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The prefrontal cortex (PFC) is involved in cognitive tasks such as working memory,
decision making, risk assessment and regulation of attention. These functions
performed by the PFC are supposed to rely on rhythmic electrical activity generated
by neuronal network oscillations determined by a precise balance between excitation
and inhibition balance (E/I balance) resulting from the coordinated activities of recurrent
excitation and feedback and feedforward inhibition. Functional alterations in PFC
functions have been associated with cognitive deficits in several pathologies such
as major depression, anxiety and schizophrenia. These pathological situations are
correlated with alterations of different neurotransmitter systems (i.e., serotonin (5-HT),
dopamine (DA), acetylcholine. . .) that result in alterations of the E/I balance. The
aim of this review article is to cover the basic aspects of the regulation of the
E/I balance as well as to highlight the importance of the complementarity role
of several neurotransmitters in the modulation of the plasticity of excitatory and
inhibitory synapses. We illustrate our purpose by recent findings that demonstrate
that 5-HT and DA cooperate to regulate the plasticity of excitatory and inhibitory
synapses targeting layer 5 pyramidal neurons (L5PyNs) of the PFC and to fine
tune the E/I balance. Using a method based on the decomposition of the synaptic
conductance into its excitatory and inhibitory components, we show that concomitant
activation of D1-like receptors (D1Rs) and 5-HT1ARs, through a modulation of NMDA
receptors, favors long term potentiation (LTP) of both excitation and inhibition and
consequently does not modify the E/I balance. We also demonstrate that activation
of D2-receptors requires functional 5-HT1ARs to shift the E-I balance towards more
inhibition and to favor long term depression (LTD) of excitatory synapses through
the activation of glycogen synthase kinase 3β (GSK3β). This cooperation between
different neurotransmitters is particularly relevant in view of pathological situations in
which alterations of one neurotransmitter system will also have consequences on
the regulation of synaptic efficacy by other neurotransmitters. This opens up new
perspectives in the development of therapeutic strategies for the pharmacological
treatment of neuronal disorders.

Keywords: prefrontal cortex, serotonin, dopamine, LTP and LTD, neuromodulation

Frontiers in Synaptic Neuroscience | www.frontiersin.org 1 February 2017 | Volume 9 | Article 2

http://www.frontiersin.org/Synaptic_Neuroscience
http://www.frontiersin.org/Synaptic_Neuroscience/editorialboard
http://www.frontiersin.org/Synaptic_Neuroscience/editorialboard
https://doi.org/10.3389/fnsyn.2017.00002
http://crossmark.crossref.org/dialog/?doi=10.3389/fnsyn.2017.00002&domain=pdf&date_stamp=2017-02-01
http://journal.frontiersin.org/article/10.3389/fnsyn.2017.00002/abstract
http://journal.frontiersin.org/article/10.3389/fnsyn.2017.00002/abstract
http://journal.frontiersin.org/article/10.3389/fnsyn.2017.00002/abstract
http://loop.frontiersin.org/people/387719/overview
http://loop.frontiersin.org/people/310679/overview
https://creativecommons.org/licenses/by/4.0/
mailto:philippe.fossier@u-psud.fr
https://doi.org/10.3389/fnsyn.2017.00002
http://www.frontiersin.org/Synaptic_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Synaptic_Neuroscience/archive


Meunier et al. Synaptic Plasticity in the Prefrontal Cortex

INTRODUCTION

The prefrontal cortex (PFC) plays an important role in the
processing of cognitive functions such attention, memory,
decision making and more specifically in working memory
(Fuster, 2001; Miller and Cohen, 2001). Its ability to integrate and
process sensory information is ensured by a neuronal network
receiving numerous afferent connections from sensory areas and
making efferent connections to motor area and subcortical area
(Miller and Cohen, 2001; Uylings et al., 2003). The higher-
order brain functions performed by the PFC are supposed
to rely on rhythmic electrical activity generated by neuronal
network oscillations. Indeed, cortical networks are permanently
active and their activity patterns, depending on the wakefulness
or sleep states, are characterized by slow oscillations of the
neuronal membrane potential (so-called up and down states)
during slow wave sleep and by fluctuations around a depolarized
level (persistent up state) during REM sleep and wakefulness
(Steriade et al., 2001). Membrane potential fluctuations, the
above described phase transitions between up and down state,
can be spontaneously generated by local (surrounding) cortical
synaptic connections. The up state is initiated by the recruitment
of neurons through recurrent excitation and is regulated by
local feedback inhibition, pyramidal and non-pyramidal neurons
receiving strong barrages of synaptic input that cause membrane
depolarization and action potential firing (up state). The down
state is characterized by neuronal hyperpolarization, a reduction
in synaptic bombardment and a reduction of action potential
activity (Sanchez-Vives and McCormick, 2000; Timofeev et al.,
2000; Compte et al., 2003; Shu et al., 2003a). This transition to the
down state may result from synaptic depression or the buildup
of intracellular calcium and sodium concentrations that activate
potassium channels in neurons of the local network (Contreras
et al., 1996; Sanchez-Vives and McCormick, 2000; Timofeev
et al., 2000). These cortical network rhythms are determined
by a precise balance between excitation and inhibition that
results from the coordinated activities of recurrent excitation and
feedback and feedforward inhibition (Shu et al., 2003b; Haider
et al., 2006). The initiation of the up state is characterized by
an increase in excitatory conductance followed by an increase in
inhibitory conductance. Following onset and during the up state,
excitatory and inhibitory conductances remain proportionally
increased and dynamically balanced (Haider et al., 2006). This
balanced activity keeps neurons at a noisy and elevated level
of depolarization near firing threshold and prevents aberrant
network activity. In addition to being spontaneously generated
(Sanchez-Vives and McCormick, 2000; Timofeev et al., 2000;
Shu et al., 2003b), both transitions from up to down and from
down to up can be triggered by sensory input and activation of
afferent inputs (Anderson et al., 2000; Petersen et al., 2003; Shu
et al., 2003a; MacLean et al., 2005; Rigas and Castro-Alamancos,
2007).

