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Using Product Indicators in Restricted
Factor Analysis Models to Detect
Nonuniform Measurement Bias

Laura Kolbe and Terrence D. Jorgensen

Abstract When sample sizes are too small to support multiple-group models, an
alternative method to evaluate measurement invariance is restricted factor analysis
(RFA), which is statistically equivalent to the more common multiple-indicator
multiple-cause (MIMIC) model. Although these methods traditionally were capable
of detecting only uniform measurement bias, RFA can be extended with latent
moderated structural equations (LMS) to assess nonuniform measurement bias.
As LMS is implemented in limited structural equation modeling (SEM) computer
programs (e.g., Mplus), we propose the use of the product indicator (PI) method in
RFA models, which is available in any SEM software. Using simulated data, we
illustrate how to apply this method to test for measurement bias, and we compare
the conclusions with those reached using LMS in Mplus. Both methods obtain
comparable results, indicating that the PI method is a viable alternative to LMS for
researchers without access to SEM software featuring LMS.

Keywords Factor analysis ⋅ Product indicators ⋅ Measurement invariance
Nonuniform measurement bias

1 Introduction

Measurement bias entails that scales function differently across groups, irrespective
of true differences in the construct that the scale was designed to measure. Let T
denote the construct of interest measured by a set of observed variables X. More-
over, let V be a set of variables other than T . The formal definition of measurement
bias involves a violation of measurement invariance (Mellenbergh 1989):
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f1ðXjT = t,V = vÞ= f2ðXjT = tÞ ð1Þ

where f1 is the conditional distribution of X given T and V , and f2 the conditional
distribution of X given T . If measurement invariance holds (i.e., f1 = f2), the mea-
surement of T by X is invariant with respect to V . But if measurement invariance
does not hold (i.e., f1 ≠ f2), the measurement of T by X is biased with respect to V .
A distinction can be made between uniform and nonuniform bias. Uniform bias
implies that the extent of bias is constant for all levels of the construct T , whereas
nonuniform bias implies that the extent of bias varies with T .

A common method to test for measurement bias with respect to a grouping
variable is multiple-group confirmatory factor analysis (MGCFA; Vandenberg and
Lance 2000), which requires sufficiently large samples for each group. An alter-
native for testing measurement bias is restricted factor analysis (RFA; Oort 1992,
1998). An advantage of this method over MGCFA is that the potential violator V
may be categorical or continuous, observed or latent, and multiple violators can be
investigated simultaneously. Moreover, RFA does not require the division of the
sample into subsamples by V . The latter advantage comes at the cost of additional
assumptions—namely, homogeneity of residual variances across groups.1 If these
additional assumptions hold, RFA should have more power than MGCFA to detect
measurement bias.

When using RFA, the potential violator V is added to a common factor model as
an exogenous variable that covaries with T . Uniform bias can be assessed by testing
the significance of direct effects of V on X. To assess nonuniform bias, an extension
for modeling latent interactions is required. RFA is commonly extended with latent
moderated structural equations (LMS; Barendse et al. 2010). This allows for
assessing nonuniform bias by testing the significance of interaction effects of T ×V
on X. Although this method generally has high power to detect measurement bias
(Barendse et al. 2010, 2012; Woods and Grimm 2011), a disadvantage is that LMS
is only implemented in the commercial structural equation modeling (SEM) soft-
ware Mplus (Muthén and Muthén 2012).2 Moreover, most traditional SEM fit
indices to test for model fit are not available when using the LMS method in Mplus,
except for Akaike’s Information Criterion (AIC; Akaike 1973) and Bayesian
Information Criterion (BIC; Schwartz 1978).

In this chapter, we introduce the product indicator (PI) method to model latent
interactions in RFA models. The PI method has received a great deal of attention in
the general context of modeling interactions among latent variables in SEM
(Henseler and Chin 2010; Lin et al. 2010; Little et al. 2006; Marsh et al. 2004),

1In traditional RFA models, common-factor variances are also assumed to be equal across groups.
However, when extending RFA to include a latent interaction factor with product indicators
(described immediately following), differences in common-factor variances can be captured by the
covariance between the common factor and the latent interaction factor.
2LMS is also available in the open-source R package nlsem (Umbach et al. 2017), but the
implementation is very limited. It is not possible to test measurement bias using RFA models in the
nlsem package, so we do not consider it further.
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but has never been studied in light of testing measurement bias. First, we discuss
the detection of measurement bias using RFA models, then we introduce the PI
method, and finally we demonstrate how to test for measurement bias using RFA
with PI by means of an illustrative example. We compare the results of PI to LMS
on the same simulated data set.

