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We study inelastic two-body relaxation in a spin-polarized ultracold Fermi gas in the presence of a p-wave
Feshbach resonance. It is shown that in reduced dimensionalities, especially in the quasi-one-dimensional case,
the enhancement of the inelastic rate constant on approach to the resonance is strongly suppressed compared to
three dimensions. This may open promising paths for obtaining novel many-body states.
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I. INTRODUCTION

Recent progress in the field of ultracold atomic quantum
gases opened fascinating prospects to explore novel quantum
phases in the systems of degenerate fermions with p-wave
interactions, for instance, two-dimensional (2D) unconven-
tional superfluidity [1], non-Abelian Majorana modes [2,3],
and itinerant ferromagnetism [4–7]. Even though the p-wave
interactions between cold fermions are much weaker than the
s-wave interactions, Feshbach resonances allow one to tune
the strength and the character of the interactions. However,
in the vicinity of such resonances various inelastic collisional
processes play a crucial role, resulting in a lifetime of the order
of milliseconds at common densities. These are three-body
recombination and, for fermionic atoms in an excited hyperfine
state, two-body relaxation [8–13].

In this paper we show that in the quasi-2D and quasi-one-
dimensional (quasi-1D) geometries the enhancement of two-
body inelastic relaxation on approach to the p-wave Feshbach
resonance is suppressed compared to the three-dimensional
(3D) case. This effect is mostly related to a much weaker
enhancement of the relative wave function near the resonance
in reduced dimensionalities. We then demonstrate this for the
case of 40K atoms in the |F,mF 〉 = | 9

2 ,− 7
2 〉 state. A number of

experiments were dedicated to the study of atomic fermions
in the presence of a p-wave Feshbach resonance in quasi-2D
and quasi-1D geometries [14–17]. The atom loss rate has been
measured in Ref. [15], and already from this experiment one
can see that in reduced dimensionalities the enhancement of the
losses near the resonance is reduced compared to the 3D case.

II. TWO-BODY INELASTIC COLLISIONS IN 3D

Let us consider two colliding identical fermions in the
vicinity of a p-wave Feshbach resonance. In the single-channel
model the radial wave function of their p-wave relative motion
at distances r � Re, where Re is a characteristic radius of
interaction, has the following form [18]:

ψ3D(r) = i{j1(kr) + ikf (k)h1(kr)}, (1)

where k is the relative momentum, j1(kr) and h1(kr) are
spherical Bessel and Hankel functions, and f (k) is the
p-wave scattering amplitude, which is related to the scat-
tering phase shift δ(k) as f (k) = 1/{k[cot δ(k) − i]}. The
p-wave S-matrix element is given by S(k) = exp 2iδ(k). It
is convenient to write the wave function (1) at r → ∞ as
ψ3D = (1/2ikr){exp(−ikr) + S(k) exp(ikr)}. In the presence
of inelastic collisions the intensity of the outgoing wave is
reduced in comparison to the incoming wave by a factor
of |S(k)|2 < 1, which implies that the phase shift δ(k) is a
complex quantity with a positive imaginary part. For low
collisional energies E = h̄2k2/m we can use the effective
range expansion k3 cot δ(k) = −1/w1 − α1k

2, where w1 is the
scattering volume and α1 > 0 is the effective range. Then, the
scattering amplitude becomes

f (k) = −k2

1/w1 + α1k2 + ik3
, (2)

and in order to describe inelastic collisions in the vicinity of
the resonance, we add an imaginary part to the inverse of
the scattering volume: 1/w1 → 1/w1 + i/w′

1, where w′
1 > 0

[19,20]. Therefore, the S-matrix element reads as

S(k) = 1/w1 + α1k
2 + i(1/w′

1 − k3)

1/w1 + α1k2 + i(1/w′
1 + k3)

. (3)

For the inelastic rate constant α3D(k) = vσ in
3D(k), where v =

2h̄k/m is the relative velocity and σ in
3D(k) = 3π [1 −

|S(k)|2]/k2 is the p-wave inelastic scattering cross sec-
tion [18], we obtain

α3D(k) = 48πh̄

mw′
1

k2

[1/w1 + α1k2]2 + [1/w′
1 + k3]2

, (4)

where m is the atom mass and an additional factor of 2 is
included since we consider collisions of identical particles.
Both w1 and w′

1 depend on the external magnetic field, and
w1 changes from +∞ to −∞ as one crosses the Feshbach
resonance. However, the field dependence of w′

1 is weak.
Setting w′

1 to be field independent we are able to accurately
reproduce the results of coupled-channel calculations of the
inelastic rate constant and the data of the JILA experiment [8].

2469-9926/2017/95(3)/032710(12) 032710-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevA.95.032710


D. V. KURLOV AND G. V. SHLYAPNIKOV PHYSICAL REVIEW A 95, 032710 (2017)

195 197 199 201 203 205
10−18

10−16

10−14

10−12

10−10

(a) E3D
F = 1 μK

1/w1 = 0

B (G)

α
3
D

0
(c

m
3
/
s)

195 197 199 201 203 205
10−18

10−16

10−14

10−12

10−10

(b) E3D
F = 4 μK

1/w1 = 0

B (G)

α
3
D

0
(c

m
3
/
s)

FIG. 1. Three-dimensional inelastic rate constant 〈α3D〉0 for 40K atoms in the | 9
2 ,− 7

2 〉 state at T = 0 versus magnetic field B for E3D
F =

1 μK in (a) and E3D
F = 4 μK in (b). Dashed red curves correspond to the off-resonant regime described by Eq. (6), and the blue point marks

the near-resonant peak value given by Eq. (7). It is shifted in the direction of higher fields by 7.8 mG in (a) and by 10 mG in (b) with respect to
the magnetic field at which 1/w1 = 0.

Due to the spin-dipole interaction between colliding atoms,
the resonant magnetic field (at which the p-wave scattering
volume diverges) is different for orbital angular momentum
projections ml = 0 and ±1 [9]. For 40K atoms in the | 9

2 ,− 7
2 〉

state the resonance for ml = 0 occurs at 198.8 G, and for
|ml| = 1 at 198.3 G. However, apart from the difference in the
position of the resonance, the scattering volume w1 for ml = 0
is the same as it is for |ml| = 1. Moreover, the effective range
α1 is also practically the same for all ml’s. In order to clearly
demonstrate the effect of suppressed enhancement of two-body
losses near the resonance in reduced dimensionalities, in the
main text of the paper we omit the doubling of the resonance
due to the spin-dipole interaction. Then, the p-wave Feshbach
resonance for 40K atoms in the | 9

2 ,− 7
2 〉 state in 3D occurs at

B ≈ 198.6 G for all orbital angular momentum projections.
Consequently, the rate constant also has a single peak. We
discuss the effects associated with the spin-dipole induced
doubling of the resonance in the Appendix.

