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1 Introduction

What is households’ income uncertainty when they decide about their savings to insure against

undesirable fluctuations of their consumption? The answer to this question is of central impor-

tance to understanding consumption risk sharing; only what households don’t know yet constitutes

uncertainty they seek to hedge. Typically, households’ income uncertainty measures stem from

aggregating earnings across household members and income types in the population. As Brown-

ing, Hansen, and Heckman (1999) point out, this procedure may, however, create a disconnect

between the uncertainty as assessed by an econometrician and income uncertainty as perceived by

households. Quantifying households’ perceived income uncertainty is, however, a prerequisite for

evaluating the welfare effects of hotly-debated reforms such as changes in the progressivity of the

tax system. In this paper, we argue that accounting for households’ perceived income uncertainty

is key to understand consumption risk sharing of households in the United States. In particular, we

find that a theoretical model that takes households’ perceived income uncertainty into consideration

explains consumption heterogeneity better than existing models.

We consider an environment in which risk-averse households seek insurance against idiosyncratic

fluctuations of their disposable income. As the new element here, we explicitly extend households’

information set by signals that inform households about their income in the next period with certain

precision. Due to the signals, households’ expectations of future income are heterogeneous even

when current income is the same. While the stochastic income process constitutes the income

uncertainty as assessed by an econometrician, the joint process of signals and income represents

households’ income uncertainty. The difference between the two income uncertainties depends on

the precision of the signals; the more precise are the signals, the smaller are households’ forecast

errors for income growth and the lower is households’ perceived income uncertainty.

The extension of households’ information set with signals is motivated by a mounting literature

that finds that subjective expectations on future realizations of idiosyncratic risk have significant

predictive power even when other information available to the econometrician is taken into ac-

count.1 Controlling for current realizations of income, Dominitz (1998) estimates that conditioning

1 Exemplary papers are Dominitz (1998) and Dominitz and Manski (1997) for income risk, Smith, Taylor, and
Sloan (2001) for predicting mortality risk, Stephens (2004) for unemployment, or Campbell, Carruth, Dickerson, and
Green (2007) for job insecurity.
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additionally on households’ reported subjective expectations significantly reduces the forecast error

of income growth. Thus, households typically have more information than their current income to

predict their future earnings. In our environment, we capture this advance information with in-

formative signals. Correspondingly, the signals collect a wide spectrum of information relevant for

future changes in disposable income that are already known to households before the actual change

occurs. Examples of this type of foreknowledge are information on future performance bonuses,

promotions, demotions or wage cuts, wage rises, changes in income taxes and transfers.

In reality, households can smooth income shocks in a variety of ways, involving progressive taxa-

tion, family transfers, informal networks or default. To capture these various insurance possibilities,

we employ a general-equilibrium model with endogenous solvency constraints stemming from lim-

ited contract enforcement as proposed by Alvarez and Jermann (2000). In this model, households

have access to a full set of securities to capture formal and informal insurance arrangements with

the drawback that these contracts are not enforceable under all circumstances.

Existing models of risk sharing without advance information have difficulties capturing con-

sumption insurance of households in the United States. While standard incomplete markets models

as pioneered by Aiyagari (1994) tend to predict too little consumption smoothing, models with en-

dogenous solvency constraints tend to result in too much consumption smoothing. Employing US

micro data to inform our theoretical model, we find that it can explain consumption heterogeneity

better than existing models that do not account for households perceived income uncertainty. To

the best of our knowledge, it is the first model that jointly matches three distinct key consumption

risk sharing measures that are not captured without advance information: (i) the unconditional

variance of households consumption in the cross-section, (ii) the covariance of current consumption

growth and income growth and (iii) the income-conditional mean of household consumption.

To explain these measures, we discover that households have advance information on their

future income such that their income uncertainty is lower than what is typically considered in

consumption risk sharing models; according to the theoretical model, we quantify that advance

information reduces households’ mean-squared forecast error for income by approximately 12%.

This implies a systematic gap between the income uncertainty as perceived by households and the

income uncertainty as estimated by an econometrician. The size of the uncertainty gap as quantified

by the model is consistent with the direct estimates of Dominitz (1998) who finds that accounting
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for households’ subjective income expectations reduces the econometrician’s mean-squared forecast

error between 12% and 21%.

We show that advance information improves the data fit of the model with endogenous solvency

constraints because more precise signals reduce consumption risk sharing. The mechanism for this

surprising result is that more precise signals decrease the value of insurance for high-income house-

holds which tightens the solvency constraints of low-income agents and thus limits opportunities

for risk sharing. Consequently, advance information decreases risk sharing. Similar to Ábrahám

and Cárceles-Poveda (2010), we also find that the endogenous solvency limits are consistent with

US data on credit limits. In particular, high-income households face more generous credit limits

than low-income households.

Further, we characterize cross-sectional long-run distributions of consumption, income, and

wealth across households with advance information. As a methodological contribution, we develop

a dynamic stochastic model with an explicit specification of the joint distribution of income and

signals to consistently model the additional predictive power of informative signals on future real-

izations of idiosyncratic risk. Consistency implies that the distributions of expected income and

income realizations are aligned. When income is persistent, we show that consistency requires non-

trivial but intuitive assumptions on the stochastic process for signals. Empirically, Dominitz (1998)

and more recently Attanasio and Augsburg (2016) find that expected income and realized income

are indeed very similar. This methodological contribution is general and can be widely applied to

individual decision problems under risk beyond consumption risk sharing.

For a given size of the uncertainty gap, we analyze the quantitative implications for several over-

identifying restrictions. Blundell, Pistaferri, and Preston (2008) show that advance information of

the type we consider can result in counterfactual non-zero correlations of current consumption

growth with future income growth in a standard incomplete markets model. With endogenous

solvency constraints, we find that advance information does not induce counterfactual correlations

of current consumption with future income growth.

Advance information also improves the fit of the income-conditional distribution of consumption.

The model (almost) perfectly tracks the income-conditional mean of consumption of low, medium

and high-income earners. Further, the advance information helps to attenuate a non-linearity

present in limited contract enforcement models without information but absent in the data. In
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the absence of information, the limited commitment model implies a variance of consumption

conditional on a high income that is equal to zero. With informative signals, the conditional

variance is positive, bringing the model closer to the data.

Related literature We are not the first to find that households know more than econometri-

cians about their future earnings.2 The main difference to these papers is that we point out that

the quantitative importance of advance information for consumption risk sharing crucially depends

on the structure of insurance markets. In a standard incomplete markets model with exogenous

solvency constraints, the uncertainty gap has only modest implications for consumption risk shar-

ing. With endogenous solvency constraints, however, the uncertainty gap matters to understand

consumption heterogeneity.

Methodologically, our paper draws on Kehoe and Levine (1993), Alvarez and Jermann (2000)

and Krueger and Perri (2006, 2011) who analyze the theoretical and quantitative properties of

constrained efficient allocations with limited contract enforcement. Aiyagari (1994) pioneered in

characterizing invariant distributions of consumption and assets in the standard incomplete mar-

kets model in general equilibrium. Building on these papers, Broer (2013) provides a thorough

comparison of the quantitive implications of both consumption risk sharing models to the data.

We extend the limited contract enforcement model and the standard incomplete markets model

with a role for information to study how households’ perceived income uncertainty – instead of the

uncertainty assessed by an econometrician – affects consumption risk sharing of US households.

Heathcote, Storesletten, and Violante (2014) and Kaplan and Violante (2010) study the role

of advance information in standard incomplete markets environments.3 Heathcote, Storesletten,

and Violante (2014) consider two different type of shocks, “uninsurable shocks” and “insurable

shocks”. The former shocks can be only partially smoothed while the latter type of shocks can

be interpreted as perfectly forecastable and are completely insured (by construction). We consider

signals on uncertain future income realizations without taking a stand a priori whether certain

shocks are insurable or not. In particular, we highlight that when households use a large variety of

2 Exemplary papers in that literature are Cunha and Heckman (2016), Cunha, Heckman, and Navarro (2005),
Guvenen (2007), Guvenen and Smith (2014), Huggett, Ventura, and Yaron (2006), Primiceri and van Rens (2009).

3 Guvenen and Smith (2014) study a different type of advance information. In a life-cycle model, households have
initial knowledge about their individual deterministic part of income growth while in our model households receive
signals every period about future realizations of their stochastic part of income.
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inUSsurance possibilities perfectly forecastable shocks do not necessarily enhance but may actually

restrict the degree of risk sharing.

Kaplan and Violante (2010) show that the resulting increase in consumption smoothing in

the standard incomplete markets model with advance information is quantitatively not important

enough to account for the cross-sectional dispersion of consumption in the data. With our paper, we

clarify that the quantitative effects of advance information on risk sharing depend on the particular

consumption-savings model employed. While we can confirm the earlier findings on advance infor-

mation in the standard incomplete markets model, a model with endogenous solvency constraints

bridges the gap to several consumption insurance measures observed in the data.

Hirshleifer (1971) shows that better information makes risk-averse agents ex-ante worse off if

such information leads to evaporation of risks that otherwise could have been shared in a competitive

equilibrium with full insurance and perfect contract enforcement. Schlee (2001) provides conditions

under which better public information about idiosyncratic risk is undesirable. Similar to these

authors, we also find that better public information can result in less risk sharing. The difference

is that the negative effect relies on the importance of the limited enforceability of contracts and

arises only when consumption insurance is not full but partial. If enforcement frictions are absent,

information does not affect consumption allocations in the limited commitment model.

The remainder of the paper is organized as follows. In the next section, we start with a simple

model to analytically show how advance information affects consumption risk sharing. In Section

3, we present the theoretical model that we take to the data. Section 4 describes the data and

the calibration that we employ in Section 5 to study the quantitative implications of advance

information for risk sharing of US households. The last section concludes.

