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I. LASER SYSTEM FOR COHERENT RYDBERG EXCITATIONS

The narrow linewidth and stabilized laser source required to realize a coherent Rydberg excitation are challenging
to set up. In our experiment, the Ryd480 Ryderg laser is generated from a TA–SHG pro with a seed laser whose
wavelength is 960 nm. The frequencies of the lasers Ryd480 and Ryd780 are locked to a Fabry–Perot cavity with high
finesse (58000 for 960 nm and 91000 for 780 nm). We then reduce the linewidth to ∼10 kHz for Ryd780 and to ∼20 kHz
for Ryd480. The long–term drift of both lasers is less than 50 kHz. The frequency of Ryd480 is set to 625253.6GHz,
and we expand the beam waist of Ryd480 to ∼ 12.8µm, so that it covers both atoms. The Ryd780 laser light is divided
into two beams with the frequency difference 1127MHz, corresponding to the difference in the excitation frequencies
of 85Rb (Ryd780−85) and

87Rb (Ryd780−87). The frequencies of the Ryd780−87 and Ryd780−85 lasers are 384223.2GHz
and 384224.3GHz, respectively. The beam waist of Ryd780−87 laser is ∼ 7.1µm , and Ryd780−85 laser has the beam
waist of ∼ 7.8µm. We use PID controllers with holding function to lock the laser power of Ryd480 to 51 mW, and
the power of Ryd780−87 and Ryd780−85 to 5.6 µW. The pulse area fluctuations of the Ryd480 and Ryd780 laser pulses
are suppressed to less than 1%. Using the method from Ref. [1], we estimate Ω780−87 = 2π· 226 MHz, Ω780−87 = 2π·
206 MHz, and Ω480−85= Ω480−87= 2π· 28 MHz;
Coherent Rabi oscillations between the 87Rb |⇑⟩ and |r⟩ states and between the 85Rb |↑⟩ and |r⟩ states are shown

in Fig. 2b and in Fig. 3b. For 87Rb, the peak–to–peak Rabi amplitude is 0.82 ± 0.02. The survival probability of
87Rb after a π pulse is 13%. This includes the 4% probability of populating the |↑⟩ state, the rest being the result of
spontaneous emission from the Rydberg state during the detection. Thus, the Rydberg excitation efficiency for 87Rb
is ∼96% and the detection efficiency for the Rydberg state is ∼90%. The corresponding efficiency for 85Rb is almost
the same.

II. THE C–NOT GATE AND ENTANGLEMENT FIDELITY

Several reasons limit the heteronuclear C-NOT fidelity in our experiment. They are given in Table 1. The main
fidelity loss is due to atom losses (∼0.16), which can be attributed to two reasons. One of them is the imperfect
Rydberg excitation and the damping of the Rabi oscillation between the ground and Rydberg states. This can be
improved by compensating the stray electric field and by optimizing the powers and frequencies of the excitation
lasers [2]. The second reason is the atom loss after the π Rydberg pulses, which is likely due to the mixing of different
Rydberg states [3]. It can be improved by controlling the electric field and by using shaped exciting laser pulses [4].
With all these efforts to reduce the atom loss, it is possible to reach a raw fidelity greater than 0.90 in near future.
However, in order to reach the error correction threshold of 0.99 for the C-NOT gate, it will take much longer time
to carefully address all sources of fidelity loss and to suppress each of them to the level of 0.001.

TABLE I. Error budget for the heteronuclear C–NOT gate fidelity.

