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ABSTRACT
We search for high-energy gamma-ray emission from the binary neutron star merger GW170817 with the H.E.S.S.

Imaging Air Cherenkov Telescopes. The observations presented here have been obtained starting only 5.3h after
GW170817. The H.E.S.S. target selection identified regions of high probability to find a counterpart of the gravitational
wave event. The first of these regions contained the counterpart SSS17a that has been identified in the optical range
several hours after our observations. We can therefore present the first data obtained by a ground-based pointing
instrument on this object. A subsequent monitoring campaign with the H.E.S.S. telescopes extended over several
days, covering timescales from 0.22 to 5.2 days and energy ranges between 270 GeV to 8.55 TeV. No significant
gamma-ray emission has been found. The derived upper limits on the very-high-energy gamma-ray flux for the first
time constrain non-thermal, high-energy emission following the merger of a confirmed binary neutron star system.
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1. INTRODUCTION

Opening the era of gravitational wave (GW) astron-
omy, the first direct detection of a GW signal from a bi-
nary black hole merger was reported by the LIGO-Virgo
scientific collaboration (LVC) in September 2015 (Ab-
bott, B.P. et al. (LVC) 2016) during the first science
run (O1) of the Advanced LIGO interferometers. The
second science run O2 started in Fall 2016 with the two
LIGO detectors taking data. The Advanced Virgo in-
terferometer joined the observations on August 1, 2017.
Marking the beginning of gravitational wave multi-
messenger astronomy, a gravitational wave signal com-
patible with that expected from the merger of a binary
neutron star system was detected by the LIGO-Virgo
collaboration on August 17, 2017 (Abbott, B.P. et al.
(LVC) 2017). The event stands as the first direct de-
tection of gravitational waves coming from a system of
this kind. As these events are assumed to be related
to Gamma-Ray Bursts (GRBs) or kilonovae (Metzger
& Berger 2012), broadband emission of electromagnetic
(EM) radiation as well as high-energy neutrinos (Eichler
et al. 1989) can be expected in addition to the gravita-
tional wave signal. Gamma-ray detections in the GeV-
TeV energy range have been argued to depend on the
specifics of the progenitors ambient environment den-
sity, energy fraction in electrons and magnetic fields,
the mergers proximity and the viewing angle with re-
spect to the outflow by (e.g. Zhu & Wang 2016; Takami
et al. 2014). An extensive observational campaign cov-
ering a very wide range of EM wavelengths from radio
to high-energy gamma rays and including high-energy
neutrinos was launched immediately after the detection
of the GW signal.
Gamma-Ray Bursts are short bursts of radiation with
prompt emission typically detected in the tens of keV to
GeV range (e.g. Zhang et al. 2006). The duration of the
initial, or prompt, emission follows a bimodal distribu-
tion, with the divisional timescale between both types of
bursts being around 2 seconds (Kouveliotou et al. 1993).
This distinction enables their classification into short
GRB (sGRB) and long GRB (lGRB). These classes have
been linked to the association of the events with different
cosmic progenitors. The long GRBs are usually associ-
ated with the core-collapse of massive stars (Woosley
et al. 2007; Piran et al. 2017), while the coalescence of
a compact binary system, being either a neutron star-
neutron star (NS-NS) or a neutron star-black hole, are
thought to be the cosmic progenitors of short GRBs that
have a hard spectrum (Piran 1994; Metzger & Berger
2012). In these systems, the orbit of the binary system
steadily decays as a result of the energy loss through
continuous gravitational wave emission, resulting in the

objects spiraling inwards at an increasing rate. At the
final phase of the process, a characteristic burst of grav-
itation radiation is emitted, a prime signal for current
GW instruments. In addition, the GW radiation is ex-
pected to be accompanied by both thermal and non-
thermal emission in the form of EM radiation. Depend-
ing on the mass losses during the cataclysmic event, the
residual compact object left afterwards will be a black
hole or a neutron star. However, due to strong absorp-
tion at early times and the beaming effects associated
with relativistic outflows of the post-merger ejecta, the
EM radiation from the inner engine may be shrouded
from view. Therefore, a gravitational wave observation
of such an event, provides substantial new information
to characterize the progenitor system and the phenom-
ena leading to the explosive merger.
One of the leading theoretical frameworks describ-