Sufficiently far from resonance, where the dominant term in
the denominator of Eq. (4) is 1/w1, the rate constant becomes

α3D(k) ≈ 48πh̄

m

w2
1

w′
1

k2. (5)

At T = 0 we average the rate constant over the Fermi step
momentum distribution, and in the off-resonant regime Eq. (5)
yields

〈α3D〉0 ≈ 144π

5

w2
1

w′
1

E3D
F

h̄
, (6)

where E3D
F = h̄2k2

F /2m is the Fermi energy, kF = (6π2n3D)1/3

is the Fermi momentum for a single-component 3D gas, and
n3D is the 3D density.

Near the resonance on its negative side (w1 < 0), the
largest contribution to the rate constant comes from momenta
close to k̃3D = 1/

√
α1|w1|. In the near-resonant regime,

where |w1|(1/w′
1 + k̃3

3D) 
 1 and k̃3D 
 kF , the rate constant
exhibits a sharp peak, which is slightly shifted with respect to
the position of the resonance at zero kinetic energy (1/w1 = 0).
The maximum value of the rate constant can be estimated as

〈α3D〉0 ≈ 576π2h̄

α1 m

1

1 + w′
1k̃

3
3D

(
k̃3D

kF

)3

. (7)

Using Eq. (4) we calculate numerically 〈α3D〉0 for 40K
atoms in magnetic fields from 195 to 205 G. The results are
presented in Fig. 1 for E3D

F = 1 and 4 μK (corresponding to
densities n3D ≈ 3.6×1013 cm−3 and 2.9×1014 cm−3, respec-
tively). In order to determine w′

1 we fit Eq. (4) to the results of
coupled-channel numerical calculations of the relaxation rate
for a gas of 40K atoms in | 9

2 ,− 7
2 〉 state at a fixed collisional

energy of 1 μK [21], using the values of w1 and α1 that have
been measured in the JILA experiment [9]. Then, we obtain
w′

1 = 0.53×10−12 cm3. For the scattering volume w1 and the
effective range α1 we take the values measured in the JILA
experiment [9] for |ml| = 1 and manually shift the position
of the resonance from 198.3 to 198.6 G, so that the effect of
the spin-dipole interaction is compensated. The off-resonant
expression (6) shows perfect agreement with the numerical
results, and the near-resonant expression (7) leads to a slight
overestimate. However, Eq. (7) correctly captures that in the
vicinity of the maximum 〈α3D〉0 ∼ (E3D

F )−3/2, in contrast to
the off-resonant case, where the rate constant behaves as
〈α3D〉0 ∼ E3D

F .
For the classical gas (T � E3D

F ) averaging α3D(k) over the
Boltzmann distribution of atoms, in the off-resonant regime
we obtain

〈α3D〉T ≈ 72πw2
1

w′
1

T

h̄
. (8)

On the negative side of the resonance in the near-resonant
regime, where |w1|(1/w′

1 + k̃3
3D) 
 1 and k̃3D 
 kT , with

kT =
√

mT/h̄2 being the thermal momentum, the rate constant
has a sharp peak slightly shifted with respect to the resonance
at zero kinetic energy:

〈α3D〉T = 96π3/2h̄

α1 m

1

1 + w′
1k̃

3
3D

(
k̃3D

kT

)3

. (9)

Direct numerical calculation of 〈α3D〉T using Eq. (4) shows
a perfect agreement with both off-resonant and near-resonant
expressions, as shown in Fig. 2 for T = 300 nK and 1 μK.

Thus, we see that the inelastic rate constant has a drastically
different temperature (Fermi energy) dependence in the near-
resonant regime compared to the off-resonant case. For deep
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FIG. 2. Three-dimensional inelastic rate constant 〈α3D〉T for 40K atoms in the | 9
2 ,− 7

2 〉 state versus magnetic field B for T = 300 nK in (a)
and T = 1 μK in (b). Dashed red curves correspond to the off-resonant regime described by Eq. (8), and the blue point marks the near-resonant
peak value according to Eq. (9). It is shifted in the direction of higher fields by 6.7 mG in (a) and by 10 mG in (b) with respect to the magnetic
field at which 1/w1 = 0.

inelastic collisions the energy dependence of the rate constant
is completely determined by the wave function of the initial
state of colliding particles. In order to gain insight into the
behavior of the inelastic rate constant, we analyze the behavior
of the wave function of the relative motion of two atoms
at distances where Re 
 r 
 k−1. Using Eq. (1) and the
expressions for the amplitude f (k) and the phase shift δ(k)
written after this equation, we have

ψ3D(r) ≈ i
(1/w1 + α1k

2)kr/3 − k/r2

1/w1 + α1k2 + ik3
. (10)

In the off-resonant regime, the terms containing 1/w1 are
the leading ones in both the numerator and denominator of
Eq. (10), and ψoff

3D ≈ ikr/3. This leads to αoff
3D(k) ∼ k2, in

agreement with Eq. (5). In the off-resonant regime, collisions
with all momenta in the distribution function contribute to the
inelastic rate constant. In contrast, in the near-resonant regime
on the negative side of the resonance (w1 < 0) only a small
fraction of relative momenta contributes to α3D. These are
momenta in a narrow interval δk ∼ k̃2

3D/α1 around k̃3D. Ac-
cordingly, in the classical gas the fraction of such momenta is
F3D ∼ k̃2

3Dδk/k3
T ∼ k̃4

3D/(α1k
3
T ). In this near-resonant regime,

we have |1/w1 + α1k
2| ∼ k̃3

3D. Then, putting the rest of k’s
equal to k̃3D in Eq. (10) and taking into account that k̃3Dr 
 1
at r approaching Re, we see that the relative wave function in
the near-resonant regime is ψ res

3D ≈ 1/(k̃3Dr)2. The ratio of the
near-resonant inelastic rate constant to the off-resonant one is
R3D ∼ (ψ res

3D/ψoff
3D)2F3D, where we have to put r ∼ Re in the

expressions for the relative wave functions. This yields

R3D ≡ 〈
αres

3D

〉
T

/〈
αoff

3D

〉
T

∼ 1/(kT Re)5. (11)

This is consistent with Eqs. (8) and (9) since α1 ∼ 1/Re and
w1 in the off-resonant regime is ∼R3

e [and we may omit unity
compared to w′

1k̃
3
3D in the denominator of (9)].