2 A simple model with limited commitment

To understand the intuition behind the quantitative results derived later, we provide here analytical

results on the effect of advance information on consumption risk sharing with limited commitment

employing an illustrative example. As our main result here, we show that better information on

future income realizations reduces risk sharing.

Consider a two-period, pure-exchange economy with a continuum of ex-ante identical agents
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and a single perishable consumption good. In each period, agent i receives a stochastic labor-

income endowment that can be either high, eh = ē + δe, or low, el = ē − δe, with δe > 0 and ē as

the arithmetic mean of the income process. Both income states are equally likely and the income

realizations are independent across time and agents. In the first period, agents also receive a public

signal ki that informs about their income realizations in the second period. Public signals are i.i.d.

as well and can indicate either a high income (“good” or “high” signals) or a low income (“bad”

or “low” signals) in the future. The signals’ precision κ is defined as the probability that signal

and future income coincide, κ = π(e2 = ej |k = ej), with j ∈ {h, l} and κ ∈ [1/2, 1]. Uninformative

signals are characterized by precision κ = 1/2, perfectly informative signals by κ = 1.4

The preferences of agents are given by the following expected utility function:

E[u(c1) + u(c2)], (1)

where c1 and c2 are consumption in the first and in the second period, respectively, u(c), is increasing

and strictly concave. We measure social welfare according to (1), i.e., as agents’ expected utility

before any risk has been resolved.

If the agents are able to commit before any endowments are realized, the efficient risk-sharing

arrangement is perfect risk sharing. The commitment requirement is crucial because after observ-

ing current income an agent with a high income may have an incentive to deviate from the perfect

risk-sharing agreement. To capture this rational incentive, we analyze risk-sharing possibilities

with limited contract enforcement or voluntary participation. A risk-sharing arrangement is con-

sistent with limited commitment if each agent in each possible state, after observing his first-period

endowment and the signal on his future income realization, at least weakly prefers to follow the

arrangement rather than to defect into autarky. For the second period, we assume that agents re-

spect the commitments made in the first period. Otherwise, if voluntary participation were allowed

in both periods, there would be no room for risk sharing because agents would always choose to

consume their endowments.

Let cji,1 be first-period consumption of agents with signal ki and endowment ej and cjki,2 be

second-period consumption of agents with public signal ki and endowment ej in the first period

4 As a robustness exercise, we also consider private signals (see Appendix A.2 for the details).
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and endowment ek in the second period with i, j, k ∈ {l, h}. The incentives to deviate to autarky are

represented by enforcement constraints that are given by the following expressions for high-income

agents with good and bad signals

u(chh,1) + κu(chhh,2) + (1− κ)u(chlh,2) ≥ u(eh,1) + κu(eh,2) + (1− κ)u(el,2) ≡ V h
h,out (2)

u(chl,1) + (1− κ)u(chhl,2) + κu(chll,2) ≥ u(eh,1) + (1− κ)u(eh,2) + κu(el,2) ≡ V h
l,out. (3)

and for low-income agents with good and bad signals

u(clh,1) + κu(clhh,2) + (1− κ)u(cllh,2) ≥ u(el,1) + κu(eh,2) + (1− κ)u(el,2) (4)

u(cll,1) + (1− κ)u(clhl,2) + κu(clll,2) ≥ u(el,1) + (1− κ)u(eh,2) + κu(el,2). (5)

The resource feasibility constraints in the first and second period are the following

1

4

(
chh,1 + clh,1 + chl,1 + cll,1

)
=

1

2

∑
j∈{l,h}

ej,1 (6)

1

4

[
κ
(
chhh,2 + clhh,2 + chll,2 + clll,2

)
+ (1− κ)

(
chlh,2 + cllh,2 + chhl,2 + clhl,2

)]
=

1

2

∑
j∈{l,h}

ej,2 (7)

An efficient allocation is a consumption allocation, {cji,1, c
jk
i,2}, that maximizes ex-ante utility

(1), subject to the enforcement constraints (2)-(5) and the resource constraints (6)-(7).

Efficient allocations may feature either perfect risk sharing (all agents consume ē in all states),

no insurance against income risk (autarky, all agents consume their income in all states) or partial

risk sharing. Here we focus on the empirically relevant case of partial risk sharing. As summarized

in the following proposition, better public signals lead to less risk sharing and higher consumption

dispersion.

Proposition 1 (Information and risk sharing) Consider an efficient allocation with partial

risk sharing such that the enforcement constraints (2)-(3) are binding. An increase in informa-

tion precision has the following effects on the consumption allocation in each period:

1. The conditional mean of consumption of high-income agents increases and the conditional

mean of low-income agents decreases.

8



2. The conditional standard deviations of consumption of high-income and low-income agents

increase.

3. The unconditional standard deviation of consumption increases.

The proof is provided in Appendix A.1.

To get intuition, consider an increase in the precision of public signals. By (2) and (3), this

results in an increase in the value of the outside option for high-income agents with a good public

signal and a decrease for agents with a bad public signal. As captured by the changes in the outside

option values, agents with a bad signal are more willing while the agents with a good signal are less

willing to share their current high income. Thus, consumption of high-income agents spreads out

and the conditional standard deviation of consumption of high-income agents increases. Thereby,

the changes in the value of the outside option of high-income agents with a good signal (V h
h,out) and

with a bad signal (V h
l,out) are symmetric:

∂V h
h,out

∂κ
= −

∂V h
l,out

∂κ
.

For informative signals, the high-income agents with a good public signal have a lower marginal

utility of consumption and thus require more additional resources than the high-income agents with

a bad public signal are willing to give up. In sum, mean consumption of high-income agents increases

which by resource feasibility reduces the risk-sharing possibilities for low-income agents. As a

consequence, the consumption allocation becomes riskier ex ante and the unconditional standard

deviation of consumption increases as well.

In this section, we have shown that more precise signals result in a riskier allocation ex ante such

that the standard deviation of consumption increases. Further, better public information results

in higher consumption of high-income and lower consumption of low-income agents. Thus, better

public information has the potential to improve the predictions of the limited commitment model

for the unconditional and conditional distribution of consumption. In the next section, we present

a more general environment with endogenous solvency constraints and a production economy with

capital.
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3 Environment

Preferences and endowments Consider an economy with a continuum of households indexed

by i. Time is discrete and indexed by t from zero onward. Households have preferences over

consumption streams and evaluate them conditional on the information available at t = 0

U
(
{cit}∞t=0

)
= (1− β)E0

∞∑
t=0

βtu(cit), (8)

where the instantaneous utility function u : R+ → R is strictly increasing, strictly concave and

satisfies the Inada conditions.

Household i’s disposable labor income in period t is given by wty
i
t, where wt is the real wage per

unit of effective labor and yit are individual effective labor unit endowments. Effective labor unit

endowments are generated by a stochastic process {yit}∞t=0, where the set of possible realizations

in each period is time-invariant and finite yit ∈ Y ≡ {y1, ..., yN} ⊆ R++, ordered. The history

(y0, ...yt) is denoted by yt. Effective labor units are independent across households and evolve

across time according to a first-order Markov chain with time-invariant transition matrix πjk > 0

for all j, k whose elements are the conditional probabilities of next period’s endowment yk given

current period endowment yj . There is no aggregate risk, and the Markov chain induces a unique

invariant distribution of income π(y) such that the aggregate labor endowment is constant and

equal to Lt = ȳ =
∑

y yπ(y).

Information Each period t ≥ 0, household i receives a public signal kit ∈ Y that informs about

endowment realizations in the next period. The signal has as many realizations as endowments

states and its precision κ is captured by the probability that signal and future endowment coincide,

κ = π(yt+1 = yj |kt = yj), κ ∈ [1/N, 1]. Uninformative signals are characterized by precision

κ = 1/N , perfectly informative signals by κ = 1. Hence, at each point in time the agents can find

themselves in one of the states st = (yt, kt), st ∈ S, where S is the Cartesian product Y × Y and

st = (yt, kt) = (s0, ...st) is the history of the state.

The realizations of the signal follow an exogenous Markov process with transition probabilities

π(kt+1 = yi|kt = yj) that are chosen such that the resulting joint distribution of endowments and

signals satisfies the following two consistency requirements.
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Consistency Requirement I: The marginal distribution of the joint invariant distribution

π(s) = π(y, k) with respect to income equals the invariant distribution of endowments π(y), i.e.,

π̂(y) =
∑
k∈Y

π(y, k)
.
= π(y).

Consistency Requirement II: The conditional distribution of endowments π(y′|y) follows from

integrating π(y′|y, k) with respect to signals, i.e.,

π̂(y′|y) =
∑
k∈Y

π(y′|y, k)π(k|y)
.
= π(y′|y),

where y′ denotes a future realization and y a current realization of the variable y. In Appendix

A.4, we show that consistency with these requirements yields signal transition probabilities that

depend in general on the properties of the Markov process for endowments and on the precision

of signals. In case of a symmetric transition matrix for endowments, signal transition probabilities

are independent of κ and consistency requires the signals to follow the same stochastic process as

endowments. Otherwise, the joint distribution of endowments and signals does violate at least one

of the consistency requirements. If signal were for example i.i.d. but endowments are persistent,

we show that at least one of the two consistency requirements is violated. Thus, when income is

persistent, signals are persistent as well. This implies that the effect of a signal realization today

does not only affect expectations for income in the next period but can have long-lasting effects for

future expectations.

