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h i g h l i g h t s

• We describe the general challenges user face in heterogeneous it infrastructure environments and identify their instance in the case of CineGrid.
• We characterize the most frequent workloads in the CineGrid collaboration including their infrastructure resource requirements.
• We present the design and implementation of a system which simplifies workload resource definition by leveraging semantic web description

languages for infrastructure.
• We provide Pareto-optimal resource configurations for workload execution.
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a b s t r a c t

The abundance and heterogeneity of IT resources available, together with the ability to dynamically scale
applications poses significant usability issues to users. Without understanding the performance profile of
available resources users are unable to efficiently scale their applications in order to meet performance
objectives. High qualitymedia collaborations, like CineGrid, are one example of such diverse environments
where users can leverage dynamic infrastructures to move and process large amounts of data. This paper
describes our user-centric approach to executing high quality media processing workloads over dynamic
infrastructures. Our main contribution is the CGtoolkit environment, an integrated system which aids
users cope with the infrastructure complexity and large data sets specific to the digital cinema domain.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

Federated resources enable collaboration and allow for more
flexibility when it comes to demanding workloads. Federated re-
sources can be data, like in the case of the CineGrid Exchange [1],
a repository dedicated to high quality media, data and compute
resources as in the case of the Open Science Data Cloud [2] or
generic compute and network resources like in the case of the
GENI/ExoGENI [3] project. In addition to the diverse federated re-
sources users can also use on-demand resources, like the one pro-
vided by cloud computing service providers such as Amazon Elastic
Cloud Compute (Amazon EC2) [4].

Given so much flexibility and heterogeneity the users are left
with a lot of infrastructure complexity to manage. This complexity
is increased by the users’ applications which have their own
specific requirements, for instance a specific data set, Quality of
Service(QoS) requirements, or metric related requirements: cost,
expected performance, CO2 footprint of the used hardware, and so
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on. When users design and run their distributed applications they
must have all these parameters inmind and therefore should select
the resources accordingly.

It is difficult to select the right set of resources for application
execution. Under-provisioning a resource type, such as network
capacity in a distributed environment, affects performance in a
negative way. Over-provisioning on the other hand, potentially
impacts other users which share the global pool of resources or
incurs unnecessary costs, and ideally should be avoided. While
manual resource selection is a valid approach, it has the potential of
requiringmultiple iterations until the user constraints are satisfied.
However, not all users are experts and most of them just want
to use the resources as a utility and do not want to be bothered
with understanding the complex processes which hide behind the
infrastructure and applications. Therefore we argue that the task
of resource selection should be offloaded as much as possible to a
capable automated system.

Our work takes place in the context of CineGrid [5], a com-
munity that exploits the recent advances in computing and net-
work infrastructures and adapts them to the digital cinema world.
CineGrid mission is ‘‘To build an interdisciplinary community that
is focused on the research, development, and demonstration of
networked collaborative tools to enable the production, use,
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preservation and exchange of very high quality digital media
over photonic networks’’. The community operates a distributed
testbed spanning over multiple continents (Europe, Asia, North
and South America). All the sites are connected using high-speed
dynamic photonic networks provided by the Global Lambda Inte-
grated Facility community [6]. Each member operates a number of
high capacity storage nodes while some also operate visualization
and computing facilities that are able to access, display and pro-
cess the available content(assets). Together the storage nodes form
the CineGrid Exchange [1], a distributed federated environment that
provides increased data security for the high quality multimedia
content.

Our main contributions are:

• We identify and characterize the CineGrid computing work-
loads (Section 2).

• We describe a user-centric system, the CGtoolkit, which is
able to execute CineGrid workloads while abstracting away the
resource complexity (Section 3).

• We showcase and evaluate the system in different scenarios
(Section 4).