From Figs. 1 and 2, we see that there is a difference in
the asymmetry of the profiles between 〈α3D〉0 and 〈α3D〉T .
This difference can be explained as follows. The resonance
takes place for particles with relative momenta close to k̃3D =
1/

√
α1|w1|, which (in 40K) grows with the magnetic field. At

low EF (at T = 0) or low T (in the Boltzmann gas), the number
of particles with such momenta is small, but it becomes larger

for higher EF or T . Thus, the rate constant increases [9]. In
a strongly degenerate gas, at a magnetic field corresponding
to k̃3D ∼ kF , the rate constant 〈α3D〉0 rapidly decreases since
due to the Fermi step momentum distribution there are no
particles that can experience resonant scattering at higher B

fields (Fig. 1). In contrast, in a classical gas the high-field
tail of 〈α3D〉T decreases towards the off-resonant values more
gradually due to the Boltzmann momentum distribution of
colliding particles (Fig. 2).

III. TWO-BODY INELASTIC COLLISIONS IN 2D

We now consider inelastic collisions in the two-dimensional
case and again omit the doubling of the resonance due to
the spin-dipole interaction. The resulting single-peak structure
of the relaxation rate constant is realized for the magnetic
field perpendicular to the plane of the translational motion.
In this case, the relative wave function at short interparticle
distances corresponds to the 3D motion with |ml| = 1. The
spin-dipole interaction only shifts the peak of the rate constant,
and the discussion of this shift is moved to the Appendix. In
the Appendix we also present calculations taking into account
the spin-dipole doubling of the resonance and the emerging
double-peak structure of the relaxation rate for the magnetic
field parallel to the plane of the translational motion.

In the quasi-2D geometry obtained by a tight harmonic
confinement in the axial direction (z) with frequency ω0, at
in-plane (x,y) interatomic separations ρ greatly exceeding the
extension of the wave function in the axial direction, l0 =
(h̄/mω0)1/2, the p-wave relative motion is described by the
wave function

ψ2D(r) = ϕ2D(ρ)eiϑ 1(
2πl2

0

)1/4 exp

{
− z2

4l2
0

}
; ρ � l0 (12)

where ϑ is the scattering angle, and z is the interparticle
separation in the axial direction. For remaining in the ultracold
limit with respect to the axial motion we will assume below
that l0 � Re [22]. Then, the 2D p-wave radial wave function
ϕ2D is

ϕ2D(ρ) = i

{
J1(qρ) − i

4
f2D(q)H1(qρ)

}
, (13)
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FIG. 3. Two-dimensional inelastic rate constant 〈α2D〉0 for 40K atoms in the | 9
2 ,− 7

2 〉 state at T = 0 versus magnetic field B for E2D
F =

1 μK in (a) and E2D
F = 4 μK in (b). Dashed red curves correspond to the off-resonant regime described by Eq. (18), and the blue point marks

the near-resonant peak value according to Eq. (19). It is shifted in the direction of higher fields by 1 mG in (a) and by 1.9 mG in (b) with respect
to the magnetic field at which 1/Ap = 0. The confining frequency is ω0 = 120 kHz.

with q being the 2D relative momentum, and J1(qρ) and
H1(qρ) the Bessel and Hankel functions. The p-wave quasi-2D
scattering amplitude f2D(q) is given by [23,24]

f2D(q) = 4q2

1/Ap + Bpq2 − (2q2/π ) ln l0q + iq2
, (14)

where the 2D scattering parameters are 1/Ap = (4/3
√

2πl2
0)

[l3
0/w1 + α1l0/2 − C1] and Bp = (4/3

√
2π )[l0α1 − C2],

with numerical constants C1 ≈ 6.5553×10−2 and
C2 ≈ 1.4641×10−1. The amplitude f2D is related to the
S-matrix element S2D as f2D(q) = 2i[S2D(q) − 1]. The 2D
(confinement-influenced) resonance occurs at 1/Ap = 0 and
is thus shifted with respect to the 3D resonance (1/w1 = 0).
Like in the 3D case, in the presence of inelastic processes we
have to replace 1/w1 by 1/w1 + i/w′

1, which yields

S2D(q) =
1

Ap
+ (

Bp − 2 ln l0q

π

)
q2 + i

(
1

A′
p

− q2
)

1
Ap

+ (
Bp − 2 ln l0q

π

)
q2 + i

(
1

A′
p

+ q2
) , (15)

with A′
p = 3

√
2πw′

1/4l0 > 0. Then, writing the wave
function (13) at ρ → ∞ as ϕ2D ≈ (1/

√
2πiqρ)

{exp(−iqρ) + iS2D(q) exp(iqρ)} we see that the intensity of
the outgoing wave is reduced by a factor of |S2D(q)|2 < 1
compared to the incoming wave. The 2D inelastic cross
section is defined as σ in

2D = (2/q)[1 − |S2D(q)|2], and for
identical particles one has an additional factor of 2. Then, for
the inelastic rate constant, α2D(q) = (2h̄q/m)σ in

2D, we obtain

α2D(q) = 32h̄

mA′
p

q2

[
1

Ap
+ (

Bp − 2 ln l0q

π

)
q2

]2 + [
1

A′
p

+ q2]2
.

(16)

Sufficiently far from the resonance, where the dominant term in
the denominator of Eq. (16) is 1/Ap, the rate constant becomes

α2D(q) ≈ 32h̄

m

A2
p

A′
p

q2 ≈ 24
√

2πh̄

ml0

w2
1

w′
1

q2. (17)

At T = 0, averaging the off-resonant rate constant (17) over
the Fermi step momentum distribution we obtain

〈α2D〉0 ≈ 12
√

2πw2
1

l0w
′
1

E2D
F

h̄
, (18)

where E2D
F = h̄2q2

F /2m is the 2D Fermi energy, qF = √
4πn2D

is the Fermi momentum for a single-component 2D gas, and
n2D is the 2D density.

Near the 2D resonance on its negative side (Ap < 0),
the largest contribution to the rate constant comes from
momenta close to q̃2D = 1/

√
Bp|Ap|. Then, in the regime,

where (A′
p)−1/2 
 q̃2D 
 qF , the rate constant has a sharp

peak. The maximum value of the 2D rate constant at T = 0
can then be estimated as

〈α2D〉0 ≈ 128πh̄

A′
p Bp m

1

q2
F

≈ 128πh̄

α1m w′
1

1

q2
F

, (19)

where we took into account that A′
pBp = w′

1(α1l0 − C2)/l0 ≈
w′

1α1 for typical confinement frequencies ω0 from 50 to
150 kHz. Therefore, the tight harmonic confinement has almost
no influence on the maximum value of 〈α2D〉0.