ing the phenomenology of GRBs is the so-called fireball
model (Meszaros & Rees 1993; Piran 1999). After the
formation of a new compact object, the central engine
releases a huge amount of energy over a short time and
within a small volume, giving rise to relativistic out-
flows and shocks. This fireball is considered to consist of
an optically thick electron-positron/photon plasma ex-
panding with relativistic velocities.
Additionally, another class of EM transient counter-

part to mergers of binary neutron stars has been pro-
posed. These events are called Macronovae (Kulkarni
2005) or Kilonovae (Metzger et al. 2010), and their en-
ergy output lies between the novae and supernovae en-
ergy scales. Kilonovae produce delayed optical, UV and
infrared radiation on timescales of a few days, heated
by the radioactive decay of r-process elements in the
ejecta itself, or in the interaction of the ejecta with the
interstellar medium (see e.g. Tanvir et al. 2013, for a
GRB-Kilonova association). The ejecta in a kilonova
are believed to have a mass of ∼10−2M� and are mov-
ing at mildly-relativistic velocities of 0.1-0.2c. Kilonovae
produce rather isotropic emission that typically lasts for
days after the merger event (see Baiotti & Rezzolla 2017,
and references therein).
Clear evidence for a non-thermal emission from

sGRBs has been found in the GeV energy range for
only a handful of cases (Ackermann et al. 2013a), with
maximum observed photon energies exceeding 30GeV
(Ackermann et al. 2010). In principle, this gamma-
ray emission may be produced via energy losses from
particles accelerated at shocks present in the outflow
or formed when the ejecta propagate through the in-
terstellar medium. Given the ejected mass and ejecta
velocities considered, this situation is reminiscent of a
supernova remnant where diffusive shock acceleration
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would proceed in the non-relativistic to trans-relativistic
regime (Ellison et al. 2013). With its superior sensitiv-
ity on short timescales above 50GeV, relative to the
Fermi-LAT instrument, the High Energy Stereoscopic
System (H.E.S.S. II) is uniquely suited to probe the
level of non-thermal emission produced by high energy
transient events (Hoischen, C. et al. (H.E.S.S. Collabo-
ration) 2017).
High energy observations of non-thermal emission

in the GeV-TeV energy range thus provide an effec-
tive probe of non-thermal emission from both fireball
and kilonovae classes of events. With the significant
sensitivity achieved in this energy range, a detection
of a cut-off in the spectral energy distribution of the
emission is possible, which would provide hints on the
environment of the cataclysmic event (Ackermann et al.
2011) and allow one to estimate the kinematic velocities
of the outflow in which the γ-ray emission was pro-
duced. Moreover, the comparison between the highest
and the low-energy photons from the same source can
provide constraints on theories of Lorentz invariance
violation (Biesiada & Piórkowska 2009).

This article is organized as follows. In Sec. 2, the
gravitational wave event, the subsequent EM follow-up
campaign and the H.E.S.S. follow-up effort is discussed.
Section 3 describes the data and their analysis and in
Section 4 the results are described. Discussion and con-
clusion are presented in Section 5.

2. NEUTRON STAR MERGER FOLLOW-UP

2.1. Electromagnetic follow-up of GW alerts

In preparation of the physics data taking of the ad-
vanced LIGO and Virgo interferometers, agreements
with an extensive group of observatories interested in
performing follow-up observations across the EM spec-
trum and using high-energy neutrinos have been set
up by the LIGO-Virgo collaboration. H.E.S.S. became
a member of this group in early 2015 and the follow-
up of gravitational wave alerts has been prepared (see
Sec. 2.3.1 for details).
To rapidly alert the multiwavelength (MWL) follow-

up community, the LIGO-Virgo collaboration has devel-
oped different low-latency pipelines searching for tran-
sient signals from compact binary mergers. The fastest
pipeline is BAYESTAR (Singer & Price 2016). It is
complemented by the LALInference algorithm, which
is scanning a larger parameter space and marginaliz-
ing over calibration uncertainties and is thus providing
a more robust estimate of the important event parame-
ters (Veitch et al. 2015).