Using the assumptions on endowments and signals, the probabilities for the distribution of

future endowments conditional on today’s state s is given by5

π(y′|s) = π
(
y′ = yj |k = ym, y = yi

)
=

πijκ
1m=j

(
1−κ
N−1

)1−1m=j

∑N
z=1 πizκ

1m=z

(
1−κ
N−1

)1−1m=z
, (9)

where 1m=j is an indicator function and equals one if the signal and the actual realization of the

endowment coincide. The logic of the formula is a signal extraction with two independent signals

5 Appendix A.3 provides details on the derivation of the formulas for the joint distribution of endowments and
signals.
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on future endowment realizations, current endowments and the public signal. Both “signals” enter

the signal extraction weighted with their precision, endowments with transition probability πij and

signals with precision κ.

For example, with uninformative signals (κ = 1/N) the conditional probability of endowment

yj tomorrow given today’s signal kj and endowment yi can be computed as

π
(
y′ = yj |k = yj , y = yi

)
=

πij
1
N

1
N

∑N
z=1 πiz

= πij .

With signals following an exogenous process, the conditional distribution of signals and endowments

can be combined to a time-invariant Markov transition matrix Ps with conditional probabilities

π(s′|s) as elements

π(s′|s) = π
(
y′ = yj , k

′ = yl|k = ym, y = yi
)

= π(k′ = yl|k = ym)π
(
y′ = yj |k = ym, y = yi

)
. (10)

Production A representative firm hires labor Lt and capital Kt at rental rates wt and rt to

maximize profits. Capital depreciates at rate δ and the production of consumption goods Yt takes

place via a linear homogenous production function

Yt = AF (Lt,Kt),

with A as a productivity parameter that is constant in the stationary equilibria that we focus on

in the following. Aggregate labor endowments Lt are normalized to unity.

Endogenous solvency constraints Following Alvarez and Jermann (2000), there is no restric-

tion on the type of insurance contracts that can be traded but the contracts suffer from limited

commitment because every period agents have the option to default to autarky. Households can buy

or sell state-contingent assets a(st, st+1) priced at q(st, st+1). The state-contingent asset a(st, st+1)

prescribes one unit of the consumption good in state st+1 to or from an agent that experiences the

history st. Households trade the asset with financial intermediaries that live for one period and can

also invest into capital. Households face state-contingent endogenous credit limits A(st+1) that are
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not “too tight”, i.e., credit limits that only ensure that households have no incentive to default to

autarky but do not constrain insurance contracts otherwise

a(st, st+1) ≥ A(st+1) = min
{
a(st+1) : V [a(st+1), st+1] ≥ UAut(st+1)

}
, ∀st+1, (11)

with UAut as the value of the outside option and V as households’ lifetime utility as defined below.

In case of defaulting to the outside option and consistent with US bankruptcy law, households lose

all their assets. Further, access to financial markets is restricted. While agents can save unlimited

amounts in a non-state contingent bond with gross return R, they cannot borrow. Thus, the value

of the outside option is a solution to an optimal savings problem that can be written in recursive

form as follows

v(a, s) = max
0≤a′≤y+aR

[
(1− β)u(aR+ y − a′) + β

∑
s′

π(s′|s)v(s′, a′)

]
,

such that the value of the outside option is given by

UAut(s) = v(0, s).

Given asset holdings a, state s = (y, k), and prices w, {q(s, s′)}, households’ problem can be

written recursively as

V (a, s) = max
c,{a′(s′)}

{
(1− β)u(c) + β

∑
s′

π(s′|s)V
[
a′(s′), s′

]}

subject to a budget and solvency constraints

c+
∑
s′

q(s, s′)a′(s′) ≤ wy + a (12)

a′(s′) ≥ A(s′), ∀s′. (13)

The result of the utility maximization problem are policy functions c(a, s), {a′(a, s; s′)}. In period

zero, households differ with respect to initial asset asset holdings and initial shocks where the

heterogeneity is captured by the invariant probability measure Φa,s. In an economy with one
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non-state contingent asset, Ábrahám and Cárceles-Poveda (2010) show that the endogenous credit

limits derived according to (11) share some realistic features with credit limits observed in the

Survey of Consumer Finances (SCF). As in the data, credit limits in the model become looser as

labor income increases. While agents with a higher income have more incentives to default because

higher income shocks lead to a higher autarky value, this does not necessarily lead to tighter credit

limits. In our quantitative results, we confirm the results of Ábrahám and Cárceles-Poveda (2010)

for a complete set of state contingent assets.

Equilibrium The stationary recursive competitive equilibrium with solvency constraints is sum-

marized in the following definition.

Definition 1 A stationary recursive competitive equilibrium with solvency constraints comprises

a value function V (a, s), a price system R,w, q(s, s′), an allocation K, c(a, s), {a′(a, s; s′)}, a joint

probability measure of assets and exogenous state Φa,s, and endogenous credit limits A(s′) such that

(i) V (a, s) is attained by the decision rules c(a, s), {a′(a, s; s′)} given R,w, q(s, s′)

(ii) Endogenous credit limits are determined by outside option values according to (11)

(iii) The joint distribution of assets and state Φa,s induced by {a′(a, s; s)} and Ps is stationary

(iv) No arbitrage applies

q(s, s′) =
π(s′|s)
R

(v) Factor prices satisfy

R− 1 = AFK(1,K)− δ

w = AFL(1,K)

(vi) The asset market clears

R′K ′ =

∫ ∑
s′

a′(a, s; s′)π(s′|s) d Φa,s.
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In the following, we study the quantitative implications of advance information in this model

for consumption risk sharing.

4 Quantitative exercise

In this section, we describe the data employed in the quantitative exercise and the calibration of

parameters. Further, we explain how we measure consumption risk sharing and how we assess the

difference in income uncertainty measured by econometricians and households.

4.1 Data and calibration

Data To facilitate comparison with related studies in particular to Krueger and Perri (2006) and

Broer (2013), we employ the Consumer Expenditure Interview Survey (CEX), and follow these

authors in their methodology. In particular, we decompose consumption and income inequality

in between and within group inequality. Between-group inequality are differences in household

income and consumption attributable to observable characteristics for example education, region

of residence, etc., and assume that households cannot insure against these observable characteristics.

Income inequality devoid of between group inequality component is called within group inequality.

This residual measure of inequality is the focus of this paper as it is caused by the idiosyncratic

income shocks and hence, depending on the insurance available against these shocks, consumption

inequality will not exactly mirror income inequality.

As measure of household consumption, we employ non-durable consumption (ND+) which also

includes an estimate for service flows from housing and cars. For households’ disposable income,

we use after-tax labor earnings plus transfers (LEA+). Consistent with voluntary participation, we

thus take the mandatory public insurance as given and focus on private insurance. LEA+ comprises

the sum of wages and salaries of all household members, plus a fixed fraction of self-employment

farm and non-farm income, minus reported federal, state, and local taxes (net of refunds) and social

security contributions plus government transfers.

We drop the households who report zero or only food consumption, whose head is older than

64 years or younger than 21 years, with negative or zero earnings or have negative working hours,

which have positive labour income but no working hours, which live in the rural area or their
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weekly wage is below the minimum wage and which are not present in all interviews. To facilitate a

comparison between households of different size, the consumption and income measures are divided

by adult equivalence scales as in Dalaker and Naifeh (1997).

To compute within group inequality, we follow Krueger and Perri (2006) and Blundell et al.

(2008), and regress the logs of household consumption and income on a cubic function of age and

a set of dummies that include region, marital status, race, education, experience, occupation and

sex. The residuals of the regression are treated as consumption and income shock.

Model parameters Our annual calibration is designed to highlight the differences between a

standard limited commitment model without information as entertained in Broer (2013) and a

model with information. Therefore, we set a number of corresponding parameters to the same

values. In particular, we consider a period utility function that exhibits constant relative risk

aversion with parameter σ = 1. The discount factor β is chosen to yield an annual gross interest

rate of R = 1.025 in general equilibrium. We employ a Cobb-Douglas production function AF (K,L)

with a capital-production elasticity of 0.30. Given R, we choose the depreciation of the capital stock

δ and the technology parameter A to yield a real wage rate of unity and an aggregate wealth-to-

income ratio of 2.5 as for example estimated by Kaplan and Violante (2010) based on the Survey

of Consumer Finances (SCF). With a wage rate of unity, labor income is wy = y and we use the

terms individual endowment and individual income interchangeably.

Following the practice in the literature, the income specification comprises persistent and tran-

sitory income components. Log income of household i is modelled as

ln(yit) = zit + εit, zit = ρzit−1 + ηit,

where εit and ηit are independent, serially uncorrelated and normally distributed with variances

σ2
ε and σ2

η, respectively. The persistence parameter ρ is set to 0.9989 which is the value originally

found by Storesletten et al. (2004). Given the persistence parameter, we identify the variances

σ2
ε , σ

2
η from the cross-sectional within-group income variance and auto-covariance in the CEX data

as the averages of the years 1999–2003. The method proposed by Tauchen and Hussey (1991) is

used to approximate the persistent part of income by a Markov process with three states and time-
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invariant transition probabilities, and the transitory part is captured with two exogenous states of

equal probability. We normalize the value of all income states such that mean income (or aggregate

labor endowment) is equal to unity. For each of the six income states, there are therefore six public

signals such that the joint income-signals state S is approximated by 36 states which is higher

than the 14 states typically considered in related studies (Broer, 2013, Krueger and Perri, 2006).

The increase in the number of states leads to a numerical challenge for computing consumption

allocations in general equilibrium.6

4.2 Insurance measures and uncertainty gap

Insurance measures To measure the extent of consumption smoothing from the data, we focus

on two measures: (1) the covariance of consumption and income growth, and (2) the relative

variance of log-consumption with respect to log-income. The first measure captures the sensitivity

of consumption growth to income growth. Following Mace (1991), the sensitivity is captured by

the coefficient β∆y in the following regression equation

∆cit = ψ + β∆y∆yit + vt + νit (14)

where ψ is a constant, vt a vector of time dummies and νit a residual; ∆cit and ∆yit are the growth

rates of consumption and income of individual i in period t. When the coefficient β∆y is zero,

then consumption growth is perfectly insured against changes in income growth. The higher is the

coefficient, the less insurance is achieved.

