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We discuss the emergence of p-wave superfluidity of identical atomic fermions in a two-dimensional optical
lattice. The optical lattice potential manifests itself in an interplay between an increase in the density of states
on the Fermi surface and the modification of the fermion-fermion interaction (scattering) amplitude. The density
of states is enhanced due to an increase of the effective mass of atoms. In deep lattices the scattering amplitude
is strongly reduced compared to free space due to a small overlap of wave functions of fermions sitting in
the neighboring lattice sites, which suppresses the p-wave superfluidity. However, for moderate lattice depths
the enhancement of the density of states can compensate the decrease of the scattering amplitude. Moreover, the
lattice setup significantly reduces inelastic collisional losses, which allows one to get closer to a p-wave Feshbach
resonance. This opens possibilities to obtain the topological px + ipy superfluid phase, especially in the recently
proposed subwavelength lattices. We demonstrate this for the two-dimensional version of the Kronig-Penney
model allowing a transparent physical analysis.

DOI: 10.1103/PhysRevA.95.043615

I. INTRODUCTION

P -wave pairing of fermions is a basis of superfluidity in
3He [1], and it provides superconductivity in unconventional
superconductors [2]. Presently, the p-wave superfluid pairing
attracts a great deal of interest in ultracold atomic gases [3–9].
One of the reasons is the search for topological px + ipy

superfluid of identical fermions in the two-dimensional (2D)
geometry. Topological properties of this phase emerge from
zero-energy Majorana modes on the vortex cores [10], and
non-Abelian statistics of the vortices forms a basis for the im-
plementation of topologically protected quantum information
processing [11–15].

Despite a significant progress in theory [3–9], the px + ipy

superfluid has not been observed. The crucial obstacle to
achieve this phase for spinless short-range interacting fermions
comes from a small value of the p-wave interaction. Therefore,
in order to obtain a sizable transition temperature one has
to approach a p-wave Feshbach resonance. The p-wave
resonances have been studied in experiments with fermionic
potassium [16–18] and lithium [19–24] atoms. Close to the
resonance the rate of inelastic collisional losses becomes very
large [25–27]. Thus, the superfluid of short-range interacting
atomic fermions is characterized either by vanishingly low
critical temperature or by instability due to collisional losses.

The creation of px + ipy atomic or molecular topological
superfluids in 2D optical lattices can be a promising path for
future prospects, since addressing qubits in the lattice should
be much easier than in the gas phase. For microwave-dressed
polar molecules the long-range character of the acquired at-
tractive dipole-dipole intermolecular interaction [28,29] leads
to similar results regarding the critical temperature as in free
space [30], at least in subwavelength lattices. For short-range
interacting atomic fermions the situation is different. The effect

of the lattice potential on the formation of a superfluid phase
of atomic fermions has been actively discussed [31–38]. In
particular, for the s-wave pairing of spin-1/2 fermions an
increase in the depth of the optical potential results in a
stronger atom localization and hence in increasing the on-site
interaction. At the same time, the tunneling becomes weaker.
The combined effect of these two factors is a strong increase
in the critical temperature [31–33]. This has been observed
in the MIT experiment [34]. For the lattice filling somewhat
smaller than unity, the physical picture can be rephrased as
follows. An increase in the lattice depth increases an effective
mass of atoms and, hence, makes the density of states (DOS)
larger. The effective fermion-fermion scattering amplitude is
also increasing. The critical temperature in the BCS approach
is Tc ∝ exp [−1/λc], where λc is proportional to the product
of the (modulus of) the scattering amplitude and the DOS on
the Fermi surface. Thus, an increase in the lattice potential
increases Tc.

On the contrary, for identical fermions in fairly deep
lattices (tight-binding model) the fermion-fermion scattering
amplitude is strongly reduced. In the lowest band approach two
fermions do not occupy the same lattice site, and the amplitude
is proportional to a very small overlap of the wave functions
of fermions sitting in the neighboring sites. This suppresses
the p-wave superfluid pairing for fairly small filling factors in
deep lattices, which is consistent with numerical calculations
of Ref. [33]. Nevertheless, there remains a question about an
interplay between an increase of the DOS and the modification
of the fermion-fermion scattering amplitude for moderate
lattice depths. However, in sinusoidal optical lattices single
particle states are described by complicated Mathieu functions,
which complicates the question.

In this paper we study identical fermionic atoms in a 2D
version of the Kronig-Penney model allowing a transparent
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FIG. 1. Superfluid pairing of lattice fermions in various setups.
In (a) two component (spin-1/2) lattice fermions with a short-range
interaction. The two spin components are labeled by filled and unfilled
circles. In (b) single component (spinless) short-range interacting
lattice fermions. In (c) 1D projection of atomic fermions loaded in
the 2D Kronig-Penney lattice.

physical analysis for moderate lattice depths. The 2D version
of the Kronig-Penney model is a superposition of two Kronig-
Penney potentials (in the x and y directions, respectively).
With the eigenfunctions being piecewise plane waves, the
Kronig-Penney potential is used in cold atom theory (see, e.g.,
[39–41]) to mimic sinusoidal potentials of common optical
lattices. In particular, this model allows us to investigate
two important questions. The first one is about an interplay
between an increase of the DOS and the modification of the
fermion-fermion interaction in lattices of moderate depths.
We demonstrate that the reduction of the scattering amplitude
still dominates over the enhancement of the DOS. The second
question is about the stability of the system with respect
to collisional losses. We show that the lattice setup reduces
inelastic collisional losses compared to free space, and one can
approach the Feshbach resonance without a strong collisional
instability. This opens a possibility to observe the lattice
px + ipy 2D superfluid and maybe other interesting many-
body phases.

The paper is organized as follows. In Sec. II we describe
a general approach for studying superfluidity of 2D lattice
fermions (Fig. 1). Section III contains the demonstration of
how the ordinary tight-binding optical lattice promotes the
s-wave superfluidity of spin-1/2 fermionic atoms and sup-
presses the p-wave superfluidity of spinless fermions. In
Sec. IV we develop a theory of p-wave superfluidity of spinless
fermions in the 2D Kronig-Penney lattice. In Sec. V we discuss
inelastic decay processes in the lattice and in Sec. VI we
conclude.