2.2. GW170817

A gravitational wave event was recorded on August 17,
2017, at 12:41:04 UTC by the Advanced LIGO and Ad-
vanced Virgo interferometers (Abbott, B.P. et al. (LVC)
2017). Based on a BAYESTAR analysis using the data
of the LIGO-Hanford instrument an initial alert notice
was issued at 13:08:16 UTC. A subsequent GCN cir-
cular reporting a highly significant detection of a bi-
nary neutron star signal was distributed among a wide
range of follow-up observatories about 40 minutes af-
ter the event at 13:21:42 UTC (The LIGO Scientific
Collaboration and the Virgo Collaboration GCN Circ.
21505). As only data from a single interferometer was
used in this initial reconstruction, the sky location of the
event could only be localized to within 24, 200 deg2 (90%

containment). Nevertheless, the timing of the alert al-
lowed the team of the Fermi Gamma-Ray Burst Monitor
(Fermi-GBM) to correlate the GW event with a gamma-
ray burst (170817A, V. Connaughton et al. (Fermi-
GBM Collaboration) GCN Circ. 21506; von Kienlin et
al. (Fermi-GBM Collaboration) GCN Circ. 21520) ob-
served ∼ 1.7 s after the gravitational-wave candidate.
The light-curve of the GRB event shows a weak short
pulse with a duration of 2 seconds, typical for short
GRBs (Goldstein, A. et al. (Fermi-GBM Collabora-
tion) GCN Circ. 21528). GRB170817A has also been
recorded by the SPI-ACS instrument onboard the INTE-
GRAL satellite (Savchenko et al. (INTEGRAL) 2017).
Further details are given in Abbott, B.P. et al. (Fermi-
GBM, INTEGRAL, LVC) (2017).
On August 17, 2017, at 17:54:51 UTC, the LIGO-

Virgo collaboration provided an update on the gravita-
tional wave skymap, incorporating data from the LIGO
Livingston detector (which had to be excluded in the ini-
tial analysis due to a noise artifact) as well as data from
the Virgo detector in the BAYESTAR pipeline (The
LIGO Scientific Collaboration and the Virgo Collabora-
tion GCN Circ. 21513, BAYESTAR_HLV in the follow-
ing). The result of this joint analysis reduced the 90% lo-
calization uncertainty of the GW event to about 31 deg2.
The data confirmed the binary neutron star origin and
located the merger event at a distance of 40 ± 8 Mpc

(50±3 Mpc if assuming the binary to be face on). A fur-
ther analysis using the LALInference method was pro-
vided about six hours later (The LIGO Scientific Collab-
oration and the Virgo Collaboration GCN Circ. 21527,
2017 August 17, 23:54:40 UTC). The 90% credible re-
gion of this map (cf. Fig. 2) spans 34 deg2, overlapping
with the 90 % uncertainty region of GRB170817A (Gold-
stein, A. et al. (Fermi-GBM Collaboration) 2017). The
final estimates of the source properties of GW170817 are
given in Abbott, B.P. et al. (LVC) (2017).
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Figure 1. Timeline of the observations following the detection of GW170817 with a focus on the high-energy, non-thermal
domain. A more complete picture of the multi-wavelength and multi-messenger campaign is given in (Abbott, B.P. et al. (LVC
and EM follow-up group) 2017).