The second measure is defined as one minus the ratio of the cross-sectional unconditional vari-

ance of logged consumption over logged income:

RS = 1− varc
vary

(15)

On one extreme, if varc = vary, then RS = 0, and there is no private insurance against fluctuations

in disposable. On the other hand, if varc = 0 then RS = 1 implying full insurance against income

6 In Appendix A.5, we describe our algorithm for computing allocations in the LC model in more detail. With
500 points on the promises grid, we solve in each iteration step for 666,000 variables. In a standard model without
information and 14 income states as in Broer (2013), the corresponding number of variables is 105,000.
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Table 1: Baseline parameters and CEX moments

Parameter Value

σ Risk aversion 1
α Elasticity of capital in production function 0.3000
R Gross interest rate 1.0250
ρ Auto-correlation 0.9989
varz Variance persistent 0.2505
varε Variance transitory 0.1149
S Income-signal states 36

vary Variance log income 0.3654
varc Variance log consumption 0.1462
β∆y Regression coefficient 0.1078

shocks. In Table 1, we summarize the calibrated parameters in the upper part and unconditional

moments of consumption and income from the CEX data in the lower part. The value of β∆y is

equal to 0.11 with a standard error of 0.0035; the insurance ratio is 1− varc
vary

= 0.60 which implies

40% of income shocks transfer to consumption.

Measuring the uncertainty gap To interpret the effects of an increase in information precision

κ, we compute the percentage reduction of households’ perceived income uncertainty κ̃ as measured

by the reduction in the mean-squared forecast error resulting from conditioning expectations on

signals

κ̃(κ) =
MSFEy −MSFEs

MSFEy
, (16)

with

MSFEy =
∑
y

π(y)
∑
y′

π(y′|y)
[
y′ − E(y′|y)

]2

MSFEs =
∑
s

π(s)
∑
y′

π(y′|s)
[
y′ − E(y′|s)

]2
,

and π(s) as the joint invariant distribution of endowments and signals. Thus, κ̃ captures the differ-

ence in income uncertainty as measured by an econometrician in the aggregate and the uncertainty

as perceived by households stemming from subjective expectations. For this reason, we refer to κ̃

as the uncertainty gap.
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5 Quantitative results

In this section, we provide quantitative results on the effect of advance information on risk sharing of

households in the United States. First, we employ the model with endogenous solvency constraints

(ESC model) presented in Section 3 to quantify advance information. We further discuss how

the quantified value for advance information relates to direct estimates of the predictive power of

subjective expectations and what this values implies for various “over-identifying restrictions”. We

also study the quantitative effects of advance information on risk sharing in a standard incomplete

markets model.

5.1 Endogenous solvency constraints model

Quantifying advance information To discipline the only free parameter κ̃, we choose the pa-

rameter such that the risk sharing predicted by the model matches two distinct insurance measures

observed in the data. The insurance ratio as the first measure characterizes the cross-sectional

dispersion of consumption. As the second measure, we employ the regression coefficient of current

consumption growth with respect to income growth as a measure to determine the sensitivity of

consumption with respect to changes in income. In general, we therefore expect to pin down two

values for the reduction in households’ perceived income uncertainty κ̃1, κ̃2 that yield insurance

measures in the model that are consistent with the measure observed in the CEX.

For the first insurance measure, we use the cross-sectional variance of consumption in the

invariant distribution. For the second insurance measure, we employ stationarity and simulate the

model for 300,000 time periods and discard the first 100,000 periods to ensure convergence. Then

we estimate covariances of consumption and income growth using the simulated data.

Our main quantitative findings are summarized in Table 2 that displays the two risk-insurance

measures in the data and for various values of κ̃. As can be seen in the first row, without signals,

κ̃ = 0, consumption is almost perfectly smooth such that the insurance ratio equals 0.99. Consistent

with the third part of Proposition 1, the insurance ratio decreases in the precision of signals or

equivalently in κ̃. For κ̃1 = 0.124, the insurance ratio of 0.60 in the data is also explained in the

model.

The third row shows how the uncertainty gap affects the regression coefficient β∆y. While
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Table 2: Insurance measures and advance information ESC model

Insurance ratio, RS

κ̃ = 0.00 κ̃1 = 0.124 κ̃ = 0.138 κ̃14 = 0 Data

Baseline 0.99 0.60 0.47 0.94 0.60
Aguiar and Bils (2015) 0.99 0.60 0.47 0.94 0.47

Regression coefficient, β∆y

κ̃ = 0 κ̃2 = 0.116 κ̃ = 0.123 κ̃14 = 0 Data

Baseline 0.00 0.11 0.16 0.01 0.11
Gervais and Klein (2010) 0.00 0.11 0.16 0.01 0.16

Notes: ESC model. Insurance ratio and regression coefficient in the data and in the model for different
values of κ̃. No signals is κ̃ = 0.00.

in the absence of information consumption growth is nearly perfectly guarded against changes in

income growth, the sensitivity of consumption increases with the size of the uncertainty gap. For

κ̃2 = 0.116, the model matches the regression coefficient observed in the data. In that sense, both

insurance measures are jointly explained by the model for an uncertainty gap of 12% (rounded).

This result is remarkable because in general the two insurance measures have to coincide only in

the extreme cases when risk sharing is either perfect or absent.

Similar to Ábrahám and Cárceles-Poveda (2010) for a non-state contingent asset, we also find

that credit limits become looser as labor income increases with a full set of state-contingent assets.

Further, we find that the difference in credit limits between low-income and high-income earners

increases in κ̃. In the absence of signals, low-income households face credit limits that are 14%

stricter than for high-income households. For κ̃2 = 0.116 and averaging across signals, the credit

limits for low-income agents are 30% stricter than for high-income agents.

Discussion and robustness How can we interpret a reduction of perceived income risk of 12%?

If income was i.i.d., the mean-squared forecast error for a variance of logged income of 0.37 is

0.42. With persistent income alone, the mean-square forecast error is reduced to 0.21; with signals

alone the mean-squared forecast error amounts to 0.30. Thus, current income is a more important

predictor for future income than signals. Considering both predictors of future income jointly, the

signals reduce the mean-squared forecast error of conditioning on income only by 12%.
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A natural question is how the value of κ̃ that we indirectly quantify using the model with en-

dogenous solvency constraints compares with direct estimations of the predictive value of subjective

expectations. In the Spring and Fall of 1993, households in the Survey of Economic Expectations

(SEE) were asked in to report their weekly earnings expectations for 1994. To elicit households’

income expectations, Dominitz (1998) analyzes the relationship between the expectations reported

in 1993 and the actual realizations of earnings in 1994. In particular, he estimates best linear pre-

dictors for 1994 earnings. He finds that even after controlling for earnings realizations in 1993, the

reported subjective expectations have predictive value. Conditioning not only on the realizations in

1993 but additionally on reported subjective earnings expectations from Spring 1993 decreases the

mean-squared forecast error by 0.118 while conditioning on the Fall expectations even reduces the

error by 0.214. Thus, the values of κ̃1 = 0.124 and κ̃2 = 0.116 we find in the model are consistent

with the direct evidence.

Aguiar and Bils (2015) and Attanasio, Hurst, and Pistaferri (2012) argue that the consumption

expenditures reported in the CEX Interview Survey may suffer from non-classical measurement

error, resulting in biased estimates of cross-sectional consumption inequality measures. In par-

ticular, Aguiar and Bils (2015) find that consumption inequality (measured as the cross-sectional

variance of logged consumption) has not increased by less than income inequality (measured as the

cross-sectional variance of logged income) but moved hand-in-hand with income inequality from

1980-2003. The uncertainty gap we identify is not very sensitive with respect to a potentially noisy

estimate for consumption inequality for two reasons. First, even if the correct insurance ratio is dif-

ferent than the number computed directly from the CEX, the identified uncertainty gap would only

be mildly affected. Suppose that consumption inequality has mirrored income inequality between

1980 and 2003 which results in an insurance ratio of 0.47 instead of the 0.60 we report in Table

17. As can be seen in the second row of Table 2, the model can capture the modified insurance

ratio with a slightly higher value for the size of the uncertainty gap, κ̃ = 0.138 instead of 0.124

as in the baseline calibration exercise. Second, using the regression coefficient as an alternative

insurance measure yields very similar numbers for advanced information. This measure is less

prone to measurement error because the regression coefficient employs growth rates as a ratio and

7 Assume that consumption inequality increase with the same rate as income inequality (0.5012) such that con-
sumption inequality is 0.1938 instead of 0.1462. Thus, the insurance ratio is 0.47 which requires κ̃ = 0.1376 to capture
the modified insurance ratio.
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therefore corrects for time-invariant multiplicative measurement error. Additionally, we find that

the regression coefficient in the CEX of 0.11 is very close to the corresponding coefficient that we

estimate using PSID data of 0.12.

Gervais and Klein (2010) argue that the standard estimator β∆y = 0.11 tends to overstate the

degree of risk sharing in CEX data, and propose an alternative estimator. Using the same data as

we do but employing the procedure proposed by Gervais and Klein (2010), Broer (2013) estimates

a value of β̂∆y = 0.16 (see Row 7, Column 6 of Table 3 on page 132), implying that consumption

growth reacts more sensitively to income changes than in our baseline estimation. As displayed in

the fourth row of Table 2, alternatively matching this value of the regression coefficient, we need

more precise signals: κ̃ = 0.123 instead of κ̃ = 0.116, a value that is very close to κ̃ = 0.124 which

yields an insurance ratio of 0.60 in the model.