Error sources (two qubits) Values
Optical pumping < 0.01
Atom losses before C–NOT ∼ 0.01
Blockade error at 8µK 0.03
Spontaneous emission 0.03
Doppler broadening < 0.01
Total heteronuclear C–NOT error (added in quadrature) ∼ 0.05

Background losses (detection, Raman transition) 0.09
Losses due to Rydberg excitation 0.16
Heteronuclear C–NOT fidelity (raw) 0.73
Heteronuclear C–NOT fidelity (corrected for background losses) 0.80
Heteronuclear C–NOT fidelity(corrected for background and excitation losses) 0.95
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FIG. S1. Calculated heteronuclear Rydberg blockade shift. (a) Double–excitation probability P85 (dashed curves, right axis)
and the corresponding blockade shift ∆E (solid curves, left axis) as functions of the offset |y2 − y1|. The spatial probability
distribution p(y = |y2 − y1|), calculated for T87 = 8µK and T85 = 9µK, is also shown (gray dashed–dotted curve). (b) Mean
double–excitation probability <P85 > as a function of the mean temperature T . The thin green curve corresponds to B = 0
and the thick blue curve to B = 3G.

The fidelity of the entangled state is lower than that of the heteronuclear C–NOT gate. This is mainly due to
the motion of the 87Rb atom [5]. Single 87Rb atoms accumulate stochastic phases Φ = k · vδt during the time δt
separating two Rydberg–π pulses. Here, |k| = 2π/λ480 − 2π/λ780, and v is the atomic velocity. These phases vary

from shot to shot. A simple estimation of the average yields ⟨eiΦ⟩ = e−⟨Φ2⟩/2 = e−T |k|2δt2/m87 , where m87 is the mass
of 87Rb, and we took into account that ⟨v2⟩ = 2T/m87. With T87 = 8µK and δt = 3.6µs, we find ⟨eiΦ⟩ = 0.78,
implying a maximum fidelity of F⟨eiΦ⟩ = 0.89. We combine this value with the C–NOT gate fidelity to obtain the
maximum entanglement fidelity Fent−max = 0.65. Our experimental result is 0.59 +-0.03, and we attribute the rest
of the fidelity loss mainly to the imperfect control of the phase and pulse areas of the Raman π/2 and π pulses in
the “parity analysis” part. Further improvements can be made in the following ways: i) cooling single atoms to 2
µK by adiabatically lowering the trap potential to 0.1 mK; ii) reducing the time separation between two Rydberg π
pulses from 3.6 µs to less than 1 µs by increasing the 480nm laser power to about 300 mW; iii) replacing the Raman
transition with a microwave transition to improve the accuracy of π/2 and π pulses. With these improvements, the
entanglement fidelity limit by itself can go up from 0.89 to 0.98.

III. CALCULATION OF THE HETERONUCLEAR RYDBERG BLOCKADE SHIFT

We first characterise the Förster resonance yielding the long–range interaction between the control and target atoms.
Each atom is assumed to be immobile in its microtrap. If both atoms are excited to Rydberg states with energies close
to that of the 79d5/2 state, their interaction is dominated by the Förster resonance involving the two–atom states in the
(79d5/2, 79d5/2), (80p3/2, 78f), and (81p3/2, 77f) manifolds. This amounts to restricting the interaction Hamiltonian
to a subspace spanned by 436 two–atom states determined by the quantum numbers |na, la, ja,ma;nb, lb, jb,mb⟩,
where the indices a and b refer to 87Rb and 85Rb, respectively. For each atom, mα gives the projection of jα along
the z axis determined by the static magnetic field. In this basis, the Förster Hamiltonian reads [6]:

HF = Vdd + Vδ + VZ . (1)

The internuclear distance R ≈ 3.8µm is much greater than the typical size n2a0 of the Rydberg atoms, so that
the interaction term in Eq. (1) is the dipole–dipole interaction Vdd = e2[a · b − 3(a · R̂)(R̂ · b)]/(4πR3), with e

being the electron charge and R̂ a unit vector along the internuclear separation. The vectors a and b specify the
positions of the outermost electron of each atom relative to its nucleus. The diagonal matrix Vδ encodes the Rydberg
energy defect of a given basis state with respect to the incident two–atom state |inc⟩, which is the Zeeman–dressed
state related to |79d5/2,ma = 5/2; 79d5/2,mb = 5/2⟩ at a vanishing static magnetic field. Finally, the Zeeman term
VZ = µBBstat