The first EM counterpart to GW170817 and GRB170817A
was detected in the near-infrared by the One-Meter
Two-Hemisphere (1M2H) collaboration with the 1m
Swope telescope at Las Campanas Observatory in
Chile on August 17 at 23:33 UTC, i.e. 10.87 hr after
GW170817 (Coulter et al. (1M2H Collaboration) 2017).
The source, located at α(J2000.0) = 13h09m48s.085 ±
0.018, δ(J2000.0) = −23◦22′53′′.343 ± 0.218, near
the early-type galaxy NGC 4993 at a distance of
42.5 Mpc, got designated Swope Supernova Survey
2017a (SSS17a). It had an initial brightness of mag-
nitude 17.3 ± 0.1 in the i band (Coulter et al. (1M2H
Collaboration) GCN Circ. 21567). The IAU designa-
tion of the source is AT2017gfo. NGC 4993 is on the
list of possible candidates that had been identified by
"Global Relay of Observatories Watching Transients
Happen" network (Cook et al. (GROWTH Collabora-
tion) GCN Circ. 21519) via cross-matching the gravi-
tational wave localization with the "census of the local
universe" catalogue (Cook et al. 2016). The optical
transient was detected independently by five different
teams: the Distance Less Than 40Mpc (DLT40) survey
(Yang et al.), by Tanvir et al. (VISTA), Lipunov et
al. (MASTER), Allam et al. (DECam) and Arcavi et
al. (Las Cumbres Observatory). Archival searches (e.g.
ASAS-SN (Cowperthwaite et al. GCN Circ. 21533),
Hubble (Foley et al. GCN Circ. 21536), etc.) did not
show evidence of emission at this position in observa-
tions taken before the GW event.

The subsequent MWL follow-up campaign focused
mainly on the optical transient SSS17a. The monitor-
ing of the source in the UV, optical and near-infrared
domain allows the detailed description of its spectral
evolution over timescales extending from hours to sev-
eral days and weeks. The source has also been moni-
tored in UV and X-rays by Swift (Evans et al. (Swift)
2017) over several days. An X-ray source coincident with
the location of SSS17a has been discovered by Chandra
about 9 days after GW170817 (Troya et al. (Chandra)
2017). In the radio domain, the first counterpart con-
sistent with the optical transient position was identified
on September 2 and 3, 2017, (16 days after GW170817)
by two observations using the Jansky VLA (Mooley et
al. (JVLA/JAGWAR) GCN Circ. 21814; Corsi et al.
(VLA) GCN Circ. 21815).
This extensive monitoring campaign covering the full

EM spectrum, including the high-energy (HE) and very-
high-energy (VHE) gamma ray domains (the latter re-
ported in this paper) and searches for high-energy neu-
trinos, allowed us to monitor the evolution of the source
over several days. Focusing on the high-energy, non-
thermal domain, a subset of the observations obtained
during this campaign is shown in Fig. 1. Further de-
tails of this unprecedented multi-wavelength and multi-
messenger effort can be found in (Abbott, B.P. et al.
(LVC and EM follow-up group) 2017) and references
therein.

2.3. H.E.S.S. follow-up of GW170817
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Here we report on observations obtained in the very-
high energy gamma-ray domain with the H.E.S.S. imag-
ing atmospheric Cherenkov telescope array. H.E.S.S. is
located on the Khomas Highland plateau of Namibia
(23◦16′18′′ South, 16◦30′00′′ East), at an elevation of
1800 m above sea level. With its original four-telescope
array, H.E.S.S. is sensitive to cosmic and gamma-rays
in the 100GeV to 100TeV energy range and is capa-
ble of detecting a source with an energy spectrum simi-
lar to the Crab nebula under good observational condi-
tions close to zenith at the 5σ level within less than one
minute (Aharonian et al. 2006). In 2012 a fifth telescope
with 28m diameter was commissioned, extending the
covered energy range toward lower energies. The obser-
vations reported here were conducted jointly with three
of the original 12-m telescopes and the 28-m telescope.
One of the 12-m H.E.S.S. telescopes was not available
due to a maintenance campaign.

