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The opposing effects of isotropic and anisotropic attraction
on association kinetics of proteins and colloids

Arthur C. Newton, Ramses Kools, David W. H. Swenson, and Peter G. Bolhuis
Van ’t Hoff Institute for Molecular Sciences, Universiteit van Amsterdam, Science Park 904,
1098 XH Amsterdam, The Netherlands

(Received 17 May 2017; accepted 22 September 2017; published online 16 October 2017)

The association and dissociation of particles via specific anisotropic interactions is a fundamental
process, both in biology (proteins) and in soft matter (colloidal patchy particles). The presence of
alternative binding sites can lead to multiple productive states and also to non-productive “decoy” or
intermediate states. Besides anisotropic interactions, particles can experience non-specific isotropic
interactions. We employ single replica transition interface sampling to investigate how adding a
non-productive binding site or a nonspecific isotropic interaction alters the dimerization kinetics of
a generic patchy particle model. The addition of a decoy binding site reduces the association rate
constant, independent of the site’s position, while adding an isotropic interaction increases it due
to an increased rebinding probability. Surprisingly, the association kinetics becomes non-monotonic
for a tetramer complex formed by multivalent patchy particles. While seemingly identical to two-
particle binding with a decoy state, the cooperativity of binding multiple particles leads to a kinetic
optimum. Our results are relevant for the understanding and modeling of biochemical networks and
self-assembly processes. Published by AIP Publishing. https://doi.org/10.1063/1.5006485

I. INTRODUCTION

Association and dissociation of proteins, such as proteins
binding to DNA,1 ligands binding to receptors, and proteins
forming multicomponent complexes, are basic steps in many
biochemically relevant processes such as gene regulation, sig-
naling, and intercellular communication.2–7 Knowledge of the
association and dissociation kinetics is crucial for understand-
ing the balance of the biochemical network and cascade reac-
tions and why such reactions are of processive or distributive
nature.8,9 Proteins usually bind via specific interaction sites in a
diffusion-influenced reaction to form a productive target struc-
ture,3,10 stabilized by specific hydrophobic interaction, hydro-
gen bonds, or electrostatic interactions, which can be modeled
by anisotropic, angular dependent potentials11,12 (provided
large conformational changes do not play a role). Proteins and
protein complexes can have several similar or identical target
sites, leading to multiple productive bound states.8,13 Inter-
actions can also lead to a trapped decoy state: a (metastable)
on- or off-pathway intermediate state. Finally, proteins interact
with an (more or less) isotropic effective potential, for instance,
due to van der Waals or depletion forces.6,14 Because of the
anisotropic effective interaction, the possibility of multiple
(rebinding) pathways, and the presence of isotropic potentials,
it is not trivial to predict how additional non-specific sites affect
the overall association rate constant towards a productive target
structure.

Anisotropic interactions also play a role in the design
of novel self-assembled materials, as colloidal particles with
specific binding sites can be synthesized.15,16 The particles’
patchiness and multi-valency alter the kinetic pathways they
take to reach the most stable state and subsequently form

higher order phases.11,17–19 Detailed knowledge of association
kinetics helps us to understand and design complex colloidal
self-assembly.20

The major question that we address here is as follows:
How does the association kinetics depend on the location,
strength, and shape (anisotropic or isotropic) of additional non-
productive interactions? To answer this fundamental question
we employ molecular simulation of a general patchy-particle
model that can represent proteins and patchy colloids.12,21–26

Neglecting hydrodynamics, simulating proteins, or colloids
dynamics in a solution requires a stochastic technique such as
Brownian dynamics or Dynamic Monte Carlo (DMC).27 As
brute force calculation of accurate (un)binding rate constants
is hampered by large energetic and entropic barriers caused by
strong binding and anisotropy of the interaction, we employ
the Single Replica Transition Interface Sampling (SRTIS)
method,28,29 an advanced path sampling method enabling
numerically the exact treatment of the association and dissoci-
ation kinetics by efficient generation of unbiased rare pathways
of all the relevant transitions. The combination of the simpli-
fied protein model and SRTIS gives us the ability to study many
interaction parameters, which would otherwise be intractable,
but we stress that our results generalize to arbitrarily complex
potentials.

In the first part of this work, we focus on dimeriza-
tion kinetics, where we find that anisotropic decoy interac-
tions act as kinetic traps and suppress association kinetics
but that an additional isotropic interaction opposes this effect
and enhances association kinetics again. We show, using our
path sampling methodology, how this kinetic enhancement is
largely due to rebinding pathways to the target state. Hav-
ing thus set the stage, in the second part, we investigate

0021-9606/2017/147(15)/155101/12/$30.00 147, 155101-1 Published by AIP Publishing.

https://doi.org/10.1063/1.5006485
https://doi.org/10.1063/1.5006485
https://doi.org/10.1063/1.5006485
http://crossmark.crossref.org/dialog/?doi=10.1063/1.5006485&domain=pdf&date_stamp=2017-10-16


155101-2 Newton et al. J. Chem. Phys. 147, 155101 (2017)

association kinetics of a larger cluster, in this case a tetramer.
Surprisingly, as a function of the isotropic interaction strength,
the tetramer association kinetics behaves non-monotonically.
An initial enhancement in association is offset by a complete
suppression at a higher isotropic strength. Using the insights
obtained from the dimerization kinetics, we can explain these
opposing effects in terms of an induced decoy state due to
cooperative interactions.

The remainder of the paper is organized as follows. After
a description of the used model, the DMC dynamics, and the
SRTIS method, we present and discuss the results. We end
with concluding remarks.

II. METHODS
A. Model

For the case of two-particle dimerization, we consider two
particles where one particle (1) has two binding sites, one tar-
get t, and one decoy site d, whereas the other particle (2) has
only one binding site b (see Fig. 1). This system has three meta-
stable states: a bound (target) state T when site b is bound to
target site t, a nonproductive decoy state D when site b is bound
to decoy site d, and an unbound state U when particles are
far apart. We model the interaction between the particles and
the patches based on a 24-12 Lennard-Jones (LJ)-like poten-
tial. This potential is of shorter range than the standard 12-6
Lennard-Jones (LJ) potential. As such the phase behavior of a
many-particle system exhibits a metastable liquid vapor coex-
istence line with respect to the gas solid coexistence,30 similar
to protein solutions.