The results of direct numerical calculation of 〈α2D〉0 using
Eq. (16) for 40K atoms are presented in Fig. 3 for the confining
frequency ω0 = 120 kHz and Fermi energies E2D

F = 1 and
4 μK (corresponding to densities n2D ≈ 1.3×109 cm−2 and
5.2×109 cm−2, respectively). The off-resonant expression (18)
shows perfect agreement with the numerical results, while the
near-resonant expression (19) leads to a slight overestimate.
However, Eq. (19) captures that in the vicinity of the maximum
〈α2D〉0 ∼ 1/E2D

F , in contrast to the off-resonant case, where
〈α2D〉0 ∼ E2D

F .
At T � E2D

F , we average Eq. (16) over the Boltzmann
distribution of atoms. Then, the off-resonant expression for
the rate constant follows from Eq. (17) and reads as

〈α2D〉T ≈ 24
√

2πw2
1

l0w
′
1

T

h̄
. (20)

On the negative side of the 2D resonance in the near-resonant
regime, where (A′

p)−1/2 
 q̃2D 
 qT , with qT =
√

mT/h̄2

being the thermal momentum, the rate constant has a sharp
peak slightly shifted from the position of the 2D resonance at
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FIG. 4. Two-dimensional inelastic rate constant 〈α2D〉T for 40K atoms in the | 9
2 ,− 7

2 〉 state versus magnetic field B for T = 300 nK in (a) and
T = 1 μK in (b). Dashed red curves correspond to the off-resonant regime described by Eq. (20), and the blue point marks the near-resonant
peak value according to Eq. (21). It is shifted in the direction of higher fields by 1.5 mG in (a) and by 2.7 mG in (b) with respect to the magnetic
field at which 1/Ap = 0. The confining frequency is ω0 = 120 kHz.

zero kinetic energy. The maximum value of the rate constant
is given by

〈α2D〉T ≈ 32πh̄

A′
pBp m

1

q2
T

≈ 32πh̄

α1m w′
1

1

q2
T

. (21)

Like in the zero-temperature case, we see that the maximum
value of 〈α2D〉T is practically independent of the confinement
frequency.

Direct numerical calculation of 〈α2D〉T from Eq. (16) shows
perfect agreement with both off-resonant and near-resonant
expressions, as displayed in Fig. 4 for the confining frequency
ω0 = 120 kHz and temperatures T = 300 nK and 1 μK.

In order to qualitatively understand the temperature (Fermi
energy) dependence of the inelastic rate constant, we analyze
the structure of the initial state wave function, which for deep
inelastic processes fully determines the energy dependence of
α2D. Inelastic collisions occur at interparticle distances r �
Re 
 l0, where the relative motion of colliding atoms has a
three-dimensional character and ψ2D is different from ψ3D

only by a normalization coefficient. Assuming the inequality
kl0 
 1, at distances r exceeding Re sufficiently far from the
3D resonance from Eq. (10) we have ψ3D(r) ∝ {r − 3w1/r2}.
Then, according to Ref. [23], the 2D wave function can be
written as

ψ2D(r) = if2D(q)
(
2πl2

0

)1/4

6πw1q
{r − 3w1/r2}. (22)

Far from the 2D resonance (1/Ap = 0), the 2D scattering
amplitude is f off

2D ≈ 3
√

2πw1q
2/l0, which leads to ψoff

2D ∼
(q/

√
l0){r − 3w1/r2} and αoff

2D ∼ q2/l0, in agreement with
Eq. (17). In the near-resonant regime on the negative side of the
2D resonance (Ap < 0), the main contribution to α2D is pro-
vided by relative momenta in a narrow interval δq ∼ q̃2D/Bp

around q̃2D. In the classical gas the fraction of such momenta is
F2D ∼ q̃2Dδq/q2

T ∼ q̃2
2D/(Bpq2

T ). In this near-resonant regime,
we have |1/Ap + Bpq2| ∼ q̃2

2D. Then, we may put the rest of
q’s equal to q̃2D in Eq. (22) and use f res

2D (q) ≈ −4i [omitting
the logarithmic term in the denominator of f2D(q)]. Thus, the
2D wave function becomes ψ res

2D ∼ (
√

l0/q̃2D){r/w1 − 3/r2}.
The ratio of the near-resonant inelastic rate constant to the
off-resonant one is R2D ∼ (ψ res

2D/ψoff
2D)2F2D, where we have to

put r ∼ Re in the expressions for the relative wave functions
and take into account that in the off-resonant regime w1 ∼ R3

e ,
whereas in the near-resonant regime it is much larger. This
yields [25]

R2D ≡ 〈
αres

2D

〉
T

/〈
αoff

2D

〉
T

∼ l0

Re

1

(qT Re)4
, (23)

which is consistent with Eqs. (20) and (21). As one can see
from Eqs. (11) and (23), the ratioR2D/R3D ∼ l0kT 
 1. Thus,
in 2D the enhancement of the inelastic rate constant near the
resonance is suppressed compared to 3D.

IV. TWO-BODY INELASTIC COLLISIONS IN 1D

We eventually turn to inelastic collisions in the one-
dimensional case. Omitting the doubling of the resonance,
induced by the spin-dipole interaction, we have a single-peak
structure of the relaxation rate constant. This structure is
realized for the magnetic field parallel to the line of the
translational motion or for the field perpendicular to this
line [15,24]. The shift of the peak due to the spin-dipole
interaction is discussed in the Appendix. We also present there
the calculations taking into account the spin-dipole doubling
of the resonance and the resulting double-peak structure of the
relaxation rate for the magnetic field forming the angle of 45◦
with the line of the translational motion.