2.3.1. Scheduling for GW follow-up

The localization uncertainty derived from the data
of the GW interferometers is significant for events de-
tected by two interferometers (hundreds to thousands
of square degrees) and still sizable for events with data
from three detectors (tens to hundreds of square de-
grees). Although the field-of-view of the large 28-m
H.E.S.S. telescope and the four 12-m telescopes has a
radius of about 1.5◦ and 2.5◦, respectively, several point-
ings are typically necessary to cover the identified re-
gion. An additional challenge is related to the limited
duty-cycle of the observatory, operating only in astro-
nomical darkness during moonless nights and the ac-
cessible range of zenith angles (usually < 60◦). Since
H.E.S.S. joined the EM follow-up group of the LIGO-
Virgo collaboration, several algorithms have been de-
veloped to optimize the follow-up of GW events while
taking into account these constrains. The most straight-
forward and most general scheduling algorithms deter-
mine the pointing of the telescopes by maximizing the
coverage of the two-dimensional localization probability
provided with the GW alerts. In addition to these algo-
rithms, we developed optimized strategies for events oc-
curring at distances for which sufficient complete galaxy
catalogs are available. For these we use the GLADE cat-
alogue (Dalya et al. 2016), a value-added full-sky galaxy
catalog highly complete and specifically built in order to
support EM follow-up of GW signals. It includes more
than 3 million entries and is (outside the Galactic plane)
complete up to ∼ 70 Mpc, well matching the horizon of
the current GW interferometers to detect mergers of bi-
nary neutron star systems.

Our approach follows the one outlined by Singer et al.
(2016). We use the full three-dimensional informa-
tion of the location of the GW-event provided by the
BAYESTAR and LALInference GW pipelines and cor-
relate it with the location of galaxies within that volume.
Several algorithms have been implemented to derive an
optimized pointing scenario from this 3D GW-Galaxies
probability region. The One-in-FoV algorithm searches
for the coordinates that provide the highest probability
of hosting the event, while the Gal-in-FoV algorithm
determines the center of a region on the sky which pro-
vides best coverage of neighboring high-probability re-
gions falling in the same Field of View (FoV). Both algo-
rithms are taking into account observational constraints
like the available time window and, trying to achieve a
low energy threshold, optimize the pointing strategy fa-
voring low-zenith angle observations. Both are comple-
mentary in terms of calculation speed and performance,
with One-in-FoV being used for real-time follow-ups
and the Gal-in-FoV for offline scheduling. Further de-
tails about the developed approaches and performance
estimates based on Monte Carlo simulations of NS-NS
merger events are given in Seglar-Arroyo, M., Schüssler,
F. (H.E.S.S. Collaboration) (2017).

2.3.2. Scheduling for GW170817

As outlined above, the first localization map for the
event GW170817 was provided by the BAYESTAR
pipeline and was made available to follow-up part-
ners about 1.5 h after the GW event (The LIGO
Scientific Collaboration and the Virgo Collabora-
tion GCN Circ. 21509). Due to its large uncer-
tainty covering 24, 200 deg2 at 90% containment, it
was not suitable for scheduling follow-up observa-
tions. An updated BAYESTAR-reconstructed GW
map, BAYESTAR_HLV, using data from all three
interferometers was received about 5 hours after the
event, at 17:54 UTC (The LIGO Scientific Collabora-
tion and the Virgo Collaboration GCN Circ. 21513).
This map, with the 90% region of the localization un-
certainty covering 31 deg2, was used for the scheduling
of H.E.S.S. follow-up observations. With H.E.S.S. data
taking starting on August 17 at 17:59 UTC, only about
5 minutes were available to derive a pointing strategy. A
LALInference based skymap was made available about 9
hours after the gravitational wave event. Changes with
respect to the low-latency BAYESTAR_HLV map were
minimal (the 90% uncertainty region increased slightly
to 34 deg2).
Due to the limited time between the publication of

the BAYESTAR_HLV map and the start of the visibil-
ity window we used the One-in-FoV approach to deter-
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Figure 2. Left: Pointing directions of the first night of H.E.S.S. follow-up observations starting August 17, 2017, at 17:59 UTC.
The circles illustrate a FoV with radius of 1.5◦ and the shown times are the starting times of each observation with respect to
GW170817. The LALInference map of GW170817 is shown as colored background, the red lines denote the uncertainty contours
of GRB170817A. Right: Map of significances of the gamma-ray emission in the region around SSS17a obtained during the first
observation of GW170817. The white circle has a diameter of 0.1◦, corresponding to the H.E.S.S. point spread function and
also used for the oversampling of the map.