2 Restricted Factor Analysis

2.1 Detection of Measurement Bias with RFA Models

In RFA models, the construct T can be modeled as a latent factor with multiple
measures X as observed indicators. The possible violator V is added to the mea-
surement model as an exogenous single-indicator latent variable and is allowed to
covary with the common factor T . The violator V may represent a grouping variable
by using a dummy-coded indicator. The observed scores X are modeled as

xj = τ + λtj + bgj + ctjgj + δεj ð2Þ

where xj is a vector of observed scores, tj is the common factor T score, gj is a
dummy code for group membership V , and εj is a vector of the residual scores of
subject j. Moreover, the vector τ contains intercepts, λ is a vector of factor loadings
on the common factor T , and δ is a vector of residual factor loadings. The vectors b
and c are of special interest and contain regression coefficients. A nonzero element
in b or c indicates uniform or nonuniform bias, respectively.

Figure 1 illustrates an example of an RFA model to test for measurement bias
using two anchor items. The violator V is modeled as a latent variable with a single
indicator G representing group membership. For visual simplicity, the measurement
model of T ×V is excluded from Fig. 1, but those details are discussed in the
following subsection. Measurement bias can be examined by comparing the fit of
an unconstrained model with several constrained models. In the unconstrained
model, all items are regressed on V and T ×V , except for the items in the anchor
set. Each constrained model involves fixing the regression of the studied item onto
V and T ×V at zero.

The pair of constraints for each item can be tested simultaneously, where the null
hypothesis of no measurement bias implies both b and c coefficients corresponding
to the studied item are zero in the population. These constraints can be tested via
model comparison of a constrained and unconstrained model, producing a likeli-
hood ratio test statistic that is distributed as χ2 random variable with 2 df. A sig-
nificant test statistic indicates that the studied item is biased with respect to V , and
1-df follow-up tests of the individual b and c coefficients can reveal whether that
indicator’s bias is uniform or nonuniform. Our study focuses only on the 2-df
omnibus test for each indicator.
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2.2 Product Indicators

The use of PI to model interactions among latent variables was originated by Kenny
and Judd (1984). The PI method involves the specification of a measurement model
for the latent interaction factor. Generally, product terms are built by multiplying
the indicators of the associated latent variables, which serve as indicators for the
latent interaction factor. All indicators, including the product indicators, are
assumed to be multivariate normally distributed if the maximum likelihood esti-
mation procedure is used. Because products of normal variables are not themselves
normally distributed, this assumption is violated. Thus, a robust maximum likeli-
hood estimator is used to relax this assumption (see Marsh et al. 2004).

Several variants of the PI method have been proposed, among which is the
double-mean-centering strategy (Lin et al. 2010) that we implement herein. The
double-mean-centering strategy is superior to other strategies because it eliminates
the need for a mean structure and does not involve a cumbersome estimation
procedure. Although the orthogonalizing and double-mean-centering strategy per-
form equally well when all indicators are normally distributed, the double-mean-
centering strategy performs better when the assumption that all indicators are
normally distributed is violated (Lin et al. 2010).

The Double-Mean-Centering Strategy. The first step of the double-mean-
centering strategy involves mean-centering the indicators of the latent variables of
interest. Each of the mean-centered indicators of one latent variable are multiplied
by the mean-centered indicators of the other latent variable. Then, the resulting
product indicators are centered at their means and are used as indicators of the latent
interaction factor. If the common factor T has I indicators and the violator variable
V has J indicators, then the latent interaction factor can have up to I × J product

Fig. 1 An example of testing
measurement bias using an
RFA model. Dashed arrows
represent effects that may be
estimated to test for uniform
and nonuniform bias. The
indicators X1 and X2 serve as
anchor items
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indicators, although matching schemes have been proposed to reduce the number of
product indicators (Marsh et al. 2004). In RFA, however, these matching schemes
would be irrelevant when the common factor only interacts with a single-indicator
violator construct (or with multiple single-indicator violators). Figure 2 shows an
example of an RFA model with a latent interaction using the PI method. All
possible cross-products are used in this example (i.e., each indicator of T is mul-
tiplied by the single indicator of V), and all indicators of T and V are centered at
their means.3

3 Illustrative Example

We simulated a single data set to demonstrate how to apply the PI method in R (R
Core Team 2016) to test for measurement bias, and to compare the conclusions with
those reached using LMS. See Barendse et al. (2012) for Mplus syntax to apply
LMS.