Within cortical networks, interneurons are in charge of the
dynamic adjustment of the level of excitation, and their role
in the maintenance of a dynamic balance between excitation
and inhibition balance (E-I balance) is essential in cortical
function (Shu et al., 2003b). The E-I balance is a value that

reflects the activity of neuronal network at one time (Haider
and McCormick, 2009). A proper E-I balance is essential for
physiological processes such as sensory perception, short term
memory, long term memory and development (Saghatelyan et al.,
2001; Egorov et al., 2002; Monier et al., 2003; Zhang et al.,
2011). Alterations in maintaining the E-I balance have been
observed in several pathologies such as epilepsy and autism.
For instance, an increase in GABAergic transmission leading
to a change in excitation has been observed in epileptic tissue
(Cossart et al., 2001). In the case of autism, the E-I balance
appears to vary in the direction of greater excitation (Rubenstein
and Merzenich, 2003; Powell, 2004). These pathologies, currently
considered as polygenic and multifactorial disorders, are
characterized by a disruption of normal cortical connections with
aberrant synaptic function and disorganized neurotransmitter
interactions (Stephan et al., 2009). For instance, dysfunctions
of dopaminergic, glutamatergic and serotoninergic systems have
been associated with the pathophysiology of schizophrenia
and major depression (Marek, 2007; Kantrowitz and Javitt,
2012). Although the pathophysiology of schizophrenia has been
associated with alterations of the dopaminergic system (Creese
et al., 1976; Meisenzahl et al., 2008), others suggest that the
use of antipsychotic drugs acting at both the serotonergic and
dopamine (DA) systems must be considered (Meltzer et al.,
2004; Newman-Tancredi et al., 2007; Jones and McCreary, 2008;
Newman-Tancredi, 2010; Meltzer and Massey, 2011; Newman-
Tancredi and Kleven, 2011). Several studies have suggested
that an imbalance between DA and serotonin (5-HT) systems
could be the cause of adverse side effects observed during
treatment of some pathologies (Borah and Mohanakumar, 2007;
Carta et al., 2007; Navailles et al., 2010). These observations
offer the possibility of a new therapeutic approach which
consists in combining drugs that target several receptors to
neuromodulators in the treatment of schizophrenia and major
depression in order to reassess a proper E-I balance required for
harmonious brain functions.

Synaptic plasticity is a fundamental property of the brain
which allows the nervous system to adapt its response to
experience. In this review article, we first briefly address the
general mechanisms of synaptic plasticity leading to long term
potentiation (LTP) or Depression of excitatory and inhibitory
synapses and we introduce the notion of E-I balance. We
also illustrate how the method we developed to determine
the E-I balance offers the possibility to study simultaneously
the plasticity of excitatory and inhibitory inputs on a layer
5 pyramidal neuron (L5PyN). The second part of this review
article highlights our recent findings regarding the cooperation
between serotoninergic and dopaminergic systems within the
PFC in the orientation of synaptic plasticity towards potentiation
or depression.