mine the H.E.S.S. pointing schedule for the night of Au-
gust 17/18. Three observation runs of 28 min each were
scheduled. They are given in Tab. 1 and illustrated in
Fig. 2. The three observations were taken between Au-
gust 17, 17:59 - 19:30 UTC. For an effective FoV of 1.5◦

radius of the H.E.S.S. 28m telescope, they cover about
56 % of the gravitational wave uncertainty region of the
final LALInference map. At the same time they include
about 86% of the probability density region obtained by
weighting the three-dimensional GW map with galax-
ies from the GLADE catalog. All three pointings are
compatible with GRB1707A within 2σ. Whereas the
optical transient SSS17a had not been discovered at the
time our observations took place, the focus on a region
containing many galaxies compatible with the 3D-GW
map allowed us to cover NGC 4993 and SSS17a with
our first observation, i.e. starting 5.3h after the GW
event. We note that our observations have the shortest
time delay with respect to GW170817 by any ground-
based pointing instrument participating in the follow-up
of GW170817.
After the detection of SSS17a during the night of

August 17/18 we discontinued further coverage of the
GW uncertainty region and focussed on monitoring
the source in TeV gamma-rays. H.E.S.S. observations
were scheduled at the beginning of the following nights

around SSS17a as long as the location was visible from
the H.E.S.S. site within a maximum zenith angle of
about 60◦ and fulfilling the necessary observation con-
ditions. The obtained observations are summarized in
Table 1.

Table 1. H.E.S.S. follow-up observations of GW170817. All
pointings were taken with the default run duration of 28min
and are given in equatorial J2000 coordinates.

ID Observation time Pointing coordinates <zenith angle>

(UTC) [deg] [deg]

1a 2017-08-17 17:59 196.88, -23.17 59

1b 2017-08-17 18:27 198.19, -25.98 58

1c 2017-08-17 18:56 200.57, -30.15 62

2a 2017-08-18 17:55 197.75, -23.31 53

2b 2017-08-18 18:24 197.23, -23.79 60

3a 2017-08-19 17:56 197.21, -23.20 55

3b 2017-08-19 18:24 197.71, -23.71 60

5a 2017-08-21 18:15 197.24, -24.07 60

6a 2017-08-22 18:10 197.70, -24.38 60

3. DATA AND ANALYSIS
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(a) SSS17a: H.E.S.S. pointings
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Figure 3. Left plot: H.E.S.S. pointing directions during the monitoring campaign of SSS17a. For details see Tab. 1. The circles
denote a FoV with radius of 1.5◦ and the shown times are the start times of each observation with respect to GW170817. Right
plot: Map of significances of the gamma-ray emission in the region around SSS17a combining all observations obtained during
the H.E.S.S. monitoring campaign.

The obtained data were analyzed using Model Analy-
sis (de Naurois & Rolland 2009), an advanced Cherenkov
image reconstruction method in which the recorded
shower images are compared to a semi-analytical model
of gamma-ray showers by means of a log-likelihood op-
timization. The background level in the FoV was deter-
mined from the dataset itself using the standard “ring
background” technique (Berge et al. 2007). Relying on
the azimuthal symmetry of the response of the tele-
scopes, the required acceptance function has been de-
rived from the data itself. We perform our analysis
using only data from the 28m telescope in the center
of the H.E.S.S. array in order to achieve a low energy
threshold. We adopted the “Loose cuts” of the Model
Analysis which for example require the total charge in
the recorded shower image to be greater than 60 photo-
electrons. This and additional quality selection criteria
yield an energy threshold of 280GeV for the first obser-
vation and 270GeV for the combined dataset on SSS17a.
We note that the threshold is significantly influenced by
the relatively high zenith angle of the observations. We
further require that at least 10 events are available for
the background estimation, a requirement that limits
the energy range over which our results are valid. The
derived energy ranges are given in Tab. 2. Further anal-
yses exploiting the data from the full H.E.S.S. array will
be published at a later time.
A second analysis using a fully independent data