The high degree of insurance in the standard model without signals could be an artefact of

employing an income grid with 6 states. Applying alternatively a finer income grid with 14 states

– 7 states for the persistent shocks and 2 states for the transitory shocks – only mildly reduces

consumption smoothing (see the forth column of Table 2, κ̃14 = 0); the insurance ratio decreases

from 0.99 to 0.94 and the regression coefficients increases from 0.00 to 0.01.

The subjective expectations elicited in Dominitz (1998) are probably the result of both, private

and public information on future earnings. To the best of our knowledge, there is no paper yet

that disentangles the public and private sources underlying subjectives expectations. In Figure

3 in Appendix A.2, we compare the effects of increases in signal precision of public and private

signals on consumption insurance. While increases in precision in both cases increase consumption

dispersion, consumption risk sharing reacts more sensitively to private information. If subjective

expectations were exclusively based on private information, matching the insurance measures from

the data in the model would thus require lower values of κ̃ than the 12% found for public signals,

resulting also in a lower predictive power of subjective expectations than the 12-21% estimated in

Dominitz (1998).

Kaplan and Violante (2010) conclude that advance information cannot reconcile insurance ratios

or regression coefficients in a life-cycle standard incomplete markets model and in the data. We

find that the picture changes when we alternatively employ a model with endogenous solvency

constraints. Here, advance information on future income shocks can very well bridge the gap to the
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data. Correspondingly, we can quantify households’ advance information by matching the insurance

ratio or, alternatively, by capturing the regression coefficient of consumption on income growth. Our

main quantitative finding is that both insurance measure can be jointly explained when households’

perceived income uncertainty is reduced by 12%. In the following, we fix information precision at

this value, and analyze the model’s performance for various “over-identifying restrictions”.

5.2 Over-identifying restrictions in the ESC model with advance information

The goal of this section is to further test the model with the amount of advance information

as quantified in the previous section. Throughout this section, we compare the standard model

without signals to the case of informative signals.

Consumption-income growth correlations with advance information Blundell, Pistaferri,

and Preston (2008) argue that including advance information in the SIM model may lead to

correlations of current consumption with future income growth that are not consistent with the

data.8 To test for a potential role of advance knowledge of future income shocks, the authors employ

household panel data from the Panel Study of Income Dynamics (PSID) to estimate correlations

of current consumption growth ∆ci,t = log(cit) − log(cit−1) with future income growth ∆yi,t+j =

log(yit+j) − log(yit+j−1) for j ≥ 1. Through the lens of a standard incomplete markets model, if

there was advance knowledge of income shocks, the correlation in the data should be significantly

different from zero because consumption should adjust before the shock has occurred. However,

Blundell, Pistaferri, and Preston (2008) estimate correlations that are not significantly different

from zero with p-values larger than 25%.

The endogenous-solvency constraints model with information is consistent with that evidence.

As reported in the first column of Table 3, the correlation of current consumption growth with

future income growth is not significantly different from zero for the standard model with κ̃ =

0. This pattern does not change for informative signals. As displayed in the second and third

column, for κ̃1 = 0.124 (yields the insurance ratio from the data) and for κ̃2 = 0.116 (yields the

regression coefficient from the data), only the correlation of current income growth and current

8 Guvenen and Smith (2014) consider households with initial knowledge about their individual deterministic part
of income growth. This type of advance information does not result in the counterfactual consumption-income growth
correlations.
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Table 3: Income and consumption growth regression: ESC model

κ̃ = 0.00 κ̃2 = 0.116 κ̃1 = 0.124 Data

β∆yt 0.00 0.11 0.16 0.11
β2 −0.00 0.01 0.01 –

T-cov(∆ct,∆yt) 0.00 0.05 0.05 0.00
T-cov(∆ct,∆yt+1) 0.00 0.89 0.92 –

Notes: In the table, we provide regression coefficients and their p values for the regression ∆cit = β0 +
β′∆yi + εit, with β = [β∆yt , β2]′ and ∆yi = [∆yit,∆y

i
t+1]′ for different precisions of signals. No signals is

κ̃ = 0.00. T-cov(∆ct, ·) reports p-values for the covariances to be significantly different from zero.

consumption growth is significantly different from zero. Consistent with Blundell, Pistaferri, and

Preston (2008), the correlations of current consumption growth with future income growth are not

significantly different from zero with p-values larger than 89%. Unlike in a standard incomplete

markets model, advance information in the LC model does not induce counterfactual correlations

of current consumption growth with future income growth.9

The logic for this result can be rationalized within the simple limited commitment endowment

economy presented in Section 2. Efficient allocations can be decentralized when households have

access to a complete set of securities that provide insurance for all possible histories of the state.

Then, the size of the income uncertainty is not directly relevant because in principle households

can buy insurance for all possible contingencies. Consumption insurance is imperfect because the

enforcement of insurance contracts is limited by the outside option to live in autarky. In the optimal

insurance contract with partial insurance, the planner encourages high-income agents with binding

enforcement constraints to transfer resources today in exchange for insurance of income shocks in

the future. Insurance involves both promising to decouple future income and future consumption

(insurance across states), and to smooth consumption across periods. This logic is strengthened

further by more precise signals. When signals become more precise, the outside option becomes

more attractive for agents with a high income. To accommodate this change and to encourage these

agents to transfer resources today, the planner promises even more consumption smoothing across

time and states. Nevertheless, according to Proposition 1, transfers from high-to-low income agents

are reduced such that the dependency of current consumption and current income strengthens while

9 The CEX is a revolving panel in which households drop out after one year. For each household, the CEX contains
only information of household consumption and income at two different points in time. For this reason, we can neither
estimate correlations of current consumption with future income growth nor can we employ the estimators to measure
consumption responses to transitory and persistent shocks proposed by Blundell et al. (2008).
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Figure 1: ESC model. Conditional mean of logged consumption with respect to logged income for
different precisions of signals. The x−axis captures the log income and y−axis represents the con-
ditional mean of log consumption. Income steps represent percentiles: [17th, 33th, 50th, 67th, 83th].
Solid line captures the conditional means for the years 1999–2003 in the CEX.

more consumption smoothing across periods prevents a higher correlation of current consumption

with future income growth.

Income-conditional distribution of consumption To compare conditional moments from

the data and models, our procedure is the following. We start with the stationary distribution

of income implied by the Tauchen and Hussey (1991)’s procedure and compute the conditional

mean and variance corresponding to this stationary distribution in each model. For the data,

we employ the percentiles from the stationary income distribution and compute the moments for

the percentiles, accordingly. For our calibration, this corresponds to the following percentiles:

[17th, 33th, 50th, 67th, 83th]. For example, households with a high income represent the top 17% of

income earners.

Insurance is close to perfect in the endogenous-solvency constraints model without signals. To

facilitate a fair comparison, we employ the results derived in the endowment economy for the
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Table 4: Conditional moments of consumption: ESC model

κ̃ = 0 κ̃2 = 0.116 κ̃1 = 0.124 Data

MSE, E [log(c)|y] , no 34.15 1 4.67 –
E [log(c)|yh]− E [log(c)|yl] 0.30 0.68 0.80 0.68
MSE, STD [log(c)|y] , no 3.48 1 0.91 –
STD[log(c)|yh]
STD[log(c)|yl] 0 0.38 0.36 0.95

Notes: The table provides the mean squared deviations of model and data for the conditional means and
standard deviations of consumption expressed relative to signals with κ̃2 = 0.116, normalized no; the table
also provides spreads between average consumption and the standard deviation of low-and high income
households. No signals is κ̃ = 0.

standard model.10

In Figure 1, we plot the conditional mean of log consumption for the data, standard model and

for informative signals of precision κ̃2 = 0.116. In the absence of signals, the average consumption

of low-income households is too high compared to the data while the consumption of high-income

agents is too low. Further, indicating also too much insurance for low-income states, average

consumption is constant for the two low-income groups in the absence of information; in the CEX

data, average consumption is increasing for all income states. With informative signals, household

consumption becomes more dispersed. Consistent with the first part of Proposition 1, we find

that average consumption of low-income households decreases while consumption of high-income

households increases, leading to a more dispersed consumption distribution and a better fit to the

data. Further and as in the data, the conditional mean of consumption is increasing in income over

all incomes states. Overall, the conditional mean of consumption is tracked in an almost perfect

way for informative signals over all six income groups.

The second part of Proposition 1 suggests that more precise signals increase the income-

conditional standard deviations of consumption. As displayed in Figure 2, advance information

indeed results in a higher conditional standard deviation for all income groups. In particular,

information leads to an increase in consumption dispersion conditional on a high income; in the

absence of information, the standard deviation is zero while with informative signals it is positive

and increasing in precision. While the conditional standard deviation is tracked reasonably well for

low-and middle-income earners, the distance to the data increases of higher income groups.

10 Alternatively employing the standard model with the possibility to return from autarky to insurance as in Broer
(2013) yields similar conditional consumption moments and are available on request.
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Figure 2: ESC model. Conditional standard deviation of logged consumption with respect to
logged income for different precisions of the signals. The x−axis captures the log income and
the y−axis the conditional standard deviation of logged consumption. Income steps represent
percentiles: [17th, 33th, 50th, 67th, 83th]. Solid line captures the conditional standard deviations
for the years 1999–2003 in the CEX.