In the quasi-1D geometry obtained by a tight harmonic
confinement in two directions (x,y) with frequency ω0, the
wave function of the relative motion in the odd-wave channel
(analog of p-wave in 2D and 3D) is

ψ1D(r) = χ1D(z)
1√

2πl0
exp

{
− ρ2

4l2
0

}
, (24)

where z is the longitudinal interparticle separation, ρ =√
x2 + y2 is the transverse separation, and l0 = √

h̄/(mω0) is
the transverse extension of the wave function. The longitudinal
motion with the 1D relative momentum q at distances |z| �
l0 � Re is described by the wave function

χ1D(z) = i sin qz + sgn(z)f1D(q)eiq|z|, (25)
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FIG. 5. One-dimensional inelastic rate constant 〈α1D〉0 for 40K atoms in the | 9
2 ,− 7

2 〉 state at T = 0 versus magnetic field B for E1D
F = 1 μK

in (a) and E1D
F = 4 μK in (b). Dashed red curves correspond to the off-resonant regime described by Eq. (30), and the blue point marks

the near-resonant peak value according to Eq. (31). The corresponding magnetic field practically coincides with the magnetic field at which
1/lp = 0. The confining frequency is ω0 = 120 kHz.

with the odd-wave scattering amplitude f1D(q) given
by [23,24,26]

f1D(q) = −iq

1/lp + ξpq2 + iq
, (26)

where lp = 3l0[l3
0/w1 + α1l0 + 3

√
2|ζ (−1/2)|]−1

and ξp =
α1l

2
0/3 are the 1D scattering parameters, and ζ (−1/2) ≈

−0.208 is the Riemann zeta function. The amplitude f1D(k)
is related to the 1D odd-wave S-matrix element S1D(q) as
f1D(q) = [S1D(q) − 1]/2. Like in higher dimensions, in the
presence of inelastic processes we should replace 1/w1 with
1/w1 + i/w′

1, which gives the following expression for the
S-matrix element:

S1D(q) = 1/lp + ξpq2 + i(1/l′p − q)

1/lp + ξpq2 + i(1/l′p + q)
, (27)

where 1/l′p = l2
0/3w′

1 > 0. Then, writing the wave func-
tion (25) at |z| → ∞ as χ1D = sgn(z)(1/2){− exp(−iq|z|) +
S1D(q) exp(iq|z|)}, we see that the intensity of the outgoing
wave is reduced by a factor of |S1D(q)|2 < 1 compared to the
incoming wave. The inelastic cross section in 1D is defined
as σ in

1D = (1 − |S1D(q)|2)/2, and for identical particles there is
an additional factor of 2. Then, for the inelastic rate constant,
α1D(q) = (2h̄q/m)σ in

1D, we obtain

α1D(q) = 8h̄

ml′p

q2

[1/lp + ξpq2]2 + [1/l′p + q]2
. (28)

Sufficiently far from the 1D resonance (1/lp = 0), where the
dominant term in the denominator of Eq. (28) is 1/lp, the rate
constant becomes

α1D(q) ≈ 8h̄

m

l2
p

l′p
q2 ≈ 24h̄

ml2
0

w2
1

w′
1

q2. (29)

At T = 0 the off-resonant rate constant averaged over the
Fermi step momentum distribution reads as

〈α1D〉0 ≈ 8w2
1

l2
0w

′
1

E1D
F

h̄
, (30)

where E1D
F = h̄2q2

F /2m is the 1D Fermi energy, qF = πn1D is
the Fermi momentum for a single-component 1D gas, and n1D

is the 1D density.
In the vicinity of the 1D resonance on its negative side

(lp < 0), the largest contribution to the rate constant comes
from momenta ∼q̃1D = 1/

√
ξp|lp|. Then, in the near-resonant

regime, where 1/l′p 
 q̃1D 
 qF , the rate constant shows a
narrow peak with the value

〈α1D〉0 ≈ 8πh̄

l′pξp m

1

qF

= 8πh̄

α1m w′
1

1

qF

. (31)

As in the 2D case, the maximum value of 〈α1D〉0 is almost
independent of the confinement frequency.

The results of direct numerical calculation of 〈α1D〉0 using
Eq. (28) for 40K atoms are presented in Fig. 5 for the confining
frequency ω0 = 120 kHz and Fermi energies E1D

F = 1 and
4 μK (corresponds to densities n1D ≈ 4.1×104 cm−1 and
8.2×104 cm−1, respectively). The off-resonant expression (30)
and near-resonant expression (31) agree with numerical
results, although Eq. (31) leads to a small overestimate of
〈α1D〉0.

At T � E1D
F , averaging the rate constant over the Boltz-

mann distribution of atoms we obtain the following off-
resonant expression:

〈α1D〉T ≈ 12w2
1

l2
0w

′
1

T

h̄
. (32)

On the negative side of the 1D resonance in the near-resonant
regime, where 1/l′p 
 q̃1D 
 qT , with qT =

√
mT/h̄2 being

the thermal momentum, the rate constant displays a sharp peak,
slightly shifted with respect to the position of the 1D resonance
at zero kinetic energy (1/lp = 0). The maximum value of the
rate constant is

〈α1D〉T ≈ 4
√

πh̄

l′pξp m

1

qT

= 4
√

πh̄

α1m w′
1

1

qT

. (33)

Direct numerical calculation of 〈α1D〉T on the basis of Eq. (28)
shows good agreement with both off-resonant and near-
resonant expressions, as shown in Fig. 6 for the confining
frequency ω0 = 120 kHz and temperatures T = 300 nK and
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FIG. 6. One-dimensional inelastic rate constant 〈α1D〉T for 40K atoms in the | 9
2 ,− 7

2 〉 state versus magnetic field B for T = 300 nK in (a) and
T = 1 μK in (b). Dashed red curves correspond to the off-resonant regime described by Eq. (32), and the blue point marks the near-resonant
peak value according to Eq. (33). The corresponding magnetic field practically coincides with the magnetic field at which 1/lp = 0. The
confining frequency is ω0 = 120 kHz.