3.1 Data Generation

Data were generated for two groups, each with a group size of n=100. We con-
sidered a scale of k=10 items, 40% of which were biased: two uniformly biased
items and two nonuniformly biased items. This way, we are able to investigate the
performance of LMS and PI using a hypothetical scale with a substantial degree of
measurement bias. Item scores of subject j in group g were generated using the
following model:

xj = τg + λgtj + δgεj ð3Þ

where xj is a vector of 10 item scores, tj is the common factor score, and εj is a
vector of 10 unique factor scores (residuals) for subject j. Moreover, τg is a vector
containing 10 intercepts, λg is a vector of 10 common factor loadings, and δg is a
vector of 10 residual factor loadings of group g. Following Barendse et al. (2010),
differences in the common factor were simulated by drawing common factor scores
from a standard normal distribution for the reference group tr ∼N 0, 1ð Þ and from a
normal distribution with a lower mean for the focal group t f ∼N − 0.5, 1ð Þ.
Residual factor scores were drawn from a standard normal distribution εj ∼N 0, 1ð Þ.

3In the case of a dummy-coded indicator, the mean is the proportion of the sample in Group 1.
Mean-centering does not affect the variance, so a 1-unit increase in a mean-centered dummy code
still represents a comparison of Group 1 to Group 0, just as the original dummy code does.
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The same magnitude of uniform and nonuniform bias used by Barendse et al.
(2010) was used. To introduce uniform bias, all intercepts τ were equal to 0, except
for the intercept for the second and third item in the focal group, which were chosen
equal to 0.5 (small uniform bias) and 0.8 (large uniform bias), respectively.
Moreover, all common factor loadings were fixed at 0.8, except for the factor
loadings of the fourth and fifth item in the focal group, which were chosen equal to
0.55 (small nonuniform bias) and 0.3 (large nonuniform bias), respectively. The
residual factor loadings were set equal to the square root of 1− λ2g. Table 1 presents
R syntax to generate this data set.

Table 1 R syntax for data generation for the illustrative example

## set seed
RNGkind("L'Ecuyer-CMRG")
.Random.seed <- as.integer(c(407, 1945764513, -1852313839, 178524778, 
-983224279,-1572978333, -68534343))
## specify group size
Nn <- 100
## draw latent-trait values
theta1 <- rnorm(Nn)
theta2 <- rnorm(Nn, -0.5, 1)
## draw scores on residual factor
residual <- matrix(NA, 2*Nn, 10)
for (j in 1:Nn) {
for (i in 1:10) { 
residual[j, i] <- rnorm(1)

} 
}
## model parameters reference group
loading1 <- rep(0.8, 10)
delta1 <- sqrt(1 - loading1^2)
## model parameters focal group
tau2 <- c(0, -0.5, -0.8, 0, 0, 0, 0, 0, 0, 0)
loading2 <- c(0.8, 0.8, 0.8, 0.55, 0.3, 0.8, 0.8, 0.8, 0.8, 0.8) 
delta2 <- sqrt(1 - loading2^2)
## simulate indicator scores reference group
x1 <- matrix(NA, Nn, 10)
for (j in 1:Nn) { 
for (i in 1:10) { 
x1[j,i] <- loading1[i] * theta1[j] + delta1[i] * residual[j, i]

} 
} 
## simulate indicator scores focal group
x2 <- matrix(NA, Nn, 10)
for (j in 1:Nn) { 
for (i in 1:10) { 
x2[j,i] <- tau2[i] + loading2[i]*theta2[j] + delta2[i]*residual[j,i]

} 
} 
## combine scores of both groups
dat <- as.data.frame(rbind(x1, x2))
dat$group <- rep(c(1, 2), each = Nn)
names(dat) <- paste0("x", 1:11)
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3.2 Application

Table 2 shows R syntax for the application of PI in RFA models to detect mea-
surement bias in the simulated data set. The RFA models with PI are fitted with the
R package lavaan (version 0.5–23; Rosseel 2012). In our example, we apply the
double-mean-centering strategy. First, the indProd() function in the semTools
package (version 0.4–14; semTools Contributers 2016) with the argument
doubleMC = TRUE is used to transform the data in order to be suitable for this
strategy. This way, the indicators of the common factor T and violator V are
mean-centered and indicators of the interaction factor T ×V are built by multiplying
the mean-centered indicator of V by each mean-centered indicator of T . The
resulting product indicators are mean-centered again. After the data are prepared,
one constrained model for each studied item must be specified. We use the ninth
and tenth items, which are both bias-free, as anchor items, so they are not tested for
measurement bias. Hence, the studied items are the first eight items, four of which
are biased, which leads to eight constrained models in total. The unconstrained
model is the same across items.