The total potential is a superposition of a strongly
repulsive Weeks-Chandler-Andersen-like potential,31,32 an
isotropic attractive potential, and the minimum of two attrac-
tive anisotropic angle dependent potentials,

U12(r12,Ω1,Ω2) = Urep(r12) + Uiso(r12)

+ min [Ubt(r12,Ω1,Ω2), Ubd(r12,Ω1,Ω2)],

(1)

where r12 = r2 � r1 is the inter-particle vector with ri the
coordinates of particle i andΩ1,2 denote the orientations of the
particles, stored in quaternion form. The min function returns

FIG. 1. Left: Cartoon image of the patchy particle model (particle 1 orange,
particle 2 blue) with the angle between decoy and target site, ψ, distance
between particles r = |r12 |, patch (unit) vector pi, and corresponding angle
θ i. Middle: states T and D are depicted. Right: Potential energy surface as
a function of the distance between particles, r, and the shift in orientation,
θ for ψ = 120◦, εD = 10kBT, εT = 15kBT, ε iso = 4kBT, δ = 20◦ showing
clearly the two potential minima due to the two patches and additionally the
low isotropic attraction.

the smaller of its arguments and is introduced to avoid spurious
interference of two patchy interactions that are near each other.
The isotropic WCA-like repulsive potential is given by

Urep(r12) =



4.0
[(
σ
r

)24
−

(
σ
r

)12
+ 1

4

]
if r ≤ 2

1
12σ

0 if r > 2
1

12σ
, (2)

where r = |r12| is the distance between particles and σ deter-
mines the diameter of the particle. This repulsive interaction
provides the basic hard core interaction, even in the absence
of the isotropic potential. The isotropic interaction is given by

Uiso(r12) =



4.0ε iso

[(
σ
r

)24
−

(
σ
r

)12
]

if r ≤ rc

0 if r > rc

, (3)

where ε iso is the strength of the isotropic potential and rc is
the potential cutoff, beyond which the potential vanishes. For
simplicity, we took a Lennard-Jones-like form. The repulsive
part of this isotropic potential will also contribute to the hard
core nature of the particle. The anisotropic patchy interaction
between b and t is given for r ≤ rc by

Ubt(r12,Ω1,Ω2) = 4.0εT

[(
σ

r

)24
−

(
σ

r

)12
]
Sbt(r12,Ω1,Ω2)

(4)
and zero otherwise, where εT is the strength of the patchy
interaction between b and t. The patchy interaction between b
and d is defined similarly,

Ubd(r12,Ω1,Ω2) = 4.0εD

[(
σ

r

)24
−

(
σ

r

)12
]
Sbd(r12,Ω1,Ω2),

(5)
where εD is the strength of the patchy interaction between b and
d. The continuous patch function Sij(Ω1,Ω2) gives a penalty
for misalignment,

Sij(r12,Ω1,Ω2) = exp *
,
−
θ2

i + θ2
j

2δ2
+
-

, (6)

where δ defines the patch angular width, θt = arccos(pt · r12/r),
θd = arccos(pd · r12/r), θb = arccos(pb · r21/r), with pk

the (unit) vector defining patch pk (with k ∈ {b, d, t}) on its
respective particle (1 or 2), rotated from the particle frame
to the system frame along Ω1,2. Note that for binding site
b, the inter-particle vector r21 =�r12 is reversed. Finally,
we use the angle ψ = arccos(pd · pt) to describe the angu-
lar distance between the patches d and t. The interaction
between particles can be easily tuned via the patch-patch
interaction strengths εT , εD, the isotropic interaction strength
ε iso, and the angular width δ. Proteins usually have a spe-
cific (narrow) patchy interaction; therefore, the patch-width
is chosen to be small, δ = 20◦. This patch-width was shown
to reproduce the gas-liquid curves of protein solutions such
as γ-crystallin and lysozyme quite well,33 albeit with more
patches. A similar patch width was used to study protein
crystallization.12 Naturally, an even smaller patch-width is
also allowed by the model; however, a much smaller patch-
width also dramatically restricts the time step in the dynam-
ics. An example of the potential for the dimer is shown in
Fig. 1.

For the constrained tetramer, we employed the same
model between each pair of particles of the complex as for the
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two-particle system. Each particle has three patches aligned
along the vertices of the perfectly formed tetramer. There
is no additional decoy site defined. The total energy for the
constrained tetramer is

U tetr
tot (r4,Ω4) =

4∑
i<j

Urep(rij) + Uiso(rij)

+
4∑

i<j

3∑
k<l

Ukl(rij,Ωi,Ωj), (7)

where the superscript 4 denotes the fact that all particle posi-
tions r and orientations Ω are in principle taken into account.
The first (double) sum on the r.h.s. is over each particle pair
in the tetramer, and the second (double) sum is over the patch
pairs k,l. The potential Ukl is defined similarly to Eq. (4).

B. Dynamic Monte Carlo

We use Dynamic Monte Carlo (DMC) to propagate the
system in time. By using small translation and rotational step
sizes, time evolution via MC dynamics numerically solves the
Fokker-Planck equations which represent the Brownian move-
ment of proteins in solution.21,27 A translation move displaces
a randomly chosen particle by a random amount in the inter-
val [�δt , δt] and a rotation move rotates a randomly chosen
particle over an angle randomly chosen between [0, δr]. The
maximum translational displacement is set to 0.005σ for all
cases. The rotational step size is chosen to obey the rotational
Stokes-Einstein relation, i.e.,

δt

δr
= σ

√
ār

āt

Dt

3Dr
, (8)

where Dt , Dr denote the translational and rotational diffu-
sion constant, respectively, and the average translational and
rotational acceptance ratios, āt and ār are always higher than
0.7. It has been demonstrated that this regime leads to proper
diffusive dynamics.27,34

Taking a colloidal suspension in water, with colloids of
size σ = 1 µm, and using the Stokes-Einstein relation to com-
pute the translational diffusion, D0

t = kBT/(3πησ), we can
estimate the actual time step as ∆t = δ2

t āt/(6D0
t ). In the col-

loid case, every DMC cycle corresponds roughly to 7 µs. For
proteins, which are roughly a hundred times smaller, this time
becomes ∼102 ns.

C. Path sampling with SRTIS

Here we use Single Replica Transition Interface Sam-
pling (SRTIS) to obtain the full (un)binding path ensemble
between the defined stable states.28,29 A path is defined as
xL ≡ {x0, x1, . . . xL }, a series of L time frames or slices. Each
frame is a point in configuration space x= {rN ,ΩN }, with r and
Ω the coordinates and orientation (in quaternion representa-
tion) of each particle in the N-particle system (note the differ-
ence between this definition and previous definitions in, e.g.,
Refs. 28, 29, 35, and 36, as here we do not carry the momenta,
due to the use of DMC, but we do carry the orientation of the
particles).