2. Motivation

The CineGrid workloads are centered around very high quality
media related to the digital cinema domain. Given the very high
resolution and bit depth, the amount of data for the final version
of a video production can easily go in the ranges of hundreds of
gigabytes or even terabytes. For example, the 10 min short, 24
frames per second, open source movie Sintel takes over 160 GB
when stored in an uncompressed image format in 4k(4096×1744)
resolution using 8 bits for each color channel (RGB). Consequently,
the 16 bit per channel version has a total size of approximately
650 GB [7]. A recent trend in digital cinema is to increase the frame
rate to 48, 60 or even 120 frames per second and in this case,
the storage requirement increases proportionally with the frame
rate. For the 3D version of the same clip, the storage requirement
doubles. Even more, during the production process of a movie,
a sequence can have multiple versions, and each has to be kept
until the user decides which one to use. This massive data scale
challenges traditional methods and demands new approaches to
visualization, processing and delivery methods.

We identify three dominant workloads:

• video streaming
• data replication
• data processing—ingestion (resizing), compression, color cor-

recting, transformations, etc.

The first two workloads are mostly network bound and require
fast networks andhigh capacity storage. The third one also involves
considerable compute resources if timeliness is required.

Our key insight is to use theory and methods from the high
performance computing (HPC) world for the CineGrid workloads
which involve image processing. Most of the CineGrid related tasks
involve processing individual files, the frames of a movie clip. This
is common way of storing assets in the digital cinema industry, as
video containers, which pack multiple images into a single file, are
difficult to transfer and edit. For data locality and available reasons,
assets are stored and replicated in CineGrid Exchanges, network
high capacity storage servers.

A large subset of these processing tasks can be seen as bags-of-
tasks(BoT ) [8], a set of independent tasks which can be executed
in any order. Tasks like individual image compression, resizing,
filtering (e.g. blurring, sharpening, de-bayering, color space trans-
formation), information extraction (e.g. color histogram, object
recognition) can all be seen as tasks from a bag-of-tasks. Besides
these there are also other types of tasks which require a cer-
tain ordering or more complex workflow, yet we limit the opti-
mization techniques presented in this paper to the simpler case
mentioned at the beginning of this paragraph. One important char-
acteristic is that because the task usually involve very large images,
the workload becomes data-intensive. One of the consequences of
the data-intensive property is the inability of the system to scale ef-
ficiently. Even if new resources are added, the performance of the
system does not increase as I/O becomes the bottleneck. This prop-
erty needs to be taken into consideration prior to execution if the
user has any kind of performance or QoS requirements. This brings
the need of a tool which is able to help the user in both selecting
and fine tuning the supporting infrastructure to achieve his perfor-
mance goals.

3. System design

In our system, the resource types are semantically annotated
using the Infrastructure and Network Description Language
(INDL) [9]. INDL provides the basis for infrastructure visualization,
that is, the ability to dynamically combine infrastructure elements
at runtime. The applications defined by the users can also
include specific INDL resource requirements. By leveraging the
semantic web annotations, the system is able to automatically
select and interact with the correct infrastructure components. For
example, in the streaming scenario, the user has to only select
the video clip to stream and the receiver. Finding a suitable data
source compatible with the receiver, establishing connectivity and
execution are all left to the system to handle.

As explained in Section 2, the dominant computing workload
for CineGrid consists of Bags-Of-Tasks. We designed the system
to assist users in the execution of Bags-of-Tasks workloads. It
allows users to evaluate the performance of various available
infrastructure elements and then make an informed selection for
the execution phase.

The CGtoolkit consists of two modules:

• The Web Portal—the user interface and content and meta-data
repository (Catalog).

• The Execution Engine—manages resource provisioning and
application execution.

3.1. Web Portal

The Web Portal acts as the user interface of the system. Here
users candefine their applications and can then execute them. Each
application has different resource requirements.

It also includes two data repositories, as shown in Fig. 1.
The content available in various Exchanges is described using
the CineGrid Description Language (CDL) and the information
is stored in the Portal. The content meta-data is split into two
parts, one which refers to intrinsic properties of the assets, like
authorship/copyright information, creation date and another one
which refers to properties that relate to the image properties: file
format, resolution, compression options, bit depth, etc.