1 μK. Note that in the vicinity of the peak value the rate
constant is proportional to 1/

√
T , while in the off-resonant

regime it has a linear dependence on T .
We see that in 1D, as well as in higher dimensions, the

temperature (Fermi energy) dependence of the inelastic rate
constant in the near-resonant regime is very different from that
in the off-resonant case. Similarly to the 2D case, at distances
where the relaxation occurs (Re � r 
 l0), the 1D relative
wave function ψ1D has a 3D character and differs from the 3D
wave function only by a normalization coefficient. Sufficiently
far from the 3D resonance, assuming that r is still larger than
Re, the 1D wave function can be written as [23]

ψ1D(r) = −f1D(q)
√

2πl0

6πw1
{r − 3w1/r2}. (34)

Far from the 1D resonance (1/lp = 0), the 1D scatter-
ing amplitude is f off

1D ≈ −3iw1q/l2
0 , which yields ψoff

1D ≈
(iq/

√
2πl0){r − 3w1/r2} and αoff

1D ∼ q2/l2
0 , in agreement with

Eq. (29). In the near-resonant regime on the negative side of
the confinement-influenced resonance (lp < 0) the situation
changes. Here, the main contribution to α1D is provided only
by relative momenta in a narrow interval δq ∼ 1/ξp around
q̃1D, and in the classical gas the fraction of such momenta

is F1D ∼ δq/qT ∼ 1/(ξpqT ). In this near-resonant regime we
have |1/lp + ξpq2| ∼ q̃1D and f res

1D (q) ≈ −1. Then, the 1D
wave function becomes ψ res

1D ∼ l0{r/w1 − 3/r2}. The ratio of
the near-resonant inelastic rate constant to the off-resonant
one is R1D ∼ (ψ res

1D/ψoff
1D)2F1D, where we have to put r ∼ Re

in the expressions for the relative wave functions. Taking into
account that in the off-resonant regime w1 ∼ R3

e and in the
near-resonant regime it is much larger, we obtain

R1D ∼
(

l0

Re

)2 1

(qT Re)3
, (35)

which is consistent with Eqs. (32) and (33). From Eqs. (11),
(23), and (35), we find thatR1D/R3D ∼ (kT l0)2 ∼ (kT l0)R2D/

R3D. Thus, in the 1D case the enhancement of the inelastic rate
near the resonance is even weaker than in 2D and certainly
much weaker than in 3D.

V. TWO-BODY INELASTIC RATE NEAR THE
RESONANCE IN 2D AND 1D: CONCLUSIONS

In this section, we analyze how the inelastic rate is enhanced
on approach to the resonance in reduced dimensionalities and
conclude. In order to demonstrate the suppressed enhancement
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FIG. 7. Inelastic rate constants in 2D (solid curve) and in 3D (dotted curve) divided by their off-resonant values at a fixed field of 195 G
for 40K atoms in the | 9

2 ,− 7
2 〉 state versus magnetic field B for T = 300 nK in (a) and T = 1 μK in (b).
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FIG. 8. Inelastic rate constants in 1D (solid curve) and in 3D (dotted curve) divided by their off-resonant values at a fixed field of 195 G
for 40K atoms in the | 9

2 ,− 7
2 〉 state versus magnetic field B for T = 300 nK in (a) and T = 1 μK in (b).

of the inelastic rate constant near the resonance in reduced
dimensionalities, we calculate the ratios of 〈α2D〉T and 〈α1D〉T
to their off-resonant values, and compare them with the ratio
of 〈α3D〉T to its value far from the resonance. In Fig. 7,
we plot the ratio of the 2D rate constant to its off-resonant
value 〈α2D〉T /〈αoff

2D〉
T

versus magnetic field B for 40K atoms in
the | 9

2 ,− 7
2 〉 state at T = 300 nK and 1 μK. The off-resonant

value is taken at a fixed field value of 195 G. Figure 8 shows the
corresponding quantity in 1D. It is evident that the rate constant
in 3D experiences a much stronger enhancement near the
resonance than the rate constants in 2D and 1D. In other words,
this means that the enhancement of the two-body inelastic rate
near the resonance is suppressed in reduced dimensionalities.
The effect is especially pronounced in 1D, which is consistent
with our discussion in the previous section.

This effect is mostly related to a weaker enhancement of
the relative wave function on approach to the resonance in 2D
and 1D than in 3D. Indeed, using expressions for ψ3D and ψ2D

in the near- and off-resonant regimes [written after Eqs. (10)
and (22)] we see that the ratio (ψ res

2D/ψoff
2D)

2
/(ψ res

3D/ψoff
3D)

2 ∼
(k̃3Dl0)2 
 1 slightly away from the 3D resonance. Similarly,
in 1D we have (ψ res

1D/ψoff
1D)

2
/(ψ res

3D/ψoff
3D)

2 ∼ (k̃3Dl0)4, which is
even smaller than in the 2D case.

Our results may draw promising paths to obtain novel
many-body states in 2D and 1D, such as low-density p-wave
(odd-wave) superfluids of spinless fermions. It is quite likely
that they can be extended to the case of three-body recombi-
nation [27], which will be the topic of our future research.
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APPENDIX: SPIN RELAXATION TAKING INTO
ACCOUNT THE DOUBLING OF THE p-WAVE

FESHBACH RESONANCE

Throughout the paper we assumed that the 3D p-wave
Feshbach resonance occurs at the same magnetic field for all
orbital angular momentum projections ml . However, in reality
due to the spin-dipole interaction between colliding atoms
the binding energy of the two-body bound state, the coupling
to which leads to the resonance in the scattering amplitude,
depends on |ml|. As a consequence, the resonant magnetic
field (at which the scattering volume diverges) is different
for ml = 0 and = ±1. Then, the 3D rate constant exhibits a
doublet structure: there are two distinct peaks, corresponding
to ml = 0 and |ml| = 1. In reduced dimensionalities, one can
also get a double-peak structure of the relaxation rate constant,
although the situation is more peculiar as the orientation of
the external magnetic field plays a crucial role [15,24,26].
In this appendix we analyze these effects in more detail. We
first derive an expression for the ml-dependent inelastic rate
constant in 3D and show that it has the expected doublet
structure. We then discuss how our results for the rate constants
in 2D and 1D are affected by the ml dependence of the p-wave
Feshbach resonance.

In 3D, if the scattering volume and the effective range
depend on the value of ml , then the p-wave scattering phase
shift also becomes ml dependent. In the low-energy limit, we
have k3 cot δml

(k) = −1/w1,ml
− α1,ml

k2, and the p-wave part
of the total scattering amplitude can be written as [18]

f (k,k̂
′
) = 4π

∑
ml=0,±1

fml
(k)Y ∗

1,ml
(k̂)Y1,ml

(k̂
′
), (A1)

where k̂ and k̂
′
are unit vectors in the directions of incident and

outgoing relative momenta, Y1,ml
is the spherical harmonic,

and fml
(k) = [Sml

(k) − 1]/2ik is the p-wave partial scattering
amplitude, with Sml

(k) = exp{2iδml
(k)} being the p-wave

S-matrix element. In order to describe inelastic collisions
we make the replacement 1/w1,ml

→ 1/w1,ml
+ 1/w′

1, where
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FIG. 9. Three-dimensional inelastic rate constant 〈α3D〉T for 40K
atoms in the | 9

2 ,− 7
2 〉 state versus magnetic field B for T = 1 μK. For

comparison, the gray dotted line shows the 3D inelastic rate constant
from Fig. 2(b) of the main text.