Consider a set of (meta)stable states M. In the systems
studied here, the states for the dimer are M ≡ {T , D, U} and

those for the tetramer are M ≡ {U, T , I , D}. See Sec. III C for
an explanation of these latter states. For each state I ∈ M, we
define a set of m non-intersecting hypersurfaces (called inter-
faces37) λI = {λ

0
I, λ1

I . . . λ
m
I } based on an order parameter λ

(e.g., a distance or a potential energy). We use the convention
here that for all interface and indicator functions, a superscript
refers to the interface index, while a subscript denotes the
state the interface belongs to. This notation is slightly different
than in Refs. 28 and 29. Note that while each set of interfaces
belonging to a state I is non-intersecting, interfaces from dif-
ferent states are allowed to intersect. Also note that the first
interface λ0

I is located outside the definition of the stable state
I. See Sec. II G for precise stable state and interface definitions
for the dimer and tetramer systems.

In SRTIS, a single replica performs a random walk among
the interfaces while simultaneously sampling path space by
employing five different path moves. The primary move is the
one-way shooting move from a point at a current interface.36

From the time slice at which the path first crosses the current
interface, a partial trial path is generated either in the forward
or backward direction and accepted if this partial path ends
in any stable state, irrespective of the path length (there is of
course a hard-coded maximum path length to prevent mem-
ory overflow). The complementary part of the full trajectory
is taken from the old path.36 Note that the acceptance ratio
becomes close to unity because all generated paths already
cross the interface. Due to the stochastic nature of the dynam-
ics, the newly generated path will sample a different part of
path space. In order to achieve decorrelation between path-
ways, the time-reversal move reverses the pathway in time,
by reversing the order of the frames,35 and an inversion of
the momenta for each frame (this is not needed for Brown-
ian dynamics or DMC). In addition, we use replica swap and
state swap moves. A replica swap move attempts to change
the current interface to a neighbouring interface, under the
condition that the path still crosses this new interface. Uni-
form sampling of all interfaces of a state is achieved by a
Wang-Landau (WL) algorithm, with the acceptance criterion
for a replica swap between interfaces i and j,

Pacc(xL; λi
I → λ

j
I) = h̃j

I[xL] min

1,

gI(λi
I)

gI(λj
I)


, (9)

where the min function returns the smaller of its arguments and
h̃j
I[xL] is a trajectory indicator function that is unity only if the

path starts in I, crosses interface λj
I, and ends in any stable

state (including I). The Wang-Landau bias is imposed through
the density of paths gI(λi

I) which upon visiting λi
I is updated

by multiplying with a Wang-Landau factor exp(fWL). At the
start of the simulation, the densities of paths are initialized to
g(λ) = 1 and f WL = 0.01. Once all replicas have been sampled
uniformly within a certain threshold, the WL factor is halved
until sufficiently small (fWL < 10−5).28

A state swap move attempts to change the current initial
state to a different state when the path is of type I → J with
J , I. This swap move requires a path-reversal, altering a
path of type I→ J into type J→ I. After the state swap, the
set of interfaces belonging to the new initial state is used. The
acceptance probability for the state swap is
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Pacc(xL; λi
I → λ

j
J) = h̃j

J[←−x L] min


1,R

gI(λi
I)

gI(λj
J)


, (10)

where the arrow to the left in←−x L denotes the reverse order of the
trial path and the factor R is unity if a state swap is performed
only between the outermost interfaces or only between inter-
faces λk

I and λk
J with identical indices k, andR = mI/mJ is the

ratio of the number of replicas of states I and J if one allows
swaps between all interfaces. When states are nested within
interfaces, it can be advantageous to allow for all-interface
state swaps.

Finally, to randomize within the stable states, we employ
the so-called “minus move,”36,38 sampling an additional first
interface ensemble,39 which lets the path evolve (backward or
forward in time) within a state until it exits the state and crosses
the first interface. The minus interface ensemble can always
exchange with the first (regular) interface ensemble via replica
exchange.

D. Rate constant calculation

The rate constant between any two states I and J is given
by37,40

kIJ = ΦIP(λ0
J |λ

1
I), (11)

whereΦI is the flux out of state I through the innermost inter-
face λ1

I and P(λ0
J |λ

1
I) is the conditional crossing probability

to reach state J from λ1
I, with λ0

J the state definition of J.

The flux is calculated as ΦI =
(〈
τ0
I

〉
+

〈
τ1
I

〉)−1
, where

〈
τ0
I

〉
is the average dwell time in the stable state I, before cross-
ing λ1

I, which can be calculated directly from the length of
the pathways generated by the minus move. Correspondingly,〈
τ1
I

〉
is the average time it takes from the first interface back

to the stable state I and follows directly from the length of the
pathways sampled in the first interface replica.

It is interesting to note that the flux out of the unbound state
U can change with the total simulation volume V. As for the
unbound state, τ0

U is given by free diffusion when the particles
are beyond 2.0σ apart, the dependence of τ0

U on volume V can
be solved analytically, and the total flux out of state U is given
by

ΦU =

(
〈τ1

U〉 + 〈τ0
U〉

V
V0

)−1

(12)

for arbitrary volume V > V0, where V0 denotes the volume at
which the diffusive dwell time τU

0 is computed.
P(λ0

J |λ
1
I) is calculated by joining all obtained crossing

probabilities for every replica of a state via Weighted His-
togram Analysis Method (WHAM).41,42 As we sample all
association and dissociation transitions, we obtain the full rate
M ×M matrix K (i.e., the matrix form of kIJ). Note that the
obtained rate expressions are exact under the assumption of
rare event (exponential) kinetics between the states. While the
kinetics of diffusion-controlled association depends on dimen-
sionality, in our work this kinetics is dominated by diffusion
in three dimensions, for which the exploration of space is non-
compact.43 Even if the system can temporarily switch to a
quasi-2D diffusion when particles are bound by an isotropic
nonspecific potential, the corresponding time scales for this

diffusion in reduced dimensionality are (especially for larger
volumes) always smaller than the time spent in the unbound
state.