Quantitatively, the fit of the conditional consumption distribution to the data is substantially

improved by advance information. As displayed in Table 4, the mean-squared deviations of the

conditional mean of consumption between model and data are approximately 34 times as large

in the standard model than for κ̃2 = 0.116; for κ̃1 = 0.124, the mean deviations are 4.5 times

higher than for κ̃2 = 0.116 but still over 7 times lower than in the standard model. Further, the

spread between average consumption of high-and low income households in the CEX data of 0.68

is perfectly captured by signals with κ̃2 = 0.116.

There is also some improvement in fit for the conditional standard deviation of consumption

but the improvement is not as striking as for the conditional mean. Relative to the standard model,

the mean-square error is 3.5 times smaller for κ̃2 = 0.116, and approximately 4 times smaller for

κ̃1 = 0.124. Further, the ratio of the conditional standard deviations for high-and low-income

households increases from 0 in the standard model to 0.4 with advance information. This increase

is however too small to capture the ratio of almost 1 observed in the CEX.
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5.3 Standard incomplete markets model

In the following, we consider advance information in a standard incomplete markets (SIM) model.

Environment While preferences and endowments are as described in Section 3, households in

the standard incomplete markets economy can only trade in a single non-state contingent bond

with gross return R and face an exogenous borrowing limit ā. There are no enforcement frictions

and we directly focus on stationary allocations. The model we consider is similar to Huggett (1993)

and relies on a market structure with a continuum of households as in Aiyagari (1994). Given asset

holdings a, state s = (y, k), and an interest rate R, households’ problem can be written recursively

as

V (a, s) = max
c,a′

[
(1− β)u(c) + β

∑
s′

π(s′|s)V (a′, s′)

]

subject to a budget and a borrowing constraint

c+ a′ ≤ wy +Ra

a′ ≥ − ā.

Here, households differ with respect to initial asset asset holdings and initial shocks where the

heterogeneity is captured by the probability measure Ψa,s. The state space is given by M = A×S,

where A = [−ā,∞).

The stationary recursive competitive equilibrium is summarized in the following definition.

Definition 2 A stationary recursive competitive equilibrium in the standard incomplete markets

economy comprises a value function V (a, s), prices R,w, an allocation c(a, s), a′(a, s),K a joint

probability measure of assets and the state Ψa,s, and an exogenous borrowing limit ā such that

(i) V (a, s) is attained by the decision rules c(a, s), a′(a, s) given R

(ii) The joint distribution of assets and state Ψa,s induced by a′(a, s) and Ps is stationary.
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(iii) Factor prices satisfy

R− 1 = AFK(1,K)− δ

w = AFL(1,K)

(iv) The bond market clears ∫
a′(a, s) d Ψa,s = K ′.

Households are restricted to trading a single non-state contingent asset. For this reason, one

convenient feature of the (SIM) model is that the distinction between public or private information

is irrelevant.

Quantitative results As emphasized by Blundell, Pistaferri, and Preston (2008) and Kaplan

and Violante (2010), in a SIM model better information on future income realizations allows

households to improve on their consumption-savings decisions, and risk sharing improves. Thus,

better information has a positive effect by improving individual decision which is referred to as

a Blackwell (1953) effect of information. For generating the quantitative results, we employ for

the common parameters the same parameter values as in the corresponding limited commitment

economy. Wolff (2011) finds that 19% of all US households are borrowing constrained. For this

reason, we choose an exogenous borrowing limit ā to yield in equilibrium 19% borrowing-constrained

households in the standard model without information.

In line with earlier findings by Kaplan and Violante (2010), we find that insurance ratios improve

monotonically in information precision but the improvement is too small to capture the insurance

ratio of 0.60 observed in the data even for very informative signals. In the absence of signals, the

model implies that households insure about 40% of all fluctuations in their after-tax income. As

an extreme case, if information precision amounts to κ = 0.99 – corresponding to a reduction of

income uncertainty κ̃ of 97% – the insurance ratio reaches 0.51. Thus, the increase in insurance by

better information is quantitatively too small to capture the insurance observed in CEX data.

The simulation results for the regression coefficient displayed in Table 5 confirm the findings from

the first insurance measure. For the standard case of uninformative signals, current consumption
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growth reacts with a coefficient of 0.32 too sensitively to changes in current income. With better

information, the sensitivity decreases to 0.29 for κ̃ = 0.21 as upper value estimated by Dominitz

(1998). Even for a very high κ̃ = 0.97, the coefficient β∆yt is with a value of 0.17 too high

compared to the data. Further, as signals become informative the SIM model predicts that current

consumption growth is counter-factually correlated with future income growth. For uninformative

signals and informative signals with precisions below κ̃ = 0.78, current consumption growth is

uncorrelated with income growth one period ahead on a 10% significance level (see the first three

columns). However, the regression coefficient of current consumption with current income growth

of 0.20 is still too high compared to the 0.11 estimated in the data. From κ̃ = 0.78 onwards,

the correlation of current consumption growth with income growth one period in the future is

statistically significantly different from zero and with a coefficient of β2 = 0.12 also economically

significant (see the fourth column). The non-zero correlation is inconsistent with the evidence

provided in Blundell, Pistaferri, and Preston (2008) who find correlations of current consumption

growth with future income growth not significantly different from zero.

The logic behind the non-zero correlation of current consumption with future income growth

in the SIM model can be rationalized as follows. In the SIM model, better information reduces

directly the income fluctuations households want to insure. Knowing future income allows for

better insurance of income risk given the limited option to use a non-state contingent bond. Thus,

before the shock realizes households’ consumption today reacts to the part of the future income

shock that is known, and consumption today is correlated with future income when signals become

precise enough.

For κ̃ = 0.78 as the highest value for κ̃ that yields no counterfactual correlation of current

consumption with future income growth, the insurance ratio falls with 0.50 however short compared

to the 0.60 observed in the data.

6 Conclusions

In this paper, we have developed a framework to address the issue of a potential disconnect between

households’ income uncertainty and the income uncertainty as measured by an econometrician

raised by Browning, Hansen, and Heckman (1999) and Cunha and Heckman (2016). To that end,
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Table 5: Income and consumption growth regression: SIM model

κ̃ = 0.00 κ̃ = 0.12 κ̃ = 0.21 κ̃ = 0.78 Data

β∆yt 0.32 0.31 0.29 0.20 0.11
β2 −0.03 −0.01 0.01 0.12 –

T-cov(∆ct,∆yt) 0.00 0.00 0.00 0.01 0.00
T-cov(∆ct,∆yt+1) 0.74 0.91 0.94 0.10 –

Notes: SIM model. In the table, we provide regression coefficients and their p values for the regression
∆cit = β0 + β′∆yi + εit, with β = [β∆yt , β2]′ and ∆yi = [∆yit,∆y

i
t+1]′. No signals is κ̃ = 0.00. T-cov(∆ct, ·)

reports p-values for the covariances to be significantly different from zero.

we have developed a risk sharing model that can distinguish between the two types of uncertainties

in a systematic and consistent way.

To quantify the difference in the perception of uncertainty, we have employed a general equi-

librium model with endogenous borrowing constraints. Using US micro data, we have found that

there is a systematic uncertainty gap: households’ perceived income uncertainty is 12% lower than

the uncertainty estimated by an econometrician that is typically used in consumption risk sharing

models. For this uncertainty gap, the model jointly explains three distinct consumption insur-

ance measures that are not captured in the absence of advance information: (i) the cross-sectional

variance of consumption, (ii) the covariance of consumption with income growth, and (iii) the

income-conditional mean of household consumption. Further, the model performs well across sev-

eral over-identifying restrictions test and the uncertainty gap of 12% is also consistent with direct

estimates on the predictive value of subjective expectations in forecasting earnings.

With their recent paper, Heathcote, Storesletten, and Violante (2016) contribute to a lively

debate on the optimal progressivity of taxes in the United States. One of the main arguments

in favor for a progressive tax system is that it helps to insure idiosyncratic earnings uncertainty

when private insurance is limited. Thereby, a higher tax progressivity reduces the earnings risk after

taxes. Computing the optimal tax progressivity requires a precise estimate for households’ earnings

uncertainty. In particular, if there is a systematic uncertainty gap as suggested in this paper and

income uncertainty is actually lower than what is typically considered, less tax progressivity might

be desirable than conventional wisdom suggests.
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A Appendix

A.1 Proof of Proposition 1

The first order conditions for agents with a low income and a high signal in the first period are

u′(clh,1)

4
− λrs1

4
= 0

κ
u′(clhh,2)

4
− κλ

rs
2

4
= 0

(1− κ)
u′(cllh,2)

4
− (1− κ)

λrs2
4

= 0

Dividing through by κ and (1 − κ) implies that clh,1, c
lh
h,2, c

ll
h,2 have the identical marginal effect

on social welfare. Thus, as long as the amount of resources is identical in both periods, we get

λrs1 = λrs2 and thus

clh,1 = cllh,2 = clhh,2 = clh.

Thus, the first order conditions for consumption of agents with a high income and a high signal

in the first period can be written

u′(chh,1)

4
+ λh,pch u′(chh,1)− λrs

4
= 0

κ
u′(chhh,2)

4
+ λh,pch κu′(chhh,2)− κλ

rs

4
= 0

(1− κ)
u′(chlh,2)

4
+ λh,pch (1− κ)u′(chlh,2)− (1− κ)

λrs

4
= 0

It follows that chh,1 = chlh,2 = chhh,2 = chh. In a similar way, we get

chl,1 = chll,2 = chhl,2 = chl

cll,1 = clll,2 = clhl,2 = cll,

consumption is smoothed over time. Consumption of high-income agents follows directly from the
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binding participation constraints

2u(chh) = u(eh,1) + κu(eh,2) + (1− κ)u(el,2) ≥

2u(chl ) = u(eh,1) + (1− κ)u(eh,2) + κu(el,2).