w′
1 > 0 is the same for all ml’s, since it can be assumed to

be field independent. From Eq. (A1) we see that the p-wave
part of the scattering amplitude depends on both the incoming
and outgoing momentum directions and not only on the angle
between k and k′ (as it would have been in the case where the
scattering phase shift is independent of ml). Then, integrating
over the scattering angles �k̂

′ , for the inelastic scattering cross
section we have

σ in(k) = 4π

k2

∑
ml=0,±1

[
1 − ∣∣Sml

(k)
∣∣2]∣∣Y1,ml

(k̂)
∣∣2

. (A2)

For identical particles, the above expression should be mul-
tiplied by an extra factor of 2. Taking into account that
|Y1,0(k̂)|2 = (3/4π ) cos θk̂ and |Y1,±1(k̂)|2 = (3/8π ) sin2 θk̂,
where θk̂ is the angle between the unit vector k̂ and the
quantization axis, we average expression (A2) over the incident
angles �k̂. Then, the inelastic cross section can be written
as σ̄ in(k) = ∑

ml=0,±1 σ̄ in
ml

(k), where σ̄ in
ml

(k) = (2π/k2)[1 −
|Sml

(k)|2]. Accordingly, for the inelastic rate constant in 3D,

α3D(k) = (2h̄k/m)σ̄ in(k), we obtain

α3D(k) = 16πh̄

mw′
1

∑
ml=0,±1

k2

[
1

w1,ml

+ α1,ml
k2

]2 + [
1
w′

1
+ k3

]2 .

(A3)
One immediately sees that if w1,ml

and α1,ml
are the same

for all ml’s, the above expression reduces to Eq. (4) of the
main text, which has only one peak. However, as we already
mentioned before, if one takes the spin-dipole doubling of the
resonance into account, then this peak splits in two smaller
peaks. The one which corresponds to |ml| = 1 is by a factor of
3
2 smaller, whereas the second peak, corresponding to ml = 0,
is smaller by a factor of 3. For 40K atoms in the | 9

2 ,− 7
2 〉 state

the 3D resonance for ml = 0 occurs at 198.8 G, and for |ml| =
1 at 198.3 G [9]. We present this in Fig. 9, which displays
the thermally averaged inelastic rate constant 〈α3D〉T in a 3D
classical gas at 1 μK.

In reduced dimensionalities, the two-body inelastic relax-
ation occurs at interparticle distances that are much smaller
than the extension of the relative wave function in the
tightly confined direction(s) [22]. Therefore, the relative
motion acquires a 3D character and the related wave function
represents a superposition of ml = 0 and ±1 contributions.
This means that in principle the rate constant in 2D and in 1D
can also have the double-peak structure. However, the number
of peaks and their positions depend on the relative orientation
of the external magnetic field [15,24]. In the following,
we first consider the quasi-2D case with the magnetic field
perpendicular to the plane of the translational motion. In
quasi-1D we assume that the field is perpendicular to the
line of the translational motion. In both cases, one has a
single-peak structure of the relaxation rate since the relative
wave function of two atoms at short separations corresponds
only to the 3D motion with |ml| = 1. The expressions for
quasi-2D and quasi-1D scattering amplitudes for an arbitrary
orientation of the magnetic field were derived in Ref. [24].
In the case of magnetic field perpendicular to the plane (line)
of the translational motion in 2D (1D), these expressions are
reduced to Eqs. (14) and (26) for f2D and f1D, correspondingly,
where one should use the values of w1 and α1 for |ml| = 1.
Thus, the spin-dipole interaction simply shifts the position of
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FIG. 10. Two-dimensional inelastic rate constant 〈α2D〉T in (a) and one-dimensional inelastic rate constant 〈α1D〉T in (b) for 40K atoms in
the | 9

2 ,− 7
2 〉 state versus magnetic field B for T = 1 μK and confining frequency ω0 = 120 kHz. The magnetic field is perpendicular to the

translational motion in both (a) and (b). For comparison, gray dotted lines show the corresponding inelastic rate constants from Figs. 4(b)
and 6(b) of the main text. One can see that the spin-dipole interaction shifts the peaks by approximately 0.3 G.
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the peak of the inelastic rate by approximately 0.3 G, as can
be seen from Fig. 10. For the 1D case with the magnetic field
perpendicular to the line of the translational motion, particle
losses in a spin-polarized gas of 40K atoms were measured
in Ref. [15]. The peak position observed in the experiment
coincides with that in Fig. 10(b).

To illustrate the effect of the spin-dipole doubling of the
resonance in reduced dimensionalities, we now turn to
the case where the magnetic field is parallel to the plane of the
translational motion in 2D. Using the result of Ref. [24] for the
2D scattering amplitude depending on the orientation of the B

field, the inelastic scattering cross section can be written as

σ in
2D(q) = 4

q

{[
1 − ∣∣S2D

0

∣∣2]
cos2 φq̂ + [

1 − ∣∣S2D
1

∣∣2]
sin2 φq̂

}
,

(A4)
where q is the incident relative momentum, φq̂ is the
angle between q and the external magnetic field, and
S2D

|ml | = exp{2iδ2D
|ml |} are the 2D p-wave S-matrix elements,

with δ2D
|ml | being the 2D p-wave |ml|-dependent scattering

phase shifts. Adopting our notations from the main text, in
the low-energy limit we can write q2 cot δ2D

|ml | = −1/Ap,|ml | +
[Bp,|ml | − (2/π ) ln l0q]q2. The quantities Ap,|ml | and Bp,|ml |
are given by the same expressions as Ap and Bp written
after Eq. (14) of the main text, except that one has to use the
|ml|-dependent scattering volume w1,|ml | and effective range
α1,|ml |. Then, averaging expression (A4) over the angles φq̂

and replacing 1/Ap,|ml | with 1/Ap,|ml | + i/A′
p, for the 2D

inelastic rate constant we obtain

α2D(q) = 16h̄q2

mA′
p

∑
|ml |=0,1

{[
1

A′
p

+ q2

]2

+
[

1

Ap,|ml |
+

(
Bp,|ml | −

2 ln l0q

π

)
q2

]2}−1

. (A5)

Similarly to the 3D case, the above expression reproduces
Eq. (16) of the main text if there is no |ml| dependence of
the scattering parameters. In Fig. 11(a) we plot the thermally
averaged inelastic rate constant 〈α2D〉T for the quasi-2D
classical gas at T = 1 μK as a function of magnetic field
B. One can clearly see the emerging double-peak structure of
the inelastic rate constant for magnetic field oriented parallel
to the plane of translational motion. Both peaks are by a factor
of 2 smaller than the single peak of the rate constant in the
|ml|-independent case. Positions of the peaks coincide with
those found in the experiment measuring particle losses [15].