The first factor of the unconstrained model is the common factor T with 10
mean-centered observed variables XC as indicators. The second factor is the violator
V with a mean-centered single indicator GC representing group membership. The
residual variance of GC is fixed at 0. The interaction factor T ×V is the third factor

Table 2 R syntax for the application of PI in RFA in the illustrative example

## required package
library(semTools)
## prepare data
datDMC <- indProd(dat, 1:10, 11, match = FALSE, doubleMC = TRUE)
## additional parameters
paramc <- paste0("group + group.by.theta =~ x", 1:8)
## specify and fit unconstrained model
mod.un <- c('
theta =~ x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10
group =~ 1*x11
group.by.theta =~ x1.x11 + x2.x11 + x3.x11 + x4.x11 + x5.x11 +

x6.x11 + x7.x11 + x8.x11 + x9.x11 + x10.x11 
x11 ~~ 0*x11', paramc)

mod.un.fit <- cfa(mod.un, data = datDMC, estimator = "MLM")
## specify and fit constrained models
out <- matrix(NA, nrow = 8, ncol = 2,

dimnames = list(paste0("x", 1:8), c("X2", "p")))
for (i in 1:length(paramc)) { 
mod.con <- mod.un[-(i+1)] # remove b and c for the i-th studied item
mod.con.fit <- cfa(mod.con, data = datDMC, estimator = "MLM")
outfit <- lavTestLRT(mod.con.fit, mod.un.fit,

method = "satorra.bentler.2001")
out[i,1:2] <- c(outfit[2,5], outfit[2,7]) 

} 
## print results
out
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of the unconstrained model with double-mean-centered product indicators. For
example, the first indicator of the interaction factor is obtained by mean-centering
GC ×XC

1 . For all factors in the unconstrained model, the factor loading λ of the first
indicator is fixed at unity for identification. Covariances between all three factors
are freely estimated. Finally, factor loadings of all items on V and T ×V are added,
except for the anchor items. The constrained models are built by removing factor
loadings of the studied item on V and T ×V from the unconstrained model. The
estimator to be used for the unconstrained and constrained models is set to “MLM”,
which involves maximum likelihood estimation with robust standard errors and a
Satorra-Bentler scaled test statistic (Rosseel 2012).

To test each of the eight items for measurement bias, likelihood ratio test
statistics are calculated using the lavTestLRT() function in the lavaan
package (version 0.5–23; Rosseel, 2012). This involves comparing the fit of the
unconstrained model with each constrained model. By setting the argument
method = “satorra.bentler.2001”, a scaled Δχ2 test statistic with 2 df is
computed as described by Satorra and Bentler (2001). An item is flagged as biased
with respect to violator V when the Δχ2 statistic is significant using a criterion of
α=0.05.

3.3 Results of Measurement Bias Detection

Table 3 presents the results of measurement bias detection using RFA with LMS
and PI. When the PI method was applied, the Δχ2 statistics of three out of four truly
biased items were significant. The item with small nonuniform bias, Item 4, was not
flagged as biased, which is consistent with previous Monte Carlo studies showing
that power to detect uniform bias is greater than to detect nonuniform bias
(Barendse et al. 2010, 2012). Moreover, none of the Δχ2 statistics of the bias-free

Table 3 Results of testing
measurement bias using RFA
models with PI and LMS

Item PI LMS

χ2df =2 p χ2df =2 p

1 0.425 0.809 0.674 0.714
2 19.396 0.000 17.696 0.000
3 38.755 0.000 28.000 0.000
4 5.217 0.074 6.283 0.043
5 10.105 0.006 10.656 0.005
6 0.145 0.930 0.201 0.904

7 0.948 0.622 0.772 0.680
8 0.246 0.884 0.196 0.907
Note Bold cells indicate significant measurement bias. Items 9
and 10 were used as anchor items, so they were not tested for
measurement bias
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items were significant. Thus, none of the items were incorrectly flagged as biased
using PI. The LMS method obtained comparable results, but correctly flagged all
truly biased items as biased with respect to violator V .

4 Discussion

In this chapter, we proposed the use of PI in RFA models as an alternative to LMS
to test nonuniform measurement bias. The illustrative example showed that this
method obtains results comparable to LMS. Because RFA with LMS can only be
implemented in Mplus (Muthén and Muthén 2012), knowing that PI performs at
least as well as LMS provides more researchers the opportunity to test for
nonuniform bias using SEM software package. An additional advantage of PI is the
availability of more traditional SEM fit indices to test for model fit that are not
available when using LMS in Mplus, nor when using other available strategies for
modeling interactions with latent variables (e.g., random effects models which treat
item responses as cross-nested within items and subjects). However, several aspects
of the use of PI in RFA models are yet unclear, for example, which items should
serve as product indicators for the interaction factor (e.g., all items, only anchor
items, or anchor items and studied items). In addition, RFA models assume strict
invariance, that is, equal residual variances across groups. Future research could
investigate how violations of strict invariance affect Type I error rates.
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