In a multiple state system, where states can be nested in
between interfaces of other states, Eq. (11) is not valid anymore
as it assumes that transitions can only occur when the outer-
most interface λm

I has been reached, which is not necessarily
the case for systems which are nested in between interfaces
of other states. If Eq. (11) is used naively, many transitions
would be missed in the rate calculation. One can circumvent
this problem by calculating the rate via the path-type num-
bers introduced in Ref. 29. A path-type number is defined as
ni
IJ(λk

I), which in words is the number of paths in replica i
joining states I and J that have crossed at maximum inter-
face λk

I (and thus by definition also all interfaces below k).
The superscript i indicates that the paths should obey the con-
dition of replica i in the ensemble. Because we have set the
maximum interface, we can reweight these numbers with the
WHAM weights obtained from reweighting of the crossing
probability as follows:

n̄IJ(λk
I) = w̄k

I

m∑
i=1

ni
IJ(λk

I), (13)

with w̄k
I = (

∑k
l 1/w l

I)−1, where w l
I are the optimized WHAM

weights for paths that have crossed interface λk
I at maxi-

mum (note that these should be the same as the weights w l
I

obtained via the crossing probability). Now we have the cor-
rectly reweighted number of paths n̄IJ(λk

I) joining state Iwith
state J that at maximum have crossed interface λk

I. Subse-
quently summing over all interfaces k gives the reweighted
number of paths coming from state I and ending in state J,

ñIJ =
m∑

k=1

n̄IJ(λk
I). (14)

Because the Wang-Landau scheme biases the simulation to
sample all states equally via the state-swap bias, the path-
numbers for each state need to be corrected for this bias. In an
unbiased ensemble, eachIJ path is as likely as the reversedJI
path. Therefore, we split the obtained path-type matrix, ñIJ,
into M matrices and symmetrize the Ith matrix: ñJI = ñIJ,
setting all other entries of the Ith matrix to zero, resulting
in M different matrices with only a nonzero Ith row and a
nonzero Jth column. Subsequently, all M matrices are joined
via WHAM giving the individual weights for each state [these
weights can also be used to calculate the coefficients, cI, in
the reweighted path probability, see Eq. (16)]. This leads to a
M ×M transition path type number matrix, ñIJ. Normalizing
the matrix with the total numbers of paths going out of a state∑

J ñIJ yields

P(λ0
J |λ

1
I) =

ñIJ∑
J∈M ñIJ

. (15)

This normalized transition probability matrix can be directly
used in Eq. (11).

E. Free energy landscapes and Reactive Path Density
(RPD) from the reweighted path ensemble

In SRTIS, we obtain the Wang-Landau biased path ensem-
ble for each state I ∈ M. We can reweight this biased path
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ensemble, by using the same WHAM reweighting proce-
dure as explained above. Defining the phase space volume
Λ

j
I = {x|λ(x) > λ

j
I} as the volume outside interface λj

I, the
reweighted path probability PRPE[xL] for observing a path xL

in an unbiased path ensemble is

PRPE[xL] =
∑
I∈M

cI


w1
IP−
Λ1

[xL] +
n−1∑
j=1

PIΛj [x
L]WI[xL]


,

(16)

where PIΛj and P−
Λ1I denote the (biased) path probabil-

ity for interface j of state I and the minus interface,
respectively. (In Ref. 39, this minus interface ensemble is
labeled as “additional first interface ensemble.” Note also
that we rearranged the sub- and superscripts with respect to
Refs. 28, 29, and 39 to be consistent with the discussion in
Secs. II C and II D.) The constants cI are obtained via matching
the density of paths, gI[xL], between states. The factor WI[xL]
=

∑n−1
i=1 w̄

i
Iθ(λmax

I [xL]− λi
I)θ(λi+1 − λ

max
I [xL]) selects the cor-

rect weight w̄ i
I for a path that has its maximum λ between

interfaces i and i + 1. Here, θ(x) denotes the Heaviside theta
function and λmax[xL] returns the maximum λ value along a
path. Similar to Sec. II D, w̄ i

I = (
∑i

j=1 1/w j
I)−1, where w j

I are
the optimized WHAM weights for each interface histogram.
Note that this reweighting is on the full trajectories and not on
the crossing histograms only.44

From the reweighted path ensemble, we can calculate the
free energy landscape F(q),39

F(q)= −kBT log p(q) + const,

p(q)= C
∫

DxLPRPE[xL]
∑L

k=0 δ[q(xk) − q],
(17)

where p(q) is the equilibrium probability to observe a (combi-
nation of) collective variable(s) q, C is a normalizing constant,
∫ DxL is the (formal) path integral over the ensemble of path-
ways xL, q(xk) denote the collective variables (e.g., for the
dimer and tetramer systems studied here, the angle φ and the
distance r, see Sec. III) at time slice xk . The sum over delta
functions projects each slice of the reweighted paths on the
collective variable space q to yield the probability p(q).

The reactive path density is defined as39

nr(q) =
∫

DxLPRPE[xL]hI(x0)hJ(xL)hq(xL), (18)

where the function hq(xL) is unity if the path visits q, and
zero otherwise. hI(x0) and hJ(xL) ensure that only reactive
pathways are taken into account. Note that a path density does
not add up to unity.

F. Transition Path Theory (TPT)

In order to understand how non-specific binding affects
the overall binding rate, the rate from U to D and D to T
has to be considered (and the corresponding rates to I for the
tetramer). Transition Path Theory (TPT) allows us to calculate
the overall association rate kTPT

UT .45 An important quantity in
this framework is the committor probability, q+

i , which for
binding processes is the probability to reach the bound state,
T, from intermediate state i before reaching the unbound state
U. By definition, q+

U = 0 and q+
T = 1. Generally speaking, the

other committor probabilities are given by solving a linear set
of equations,

q+
i =

∑
k∈I

Tikq+
k + TiT , (19)

where T = exp(Kτ) is the transition probability matrix in a
certain lag time τ and I are all intermediate states. For the case
of the dimer M ≡ {T , D, U}, we only define one intermediate
state, i.e., I = D, and therefore the committor probability q+

D is
easily derived,

q+
D =

TDT

TDT + TDU
. (20)

The overall rate kTPT
UT is subsequently given by

kTPT
UT =

πU (TUT + TUDq+
D)

τ(πU + πDq−D)
, (21)

where q−D = 1 − q+
D, and πI is the population of state I. The

dissociation rate constant kTPT
TU can be formulated in a similar

fashion.
In addition to the overall (un)binding rate, also the flux

between states during association (or dissociation) can be cal-
culated. Here we are mainly interested in the ratio of the flux
as follows:

f +
UT

f +
UDT

=
TUT

TUDq+
D

, (22)

which gives an insight whether association primarily occurs
indirectly via state D or directly from U to T.