II. GENERAL RELATIONS

Let us first present a general framework for the investigation
of superfluid pairing of weakly interacting lattice fermions. We
will do this for 2D identical (spinless) fermions, having in mind
that the approach for spin-1/2 fermions is very similar. The
grand-canonical Hamiltonian of the system is Ĥ = Ĥ0 + Ĥint,
and the single particle part is given by [hereinafter we put

h̄ = 1 and set the normalization volume (surface) equal to
unity]

Ĥ0 =
∫

d2r ψ̂†(r )

[
− ∇2

2m
+ U (r) − μ

]
ψ̂(r), (1)

with μ being the chemical potential, m the particle mass, U (r)
the 2D periodic lattice potential, and ψ̂(r) the fermionic field
operator.

The term Ĥint describes the interaction between particles:

Ĥint = 1

2

∫
d2rd2r ′ ψ̂†(r)ψ̂†(r′)V (r − r′)ψ̂(r′)ψ̂(r), (2)

where V (r − r′) is the potential of interparticle interaction of
radius r0.

In the absence of interactions, fermions in the periodic po-
tential U (r) fill single particle energy levels εν(k) determined
by the Schrödinger equation:[

− ∇2

2m
+ U (r)

]
χνk(r) = εν(k)χνk(r). (3)

Here ν = 0,1,2, . . . numerates energy bands, the wave vec-
tor k = {kx,ky} takes values within the Brillouin zone:
{−π/b<ki<π/b; i = x,y}, and b is the lattice period. The
eigenfunctions χνk(r) obey the periodicity condition

χνk(r + Rn) = χνk(r) exp [ik · Rn], (4)

where n = (nx,ny) is the index of the lattice site, with integer
nx,ny . In the described Bloch basis the field operator reads

ψ̂(r) =
∑

ν,k
âνkχνk(r), (5)

with âνk being the annihilation operator of fermions with
quasimomentum k in the energy band ν.

We assume a dilute regime where the 2D density n is such
that nb2 � 1, and all fermions are in the lowest Brillouin
zone (hereinafter we omit the corresponding index ν = 0).
In the low momentum limit (small filling factor) that we
consider, their Fermi energy EF is small compared to the
energy bandwidth EB . The lattice potential amplitude U0 is
assumed to be sufficiently large, so that both EF and EB are
smaller than the gap between the first and second lattice bands.
The single particle dispersion relation then takes the form

Ek = k2

2m∗ , (6)

where m∗ > m is the effective mass.
In 2D the transition of a Fermi gas from the normal to

superfluid state is set by the Kosterlitz-Thouless mechanism.
However, in the weakly interacting regime the Kosterlitz-
Thouless transition temperature is very close to Tc calculated
in the Bardeen-Cooper-Schrieffer (BCS) approach [42]. We
then reduce the Hamiltonian given by Eqs. (1) and (2) to the
standard BCS form:

ĤBCS =
∑

k

{
(Ek − μ)â†

kâk + 1

2
[â†

kâ
†
−k�(k) + H.c.]

}
,

(7)

where the momentum-space order parameter �(k) is given by

�(k) =
∑

k ′ V (k,k′)〈â−k′ âk′ 〉, �(k) = −�(−k), (8)

043615-2
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with V (k,k′) being the matrix element of the interaction
potential between the corresponding states.

The Hamiltonian (7) is then decomposed in a set of inde-
pendent quadratic Hamiltonians and the anomalous averages
are determined by the standard BCS expressions:

〈â−kâk〉 = −�(k)K(k), (9)

where K(k) = tanh[E(k)/2T ]/2E(k), and

E(k) =
√

(Ek − μ)2 + |�ν(k)|2 (10)

is the energy of excitation with quasimomentum k. From
Eqs. (8) and (9) we have an equation for �(k) (gap equation):

�(k) = −
∑

k′ V (k,k′)K(k′)�(k′). (11)

Equation (11) can be expressed [29] in terms of the effective
off-shell scattering amplitude f (k′,k) of a fermion pair with
momenta k and −k defined as

f (k′,k) =
∫

d2r1d
2r2 	

(0)∗
k′ (r1,r2)V (r1 − r2)	k(r1,r2).

(12)
Here

	
(0)
k (r1,r2) = χk(r1)χ−k(r2) (13)

is the wave function of a pair of noninteracting fermions with
quasimomenta k and −k. The quantity 	k(r1,r2) is the true
(i.e., accounting for the interaction) wave function, which
develops from the incident wave function 	

(0)
k (r1,r2) of a free

pair. The wave function 	k(r1,r2) satisfies the Schrödinger
equation

[Ĥ12 − 2Ek]	k(r1,r2) = 0, (14)

with the two-particle Hamiltonian:

Ĥ12 = −∇2
1 + ∇2

2

2m
+ U (r1) + U (r2) + V (r1−r2). (15)

The renormalized gap equation for the function �(k) then
takes the form similar to that in free space (see Ref. [29] and
references therein):

�(k) =
∫

d2k′

(2π )2
f (k′,k)�(k′)

{
K(k′) − 1

2(Ek′ − Ek)

}
.

(16)

In the weakly interacting regime the chemical potential
coincides with the Fermi energy EF = k2

F /2m∗, where kF =√
4πn is the Fermi momentum. Note that we omit a correction

to the bare interparticle interaction due to polarization of the
medium by colliding particles [43].

We will see below that the scattering amplitude and the
corresponding critical temperature of the superfluid transition
of lattice fermions depend drastically on the presence or
absence of spin and on the pairing angular momentum. Before
analyzing various regimes, we discuss the situation in general.

The efficiency of superfluid pairing first of all depends on
the symmetry of the order parameter. For the pairing with or-
bital angular momentum l we have �(k) → �l(k) exp [ilφk],
where φk is the angle of the vector k with respect to the
quantization axis. Integrating Eq. (16) over φk and φk′ we
obtain the same equation in which �(k) and �(k′) are replaced

with �l(k) and �l(k′), and f (k′,k) is replaced with its l-wave
part

fl(k
′,k) =

∫
dφkdφk′

(2π )2
f (k′,k) exp[ilφk − ilφk′]. (17)

Alternatively, we can write

fl(k
′,k) =

∫
d2r1d

2r2	
(0)∗
lk′ (r1,r2)V (|r1 − r2|)	lk(r1,r2),

(18)

where the l-wave parts of the wave functions 	
(0)
lk′ and 	lk are

given by

	
(0)
lk′ (r1,r2) =

∫
dφk′

2π
	

(0)
k′ (r1,r2) exp[ilφk′], (19)

	lk(r1,r2) =
∫

dφk

2π
	k(r1,r2) exp[ilφk]. (20)

As well as in free space (see Ref. [29]), we turn from fl(k′,k)
to the (real) function

f̃l(k
′,k) = fl(k

′,k)[1 − i tan δ(k)], (21)

where δ(k) is the scattering phase shift. This leads to the gap
equation:

�l(k) = −P

∫
d2k′

(2π )2
f̃l(k

′,k)�l(k
′)
{
K(k′) − 1

Ek′ − Ek

}
,

(22)
where the symbol P denotes the principal value of the integral.