calibration chain and the Image Pixel-wise fit for At-

mospheric Cherenkov Telescopes (ImPACT, Parsons &
Hinton 2014) reconstruction method was used to verify
the results. The results of this cross-check analysis are
consistent with the ones presented here, thus providing
confidence in the robustness of the presented results.
High-energy gamma rays interact with the extragalac-

tic background light (EBL) via e+/e− pair-creation pro-
cesses. At the highest energies gamma rays are thus ab-
sorbed during the propagation through the extragalac-
tic radiation fields. The resulting opacity depends on
the gamma-ray energy and the distance of their source.
We used the EBL model published in Franceschini, A.
et al. (2008) to calculate these energy dependent EBL
correction factors. Using the redshift of NGC4993,
z = 0.009787 (Wenger et al. 2000), these factors in-
crease with energy and are about 10 % (30 %) at 1 TeV

(10 TeV). These effects are therefore only of minor im-
portance and we here do not correct for them in this
paper.
The region covered by our observations contains sev-

eral sources with emission in the GeV energy range.
They are for example listed in the catalog compiled af-
ter four-year long observations by the LAT instrument
onboard the Fermi satellite (Acero et al. 2015). None of
them is known to exhibit emission in the TeV range 1.
The most promising TeV candidate source in the region

1 http://tevcat.uchicago.edu
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is likely PKS 1309-216, at an angular distance of 1.58◦

from NGC4993/SSS17a. It has a flux in the 1−100 GeV

range of about 2.0 × 10−11 erg cm−2 s−1 and an en-
ergy spectrum following E−2.07±0.05 in the same energy
range. Extrapolating the emission to the higher ener-
gies relevant for our observations needs to account for
EBL absorption effects: at the redshift of PKS 1309-
216 (z = 1.489 (Wenger et al. 2000)) the initial flux is
decreased by more than one order of magnitude at en-
ergies around 100 GeV and by a factor exceeding 109 at
1 TeV (Franceschini, A. et al. 2008). Conservatively, we
nevertheless excluded a region with a 0.3◦ radius around
PKS 1309-216 from the background estimation used for
the analysis presented here.
None of the GeV detected sources showed significant

flux increases during the period of the observations pre-
sented here (Ackermann et al. 2013b). We therefore con-
clude that no TeV gamma-ray emission exceeding the
level of the reached sensitivity, other than a potential
signal related to GW170817 and GRB170817A, is ex-
pected.
We note that archival H.E.S.S. observations on PKS

1309-216 have been obtained in 2013. After about 10 h

of observations, neither gamma-ray emission from the
source nor from the region around NGC 4993 / SSS17a
could be detected. We therefore derive an archival upper
limit on the gamma-ray flux at from SSS17a from these
observations to Φ(170 GeV < E < 47.2 TeV) < 3.1 ×
10−12 erg cm−2 s−1 at 95% C.L. and assuming a spectral
index of -2. The differential upper limit as function of
energy is shown in the left plot of Fig. 4.

4. RESULTS

As outlined above, our observations of SSS17a started
August 17, 2017, at 17:59 UTC (pointing 1a) and were
repeated during several nights (cf. Tab. 1). The differ-
ent pointings, except 1b and 1c, which are not covering
SSS17a but were taken during the initial scanning of
the GW170817 uncertainty region, are shown in the left
plot of Fig. 3. The same color is used for pointings ob-
tained successively during the same night and the num-
bers indicate the time difference between the start of
the observations and the time of GW170817. As the po-
tential gamma-ray emission from a NS-NS merger is ex-
pected to be transient, we analyzed each of the obtained
nightly datasets independently. For each of them we
produce skymaps of the gamma-ray excess counts above
the background derived from the data itself as described
above. These excess maps have then been converted into
significance maps using the formalism described by Li &
Ma (1983).