1. The conditional mean of consumption of high-income agents is ch = (chh+ chl )/2 such that the

derivative of it with respect to κ is

∂ch

∂κ
=
u(eh,2)− u(el,2)

2

(
1

u′(chh)
− 1

u′(chl )

)
≥ 0

From resource feasibility it follows immediately that the conditional mean of consumption for

low-income agents decreases in κ.

2. The conditional mean of consumption of high-income agents increases because chh increases

by more than chl decreases. Thus, the conditional mean increases by less than chh such that

(chh − ch)2 and (clh − ch)2 increase, and therefore also the conditional standard deviation

of consumption of high-income agents. For low-income agents there are two cases, either

both enforcement constraints are slack or the enforcement constraints of low-income agents

with a high signal bind (for sufficiently high precision). In the first case, the conditional

standard deviation is zero because consumption of low-income agents is independent from

signal realizations, i.e., clh = cll = cl. In the second case, it follows from the enforcement

constraints that clh is increasing in κ. From the first part, we get that the conditional mean

of consumption of low-income agents decreases which implies that cll decreases by more than

clh increases such that also the conditional standard of consumption for low-income agents

increases in this case.

3. The unconditional mean of consumption in both periods equals ē = (eh + el)/2 such that the

unconditional variance is

1

4

[
(chh − ē)2 + (chl − ē)2 + (clh − ȳ)2 + (cll − ē)2

]
.

The first two terms increase in κ because chh increases by more than chl decreases (see the first
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part), irrespectively whether chl is larger or smaller than ē. When enforcement constraints

of low-income agents are all slack, clh = cll = cl decreases in κ (see the first part) such that

the last two term collapse and increase in κ. Mean consumption of high-income agents is

always larger than the income mean: enforcement constraints of high-income agents bind,

for uninformative signals, chl = chh = ch > ē, and increases in κ further increase ch. Thus,

(clh + cll)/2 < ē, and only clh > ē is possible. When enforcement constraints of low-income

agents with a high signal bind, their consumption increases in κ. However, only if clh < 0,

one of the last terms can decrease when κ increases. From the previous part, we get that cll

decreases by more than clh increases such that the sum of the two last terms increases even

when clh < 0, and as a result the unconditional standard deviation of consumption increases

in κ.

A.2 Risk sharing with private signals

Consider the two-period exchange economy described in Section 2 but with signals on agents’ future

income realizations that are only observed by the agents. 11 Let cji,1 be first-period consumption

of agents with reported private signal ni and endowment ej and cjki,2 second-period consumption

of agents with reported private signal ni and endowment ej in the first period and endowment ek

in the second period with i, j, k ∈ {l, h}. We focus on allocation with truthfully reported private

signals. Let ν denote the precision of private signals.

The enforcement and resource feasibility constraints are again given by (2)-(5) and the resource

constraints (6)-(7) with κ = ν. Private information gives rise to another set of incentive constraints,

truth-telling constraints that are given by the following expressions for high-income agents with a

good and bad private signal

u(chh,1) + νu(chhh,2) + (1− ν)u(chlh,2) ≥ u(chl,1) + νu(chhl,2) + (1− ν)u(chll,2) (17)

u(chl,1) + νu(chll,2) + (1− ν)u(chhl,2) ≥ u(chh,1) + νu(chlh,2) + (1− ν)u(chhh,2) (18)

11 Broer, Kapička, and Klein (2017) consider a limited commitment model in which household income is unobserv-
able.
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and for low-income agents with a good and bad private signal

u(clh,1) + νu(clhh,2) + (1− ν)u(cllh,2) ≥ u(cll,1) + νu(clhl,2) + (1− ν)u(clll,2) (19)

u(cll,1) + νu(clll,2) + (1− ν)u(clhl,2) ≥ u(clh,1) + νu(cllh,2) + (1− ν)u(clhh,2) (20)

An efficient allocation is a consumption allocation, {cji,1, c
jk
i,2}, that maximizes ex-ante utility

(1), subject to the enforcement constraints (2)-(5) and the resource constraints (6)-(7) with κ = ν,

and truth-telling constraints (17)-(20).

With private information, consumption cannot be perfectly smoothed across states and both

time periods conditional on the income-signal pair in the first period because of truth-telling.

Agents with a low private signal are discouraged to report a high-signal type by threatening them

with a particular low consumption for high-private signal households in case of a low income in

the second period. To compensate for this lack of insurance, efficient allocations prescribe a high

consumption in case of a high income in the second period to high-signal households. This however

makes smoothing across states and time impossible.

As illustrated in Figure 3, we find that numerically increases in private-signal precision lead to

qualitatively similar changes in unconditional moments and welfare as summarized in Proposition 1

for public signals. While welfare decreases, volatility of consumption increases when signals become

more precise. Compared to public information, private information introduces additional welfare

costs for informative signals. For this reason, welfare is lower and consumption is more dispersed

with private than with public signals.

A.3 Joint distribution of endowments and signals

In this subsection, we explain how to derive the formulas (9) and (10) stated in the main text.

Further, we explain the logic behind the assumption that the stochastic process for signals shares

the transition probabilities with the process for individual endowments of effective labor units.
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Figure 3: Two-period model. Welfare and consumption dispersion as functions of public and private
information.

A.3.1 Formulas on the joint distribution of endowments and signals

We start with the derivation of the conditional probability of future endowments. Using the general

formula for calculating conditional probabilities, we receive

π
(
y′ = yj |k = ym, y = yi

)
=
π (y′ = yj , k = ym, y = yi)

π (k = ym, y = yi)
.

The conditional probability can be simplified using the identity

N∑
z=1

π
(
y′ = yz|k = ym, y = yi

)
= 1

to replace the denominator with the following expression

π (k = ym, y = yi) =
N∑
z=1

π
(
y′ = yz, k = ym, y = yi

)
.
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The joint probability in the numerator is

π
(
y′ = yj , k = ym, y = yi

)
= πijκ

1m=j

(
1− κ
N − 1

)1−1m=j

,

where πij is the Markov transition probability for moving from endowment i to endowment z.

For all endowment states that are not indicated by the signal, j 6= m, we assume here that their

probability of occurrence conditional on the signal is identical and therefore equals (1−κ)/(N −1).

For the conditional probability of endowments, the general formula can then be written as

π
(
y′ = yj |k = ym, y = yi

)
=

πijκ
1m=j

(
1−κ
N−1

)1−1m=j

∑N
z=1 πizκ

1m=z

(
1−κ
N−1

)1−1m=z
(21)

which resembles (9) in the main text. For example, with two equally likely persistent endowment

states, the conditional probability of receiving a low endowment yl in the future conditional on a

high signal k = yh and a low endowment today is given according to (21) by

π
(
y′ = yl|k = yh, y = yl

)
=

(1− κ)π11

(1− κ)π11 + (1− π11)κ
.

The joint transition probability π(s′|s) = π (y′, k′|k, y) can be computed by combining the condi-

tional probability of income with an assumption on the signal process. With signals following an

exogenous first-order Markov process, the conditional probability π (y′, k′|k, y) is given by

π
(
y′ = yj , k

′ = yl|k = ym, y = yi
)

= πml
πijκ

1m=j

(
1−κ
N−1

)1−1m=j

∑N
z=1 πizκ

1m=z

(
1−κ
N−1

)1−1m=z
∀k′, (22)

where compared to (10), we used π(k′ = yl|k = ym) = πml because the signal process is character-

ized by the same transition probabilities as endowments. In the following, we argue why we choose

signals that share the transition probabilities with individual endowments.

A.4 Signal processes and consistency

In this section, we analytically characterize the Markov process of signals that satisfies the two

consistency requirements outlined in Section 3. The main messages in this section are first that in
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general the consistent stochastic process of signals depends on the stochastic process of endowments

and on the precision of signals. In case of a symmetric transition matrix for endowments, signal

transition probabilities are independent of signal precision and consistency requires the signals to

follow the same stochastic process as endowments. In the following, we distinguish symmetric and

non-symmetric endowment transition matrices.

A.4.1 Symmetric endowment transition matrix

With a symmetric income transition, we assumed that the signal realizations share the transition

probabilities with the stochastic endowment process. In the following, we argue why we make this

assumption by comparing implications of this assumption to alternative stochastic processes for

signals.

In the following proposition, we show that when signals follow the same stochastic process as

endowments, the two requirements are satisfied. If signals were to follow a different process then

at least one of the requirements is violated. For the analytical results, we consider an endowment

process with two values yl and yh and a symmetric transition between endowment states. The

transition matrix for these two endowment states is given as P=

 p 1− p

1− p p


where rows represent the present endowment state and columns represent the future endowment

states. For p = 0.5, endowment states are i.i.d.

Proposition 2 Consider a Markov endowment process with transition matrix P .

(i) If signals follow the same stochastic process as endowments then both consistency requirements

are satisfied.

(ii) Consider a Markov process for signals with transition matrix P̃

P̃ =

 p̃ 1− p̃

1− p̃ p̃


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and 0 < p̃ < 1, p̃ 6= p. Then Consistency Requirement II is violated.

Proof.

(i) When signals follow the same transition probabilities as endowments, the transition probabil-

ities of s can be computed and are then summarized in the transition matrix Ps. For example,

the probability of a low endowment and a low signals conditional on a low endowment and

signal is

π
(
y′ = yl, k

′ = yl|k = yl, y = yl
)

= p
κp

(1− κ)(1− p) + pκ
.

The unique stationary distribution corresponding to the transition matrix Ps is given by

π(y, k) =



π(yl, kl)

π(yl, kh)

π(yh, kl)

π(yh, kh)


=



κp− p
2 −

κ
2 + 1

2

κ
2 + p

2 − κp
κ
2 + p

2 − κp

κp− p
2 −

κ
2 + 1

2


Adding the first two and last two rows show that Consistency Requirement I is satisfied.