In order to estimate the critical temperature Tc, we first put
k = kF and notice that the main contribution to the integral
over k′ in Eq. (22) comes from k′ close to kF . At temperatures
T tending to the critical temperature Tc from below, we put
E(k′) = |Ek′ − EF | in K(k′). Then for the pairing channel
related to the interaction with orbital angular momentum l,
we have the following estimate:

Tc ∼ EF exp

[
− 1

λc

]
, λc = ρ(kF )|fl(kF )|. (23)

The quantity ρ(kF )=m∗/2π is the effective density of states on
the Fermi surface, and fl(kF ) is the on-shell l-wave scattering
amplitude of lattice fermions. The derivation for spin-1/2
fermions with attractive intercomponent interaction leads to
the same gap equations (16) and (22) and estimate (23) in
which

�(k) =
∑

k′
V (k,k′)〈â↓−k′ â↑k′ 〉 (24)

and f (k′,k), fl(k′,k) are the amplitudes of the intercomponent
interaction.

Equation (23) shows that compared to free space we have
an additional pre-exponential factor m/m∗ < 1. Assuming
that the lattice amplitude fl(kF ) and the free-space amplitude
f 0

l (kF ) are related to each other as

fl(kF ) = Rlf
0
l (kF ), (25)

we see that the exponential factor λc in Eq. (23) becomes

λc = Rl

m∗

m
λ0

c, (26)
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where 1/λ0
c is the BCS exponent in free space. Below

we compare Tc in various lattice setups with the critical
temperature in free space.

III. SHORT-RANGE INTERACTING FERMIONIC ATOMS
IN A DEEP 2D LATTICE

We start with the analysis of superfluid pairing in deep 2D
lattices. As an example, we consider a quadratic lattice with
the lattice potential of the form

U (r) = U0

[
cos

(
2π

b
x

)
+ cos

(
2π

b
y

)]
. (27)

For sufficiently deep lattices, the single particle wave function
has the Wannier form:

χk(r) = 1√
N

∑
j

φ0(r − Rj ) exp[ik · Rj ], (28)

where N is the number of lattice sites. The ground state wave
function in the lattice cell has an extension ξ0 and is given by

φ0(r) = 1√
πξ0

exp

[
− r2

2ξ 2
0

]
. (29)

Using a general formula for the effective mass from
Ref. [44], for a deep potential of the form (27) one obtains

m∗

m

 π

ξ 2
0

b2
exp

[
2

π2

b2

ξ 2
0

]
. (30)

We will consider fermionic atoms interacting with each
other via a short-range potential V (r) of radius r0 and assume
the following hierarchy of length scales:

r0 � ξ0 < b < 1/kF . (31)

We first discuss the s-wave pairing of spin-1/2 fermions with
attractive intercomponent interaction (l = 0).

Turning to Eq. (18) for l = 0, we notice that the main
contribution to the s-wave scattering amplitude in the lattice
comes from the interaction between spin-up and spin-down
fermions sitting in one and the same lattice site. The wave
functions 	

(0)
0k′ and 	0k can be written as

	
(0)
0k′(r1,r2) = χ0(r1)χ0(r2), (32)

	0k(r1,r2) = χ0(r1)χ0(r2)ζ0(|r1 − r2|), (33)

where the function ζ0(|r1 − r2|) is a solution of the
Schrödinger equation for the s-wave relative motion of two
particles in free space at zero energy, and it is tending to
unity for interatomic separations greatly exceeding r0. We
put l = 0 in Eq. (18) and integrate over r = r1 − r2 and
r+ = (r1 + r2)/2. Then, owing to the inequality r0 � ξ0, this
equation is reduced to

f0(k′,k) =
∫

d2r V (r)ζ (r)
∫

d2r+|χ0(r+)|4. (34)

Recalling that in the low momentum limit the free space
scattering amplitude is given by

f 0
0 =

∫
V (r)ζ (r)d2r (35)

b/ξ0

λ0
c

λc

s wave

p wave

FIG. 2. The ratio of the BCS exponent in the tight-binding
sinusoidal lattice to the BCS exponent in free space λ0

c/λc at the same
density and short-range coupling strength. The dashed curve shows
λ0

c/λc as a function of the lattice period (in units of the harmonic
oscillator length ξ0) for the s-wave pairing of spin-1/2 fermions, and
the solid curve is λ0

c/λc for the p-wave pairing of identical fermions.

and using Eq. (28) for the function χ0(r), we obtain for the
ratio of the lattice to free space amplitude:

Rl=0 = 1

2π

b2

ξ 2
0

, (36)

where we made a summation over the lattice sites and put
N = 1/b2 as the normalization volume is set to be unity. Thus,
according to Eqs. (26) and (30) the BCS exponent λ−1

c becomes
smaller than in free space by the following factor:

Rl=0
m∗

m

 1

2
exp

[
2

π2

b2

ξ 2
0

]
. (37)

For example, taking b/ξ0 = 4 the BCS exponent λ−1
c

decreases by a factor of 0.08, whereas the effective mass
becomes higher by a factor of 5 compared to the bare mass
m (see Fig. 2). Then, for 6Li atoms at density 108 cm−2

(b 
 250 nm, kF b 
 0.5) we have the Fermi energy ∼40 nK.
Assuming that the free space BCS exponent is about 30 and
the related critical temperature is practically zero, in the lattice
we obtain Tc ∼ 3 nK. We thus see that the lattice setup
may strongly promote the s-wave superfluidity of spin-1/2
fermions.

The situation with p-wave superfluidity of identical
fermions is drastically different. In the single band approxima-
tion (tight-binding model) two such fermions cannot occupy
one and the same lattice site. This is clearly seen using the
functions χk(r1) and χ−k(r2) from Eq. (28) at the same Rj , so
that the wave function 	

(0)
k′ (r1,r2) becomes independent of k′.