G. Simulation details
1. SRTIS

For two-particle dimerization, we consider the three pos-
sible (meta)stable states: a bound state T, defined when the
patchy interaction Ubt < −0.9εT , a decoy intermediate state D
defined when the interaction Ubd < −0.9εD, and the unbound
state when the particles are separated more than rc. All inter-
faces around stable states are defined through the energy of
the system. For the bound states T and D, we set interfaces
for every 1.5kBT starting from the boundary of the state until
the energy is zero. Interfaces for state U are set at low val-
ues of energy to guide the system towards state T or D and to
be sure whether paths with low energy are properly sampled:
λU = {0.0,−10−9,−10−3,−10−1,−0.4,−1.0}kBT .21 An exam-
ple of a converged simulation (εD = 8kBT, ε iso = 0.0,ψ = 120◦)
showed that log g(λU ) = [0,−0.25,−3.2,−5.5,−6.0,−6.3],
which validates the use of interfaces with very small energy
values as the crossing probability decreases quickly for such
small values. The interfaces could have been optimized further;
however, this would not change the results.

For the constrained tetramer, an additional state I is
defined, where only two bonds are formed and the remaining
patches are not allowed to form bonds via barrier-less rotation
(see Sec. III C). State T is defined when all three bonds are
formed, and U tetr

tot < −2.7εT . State D is defined when no bonds
are formed and the particle is on the opposite side of the com-
plex, and U tetr

tot < −2.7ε iso. The unbound state U is defined
when the motile particle is separated more than rc to any other
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particle of the complex. The interfaces of tetramer states are
similarly defined as states defined for two particles.

SRTIS simulations were performed with DMC in a cubic
periodic box of size 5.7σ. Frames were saved every ten DMC
steps. The maximum path length was set to 105 frames, to pre-
vent memory overflow (Note that this maximum path length
only refers to the transition path times between states, not the
dwell times in the states, which might be much longer). A pro-
duction cycle of 5 × 105 SRTIS cycles was performed after the
scale factor for the Wang-Landau biasing was sufficiently low
(<10−5), where every cycle consisted of 10 shooting, reversal,
replica swap and state swap moves. Averages for the cross-
ing probability and path densities were sampled after each
move.

2. Potential

For the two-particle system, the attractive strength and the
patch angular width of the target site is set to, εT = 15kBT and
δ = 20◦ degrees, respectively. For the constrained tetramer
complex, the attractive strength and the patch angular width
of the target sites is set to εT = 5kBT and δ = 20◦ degrees,
respectively. The potential is truncated at rc = 2.0σ.

The strengths of attraction for the dimer were chosen such
that the binding affinities are comparable to real proteins, i.e.,
in the order nM�1

� µM�1, corresponding to dissociation rates
of order koff ≈ 10−3 − 100 s�1. The strength of the tetramer
is comparable to the patch strength used in the work of Fusco
and Charbonneau.12 The non-specific isotropic strength was
varied up to ε iso = 10, where the association rate reaches a
plateau.

III. RESULTS AND DISCUSSION
A. Effect of the decoy binding site on kinetics
1. Rate matrix and population

We first study how an additional decoy binding site affects
the overall dimerization rate constant. Consider two particles
of diameter σ interacting via an attractive angle-dependent,
short-ranged 24-12 Lennard-Jones (LJ) potential with strength
εT = 15kBT and a patch-width δ = 20◦ (a similar patch-width
was used to study proteins12,33). For a protein size σ = 5 nm,
this choice corresponds to a dissociation constant of order
µM.46 In addition, one particle has a decoy binding site placed
under an angleψ away from the target site with the same patch-
width and with attractive strength εD (see Figs. 1 and 2). This
system has three meta-stable states: a bound (target) state T, a
nonproductive decoy state D, and an unbound state U, which,
for the chosen box size of 5.7σ, has the largest equilibrium
population.

We perform SRTIS simulations for several values of the
decoy strength εD/kBT = {2, 4, 6, 8, 10, 12, 14, 16}. For each
transition, we compute the rate constant via Eq. (15). The
resulting rate matrix is plotted in Fig. 3 in units of DMC time
steps. The units can be easily translated to real time, depending
on the system that the model represents. Using the conversion
factors mentioned in Sec. II B, we find that for colloids with
a diameter σ = 1 µm and a time step of 7 µs, a rate constant
of 10�7 corresponds to roughly 0.014 s�1. For proteins, with a

FIG. 2. Left: Association transitions between unbound (U), decoy (D), and
target (T ) states. Right: Cartoon image of the patchy particle model. The decoy
(green) and target (black) sites are separated by angleψ. The particle distance
is r = |r12 |, with r12 the center of mass vector. The anglesφi = arccos(r12 ·pi/r)
between the patch vector pi and center of mass vector r12 track the orientation.
Middle: The free energy landscape obtained from the sampled path ensembles
for ψ = 120◦, εD = 10kBT, projected on distance, r, and angle φ = φ1 + φ2.
The bound state T is clearly visible at r = 1.0σ and φ = 0. The unbound
state U is defined by r ≥ 2.0σ. The decoy state D is visible as a minimum at
φ = 120◦.

diameter of 10 nm and a DMC time step of around 102 ns, a
rate constant of 10�7 corresponds approximately to 1 s�1.

Rate constants kTU and kUT are nearly independent of
εD, as expected. Only kTD and kDT are dependent on ψ,
demonstrating that the rebinding probability from state D
to T is significantly larger for ψ = 60◦. Elements kDT and
kDU show expected Arrhenius-like behavior (i.e., an exponen-
tial dependence on ε) for εD & 8kBT , whereas at low values
of εD, the rate constant becomes more diffusion influenced
as seen from the nonlinear dependence. Note that while the
standard usage of “Arrhenius behavior” is to describe the
exponential dependence of the rate with the inverse tem-
perature T, we also use it here for the exponential depen-
dence of the rate with the attraction strength ε . Since ε

FIG. 3. Rate matrix, K, for different angles of the decoy patch, ψ = 60◦

(circles), ψ = 120◦ (squares), and ψ = 180◦ (triangles). Rate constants kTU
and kUT are hardly dependent on εD as expected. Moreover, only kTD and
kDT are dependent on ψ. Elements kDT and kDU show expected Arrhenius-
like behaviour after εD ≈ 8kBT . However, at low values of εD, diffusion limits
become more dominant. All rates are reported in units of DMC time steps.
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FIG. 4. Equilibrium population of T, D, and U as a function of the decoy
interaction strength for different values of ψ = 60◦ (circles), 120◦ (squares),
and 180◦ (triangles). Clearly, the decoy state only becomes higher populated
when εD > εT . Moreover, due to the box size, the population of U is always
higher. Also note that the populations are not dependent on ψ.

always appears in combination with 1/kBT, this identification is
natural.