Further, the probabilities of signals conditional on endowments can be computed from the

invariant distribution. For example, the probability of a low signal conditional on a low

endowment can be computed as

π(k = yl|y = yl) =
κp− p

2 −
κ
2 + 1

2

κp− p
2 −

κ
2 + 1

2 + κ
2 + p

2 − κp
= 2κp− κ− p+ 1.

To check for the Consistency Requirement II, we consider present endowment y = yl and

future endowment y′ = yl (the other transitions can be computed in the same way and are
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omitted here)

π̂(y′ = yl|y = yl) =
∑
k∈Y

π(y′ = yl|y = yl, k)π(k|y = yl)

= π(y′ = yl|y = yl, k = yl)π(k = yl|y = yl) + π(y′ = yl|y = yl, k = yh)π(k = yh|y = yl)

=
κp

κp+ (1− κ)(1− p)
(2κp− κ− p+ 1) +

p(1− κ)

κ(1− p) + p(1− κ)
(κ+ p− 2κp)

= p

which is also satisfied. From the other side, for the transition from low endowment today to

low endowment in the future, Requirement II calls for

p
.
= π(y′ = yl|y = yl, k = yl)π̂(k = yl|y = yl) + π(y′ = yl|y = yl, k = yh)[1− π̂(k = yl|y = yl)],

which has as unique solution π̂(k = yl|y = yl) = 2κp − κ − p + 1 which completes the proof

of part (i).

(ii) The general symmetric transition matrix for signals P̃ results in a joint transition matrix for

signals and endowments P̃s and in a unique invariant distribution for endowment and signals

π̃(y, k) with a unique conditional probability π̃(k = yl|y = yl). If an only if p̃ = p, it is

π̃(k = yl|y = yl) = π̂(k = yl|y = yl) = 2κp− κ− p+ 1. Thus, Requirement II is violated for

p̃ 6= p. Requirement I is satisfied because
∑

k π̃(yl, k) = 1/2 =
∑

k π̃(yh, k) for any 0 < p̃ < 1.

As an immediate implication of the proposition, i.i.d. signals violate Requirement II when

endowments are persistent.

A.4.2 Non-symmetric endowment transition matrix

We continue our analysis with considering the case of non-symmetric endowment transitions. As

before, we consider a two-state endowment process but now the transition matrix is more general

and given by
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Pg =

 p11 1− p11

1− p22 p22


where rows represent the present endowment state and columns represent the future endowment

states, 0 < p11, p22 < 1, and p11 6= p22.

Proposition 3 Consider a Markov endowment process with transition matrix Pg.

(i) The transition matrix for signals that satisfies Consistency Requirement II is given by

Pk =

 pk11 1− pk11

1− pk22 pk22


with

pk11 = p22(1− κ) + κp11 pk22 = p11(1− κ) + κp22

(ii) Signals that follow the transition Pk also satisfy Consistency Requirement I.

Proof.

(i) The logic of the proof is to treat the signal transition probabilities pk11, p
k
22 as unknown and use

the two equation imposed by second consistency requirement to solve for these probabilities.

To satisfy the second consistency requirement the following two equations must be satisfied

p11 =
∑
k∈Y

π(y′ = yl|y = yl, k)π(k|y = yl) (23)

p22 =
∑
k∈Y

π(y′ = yh|y = yh, k)π(k|y = yh). (24)

The conditional probabilities π(k|y = yl), π(k|y = yh) are functions of the signal transition

probabilities, the conditional probabilities of a high and low income are given by the formulas

in the text and does not depend on the signal transition probabilities. Solving first for

the invariant distribution of income and signals as a function of pk11, p
k
22. From there, the

conditional probabilities π(k|y = yl), π(k|y = yh) can be computed in several steps resulting
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in tedious expressions that are not reported here. Substituting these expressions in (23) and

(24) and solving for pk11, p
k
22 eventually gives

pk11 = p22(1− κ) + κp11 pk22 = p11(1− κ) + κp22

if the following two regularity conditions hold

p22(1− κ) + κp11 < 1 p11(1− κ) + κp22 < 1

which are satisfied for κ ∈ [0, 1] and 0 < p11, p22 < 1.

(ii) The invariant distribution of income (yl, yh) is given by

π(yl, yh) =

(
1− p22

2− p11 − p22
,

1− p11

2− p11 − p22

)
.

Using the expressions for pk11, p
k
22 and from part (i), results in the following invariant signal-

income distribution

π(y, k) =



π(yl, kl)

π(yl, kh)

π(yh, kl)

π(yh, kh)


=



− (1−p22)(κ+p11−2κp11−1)
2−p11−p22

(1−p22)(κ+p11−2κp11)
2−p11−p22

− (1−p11)(κ+p22−2κp22−1)
2−p11−p22

(1−p11)(κ+p22−2κp22)
2−p11−p22


.

Adding the first 2 and the last two rows produces π(yl, yh) such that the first consistency

requirement is satisfied as well.

The results summarized in the proposition generalize the findings for symmetric transitions.

The signal transition matrix depends in general on the precision of signals. Only when the income

transition is symmetric, the transition probabilities for signals are independent of κ and are given

by the corresponding income transition probabilities. When signals are perfectly informative, the

signal transitions mimics the income transition also for a non-symmetric income transition. The
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Consistency requirements

I, max(|π̂(y)− π(y)|) II, max(|π̂(y′|y)− π(y′|y)|)

i.i.d. signals 0.0115 0.1620
persistent signals 3.70e− 16 2.11e− 16

Table 6: Consistency requirement results with persistent endowments

signal transition probability pk11 increases in κ if p11 ≥ p22, otherwise, it is strictly decreasing in κ.

For p11 ≥ p22, the signal transition pk11 is smaller than the income transition p11 and thus approaches

p11 from below as κ increases. Correspondingly, pk22 > p22 for p11 ≥ p22, and pk22 approaches p22

from above with increasing κ.

Unlike in the case of symmetric income transition, i.i.d. signal now neither satisfy the first nor

the second consistency requirement. The rationale why now also the first requirement is violated

is as follows. Without loss of generality, consider p11 > p22 such that the ergodic distribution is

characterized by π(yl) > π(yh). With p11 > p22, a larger fraction of households with a low income

should receive a low signal than households with a high income receive a high signal. For i.i.d.

signals, the fractions are equal. As a consequence, households underestimate the fraction of people

with a low income and over estimate the fraction of households with a high income.

For N > 2, we apply a numerical procedure. For each κ, we use the N2−N restrictions imposed

by Consistency Requirement II to solve for the transition probabilities pkij . Then we check whether

the first consistency requirement is satisfied given the probabilities pkij .

In Table 6, we also compare both signal processes using the endowment process employed

for computing the quantitative results in the main text for κ = 0.99 as an extreme case. As

displayed in the first row of the table, i.i.d. signals fail both consistency requirements. The

inconsistency following from i.i.d. signals is not negligible. On average, i.i.d. signals imply a

perceived transition that differs from the true transition by 16%. Persistent signals with the same

persistence as endowments continue to satisfy both requirements (see the second row).
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A.5 Numerical algorithm

Given initial wealth a, state s = (y, k), and an interest rate R, households’ problem can be written

recursively as

V (a, s) = max
c,{a′}

{
(1− β)u[c(a, s)] + β

∑
s′

π(s′|s)V ′[a′(a, s; s′), s′]

}

subject to a budget and a borrowing constraint

c+
∑
s′

π(s′|s)a′(a, s; s′)
R

≤ y + a (25)

a′(a, s; s′) ≥ A(s′), ∀s′. (26)

The borrowing limits satisfy the following equations

UAut(s′) = V ′[A(s′), s′], ∀s′. (27)

The first order conditions are

u′[c(a, s)](1− β) = λ = Va(a, y) (28)

βV ′a[a′(a, s; s′), s′] ≤ u′[c(a, s)](1− β)

R
, ∀s′, (29)

where V ′a[a′(a, s; s′), s′] denotes the derivative of the value function with respect to a′(a, s; s′). Con-

sider N income states such that s ∈ S = (s1, s2, ...sN2). Consider a grid for a. Start with a guess

of the value function V0 and for the derivative Va,0. From the guess of the value function, back out

the state-dependent borrowing limits A0(s′) from (27).

1. For each pair a, s, solve for the policy functions c0(a, s), {a′0(a, s; s′)} using the N2 + 1 first

order conditions (29) and (25). Start with the strict equality for all s′ and solve. Check

borrowing constraints. If not satisfied in some state s′, set a′0(a, s; s′) = A0(s′) and solve

again for c0(a, s) and the remaining a′0(a, s; s′) until no borrowing constraint is violated.

2. Update the derivative of the value function with respect to a using the envelope condition
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and the policy function for consumption

Va,1(a, s) = u′[c0(a, s)](1− β)

3. Update the value function according to the Bellman equation to receive V1

V1(a, s) = (1− β)u[c0(a, s)] + β
∑
s′

π(s′|s)V0[a′0(a, s; s′), s′]

4. Continue until convergence in the policy functions, the derivative of the value function and

in the value function Vn(a, s) = Vn+1(a, s) = V (a, s) is achieved.

5. Then update the borrowing limits solving the following equation for A1

V [A1(s′), s)] = Uaut(s′).

6. Continue until convergence in the policy functions, in the value function (and its derivative)

and in the borrowing limits is achieved.

The computation of the invariant distribution Φa,s follows the same steps as in the endowment

economy. The excess demand on the goods market now reads

dK(β) =

∫
c(a, s) d Φa,s +K ′ −K(1− δ)−AF (L,K).
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