Therefore, the p-wave part of this wave function 	
(0)
1k′ and the

p-wave scattering amplitude f1(k′,k) following from Eqs. (19)
and (18) at l = 1 are equal to zero.

The main contribution to the interaction amplitude then
comes from the overlap of the wave functions of fermions
sitting in the neighboring sites. We then use Eqs. (28) and (29)

043615-4
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and write

	
(0)
k′ (r1,r2) = χk′(r1)χ−k′(r2) = (

1
/
Nπξ 2

0

)
×

∑
i,j

exp
{−(r1 − Ri)

2
/

2ξ 2
0

− (r2 − Rj )2
/

2ξ 2
0 − ik′bj

}
, (38)

with bj = Rj − Ri and Ri ,Rj being the coordinates of the
sites i and j . For the short-range interaction between particles
the main contribution to the scattering amplitude comes from
distances r1,r2 that are very close to each other, and for
given i,j both coordinates should be close to (Rj + Ri)/2.
Therefore, Eq. (38) is conveniently rewritten as

	
(0)
k′ (r1,r2) = (

1
/
Nπξ 2

0

)∑
i,j

exp
{−ik′ · bj − r2

+j

/
ξ 2

0

− r2
/

4ξ 2
0 − b2

/
4ξ 2

0 − r · bj

/
2ξ 2

0

}
, (39)

where r = r1 − r2, r+j = r+ − (Ri + Rj )/2, r+ = (r1 +
r2)/2, and the summation is performed over the sites j that
are nearest neighbors of the site i. Assuming the conditions
k′b � 1 and r ∼ r0 � ξ 2

0 /b � ξ0, for the p-wave part of this
wave function equation (19) at l = 1 gives

	
(0)
1k′(r,r+,φr) = k′rb2

N8πξ 4
0

∑
i,j

exp
{−r2

+j

/
ξ 2

0 − b2/4ξ 2
0

}
× [exp(iφr) + exp(−iφr + 2iφj )], (40)

where φr and φj are the angles of the vectors r and bj

with respect to the quantization axis. The p-wave part of the
true relative-motion wave function 	k(r1,r2) under the same
conditions is given by

	1k(r,r+,φr) = b2

N4πξ 4
0

ζ1(r)
∑
i ′,j ′

exp
{−r2

+j ′
/
ξ 2

0 − b2
/

4ξ 2
0

}
× [exp(iφr) + exp(−iφr + 2iφj )]. (41)

The function ζ1(r) is a solution of the Schrödinger equation
for the p-wave relative motion of two particles at energy
tending to zero in free space. Sufficiently far from resonance,
where the on-shell scattering amplitude satisfies the inequality
m|f1(k)| � 1, the function ζ1(r) becomes kr/2 at distances
r � r0.

Looking at the product of the free and true relative-motion
wave functions we notice that the main contribution to the
scattering amplitude (18) comes from the terms in which Ri +
Rj = Ri ′ + Rj ′ , i.e., r+j = r+j ′ . This is realized for i = i ′,
j = j ′ or i ′ = j , j ′ = i. Then, recalling that for k′r0 � 1 and
kr0 � 1 the free space off-shell scattering amplitude is

f 0
1 (k′,k) =

∫
V (r)(k′r/2)ζ1(r)d2r, (42)

we first integrate each term of the sum over i,j,i ′j ′ in the
product 	

(0)∗
1k′ 	1k over d2r and d2r+ in Eq. (18). After that we

make a summation over the neighboring sites j and over the
sites i and take into account that N = 1/b2. Eventually this

gives for the ratio of the lattice to free space p-wave amplitude:

Rl=1 = 1

2π

(
b

ξ0

)6

exp

[
− b2

2ξ 2
0

]
. (43)

Thus, with the help of Eq. (30) the inverse BCS exponent in
the lattice becomes

λc = Rl=1
m∗

m
λ0

c = λ0
c

2

(
b

ξ0

)4

exp

[
−cb2

ξ 2
0

]
, (44)

where c 
 0.3.
We now clearly see that the inverse BCS exponent λc in

the lattice is exponentially smaller compared to its value in
free space. In particular, already for b/ξ0 = 5 the ratio λ0

c/λc

is about 6, which practically suppresses p-wave superfluidity
of identical fermions (see Fig. 2). However, this ratio rapidly
reduces with decreasing the ratio b/ξ0 and becomes ∼1 for
b/ξ0 = 4. It is therefore interesting to analyze more carefully
the case of moderate lattice depths.

IV. SUPERFLUID P-WAVE PAIRING IN THE 2D
KRONIG-PENNEY LATTICE

We will do so using a 2D version of the Kronig-Penney
model, namely a superposition of two one-dimensional (1D)
Kronig-Penney lattices (in the x and y directions, respectively),
with a δ-functional form of potential barriers:

U (x,y) = U0b

+∞∑
j=−∞

[δ(x − jb) + δ(y − jb)]. (45)

With the eigenfunctions being piecewise plane waves, the 1D
Kronig-Penney potential is used in ultracold atom theory (see,
e.g., [39–41]) to mimic sinusoidal potentials. The model (45)
catches the key physics and allows for transparent calculations.
The latter circumstance is a great advantage compared to
sinusoidal lattices where single particle states are described by
complicated Mathieu functions. The considered model allows
us to investigate two important questions. The first question
is about an interplay between an increase of the DOS and the
modification of the fermion-fermion interaction for moderate
lattice depths. The second one is the stability of the system
with respect to collisional losses.

Single-particle energies in the periodic potential (45) are
represented as

Ek = E(kx) + E(ky), (46)

where E(kx,y) > 0 is the dispersion relation for the 1D
Kronig-Penney model. It follows from the equation (see, e.g.,
Ref. [44])

cos(qb) + G
sin(qb)

qb
= cos(kb), (47)

where q = √
2mE(k) > 0 and G = mU0b

2. As well as in the
previous section, we consider a dilute regime where the filling
factor is ν = nb2 � 1 and the fermions fill only a small energy
interval near the bottom of the lowest Brillouin zone. Then the
energy counted from the bottom of the zone is given by Eq. (6)
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and for the effective mass Eq. (47) yields

m∗

m
≈ tan(η/2)

η

[
1 + sin η

η

]
, (48)

with η being the smallest root of the equation:

η tan(η/2) = G. (49)

Actually, η = q0b where q0 follows from Eq. (47) at k = 0.
For m∗ � m we have m∗/m = G/π2, which means that

the quantity G should be very large. Then the width of the
lowest Brillouin zone is EB = 2/m∗b2 and it is much larger
than the Fermi energy EF = k2/2m∗ for kF b < 0.5. The gap
between the lowest and second zones is EG = 3π2/2mb2 and
it greatly exceeds EB and EF . Note that even for m∗ 
 1.3m

(G 
 5) we have EG close to 4EB , and the ratio EF /EB is

significantly smaller than unity if kF b < 0.5. This justifies
the single-band approximation and the use of the quadratic
dispersion relation (6).

