the performance of the mortality model when new data

becomes available is imperative, and should be done on a regular basis. As topics

for future research we identify the need for statistical tools that assist the modeller in

the choice of countries to be included in the multi-population setting, and the

development of a Bayesian calibration strategy to allow for a joint calibration and

projection approach taking all sources of uncertainty into account. To ensure

coherent forecasts, a new estimation strategy for the time series can be developed by

choosing an appropriate prior for the time series parameters in a Bayesian

estimation setting or by applying an iterated constrained generalized least squares

algorithm in the Seemingly Unrelated Regression approach. We encourage a further

stimulation by actuarial institutions of blended research teams, where academics

and practitioners construct ‘best practices’, meeting rigorous scientific standards as

well as practical usefulness.
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