The second data repository refers to the available resources and
their properties. The system administrator can add and remove
resource and resource types as they become available. Each
resource type implements one or more CDL services [10]. A CDL
service can consume data stored in the exchanges. For instance, a
high capacity storage node implements the Streamer and Storage
services while a nodewhich has 4k capable displaywill implement
a Visualizer service. By decoupling the functionality from the
physical representation (the server connected to the network), the
system can dynamically couple services at runtime. Fig. 2 presents
a subset of the CineGrid Amsterdam Exchange described using
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Fig. 1. System architecture.
CDL. It shows one of the CineGrid Amsterdam Exchange storage
nodes connected to one of the sites of the DAS4 distributed cluster.
These two resources can be used for the storage, streaming and
processing. The CGEX node provides two services: storage and
visualization (receiver for a video stream). The compute cluster
also provides two types of services: storage and processing. The
cluster provides also a transcoding service that can encode and
decode to and from different types of image formats.

Users can view the currently available content stored on the
various storage nodes the CineGrid Exchange. Fig. 3 shows the
Catalog view of the portal. Content can be located using various
criteria like resolution, available format, physical location, etc.

In the case of video streaming, the system first finds suitable
sources for the video asset selected by the user. Fig. 4 presents
the content detail view of the portal, which includes content
meta-data information and a browser-based low resolution clip
preview. Next, if needed, the system provisions a network path
from the source storage node to the video stream receiver. The
receiver can be a projector, dedicated display or just a storage
service. Once network connectivity has been established the user
can start streaming the video content. In Fig. 5 we present the
playlist feature of the portal. It allows users to stream video
content in sequence to the same receiver. Network connections
are provisioned at runtime for each video asset which will be
streamed. All the information required to provision the network
paths is extracted from the resource repository and is used then to
invoke a capable network provisioning system, like OpenNSA [11],
an implementation of the Network Service Architecture, a unified
API for multidomain networks.

3.2. Execution engine

The Execution Engine uses a master–worker model in which
task are selected randomly from the bag-of-tasks and are then
submitted to the workers in a self-scheduling manner. That is,
when a worker completes a job, it will be assigned a new one
from the bag. In literature this scheduling policy is also known as
Demand-Driven [12]. This job scheduling policy is one of the many
existing policies. We plan to explore the behavior of the system
with other policies in future work. As the order is random, we can
view the execution process as a stochastic process and therefore
use specific methods to analyze it. Currently the execution engine
assumes that there is only one Bag-of-Tasks in execution at any
given moment. Other workloads are queued by the system and
executed in sequence.

The Execution Engine focuses on optimizing two objectives—
execution time (performance) and cost. The cost aspect is very
important if the resources are rented from cloud service providers
which charge for the usage.

In our system the execution involves a three step procedure
in which candidate resources are (1) first sampled in order to
extract performance metrics related to the application. Using the
metrics and a formal model of the system together with a specific
resource configuration we can (2) predict the total execution time
of the application, without actually running the application on a
full configuration. This is achieved by modeling the underlying
system and its behavior and using the sampled metrics as input
values. Of particular importance is the behavior of the system in the
presence of I/O bottlenecks as they are usually the limiting factor
when it comes to scaling resources.

In the final step (3), as the resources have been selected by the
user, the Execution Engine provisions or acquires the resources,
deploys the application and starts the execution.

The resource requirements of the application are not known a
priori. They are determined in the sampling phase when a small
subset of the bag is executed on each type of available resource.