Single-particle wave functions χk(r) are of the form
χk(r) = χkx

(x)χky
(y), where

χkx
(x) =

√
2 sin (η/2)√
1 + sin η/η

j=+∞∑
j=−∞

Aj (x) exp [ikxjb]

×
{

eiqbeiq(x−jb)

eiqb − eikxb
− e−iqbe−iq(x−jb)

e−iqb − eikxb

}
(50)

is the exact eigenfunction of the 1D Kronig-Penney model,
with Aj (x) = 1 for (j − 1)b < x < jb and zero otherwise.
The function χky

(y) has a similar form. For k′b � 1 and

kb � 1 the p-wave parts of the wave functions 	
(0)
1k′ and 	1k

following from Eqs. (13), (19), and (20) at l = 1 turn out to be

	
(0)
1k′ = ik′r

η cot(η/2)

[1 + sin η/η]2

∞∑
jx ,jy=−∞

Ajx
(x+)Ajy

(y+)

{
cos φr cos2

(
q0y+ − jyb + b

2

)
+ i sin φr cos2

(
q0x+ − jxb + b

2

)}
, (51)

	1k = 2iζ1(r)
η cot(η/2)

[1 + sin η/η]2

∞∑
jx ,jy=−∞

Ajx
(x+)Ajy

(y+)

{
cos φr cos2

(
q0y+ − jyb + b

2

)
+ i sin φr cos2

(
q0x+ − jxb + b

2

)}
,

(52)

where the function ζ1(r) is defined after Eq. (41). For the ratio
of the lattice to free space scattering amplitude we then obtain

Rl=1 = η2 cot2 (η/2)

[1 + sin η/η]4

[
3

2
+ 2 sin η

η
+ sin 2η

4η

]
, (53)

and using Eq. (48) the inverse BCS exponent in the lattice is
expressed through the inverse BCS exponent in free space as

λδ
c = Rl=1

m∗

m
λ0

c

= η cot(η/2)

[1 + sin η/η]3

[
3

2
+ 2 sin η

η
+ sin 2η

4η

]
λ0

c . (54)

In the extreme limit of G � 1 we have η 
 (π − 2π/G), so
that Rl=1 
 π4/G2 and λδ

c/λ
0
c 
 π2/G � 1. We thus arrive

at the same conclusion as in the previous section for sinusoidal
lattices: in a very deep lattice the p-wave pairing of identical
fermions is suppressed. However, even for G 
 20 the BCS
exponent in the lattice exceeds the exponent in free space
only by a factor of 1.7 at the same density and short-range
coupling strength (see Fig. 3). It is thus crucial to understand
what happens with the rates of inelastic decay processes in the
lattice setup.

V. INELASTIC DECAY PROCESSES

We first consider the two-body relaxation, assuming that
both colliding atoms are in an excited (internal energy E0)
hyperfine state and they relax to the ground state. The released
hyperfine-state energy 2E0 goes to the kinetic energy of the
atoms. It greatly exceeds the Fermi energy and the lattice
potential depth, so that the relative motion of the atoms in the
final state is described by a three-dimensional (3D) plane wave

with a high momentum and they escape from the system. Then
the number of relaxation events per unit time can be written in
the form (see, e.g., Ref. [45])

W2 =
∫ ∞

−∞
dt

∑
i

ρi〈|Ĥ ′(0)Ĥ ′(t)|〉, (55)

m∗/m

λ0
c/λδ

c

G

FIG. 3. The ratio of the BCS exponent in the 2D δ-functional
Kronig-Penney lattice to the BCS exponent in free space λ0

c/λ
δ
c at the

same density and short-range coupling strength. The solid blue curve
shows λ0

c/λ
δ
c as a function of the lattice depth G, and the dashed

red curve the effective mass m∗/m versus G. The dotted parts of
these curves show our expectation at G � 1, where the single-band
approximation used in our calculations does not work.
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where ρi is the equilibrium density matrix, and Ĥ ′ is the
Hamiltonian responsible for the relaxation process:

Ĥ ′(t) = exp{iĤ0t}Ĥ ′(0) exp{−iĤ0t}, (56)

with Ĥ0 being the Hamiltonian of elastic interaction, and

Ĥ ′(0) =
∫

d�r1d�r2Vr (�r1 − �r2)

× [	̂†(�r2)	̂†(�r1)ψ̂(�r1)ψ̂(�r2) + H.c.]. (57)

Here �r1 and �r2 are the 3D coordinates of the atoms, ψ̂(�r) is the
field operator of the initial-state atoms, and Vr (�r1 − �r2) is the
interaction potential causing the inelastic relaxation. The field
operator of atoms in the final (ground) internal state is

	(�r) =
∑

�q â�q exp(i�q · �r), (58)

and initially these states are not occupied. We thus have

W2 =
∫ ∞

−∞
dt

∫
d�r1d�r2d �r′

1d �r′
2Vr (�r1 − �r2)Vr (�r′

1 − �r′
2) exp

{
i�q1(�r1 − �r′

1) + i�q2(�r2 − �r′
2) − i

[
2E0 − (

q2
1 + q2

2

)
/2m

]
t
}

×〈ψ̂†(�r1,0)ψ̂†(�r2,0)ψ̂(�r′
2,t)ψ̂(�r′

1,t)〉. (59)

The momenta q1 and q2 are large but the center of mass
momentum |�q1 + �q2| is almost zero. The energy conservation
law then reads

2E0 = p2

m
, (60)

where �p = (�q1 − �q2)/2 is the relative momentum. From the
summation over �q1,�q2 we turn to the integration over �p and
(�q1 + �q2). The coordinate-dependent part of the exponent in
Eq. (59) takes the form

exp{i�q1(�r1 − �r′
1) + i�q2(�r2 − �r′

2)}
= exp{i(�q1 + �q2)( �R − �R′) + i�p(�r − �r′)}, (61)

where �R = (�r1 + �r2)/2, �R′ = (�r′
1 + �r′

2)/2, �r = �r1 − �r2, and
�r′ = �r′

1 − �r′
2. The integration over (�q1 + �q2) yields∫

d(�q1 + �q2)

(2π )3
exp{i(�q1 + �q2)( �R − �R′)} = δ( �R − �R′), (62)

and the correlation function becomes

〈ψ̂†(�r1,0)ψ̂†(�r2,0)ψ̂(�r′
2,t)ψ̂(�r′

1,t)〉
= 〈ψ̂†( �R + �r ′/2)ψ̂†( �R − �r ′/2)ψ̂( �R − �r/2,t)ψ̂( �R + �r/2,t)〉.