As example, we show the gamma-ray significance map
derived from the first observation in Fig. 2. An over-
sampling radius of 0.1◦, roughly corresponding to the
H.E.S.S. point-spread function has been applied. No sig-
nificant gamma-ray emission is found within any of the
individual datasets and all of the obtained results are
fully compatible with the background-only expectation.
We thus conclude that no significant VHE gamma-ray
afterglow was detected from the direction of SSS17a.
Consequently we derive 95 % C.L. upper limits on the
gamma-ray flux following Feldman & Cousins (1998).
The obtained flux limits, assuming a generic E−2 en-
ergy spectrum for the potential emission, are given to-
gether with the corresponding energy ranges in Tab. 2
and shown in Fig. 1.

Table 2. Limits on the high-energy gamma-ray flux at 95%
C.L. and assuming a E−2 energy spectrum obtained during
the monitoring of SSS17a with H.E.S.S.

pointings time since GW fγ Energy band

(see Tab.1) trigger [days] [erg cm−2 s−1] [TeV]

1a 0.22 < 3.9× 10−12 0.28–2.31

2a+2b 1.22 < 3.3× 10−12 0.27–3.27

3a+3b 2.22 < 1.0× 10−12 0.31–2.88

5a+6a 4.23, 5.23 < 2.9× 10−12 0.50–5.96

all 0.22 – 5.23 < 1.5× 10−12 0.27–8.55

In a search for fainter but temporally extended
emission from SSS17a, we combined all datasets (ex-
cept 1b and 1c). The obtained significance map
(cf. right plot of Fig. 3) is again fully compati-
ble with the background-only hypothesis. We obtain
Φγ < 1.5 × 10−12 erg cm−2 s−1 in the energy band
0.27 < E[TeV] < 8.55. Assuming a radially symmetric
emission this flux limit corresponds to a limit on the
VHE gamma-ray luminosity of SSS17a at a distance of
42.5 Mpc of Lγ < 3.2 × 1041 erg s−1. We note the lu-
minosity of the prompt phase of GRB170817A that has
been found to be around 2.2 × 1046 erg s−1 by INTE-
GRAL SPI-ACS (Savchenko et al. (INTEGRAL) 2017).
Differential upper limits as function of the energy are
shown in the left plot of Fig. 4 for the first observa-
tion on SSS17a, the combined dataset and the archival
observations obtained in 2013.
After combining all observations obtained with

H.E.S.S. during the follow-up campaign of GW170817
we derive a skymap showing the integral upper limits
in the 270 GeV to 8.55 TeV energy range. It is shown
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Figure 4. Left plot: Differential upper limits on the gamma-ray flux from SSS17a derived from the H.E.S.S monitoring
campaign and archival observations of the region. Right plot: Map showing the integral upper limits in the 270GeV to 8.55TeV
energy range (assuming an E−2 energy spectrum) derived from the H.E.S.S. follow-up observations of GW170817. The yellow
contours outline the localization of the GW event as provided by the LALInference map.

in the right plot of Fig. 4. First of all, it illustrates the
deep observations centered on SSS17a. Induced by the
radially decreasing acceptance of the telescope, the ob-
tained limits are less constraining when approaching the
border of the field-of-view. The figure also illustrates
the achieved ≈ 50% coverage of the LALInference map
of GW170817, which is depicted by the yellow contours.

5. DISCUSSION AND CONCLUSION

The observations presented here represent the first
very-high-energy gamma-ray observations following the
merger of a binary neutron star system. A prepre-
pared scheduling procedure allowed fast reaction to the
event and provided efficient pointings within the gravi-
tational wave uncertainty region, covering observational
fields including that of the multi-wavelength counter-
part SSS17a even before it had been discovered from
optical observations. Following the discovery of this
counterpart in the optical band, subsequent extended
monitoring allowed deep observations to be made of this
source. Although the source was not detected within
the energy range 0.27 < E[TeV] < 8.55, the derived up-
per limits are the most stringent ones obtained on hour
to week-long timescales, of non-thermal emission from

GW170817 in the full gamma-ray domain ranging from
keV to TeV energies. They allow for the first time a con-
straint to be placed on the level of early-time very-high-
energy emission from the source, following the binary
neutron star merger. With a potential connection to a
kilonova type event, expected to give rise to the ejec-
tion of mildly relativistic outflows, further observations
of this object should be performed to probe particle ac-
celeration beyond TeV energies on longer timescales.
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