To account for the I/O limitations, in the makespan prediction
phase we employ the queuing network model presented in Fig. 6.
They network contains one storage server, where the content is
stored, and K compute resources or nodes rented from the cloud
service provider. Each node has associated two rates, compute
(µi—determined during sampling) and maximum download rate
(µD

i ), i = 1 . . . K . The source server also has an associated service
rate (µS) which corresponds to its network capacity. In order to
predict the performance of the system for a given number and
type of nodes, i.e. the makespan, we need to determine the actual
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Fig. 2. CDL Description of CineGrid Exchange Amsterdam.
Fig. 3. CGtoolkit Web Portal – Browsing the Catalog – By leveraging the content metadata, users can filter content using criteria like resolution, physical location or available
format.
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Fig. 4. CGtoolkit Web Portal – Content detail view – Users can inspect the metadata of the assets in detail.
Fig. 5. CGtoolkit Web Portal – Streaming playlist view – Network resources are
provisioned dynamically for each item in the playlist.

Fig. 6. The queuing model of the execution engine.

download rates for each node, as the network bandwidth will be
shared among all the nodes and thus they will not download data
at the full rate. While there are methods which can determine
the complete distribution of download rates for each node, they
increase in complexity as the number of nodes increases. We have
opted for a fast evaluation of the system using the Mean Value
Analysis (MVA) [13] method. As the name suggests, this method
outputs only the mean values of the system properties, yet it is
very fast as it does not have to explore all the states of the system.
The high evaluation speed allows the quick exploration of a large
number of resource configurations in a short time. Users will only
be interested in those resources configurations which perform
best with regards to time and cost and our system will output
as resource candidates only those configurations. The system
evaluates all the possible configurations and presents the user only
the relevant solutions. In effect, these resource configurations form
the Pareto-optimal set of resource configurations.

The complexity of the evaluation method depends only on the
square of size of the configurations, i.e. number and type of nodes.
In practice the number of resources used is relatively small but
if needed, instead of fully exploring the solution space, heuristics
approaches like genetic algorithms or simulated annealing can be
used to converge quicker to the optimum. Such heuristics would
still use as cost function the MVA evaluation method.

In [14] we present a detailed model and evaluation of this
execution prediction method.

The users can build their Bags-Of-Tasks workloads using a
graphical interface. A series of image kernels (individual transfor-
mations) can be chained together to form an image pipeline. The
whole pipeline applied to a single image file consists of a task in
the Bag-Of-Tasks. In Fig. 7we present theweb portal view inwhich
users compose the image pipeline. Among the list of kernels which
the system is able to execute we highlight: decompressing an im-
age to an uncompressed format, performing color correction on
the uncompressed image, encoding it to another format (e.g., JPEG,
JPEG2000, TIFF). The image kernels are implemented using generic
image processing tools like imagemagick [15] and openjpeg [16].

4. Evaluation and results

In this section we present the evaluation of the system
described in Section 3.

The usability aspect of the web portal has been evaluated
during various live demonstrations by both technical experts
and regular users. The system has been successfully showcased
during events like Supercomputing Conference 2011, CineGrid Day
Amsterdam 2012, TERENA Networking Conference 2012, CineGrid
Workshop 2012 etc. Two modules of the system, the content
metadata repository and the streaming functionality, have also
been integrated into the Vroom [17], ‘‘an augmented environment
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Fig. 7. CGtoolkit Web Portal – Image pipeline creation – Users can add, remove,
configure and change the order in which transformations are applied to the input
images.

for remote collaboration in digital cinema production’’. There it is
used for playback of remote content using dedicated streaming and
decoding hardware.

We have performed various experiments to demonstrate the
ability of the system to help users in making optimal resource se-
lection choices. In this section we highlight the situation when
cloud resources are used to execute theworkload. Aswe use a pub-
lic cloud provider and data transfer takes place over the Internet,
we cannot adjust the end-to-end network capacity dedicated to
the execution. This scenario has the potential to exhibit the scal-
ability issue mentioned in Section 2. A non-expert user would be
tempted to acquire asmany cloud resources as possible in the hope
of achieving the shortest execution time.

We have selected two image pipelines or applications, for the
experiments. The first pipeline consists in a compression opera-
tion: from TIFF to the JPEG2000 file format, using the openjpeg tool
configured with the Cinema4K preset. The second pipeline resizes
the image to 1920 × 1080 pixels and applies a sharpen filter to
the image. In the remainder of this section, we will refer to the
pipelines as openjpeg and imagemagic respectively.