(63)

Characteristic times t on which the correlation function
changes are of the order of the inverse Fermi energy or
even larger. They are much longer than the times ∼E−1

0 that
dominate the integral over dt in Eq. (59). Therefore, we may
put t = 0 in the correlation function, which reduces Eq. (59)
to

W2 =
∫

W̃2(�r,�r′)d �Rd�rd �r′〈ψ̂†( �R + �r′/2)ψ̂†

× ( �R − �r′/2)ψ̂( �R − �r/2)ψ̂( �R + �r/2)〉, (64)

with

W̃2 =
∫

Vr (�r)Vr (�r′) exp{i�p(�r − �r′)}δ
(

2E0 − p2

m

)
d�p

(2π )2
.

(65)
In the quasi-2D geometry the field operator can be written

as ψ̂(�r1,2) = ψ0(z1,2)ψ(r1,2), where r1,2 is the 2D vector in the

x,y plane, and

ψ0(z1,2) = 1

(πl2
0)1/4

exp

[
−z2

1,2

2l2
0

]
(66)

is the wave function in the tightly confined z direction [46]. As
the inelastic relaxation occurs at interparticle distances much
smaller than the confinement length l0, the product of four field
operators in Eq. (64) becomes

ψ̂†(R + r′/2)ψ̂†(R − r′/2)ψ̂(R − r/2)ψ̂(R + r/2)ψ4
0 (Z),

(67)
where R,r, and r′ are 2D vectors in the x,y plane, and Z =
(z1 + z2)/2. Integrating over Z in Eq. (64) we then have

W2 =
∫

w̃2(r,r′)dRdrdr′〈ψ̂†(R + r′/2)ψ̂†(R − r′/2)

× ψ̂(R − r/2)ψ̂(R + r/2)〉, (68)

where

w̃2(r,r′) =
∫

W̃2(�r,�r′)
dzdz′
√

2πl0
, (69)

with z = z1 − z2 and z′ = z′
1 − z′

2.
Using expansion (5) one can express the averaged product

of four 2D field operators in terms of the standard Slater
determinants D(r,R; k1,k2):

〈ψ̂†(R + r′/2)ψ̂†(R − r′/2)ψ̂ (R − r/2)ψ̂ (R + r/2)〉
= 1

2!

∑
k1,k2

Nk1Nk2D∗(r′,R; k1,k2)D(r,R; k1,k2), (70)

where Nk is the Fermi distribution function, and

D(r,R; k1,k2) = Det

(
χk1 (R + r/2) χk1 (R − r/2)
χk2 (R + r/2) χk2 (R − r/2)

)
. (71)

The distance r between relaxing particles is small compared
to the lattice period and particle wavelengths. Therefore, all
the wave functions entering Eq. (71) should be taken within
the same lattice cell (n,m) of the considered 2D lattice, so
that Eq. (68) will contain only one double lattice summation
over n and m. The Slater determinant (71) within a given cell
(n,m) contains a factor exp [i(k1x + k2x)bn + i(k1y + k2y)bm]
[see Eq. (50)], which does not contribute to the product
D∗D. Below we will imply that the corresponding exponential
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factors have been already extracted from the wave functions.
In the leading (linear) order in small r we have

χk

(
R ± r

2

)
≈ χk(R)

{
1 ± 1

2
r · ∇R ln [χk(R)]

}
, (72)

where the Slater determinant takes the form

D(r,R; k1,k2) = χk1 (R)χk2 (R)

× r · ∇R
{
ln [χk1 (R)] − ln [χk2 (R)]

}
.

(73)

As the leading contribution to the scattering of slow identical
fermions comes from the p-wave scattering channel, the
expression in the curly brackets in Eq. (73) is linear (in the
leading order) in the difference (k1 − k2). For instance, the “x
component” of this expression has the form

ln [χk1x
(X)] − ln [χk2x

(X)]

= i(k1x − k2x)b

2 sin (η/2)

sin [q(X − nb)]

cos [q(X − nb) + b/2)]
, (74)

where X varies from (n − 1)b to nb [see Eq. (50)]. In the
considered low density limit (kb � 1) we may put k1 = k2 =
0 in the product χk1 (r1)χk2 (r1) in Eq. (73). As a result we
transform Eq. (68) to

W2 = F2(η)

2

∫
rr′w2(r,r′)drdr′

∫
Nk1Nk2

(
k2

1 + k2
2

)dk1dk2

(2π )4
.

(75)

The quantity F2 is determined by the integral over the 2D
lattice:

F2 = 1

8 sin2 η/2

∞∑
n,m

∫ ∞

−∞

∫ ∞

−∞
dxdyAn(x)Am(y)

× |χ0(x)|4|χ0(y)|4[P 2(x) + P 2(y)], (76)

where the functions Aj (x) are defined below Eq. (50), and the
function P results from the differentiation of the curly brackets
in Eq. (73) with the use of Eq. (74):

P (u) ≡ d

du

sin [qu]

cos [q(u + b/2)]
. (77)

Performing the integration in Eq. (76) we find

F2(η) = Rl=1(η), (78)

with the lattice factor Rl=1 given by Eq. (53).
In the absence of the 2D lattice (i.e., in free 2D space) we

also arrive at Eq. (68). Then, using χk(r) = exp (ik · r), the
Slater determinant becomes

D(r,R; k1,k2) 
 i(k1 − k2)r exp [i(k1 + k2)R]. (79)

Performing integrations we get Eq. (75) with F2 replaced by
unity. Thus we obtain that in the lattice the two-body inelastic
relaxation is reduced by a factor of F2 compared to free space:

W lat
2 = F2(η)W free

2 . (80)

The function F2(η) following from Eqs. (53) and (78) is
displayed in Fig. 4 versus the lattice depth G, which is related
to η by Eq. (49).