In order to have the doubling of the resonance in the quasi-
1D geometry, the magnetic field has to be neither parallel nor
perpendicular to the line of the translational motion [24]. Let
us consider the situation where the B field forms an angle β

with the quasi-1D tube. Then, the 1D scattering amplitude can
be written as [24] f1D(q) = −iq[1/L + iq]−1 with

1/L = F0[F1 + G] cos2 β + F1[F0 + G] sin2 β

F0 sin2 β + F1 cos2 β + G , (A6)

where we have the functions F|ml | = 1/lp,|ml | + ξp,|ml |q
2

and G = D1/l0 + D2l0q
2, with numerical constants D1 ≈

−0.4648 and D2 ≈ 0.8316. Here, q is the 1D relative momen-
tum, and the 1D scattering parameters lp,|ml | and ξp,|ml | are
given by the same expressions as lp and ξp in the main text.
The only difference is that the scattering volume w1,|ml | and
effective range α1,|ml | now depend on |ml|. Then, replacing
1/lp,|ml | with 1/lp,|ml | + i/ l′p and repeating the steps from
Sec. IV, for the 1D inelastic rate constant we obtain

α1D(q) = 8h̄

m

Im{1/L}q2

(Re{1/L})2 + (Im{1/L} + q)2 , (A7)

where

Re

{
1

L

}
= (F1 + G sin2 β) sin2 β �2 + [

2F1(F1 + G) + (
1/l′2p + G2 − F2

1

)
cos2 β

]
� + F1

[
(F1 + G)2 + 1/l′2p

]
sin4 β �2 + 2(F1 + G) sin2 β � + (F1 + G)2 + 1/l′2p

, (A8)

Im

{
1

L

}
= sin2 β �2 + 2(F1 + G) sin2 β � + (F1 + G)2 + 1/l′2p

l′p
[
sin4 β �2 + 2(F1 + G) sin2 β � + (F1 + G)2 + 1/l′2p

] , (A9)

with � = F0 − F1. One can easily verify that if there is no |ml| dependence of w1 and ξp, then � = 0. Thus, we have
Re{1/L} = 1/lp + ξpq2 and Im{1/L} = 1/l′p and recover expression (28) of the main text. Taking β = 45◦, we plot the
thermally averaged inelastic rate constant 〈α1D〉T for the quasi-1D classical gas at T = 1 μK as a function of magnetic field
B in Fig. 11(b). We again see that the rate constant has a characteristic doublet structure. However, unlike in 3D and 2D, both
peaks of 〈α1D〉T are now slightly higher than the single peak of the rate constant in the ml-independent case. The origin of this
enhancement becomes more clear if we simplify expression (A7) for the inelastic rate constant by omitting the terms 1/l′2p and
G in Eqs. (A8) and (A9). Then, the rate constant can be written as

α1D(q) = 8h̄q2

ml′p

⎧⎨
⎩

cos2 β

F2
0 + [

cos2 β + F0
F1

sin2 β
]2

q2
+ sin2 β

F2
1 + [

sin2 β + F1
F0

cos2 β
]2

q2

⎫⎬
⎭. (A10)

The term 1/l′2p is negligibly small, and by neglecting G we
slightly shift positions of the peaks since this term essentially
renormalizes F|ml | [see Eq. (A6)]. However, the behavior of
the rate constant becomes much more transparent. Indeed, in
Eq. (A10) the first term corresponds to the peak for ml = 0

and the second term to the peak for |ml| = 1. Then, close to
the resonance for ml = 0 on its negative side we have F0 ≈ 0,
and the second term in Eq. (A10) vanishes. The first term
behaves as the rate constant given by Eq. (28) in the main text
(where we can omit the term 1/l′p in the denominator), with an
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FIG. 11. Two-dimensional inelastic rate constant 〈α2D〉T in (a) and one-dimensional inelastic rate constant 〈α1D〉T in (b) for 40K atoms in
the | 9

2 ,− 7
2 〉 state versus magnetic field B for T = 1 μK and confining frequency ω0 = 120 kHz. The magnetic field is parallel to the plane of

the translational motion in (a) and forms an angle of 45◦ with the line of the translational motion in (b). For comparison, gray dotted lines show
the corresponding inelastic rate constants from Figs. 4(b) and 6(b) of the main text.

extra factor of 1/ cos2 β. Therefore, for β = 45◦ the peak value
corresponding to ml = 0 becomes approximately a factor of
2 larger than the single peak in the ml-independent case. The
resonance corresponding to |ml| = 1 can be analyzed in the
same way.

Finally, we show that the suppressed enhancement of the
inelastic rate near the resonance in reduced dimensionalities is
still present even if the scattering parameters are ml dependent.

This is illustrated in Fig. 12 for 40K atoms in the | 9
2 ,− 7

2 〉
state at T = 1 μK. In Fig. 12(a), we plot the ratio of the
3D rate constant to its off-resonant value 〈α3D〉T /〈αoff

3D〉
T

versus magnetic field B. The off-resonant value is taken
at a fixed field value of 195 G. Figure 12(b) displays the
corresponding quantity in the quasi-2D geometry with the
magnetic field parallel to the plane of the translational motion.
In the quasi-1D geometry with the magnetic field forming
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FIG. 12. Inelastic rate constant divided by its off-resonant value at a fixed field of 195 G for 40K atoms in the | 9
2 ,− 7

2 〉 state versus magnetic
field B for T = 1 μK. (a) Three-dimensional case; (b) two-dimensional case with the magnetic field parallel to the plane of the translational
motion; (c) one-dimensional case with the magnetic field forming an angle of 45◦ with the line of the translational motion; (d) one-dimensional
case with the magnetic field perpendicular to the line of the translational motion. In (b)–(d) the confining frequency is ω0 = 120 kHz.
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an angle of 45◦ with the line of the translational motion the
ratio 〈α1D〉T /〈αoff

1D〉
T

is plotted in Fig. 12(c) and for the case
of magnetic field perpendicular to the line of the translational

motion in Fig. 12(d). One can see the suppressed enhancement
of the inelastic rate in 2D and 1D compared to 3D. This
suppression is especially pronounced for the case in Fig. 12(d).
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