The data was located on one of the CineGrid Exchange nodes
hosted by the University of Amsterdam and consisted of the first
1500 image frames of the open source movie Sintel in the TIFF for-
mat. The average file size was 24.3 MB. The measured bandwidth
from the Amazon cloud site to the storage node was 700 Mbit/s.

Table 1 presents the characteristics of all the compute resources
used in the experiments. The m1.s, m1.m, c1.m names correspond
Fig. 9. Pareto set.

Table 1
Compute resource details.

Type CPUs (ECU) Memory (GB) Network Cost ($/h)

m1.s 1(1) 1.7 Low 0.047
m1.m 1(2) 3.75 Moderate 0.095
c1.m 2(5) 1.7 Moderate 0.190

to the m1.small, m1.medium and c1.medium instance types offered
by Amazon in the Europe, West region.

We simulate the choice of an unexperienced user by executing
the image pipelines using configurations which have high num-
ber of cloud instances (∼30). Each configuration is labeled using
the types and respective number of instances, using the format:
type:no_instances[+type:no_instances[. . . ]]. For each execution we
present the real execution time, the data aware predicted execu-
tion time as computed by the execution engine and the simple
predicted execution time. Using the execution engine described
in [14], we have sampled the performance of each type of cloud
instance. The simple predicted execution time is derived by ignor-
ing the limited network resource and is computed assuming that
the systemperformance improves asmore instances are added.We
observe that there is large gap (>50%) between the simple pre-
dicted time and real execution time. The data aware prediction is
in all cases very close to the actual measured value (<10%) (see
Fig. 8).

Next, we evaluate another feature of the execution engine:
the ability to generate accurate Pareto-optimal configurations.
The Pareto-sets corresponding to each of the image pipeline is
presented in Fig. 9. As in the previous graph, the simple prediction
assumes no network contention. We note that the configurations
from the Pareto set are those configurationswhich are able tomake
the most efficient use of the compute resources. The presence of
contention decreases the efficiency of the system and therefore
a Pareto-optimal configuration would be, as much as possible,
contention free. As the set of Pareto-optimal configurations is quite
Fig. 8. Execution results for large configurations (30 cloud instances).
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Fig. 10. Measured, ‘data aware’ and ‘simple’ predicted execution times for configurations from the Pareto front.
large (more than 30 different configurations for each application
type), we have selected four configurations from the set, for each
image pipeline. The configurations selected include the cheapest
andmost expensive configurations predicted using the data aware
method. The other two configurations are selected such that they
divide the cost interval between the cheapest and most expensive
configurations in equal parts.We havemade this choice in order to
have a good coverage of the Pareto set. The results of the execution
are shown in Fig. 10. In this case the prediction method has been
more optimistic than the real execution, yet in all cases the mis-
prediction is quite small (<10%).

The experiments above demonstrate the ability of the system to
present to the unexperienced user correct Pareto optimal resource
configurations.

5. Related work

As our work integrates various components we present in this
section related work to both integrated systems like ours and to
work which is related to various subcomponents of our system.

5.1. Resource selection, runtime prediction and scheduling

The simplest resource selection strategy which can be em-
ployed is the one in which the user knows a priori the application’s
requirements and the behavior of the available resources. In this
case the user manually selects which resources should be used for
execution. While this is simple, there is no guarantee on the sys-
tem’s performance and the only way to improve this strategy is to
repeatedly adjust the selection of resources in the hope of achiev-
ing better performance. Another downside of this is that the user
needs to understand both the performance characteristics of the
workload and of the resources. This is an unreasonable expecta-
tion for a user-friendly system, which assumes minimal user-side
input.

We turn our attention to more advanced methods which re-
quire less detailed knowledge from the user’s side. The user’s
requirements are usually expressed through objective functions
which need to be either minimized, e.g. cost or energy consump-
tion, or maximized, e.g. performance or throughput. One basic
requirement to achieve this is the ability that given a resource con-
figuration, the system should be able to predict as closely as possi-
ble the runtime of the application.