/ξ

F (2)

F (3)

G

FIG. 4. Coefficients F (2) and F (3) as functions of the lattice depth
G. The dotted parts of the curves show our expectation at G � 1,
where the single-band approximation used in our calculations does
not work.

We complete this section with the discussion of three-
body recombination, assuming that the binding energy of
the molecule formed in this process greatly exceeds the
Fermi energy and the lattice depth. In this case the kinetic
energies of the molecule and atom in the output channel of the
recombination are very high and they escape from the system.
The results for the ratio of the three-body recombination rate
in the lattice to the rate in free space are obtained in a way
similar to that for the two-body relaxation. The number of
recombination events per unit time W3 is given by Eq. (55) in
which Ĥ ′(t) follows from Eq. (56), and the Hamiltonian Ĥ ′(0)
is given by

Ĥ ′(0) =
∫

d�r1d�r2�r3V (�r1,�r2,�r3)

× [B̂†(�r1,�r2)ψ̂†(�r3)ψ̂(�r3)ψ̂(�r2)ψ̂(�r1) + H.c.], (81)

with V (�r1,�r2,�r3) being the sum of three pair interaction
potentials, and B̂†(�r1,�r2) the field operator of the molecules.
The latter can be written as

B̂†(�r1,�r2) =
∑

�q,s
exp−i�q· �R χ∗

s (�r)b̂†�qs
, (82)

where b̂
†
�qs

is the creation operator of the molecule with
momentum �q in the internal state s, χs(�r) is the wave function
of this state, and the notations for coordinates are the same as
in the above discussion of two-body relaxation.

Initially molecules are not present in the system and, hence,
for the average of the molecular field operators we have

〈B̂(�r ′
1,�r ′

2,0)B̂†(�r1,�r2,t)〉

= χs(�r ′)χ∗
s (�r)

∑
�q,s

exp

{
−i�q( �R − �R′) + i

(
q2

4m
− Es

)
t

}
,

(83)

with Es being the binding energy of the molecule in the state
s; �R = (�r1 + �r2)/2; �r = �r1 − �r2 (and similarly for �R′ and �r ′).
The momentum p of the atom in the outgoing recombination
channel is very high, and the states with such momenta are not
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initially occupied. Therefore, we get

〈ψ̂(�r ′
3,0)ψ̂†(�r3,t)〉 =

∑
�p

exp

{
−i�p(�r3 − �r ′

3) + i
p2

2m
t

}
.

(84)

Thus, the initial expression for W3 [Eq. (55) with Ĥ ′(t) (56)
and Ĥ ′(0) (81)] takes the form

W3 =
∫ ∞

−∞
dt

∫
d �Rd �R′d�rd�r′d�ud�u′V (�r′,�u′)V (�r,�u)

×
∑
�p,�q,s

exp {−i[�p( �R − �R′ + �u − �u′) + �q( �R − �R′)]}

×χs(�r′)χ∗
s (�r) exp

[
i

(
p2

2m
+ q2

4m
− Es

)
t

]

×〈ψ̂†( �R′ + �r′/2,0)ψ̂†( �R′ − �r′/2,0)ψ̂†( �R′ + �u′,0)

× ψ̂†( �R + �u,t)ψ̂ ( �R − �r/2,t)ψ̂ ( �R + �r/2,t)〉, (85)

where V ( �r ′, �u ′) ≡ V ( �R + �r/2,�R − �r/2,�R + �u) and �u = �r3 −
�R. Omitting a small difference between q and p in the time-
dependent exponent transforms it to exp [i(3p2/4m − Es)t]
and after putting t = 0 in the correlation function the inte-
gration over t yields δ(3p2/4m − Es). The summation over �q
gives δ( �R − �R′). As a result, Eq. (85) reduces to

W3 =
∫

W̃3(�r,�r′,�u,�u′)d �Rd�rd�r′d�ud�u′

× 〈ψ̂†( �R + �r′/2)ψ̂†( �R − �r′/2)ψ̂†( �R + �u′)

× ψ̂( �R + �u)ψ̂ ( �R − �r/2)ψ̂ ( �R + �r/2)〉, (86)

with

W̃3(�r,�r′,�u,�u′)

= V (�r,�u)V (�r′,�u′)
∫

d�p
(2π )2

× exp[i�p(�u − �u′)]
∑

s

δ

(
3p2

4m
−Es

)
χ∗

s (�r)χs(�r′). (87)

Integrating out the motion of particles in the tightly confined z

direction in a way similar to that for the two-body relaxation,
we transform Eq. (86) to

W3 =
∫

dRdrdr′dudu′w̃3(r,r′,u,u′)〈ψ̂†(R + r′/2)

× ψ̂†(R − r′/2)ψ̂†(R + u′)

× ψ̂(R + u)ψ̂(R − r/2)ψ̂(R + r/2)〉, (88)

where R,r,u and R′,r′,u′ are 2D vectors in the x,y plane and

w̃3(r,r′,u,u′) =
∫

W̃3(�r,�r′,�u,�u′)
dzdz′duzdu′

z√
3πl2

0

. (89)

Similarly to Eq. (70), the averaged product of six fermionic
field operators is represented as

S3 ≡ 〈ψ̂†(r′
1)ψ̂†(r′

2)ψ̂†(r′
3)ψ̂ (r3)ψ̂ (r2)ψ̂ (r1)〉

= 1

3!