From the rate matrix, we can obtain the equilibrium pop-
ulation by computing the zeroth eigenvector or alternatively
apply the long time limit of p(t) = exp(Kt). These populations
are shown in Fig. 4. The decoy state only has a larger popu-
lation than the bound state when εD > εT . Moreover, due to
the size of the box, the population of U is always the high-
est of the three states. While the populations shift toward D
with increasing εD, they are independent of ψ, indicating that
the effect of rebinding is only affecting the kinetics of the sys-
tem, not the thermodynamic equilibrium, as expected [see also
the free energy landscape projection of the path ensembles in
Fig. 2(b)].

2. Effective rate constants

We extract the overall rate constants, kTPT
UT and kTPT

TU , from
the rate matrix, using Transition Path Theory (TPT)45 via
Eq. (21), shown as a function of εD in Fig. 5.

As expected, the overall association rate constant
kon ≡ kTPT

UT does not change much for low εD but decreases
for high εD > 12kBT , as pathways that reach D will not sig-
nificantly contribute to association. Also, the dissociation rate
constant koff ≡ kTPT

TU drops only minimally at high εD = 16kBT.
The transition from D to T is less likely than that from D to
U within these conditions, as the patch alignment requirement
limits the possible kinetic pathways to state T.

One could argue that there is no increase in the associa-
tion rate constant due to the fact that the volume of the box is
small. Usual protein concentrations are much lower (e.g., nM
� µM) than what is simulated here (∼µM) when σ is taken as

FIG. 5. Overall association (left) and dissociation (right) rate constants cal-
culated via TPT as a function of εD for different values of ψ = 60◦ (circles),
120◦ (squares), and 180◦ (triangles). Even though the reactive path density in
Fig. 6 shows probability from D to T, the decoy state has little effect on the
overall association or dissociation irrespective of the position relative to the
target site, due to kDU > kDT for each εD. At high εD, the decoy site has a
negative effect on the association rate constant which halves at high εD almost
independent of ψ.

5 � 10 nm, a typical protein size. Naively, one would assume
that with larger volume the presence of an additional bind-
ing site which keeps the particles in close proximity should
increase the rate constant relatively to no additional binding
site, due to rebinding. However, kDU is always significantly
larger than kDT (see Fig. 3) which shows that when the vol-
ume is enlarged, the non-specific site will still not contribute
to the association rate constant as the system will more likely
go back to the unbound state than progress towards the bound
state. It is interesting that the process from D to T is apparently
more unlikely than that from D to U within these conditions,
which is a manifestation of the fact that the requirement of pre-
cise alignment to bind due to the patchiness of particles limits
the kinetic pathways possible for systems to reach their most
stable state. Of course, when the decoy binding site moves
even closer to the target state, this will change due to lowering
of the D-T barrier.

3. Free energy and reaction path density

In the first row of Fig. 6, we show the free energy land-
scape for three different values of ψ obtained via Eq. (17) with
the distance between the centers of the two particles, r, and
the angle φ = φ1 + φ2, where φi = arccos(r12 · pi/r), as the

FIG. 6. First row: Free energy landscape for distance between the centers, r,
and the sum of the angles of patch vectors with the inter-particle vector, φ for
εD = 12kBT and from left to right ψ = 60◦, 120◦, and 180◦. The free energy
is shifted such that the minimum value (T state) is zero. All minima due to
the stable states are visible where it is clear where the D state is located as ψ
is changed. Second row: Corresponding reactive path density (RPD) for state
D. There is only a significant probability from D to T for ψ = 60◦. However,
the transition from D to U dominates the reactive transitions out of state D.
Note that integration of a reactive path distribution does not result in unity.
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FIG. 7. Rate matrix, K, for different angles of the decoy patch, ψ = 60◦

(circles), ψ = 120◦ (squares), and ψ = 180◦ (triangles) with a non-specific
isotropic interaction of ε iso = 10kBT. Rate constants kTU and kUT are not
dependent on εD and there is no dependency on ψ for kDU as expected.
For the rebinding rate constants kDT and kTD, there is no difference between
ψ = 120◦ or 180◦, only for ψ = 60◦.

collective variables that capture the translational and rotational
degrees of freedom during the (un)binding process between all
three states (see also Fig. 2). The bound state T is clearly visi-
ble at r = 1.0σ and φ = 0. (Note that the φi variable is identical
to the θi variable used in the potential energy. We still use two
different variable names, to emphasize that these variables do
not have to be the same in general, since we are free to choose
any collective variable.)

FIG. 8. Rate matrix, K, for different angles of the decoy patch, ψ = 60◦ (cir-
cles), ψ = 120◦ (squares), and ψ = 180◦ (triangles) with a decoy interaction
of εD = 8kBT. Naturally, kTU and kDU show Arrhenius-like behavior for strong
ε iso. There is no dependency on ψ for kTU , kUT , and kDU as expected. Inter-
estingly, for ψ = 120◦ and 180◦, kDT and kTD level off around εiso/kBT = 4,
whereas for ψ = 60◦, there is no dependency at all on ε iso.

The unbound state is located beyond the line given by
r = 2.0σ (see Fig. 2). The intermediate state D is located
at different values of φ corresponding to ψ = 60◦, 120◦,
or 180◦. Mechanistic information can be obtained from the
path ensemble by plotting the reactive path density (RPD). In
Fig. 6, the RPD is plotted for state D defined by Eq. (18).
The RPD demonstrates that a transition from T to D instead
of U is very improbable (has a low density) when ψ is large,
as most probably paths end up in U (located at r = 2.0σ),
which corroborates with the low values of kDT . Only for
small ψ is there a significant probability to transition from
D to T.

B. Effect of isotropic non-specific interaction
1. Rate matrices

Next, we add a non-specific isotropic interaction between
the two particles of the dimer and conduct SRTIS simulations
for a range of values ε iso/kBT = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
each for different values of εD.