∑
α=a,b(gllαz + gssαz) describes the interaction of each atom with the static magnetic field Bstat, with

lαz and sαz being the components of l and s along the z axis, and gl and gs the corresponding g–factors. Like in
the numerical analysis of Ref. [1], the Hamiltonian HF accounts for the Zeeman mixing of single–atom states with

different j, and for the mixing of single–atom states with different m due to the angle between z and R̂.
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We now calculate the probability for both atoms to be in an excited Rydberg state, and the corresponding blockade
shift ∆E, for fixed control and target atoms. Initially, the control atom is in the dressed Rydberg state |r⟩ and the
target atom is in the ground hyperfine state |⇑⟩, so that the atom pair undergoes oscillations in between the state
|r⇑⟩ and the doubly–excited Förster states. We write the Hamiltonian governing these oscillations as a block matrix:

H =

(
0 W
W † HF − Einc

)
with W † =

~Ω85

2
|inc><r⇑ | , (2)

where HF is the Förster Hamiltonian of Eq. (1), Einc is the energy of the incident Förster state |inc⟩, and W represents
the Rabi coupling in between the states |⇑⟩ and |r⟩ of 85Rb. For a given offset y = |y2 − y1|, the double–excitation
probability then reads P85(y, t) = 1 − | ⟨r⇑| e−iHt/~ |r⇑⟩ |2, where t is the duration of the Rydberg pulse on 85Rb.
Here, P85(y, t) represents the total probability for the atom pair to be in any one of the 436 two–atom Rydberg
states involved in the Förster resonance. The probability P85(y, t) rapidly oscillates as a function of time, and our
numerical results for the time–averaged P85(y) are shown in Fig. S1a along with the corresponding blockade shift
∆E(y) = ~Ω87(1/P85(y) − 1)1/2. We find very strong blockade shifts ∆E/h & 600MHz for offsets y < 1µm. The
blockade shift decreases with increasing y and is of the order of a few MHz for y ∼ 10µm.

Finally, we evaluate the role of the thermal broadening of the spatial probability distribution for the atoms. For
the relatively high temperatures of our experiment the motion of the atoms is classical, and the probability density

for finding y2 − y1 = y is a Gaussian, p(y) = e−y2/2σ2

/[σ(2π)1/2]. The standard deviation σ satisfies the relation
σ2 = kBT/(mredω

2
y), where ωy is the trapping frequency along the y direction for both microtraps, the reduced mass

is mred = m87m85/(m87 + m85), and the mean temperature T satisfies the relation T/mred = T87/m87 + T85/m85.
The temperatures and the trapping frequencies enter our model only through the combination T/ω2

y, which char-
acterises the spatial extent of the classical motion of the atoms along y. We calculate the mean double–excitation
probability < P85 >=

∫
p(y)P85(y)dy and plot this quantity as a function of the mean temperature T in Fig. S1b. In

our experiment, T87 = 8µK, T85 = 9µK, and ωy/2π = 1.39 kHz, yielding an average double–excitation probability
< P85 >≈ 0.013. This is of the same order of magnitude as the observed quench of the Rabi oscillation amplitude
shown in Fig. 3b.

Our results for ∆E(y) for offsets y . 1µm are two orders of magnitude larger than the corresponding prediction of
Ref. [1], because our experiment explores a different regime for the Förster resonance. Indeed, the typical Rydberg
energy defect, h× 200MHz, is smaller than the dipole–dipole interaction which is of the order of (n2a0e)

2/4πϵ0R
3 =

h×700MHz for R = 3.8µm. Therefore, the Förster energies scale with 1/R3 as in Ref. [7] (whereas they scale with 1/R6

for the parameters of Ref. [1]). Then, the order of magnitude of the blockade shift ∆E is V 2
dd/

√
V 2
dd + (~δ)2 ≈ Vdd,

in accordance with the small–y results in Fig. S1a.
For the temperatures of our experiment the system explores larger values of the offset y and, hence, larger values

of R with a non–negligible probability (namely, both are of the order of 10µm). Then, the dipole–dipole interaction
is smaller than the Rydberg energy defect, yielding Förster energies that decay as 1/R6 and, hence, a much weaker
Rydberg blockade.
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