∑
k1,k2,k1

Nk1Nk2Nk3

×D∗(r′
1,r

′
2,r

′
3; k1,k2,k3)D(r1,r2,r3; k1,k2,k3), (90)

where D(r1,r2,r3; k1,k2,k3) is the (Slater) determinant of
the 3 × 3 matrix {χki

(rj )}. Using the expansion of the wave
functions in (small) relative coordinates r = r1 − r2 and u =
r3 − (r1 + r2)/2 we find that D is bilinear in the components
of these quantities:

D(R + r/2,R − r/2,R + u; k1,k2,k3)

= 1

2
χk1 (R)χk2 (R)χk3 (R)

∑
α,β

(rαuβ − rβuα)

×{∇α[ln χk1 (R) − ln χk2 (R)]∇β[ln χk2 (R) − ln χk3 (R)]

−∇β[ln χk1 (R) − ln χk2 (R)]∇α[ln χk2 (R) − ln χk3 (R)]},
(91)

where α,β = {x,y}. Using Eqs. (74) and (77), in the leading
order in small relative wave vectors Eq. (91) takes the form

D(R + r/2,R − r/2,R + u; k1,k2,k3)


 [χ0(R)]3b2

4 sin2 (η/2)

∑
α,β

(rαuβ − rβuα)

× (k1 − k2)α(k3 − k2)βP (Rα)P (Rβ). (92)

Substituting the result of Eq. (92) into Eq. (90) we find for the
correlation function:

S3 = |χ0(R)|6b4

27 sin4 (η/2)

× 1

3

∫
Nk1Nk2Nk3

[
k2

1k
2
2 + k2

1k
2
3 + k2

1k
2
3

]d2k1d
2k2d

2k3

(2π )6

×
∑
α,β

(rαuβ − rβuα)(r ′
αu′

β − r ′
βu′

α)P 2(Rα)P 2(Rβ).

(93)

Having in mind that only the terms with β �= α contribute to
the summation over 2D Cartesian indices, from Eqs. (88), (90),
and (93) we obtain for the decay rate:

W3 = F3(η)

12

∫
drdr′dudu′w̃3(r,r′,u,u′)[�r × �u]z[�r′ × �u′]z

×
∫

Nk1Nk2Nk3

[
k2

1k
2
2 + k2

2k
2
3 + k2

1k
2
3

]d2k1d
2k2d

2k3

(2π )6
,

(94)

where we expressed the combination r1u2 − r2u1 in terms of
3D vectors �r and �u. The quantity F3(η) in Eq. (94) is given by

F3(η) = b2

16 sin4 (η/2)

∫
dR|χ0(R)|6P 2(X)P 2(Y ). (95)

Here the integration over R is only in the 2D lattice cell, while
the summation over all lattice cells resulted in the multipli-
cation of the result by the cell number 1/b2. Performing the
integration we obtain

F3(η) = η4 cot4 (η/2)

[
1 + sin η

η

]−4

. (96)

Let us now compare the result of Eq. (94) with that in
free space. Taking the wave function χk = exp(ik · r) the
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expression for D becomes

D(R + r/2,R − r/2,R + u; k1,k2,k3)

= exp[i(k1 + k2 + k3)R]

× i
∑
α,β

(rαuβ − rβuα)(k1 − k2)α(k3 − k2)β. (97)

Using D (97) in Eqs. (90) and (88) we arrive at the recom-
bination rate given by Eq. (94) without the factor F3 in the
right-hand side. Thus, the relation between the recombination
decay rate in free space and the one in the 2D lattice reads

W lat
3 = W free

3 F3(η). (98)

The function F3 is shown in Fig. 4 versus the lattice depth
G related to η by Eq. (49). The results obtained in this
section indicate that both two-body and three-body inelastic
collisions are significantly suppressed in the lattice setup even
at moderate depths.

For usual sinusoidal optical lattices used in experiments
with ultracold atoms, one can proceed along the same lines
as in the case of the 2D Kronig-Penney model. For the
two-body relaxation, Eqs. (55)–(71) remain the same. Then,
for fairly deep lattices (b/ξ0 � 4) where the function χk(r)
can be still used in the form (28), we obtain the ratio of the
lattice to free space relaxation rate W sl

2 /W free
2 
 Rl=1, with

the factor Rl=1 given by Eq. (43). The calculations for the
three-body recombination are more involved. The estimate
using an analogy with the Kronig-Penney model at large G,
leads to the ratio of the lattice to free space recombination rate
W sl

3 /W free
3 ∼ R2

l=1. In particular, for b/ξ0 = 4 (m∗/m 
 5)
the two-body relaxation is suppressed by a factor of 5 and the
three-body recombination by about a factor of 25.

VI. CONCLUSIONS AND OUTLOOK

The results of the present paper indicate that there are
possibilities to create the superfluid topological px + ipy

phase of atomic lattice fermions. In deep lattices the p-wave
superfluid pairing is suppressed and even for moderate lattice
depths the BCS exponent is larger than in free space at the
same density and short-range coupling strength. However,
the lattice setup significantly reduces the inelastic collisional
losses, so that one can get closer to the p-wave Feshbach res-
onance and increase the interaction strength without inducing
a rapid decay of the system.

For ultracold 6Li the p-wave resonance is observed for
atoms in the lowest hyperfine state (1/2,1/2) [19–24], and the

only decay channel is three-body recombination. In the 2D
Kronig-Penney lattice with the depth G 
 12 and the period
b 
 200 nm (m∗/m 
 2 and Rl=1m

∗/m ≈ 0.7), at kF b 
 0.5
the Fermi energy is close to 100 nK and the 2D density is about
0.5 × 108 cm−2. Slightly away from the Feshbach resonance
(at the scattering volume Vsc 
 8 × 10−15 cm3) we are still
in the weakly interacting regime, and the 3D recombination
rate constant is α3D

rec ∼ 10−24 cm6/s [19]. Then, using Eq. (23)
and the quasi-2D scattering amplitude expressed through
Vsc and the tight confinement length l0 = √

1/mω0 [47],
for the confinement frequency ω0 
 100 kHz we obtain the
BCS critical temperature Tc 
 5 nK. The 2D recombination
rate constant is α2D

rec ≈ F3α
3D
rec /

√
3πl2

0 and with F3 
 0.05
at G 
 12 we arrive at the decay time τrec ∼ 1/α2D

recn
2

approaching 1 s.
The p-wave Feshbach resonance for 40K occurs between

atoms in the excited hyperfine state (9/2, − 7/2). Therefore,
there is also a decay due to two-body relaxation. For the same
parameters as in the discussed Li case (G,Vsc,l0,b,n) we then
have the Fermi energy EF 
 20 nK, and the BCS transition
temperature approaches 1 nK. Using experimental values for
the relaxation and recombination rate constants in 3D [16]
and retransforming them to the 2D lattice case, we obtain the
relaxation and recombination times of the order of seconds.

It is worth mentioning that in recently proposed
subwavelength lattices [48–50] one may have the lattice
period b 
 60 nm, and for the same kF b 
 0.5 the density
and Fermi energy will be higher by an order of magnitude.
Then departing further from the Feshbach resonance one gets
the same BCS exponent as above, and the critical temperature
for 6Li will be ∼ 50 nK. The recombination time is again on
the level of a second.
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