In Fig. 7, the elements of the rate matrices are shown as a
function of εD for ε iso = 10kBT, while in Figs. 8 and 9, the rate
matrix elements are plotted as a function of ε iso for εD = 8kBT
and εD = 16kBT , respectively.

Comparing Figs. 3 and 7, an isotropic interaction ε iso

= 10kBT increases the binding rate constants kUT and kUD

by an order of magnitude relative to the rate constants without
the isotropic attraction. Furthermore, Fig. 7 shows no differ-
ence in the rebinding rate constant kTD for ψ = 120◦ and 180◦,
whereas when ψ = 60◦, kTD increases more sharply.

The rate matrices in Figs. 8 and 9 show that kTU and kDU

behave Arrhenius-like for strong ε iso or εD. For small εD, the
kinetics becomes dominated by ε iso, and vice versa. Interest-
ingly, both kDT and kTD reach a plateau for ε iso/kBT > 4, where
rebinding dominates over escape. Moreover, for ψ = 60◦, kDT

FIG. 9. Rate matrix, K, for different angles of the decoy patch, ψ = 60◦ (cir-
cles), ψ = 120◦ (squares), and ψ = 180◦ (triangles) with a decoy interaction
of εD = 16kBT. Similar trends are visible as in Fig. 8, except for kDU and kDT
which are significantly lower.
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and kTD are relatively high and hardly change with ε iso, indi-
cating that the chance of rebinding is high for small ψ, due to a
(partial) overlap of the patches, lowering the barrier for the D to
T transition. For larger ψ angles, increasing the ε iso isotropic
interaction leads to an enhanced rebinding probability. Note
that changing εD only really alters the exit rate constants from
decoy state D (see also Fig. 7).

2. Path density

Figure 10 gives mechanistic information of the rebind-
ing effect in the form of the reactive path density (RPD)
for transitions out of D, obtained from the path ensembles.
The rebinding probability increases between ε iso = 2kBT and
ε iso = 6kBT and saturates for high ε iso = 12kBT . While a tran-
sition from D to T instead of U is probable (has a high density)
for small ψ or high ε iso, it is very improbable for large ψ and
small ε iso, as most paths end up in U (r ≥ 2.0σ).

3. Effective rate constants

Figure 11 shows the effect of both non-specific isotropic
interaction ε iso and decoy interaction εD on the overall associa-
tion rate constant, kTPT

UT , computed using Eq. (21). Clearly, kTPT
UT

increases by more than an order of magnitude with the isotropic
interaction ε iso for low decoy interaction εD but eventually
levels off at high attraction, i.e., ε iso & 8. However, adding the
isotropic interaction does not affect the association rate con-
stant for high decoy interaction εD = 16. As the decoy patch
becomes more attractive, the increase in kon gained due to
the non-specific interaction is lost. In this region, it is just as
probable to end up in D as in T, since both the target and
decoy sites are of equal strength. This consequently retards
the overall association toward the target state. The effect of
the decoy strength is clearly to lower kTPT

UT , for each setting
of the ε iso. Note that the opposing effect of the decoy site is
much stronger when there is non-specific isotropic interaction.
This is at first sight surprising but is a direct consequence of the
shift in equilibrium population due to the isotropic interaction,

FIG. 10. Effect of isotropic interaction on the reactive path density (RPD)
for state D with εD = 12kBT as a function of the distance r and the angle
φ, for ψ = 60◦ (top row) and ψ = 180◦ (bottom row), from left to right for
εiso = 2, 6, 12kBT . The transition from D to U dominates the paths out of state
D for low εiso ≤ 6. There is only a significant rebinding probability from D
to T for ψ = 60◦ or for high ε iso.

FIG. 11. Top row: Heat map of the overall association rate 107 × kTPT
UT

(ψ, εiso, εD) for ψ = 60◦ (left) and 180◦ (right). The diagonal lines indicate
the effect of cooperativity in the tetramer on the overall rate constants. For
low ψ, a higher maximum overall association rate constant is reached along
the diagonal. Lower panels: Different cuts through the parameter space for
the overall association rate. Middle row: kTPT

UT (ψ, εiso, εD) for different decoy

strengths, as a function of ε iso. Bottom row: kTPT
UT (ψ, εiso, εD) for different

isotropic strengths, as a function of εD. All rates are in units of DMC time
steps. The rate constants increase with non-specific isotropic interaction but
decrease for high εD values.

making effectively the D � T transition the relevant barrier to
overcome [as is also clear from Eq. (21)].

Non-specific isotropic interactions of more than a few kBT
will lead to condensation. The short-ranged 24-12 LJ potential
used here leads to a metastable vapor-liquid coexistence line
with respect to the fluid-solid line.30 For high ε iso, crystalliza-
tion can only be avoided at very low concentration. Our results
are robust against lowering the concentration (see Fig. 15 of
the supplementary material). Furthermore, by using a shorter
ranged potential, e.g., a 100-50 LJ potential, the fluid-solid line
will shift significantly, whereas the effect of the non-specific
isotropic interaction on the association kinetics will not change
qualitatively.

4. Preferred mechanism

We infer the preferred association mechanism from the
TPT fluxes. Figure 12 plots the net flux ratio f UT /f UDT com-
puted via Eq. (22), for a strong decoy εD = 14. The higher
rebinding probability for a low ψ results in more associat-
ing pathways via D than for high ψ, i.e., a lower flux ratio
f UT /f UDT . Thus, direct paths are dominant for low ε iso and for
high ψ, as rebinding is very rare for these settings. The flux
ratio never drops below unity, even when all paths exiting D
rebind correctly to T, since the chances of going to the D or T
state from the unbound state U are about equal.

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-147-002739
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FIG. 12. Flux ratio f UT /f UDT as a function of ε iso for a decoy site with εD
= 14kBT andψ = 60◦ (circles),ψ = 120◦ (squares), andψ = 180◦ (triangles).
Higher rebinding probability forψ = 60◦ results in lower f UT /f UDT indicating
more reactive pathways from U to T via D compared to higher values of ψ.

