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This Viewpoint celebrates Haldane’s seminal (1981 J. Phys. C: Solid State Phys. 14 2585) 
paper laying the foundations of the modern theory of Luttinger liquids in one-dimensional 
systems, and was published as part of a series of Viewpoints celebrating 50 of the most 
influential papers published in the Journal of Physics series, which is celebrating its  
50th anniversary.

In a pioneering paper published in J. Phys. C: Solid State Phys. in 1981 [1], Duncan 
Haldane taught us that one-dimensional fermionic systems behave in a fundamentally 
different manner than those in the universality class described by Landau’s Fermi liquid 
theory [2–4].

At the simplest level, one-dimensionality alters the kinematics of simple excitations 
around a Fermi sea (figure 1). The spectrum is formed by particle/hole excitations in the 
vicinity of the two Fermi points (figure 2), and their (multiple) Umklapp modes. In 1D, in 
contrast to higher dimensions, forbidden regions of the frequency ω-momentum k plane 
exist. Low-energy modes around integer multiples of the Fermi momentum kF are always 
present (figure 3), but there exist no low-energy excitations in the lobes between points 
( )−j k2 1 F and jk2 F for any integer j. For energies (much) below the height of the lobes  

(so �ω v kF F in which ( )≡ |εv k
kF

d

dk F
 is the Fermi velocity), we can thus explicitly separate the 

excitations into different sectors labelled by an even integer J  =  2j.
The lowest-energy state of sector J  =  2j is the jth Umklapp state at momentum jk2 F. 

These states are ‘persistent current’ modes obtained by a Galilean transformation of the 
ground state, giving momentum 2jkF to the whole system, and carrying a quadratic (in j ) 
energy shift.

Above the persistent current Umklapp states, but for energies still low on the scale of 
v kF F, the spectrum of the theory is expected to be given by a linear in momentum boson 
(sound wave) spectrum (up to nonlinear corrections). Similarly, adding Ñ particles shifts the 
Fermi momentum linearly (in Ñ), and the energy quadratically. We can thus immediately 
guess, following Haldane’s reasoning in [1], that an effective theory for our fermions 
universally takes the form

( ˜ )†∑
π

= + | | + +H E v q b b
L

v n v j
2

q
S q q N JGS

2 2
 (1)

where EGS is the ground-state energy and v v,S N and vJ respectively denote sound, charge 
and current velocities. It was Haldane’s great insight to realize that in the presence of 
interactions, the effective description based on equation (1) remains valid, albeit with 
renormalized parameters v v,S N and vJ (constrained by =v v vs N J

2 ). This theory, which is 
thus universally valid for gapless one-dimensional systems (be they based on underlying 
fermionic, bosonic or spin degrees of freedom), should be viewed as a ‘theory of everything’ 
in 1D, similarly to the status that Landau’s Fermi liquid theory has achieved in higher 
dimensions. This is the point of view so eloquently put forward in Haldane’s paper [1].

Many important contributions paved the way for this synthesis. The development of 
bosonization goes back almost to the very beginnings of quantum mechanics. In 1934, 
Bloch [5] used the fact that 1D fermions have the same type of low-energy excitations as 
a harmonic chain in his study of incoherent x-ray diffraction. Some years later, in 1950, 
Tomonaga [6] applied Bloch’s sound wave method to interacting fermions in 1D. His 
main contribution was probably to realize that the physical density operator splits up into 
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left- and right-moving modes, obeying a bosonic Hamiltonian. He however missed the 2kF 
contribution to the density correlation function, and did not notice the anomalous decay of 
correlations. The fundamental paper of Luttinger [7] follows in 1963, in which (perhaps 
unaware of Tomonaga’s 1950 paper) he formulated his (part)namesake model. Using 
Toeplitz determinants, he found that the average occupation in the ground state behaves as a 
power-law with an interaction-dependent anomalous dimension. He thus realized the crucial 
fact that the Fermi surface discontinuity is destroyed by interactions in 1D. This work was 
however incorrect in its treatment of the commutation relations of the density operators. 
Later, Mattis and Lieb offered a correct treatment in their seminal paper [8].

The idea of bosonization, namely that bosons could be used to construct a complete 
set of states of a 1D fermionic system, appeared in 1965 in [9]. Subsequently, early 
computations of correlation functions appeared in [10] and [11]. In particular, in the first of 

Figure 1. Left: ground state for a generic system of noninteracting fermions in one dimension. The function ( )ε k  is the one-particle 
dispersion relation. The chemical potential μ sets the value of the Fermi wavevector kF. Filled single-particle states are represented by black 
dots, unfilled ones by open circles. Right: one particle-hole excitation continuum. The (a) and (b) labels refer to the location within the 
continuum of the particular single particle-hole excitations sketched in figure 2.

Figure 2. Simple examples of one particle-hole excitations. The (a) and (b) labels refer to the right panel of figure 1.

Figure 3. Multiple particle-hole continuum. The numerals indicate the minimal number of particle-hole excitations needed for a low-
energy state to be found in this vicinity. The dashed line indicates the minimal energy parabola for multiple Umklapp states on an 
exaggerated scale (this is of order 1/L for small numbers of Umklapps and is typically neglected).

J. Phys.: Condens. Matter 29 (2017) 151001



Viewpoint

3

these, Theumann noticed the absence of single-particle poles in the Green’s function. She 
thus correctly concluded that single-particle excitations are absent in such theories. In their 
famous 1974 paper [12], Dzyaloshinskii and Larkin recovered the absence of single-particle 
pole and of Fermi surface discontinuity, and offered an interpretation of Mattis and Lieb’s 
solution starting from conventional diagrammatic perturbation theory.

An early version of the actual bosonization operator identity appeared in [13]. This was 
refined by Mattis in 1974 [14], rendering calculation of correlation functions straightforward. 
Similar results appeared in the work of Luther and Peschel [15]. The power-law form for 
correlations was also recovered from equations of motion techniques in [16]. Bosonization 
was then applied to spin chains and vertex models in [17]. The first precise field-theoretical 
bosonization formula (as an operator identity) including the (until that point neglected) particle 
number raising/lowering operators (Klein factors) is in general attributed to [18]. An early 
formulation of Luttinger liquid concepts appeared in 1975 in [19].

But the fact remains that it is Haldane, in a remarkable series of papers, who gave 
Luttinger liquid theory the form it has today. Starting in [20], he gave the first explicit 
construction of charge-raising operatos (Klein factors). Subsequently, in [21, 22] and most 
notably in [1] he offered the complete and explicit construction of the bosonization operator 
identities, and cross-checked results with exactly solvable models. Most importantly, he 
proposed the concept of the Luttinger liquid (as he so defined it) as the proper replacement 
for the Fermi liquid in one dimension, and showed that many different types of systems of 
fermions, bosons and spins belong to this new universality class. This realization sparked 
much of the revolutionary advances achieved in low-dimensional quantum systems over the 
last 35 years.
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