Most approaches use historical data to match the current ap-
plication with similar applications executed in the past. There are
numerous example in literature, from simple regression to more
advanced machine learning techniques [18–20]. In all cases the ef-
ficiency is highly dependent on the training set available prior to
the prediction phase. In [21] the authors use a similar prediction
method, in which the Bag-of-Tasks is sampled at runtime. Cost and
makespan are considered as objectives. However, the authors ig-
nore the network component and assume that the I/O performance
is constant regardless of the number of compute resources used.
In [22] the workload is also sampled and then partitioned in sub-
applications which have similar Communication-To-Computation
ratios. Based on this partitioning the authors employ then a heuris-
tic to assign jobs to the available resources. The objective of the
heuristic is to maximize the throughput of the system. The re-
sources have no associated cost and the evaluation of the heuristic
is done only through simulations. Our model uses the steady state
model of job execution [23] in which initialization and cleanup
phases are ignored. This relaxes the scheduling problemand allows
us to focus on the high throughput phase of the execution.

5.2. Pareto optimality

The next important requirement is generating relevant options
for the user, given that we can estimate with good accuracy the
runtime of their applications on any configuration.We focus on the
Pareto optimal of resource configurations. Typically users target
multiple objectives which potentially can influence each other,
e.g. cost and performance, so a configuration cannot excel for both
metrics. The Pareto set provides those configurations which are
non-dominated. In a non-dominated configuration one objective
cannot be improved without worsening another [24]. This gives a
wide range of optimal choices in terms of trade-offs available to
the user. In [25] the authors explore different scheduling strategies
for Bags-of-Tasks on unreliable cloud resources in order to provide
Pareto-optimal execution options. In our work we assume that the
pool of resources is reliable. Following a slightly different approach
the authors in [26] also provide Pareto-optimal scheduling on
hybrid infrastructures, private and public clouds. However, the
workloads which the authors target do not include any resource
contention like network or storage.

5.3. Networked media processing

Media processing and delivery systems using dynamic infras-
tructures have become quite popular in recent years. Most sys-
tems focus on the ability of cloud resources to scale with the user
demand. While there are works which target digital cinema and
very high quality media, for example FOGO player [27] and Ul-
traGrid [28], they are limited to streaming and visualization. A
close approach to ours is the architecture described in [29] which
describes how high speed optical networks could be used in the
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digital cinema domain. Yet, this work only presents a theoretical
framework for managing multiple high bandwidth video streams
on a network topology where dedicated paths can be created dy-
namically. Other aspects such as content or service selection or dis-
tributed processing are not addressed.

6. Future work

One of the current assumptions of the CGtoolkit is that the
workload consists of independent tasks which can be executed
in any order. This assumption does not hold for more complex
workloads or for processing data streams in which input becomes
available in a specific order. We intend to explore the scheduling
policy used for distributing the tasks to the workers. By having
more information about the workload, i.e. per task resource
requirements, we could change the scheduling policy to make
more informedmappings between resource types and tasks. In [22]
the authors suggest that for workloads which are ‘balanced’ i.e.,
are not either compute dominated or data transfer dominated,
the demand driven scheduling policy is not the most efficient.
However even with advanced scheduling policies the problem of
efficiently scaling eachphase remains as thedata contention aspect
would be still present. Finally, we assume that the approach we
took is not limited only to media workloads, and hence we plan to
experiment with different applications which exhibit similar data
intensive behavior and which map to the same execution strategy.

7. Conclusion

In this paper we have presented CGtoolkit, a user-centric video
processing and delivery system for CineGrid workloads in hetero-
geneous environments. The system is used in the CineGrid collab-
oration by a diverse range of users, experts and non-experts. The
ability to efficiently use complex computing resources increases
productivity in the media world. In addition, it stimulates collabo-
ration and experimentation of new technological developments in
the network and high performance computing work.
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