C. Constrained tetrahedron formation

Protein complexes frequently consist of more than two
proteins. We study the formation kinetics of a model tetramer
complex in which each protein has three binding sites. The rate
determining step in the tetramer formation is the addition of a
single protein to a correctly formed trimer. In previous work,
we studied the influence of rotational diffusion21 and of the
multivalency47 on the formation kinetics of this “constrained
tetrahedron.”21 Here, we investigate the effect of adding an
isotropic non-specific interaction to each protein. We use the
same interaction potential between particles as for the dimer;
only now the particles have three patches put at the contact
points of a perfect tetrahedral arrangement of the particles
(see Sec. II A). In this patchy particle system, there are four
stable states, U, T, I, and D (see Fig. 13 for a schematic rep-
resentation). Starting in the unbound state U (one particle far

FIG. 13. Top: Cartoon images of states defined for the constrained tetrahedron
system with the motile particle in orange. Bottom: Overall association rate
constant kTPT

UT as a function of ε iso for different concentrations by scaling the
volume with V /V0, where V0 is the simulation volume. The rate constants
are scaled with a factor 10x to fit in the same plot, where V /V0 = 1.0 (black,
x = 7), 10.0 (purple, x = 8), 102 (green, x = 9), 103 (blue, x = 10), 104 (orange,
x = 11), and 105 (red, x = 11). The maximum in the association rate constant
shifts from 4kBT to 8kBT for decreasing concentration.

away from the correctly formed trimer), the incoming parti-
cle can bind to the fixed trimer correctly by forging all three
bonds (the T state) or could be trapped in an intermediate state
where two frustrated patchy bonds are formed. Note that for
this system a patch interaction εT = 5kBT yields the same total
energy for state T as for the dimer. The additional non-specific
isotropic potential results in a fourth (meta)stable state, D,
where the incoming particle is trapped on the opposite side of
the trimer, forming no specific patchy bonds, but only interact-
ing via isotropic potentials. In this state, the attaching protein
interacts with the three particles of the fixed trimer simultane-
ously. Therefore rearrangement into the productive state can
only occur by losing at least one non-specific isotropic interac-
tion. As the trimer can be seen as a rigid body with a (trivalent)
target binding site and the D state as a decoy state, at first sight
this situation seems very similar or (almost) identical to the
binding of two particles with a decoy state, as discussed above.
To investigate the similarity/difference between the two cases,
we compute the 4 × 4 association rate matrix with SRTIS, for
several values of the attractive isotropic interaction, ε iso (see
Fig. 6 of the supplementary material). In Fig. 13, we plot the
overall association rate constant as a function of ε iso. Strik-
ingly, the rate constant increases first and then decreases with
non-specific isotropic interaction. Remarkably, the increase
is relatively strongest for the lowest concentration. The max-
imum in the association rate constant shifts for decreasing
concentration from 4kBT to 8kBT. The behavior of the over-
all dissociation rate constant roughly follows Arrhenius-like
behavior (see Fig. 8 of the supplementary material).

One might think that the case of the constrained tetrahe-
dron would be almost identical to the non-specific decoy case
with only a slightly different geometry. However, the behavior
is qualitatively different due to the cooperativity of the non-
specific interaction in the trimer. This unexpected difference
between the tetramer and the dimer systems can be reconciled
by realizing that for the tetramer, the decoy state potential is
not fixed but changes with ε iso as UD = 3ε iso, ignoring the
configurations in which the attaching protein is bound to two
particles. This corresponds to a dimer with UD = ε iso + εD

so that the two systems behave similarly for approximately
εD = 2ε iso. This relation specifies a diagonal cut through the
parameter space ε iso,εD plotted in the 2D heat map repre-
sentation in Fig. 11. Indeed, the maximum in the association
rate along this diagonal qualitatively explains the behavior of
the tetramer formation. These results indicate that rebinding
effects due to the isotropic potential enhance association for
dimer systems but can suppress it for larger complexes.

IV. CONCLUSIONS

In this work, we have investigated the effect of the pres-
ence of additional binding sites as well as nonspecific isotropic
interaction on the association kinetics of patchy particle col-
loid and protein models. In general, we find that additional
anisotropic potentials suppress overall association kinetics,
while adding an isotropic potential enhances it. This can be
understood in energy landscape terms. An isotropic poten-
tial corresponds to a smooth energy landscape that is easy
to navigate for the dimer. A rougher energy landscape, such

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-147-002739
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-147-002739
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as induced by (deep) potential minima, causes kinetic trap-
ping, hampering the search for global minima. Surprisingly,
the enhancement that is gained by the isotropic potential com-
pletely vanishes for kinetic traps of more than 8 kBT . Our
prediction is thus that natural protein or colloid association
kinetics can accommodate binding traps up to a certain strength
but not much higher. This threshold will depend on potential
shape; a narrower anisotropic potential than the 20◦ angle used
here will raise the threshold; a broader one will lower it. Our
results suggest that if optimal association kinetics is important,
e.g., for signaling or cellular response, evolution should tend
to smooth the energy landscape for binding, although a certain
amount of roughness can be sustained. If such optimal bind-
ing kinetics is selected for, one would even expect an energy
landscape with a gradient toward the binding site.

In addition, the association kinetics of complexes becomes
shape dependent. For the formation of a tetramer, we found
non-monotonic association rate constants as a function of
the nonspecific isotropic interaction, caused by an induced
decoy site. This suggests that for successful complex forma-
tion, a non-specific isotropic interaction has to be limited in
strength, as cooperativity can oppose the enhancement in asso-
ciation kinetics. These insights can also be used as a design
principle for enhancing soft matter self-assembly by dressing
patchy particles with a smooth non-specific isotropic attrac-
tion and ensuring that nonproductive patchy interactions are
not too strong.48 Experimentally, the isotropic potential can
be altered via ionic strength, pH, depletant, or temperature,14

while specific interaction can be designed, e.g., by sequence
mutation.

Our methodology can be applied with arbitrary protein or
colloid potentials. In more complex systems, such as realistic,
large proteins, a challenge will be to construct a reasonable
order parameter describing the interfaces around the states.
In this work, we used the energy of the pair interaction, and
something similar might be appropriate for a more complex
system as well. In general, the problem of the choice of the
order parameter is not solved, although the transition interface
sampling methods are much more forgiving in that respect than
other rare event methods,49 save for straightforward dynamics.

Finally, the applied methodology allows evaluation of rate
matrices up to moderate complexity (up to tens of states). This
is important for the multiscale modeling of biochemical net-
works50,51 and biomolecular or soft-matter self-assembly.18

SUPPLEMENTARY MATERIAL

See supplementary material for additional information
on the effective rate constants, path length distributions, and
reactive path densities for the dimer, as well as rate constant
matrices and effective rate constants for the tetramer system.
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