HOW TO LEARN: SYNAPTIC PLASTICITY

Synaptic plasticity is a fundamental property of neuronal circuits
which endows the nervous system the ability to adapt its
responses to a changing environment (sensory information).
It confers the brain the capacity to adapt its behavior and to
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anticipate and control executive functions (Feldman, 2009). First
postulated by Hebb (1949), the concept of synaptic plasticity
was substantiated by Bliss and Lomo (1973) who demonstrated
that, in hippocampus, a high frequency stimulation (HFS)
of excitatory synapses induced a persistent enhancement of
excitatory neurotransmission, the so called LTP. This extensively
studied synaptic property is supposed to be the basic mechanism
of learning and memory. It is initiated within a short period of
time (a few seconds), it is stable and persistent after induction (for
several weeks in vivo), it is initiated by frequencies of stimulation
(theta burst) similar to the neuronal rhythmic activity observed
in cortical networks engaged in various information processing
tasks. Long term depression (LTD), the opposite of LTP,
corresponds to a long-lasting decrease of synaptic efficacy
(several hours) in response to low frequency stimulations (Dudek
and Bear, 1992; Bear and Malenka, 1994).

These two forms of long-lasting synaptic plasticity do not
oppose each other but rather are considered to be complementary
in memory formation. For instance, it has been shown, in
hippocampus, that LTP and LTD have respective roles in
encoding spatial information (Kemp and Manahan-Vaughan,
2004). LTD is necessary to acquire a new object location in a new
environment while LTP is associated with spatial exploration.
Other studies have suggested that LTD could contribute to
the acquisition of new information by weakening previously
strengthened synapses and by preventing interferences with this
new incoming information (Etkin et al., 2006; Nicholls et al.,
2008; Malleret et al., 2010).

Most of the studies conducted over the past decades
relate to the plasticity of excitatory synapses and it is rather
recently that attention has been focused on the plasticity of
inhibitory synapses. In the following chapters, we will summarize
the knowledge on these two aspects of long-term synaptic
plasticity.

Plasticity of Excitatory Synapses
LTP
First discovered in hippocampus in the mid-eighties, LTP of
excitatory synapses is generally considered as being a process
requiring the activation of post (or pre) synaptic NMDA
receptors and an increase in intracellular calcium that leads
to an increase in synaptic efficacy after HFS of presynaptic
terminals (Malenka and Nicoll, 1999). The most generally
described mechanism to induce LTP is the activation of
post-synaptic AMPA and NMDA receptors following a massive
release of glutamate at the synaptic cleft induced by HFS
of the presynaptic afferents. The activation of post-synaptic
AMPA receptors results in a strong depolarization of the
post-synaptic element and removes the magnesium blockade of
the NMDA receptors (Kleckner and Dingledine, 1988; Burnashev
et al., 1992; Calabresi et al., 1992) allowing cations to flow
through the activated NMDA receptors. The high calcium
permeability of NMDA receptors results in a calcium influx
into the post-synaptic compartment that leads to changes in
synaptic strength through a well described mechanism involving
the activation of the calmodulin-dependent protein kinase

II (CaMKII) and the subsequent phophorylation of AMPA
receptors (increased open probability) and/or the trafficking
of AMPA receptors to the post-synaptic membrane. Other
kinases have been reported to be involved in the trafficking of
AMPA receptors. Recent studies have shown that LTP can be
induced at the presynaptic level either through a modulation
of pre-synaptic NMDA receptors or through neuromodulators
(NO, BDNF) released from the post-synaptic site acting at
the presynaptic level. Following a theta-burst stimulation in
hippocampus, McGuinness et al. (2010) have shown that action
potentials at the synapse evoke a calcium influx through voltage-
dependent calcium channel (VDCC) that induces glutamate
release which can activate presynaptic NMDA receptors. This
together with the removal of the Mg2+ block of NMDA
receptors by depolarization results in an increase in intracellular
calcium concentration and an enhanced glutamate release.
Other mechanisms have been proposed to be responsible
for the induction of LTP at excitatory synapses. The best
characterized is the regulation of synaptic strength by retrograde
messengers such as nitric oxide (NO). As shown in hippocampus,
calcium ions entering the post-synaptic element through NMDA
receptors activate NO synthase to produce NO from L-arginine.
NO diffuses back to the presynaptic element and activates
guanylate cyclase (GC) leading to the synthesis of cGMP
and the activation of PKG and an increase in glutamate
release (Costa et al., 2011). More recent studies reported that
post-synaptic protein synthesis can also play a role in the
regulation of the pre-synaptic mechanisms involved in persistent
forms of LTP (Johnstone and Raymond, 2013). It has also
been suggested that postsynaptic activation of the translation
promotor mTOR complex 1 (mTORC1) results in the synthesis
of the retrograde messenger BDNF and an enhancement of
neurotransmitter release (Henry et al., 2012). Although NMDA
receptors have a key role in the induction of LTP, it has
been demonstrated in the visual cortex and in hippocampus
(Johnston et al., 1992) that other players can trigger the
calcium signal responsible for LTP induction. Grover and Teyler
(1994) have shown that, in hippocampus, pairing presynaptic
stimulation with post synaptic depolarization or with action
potential firing results in a post synaptic calcium influx through
L-type VDCC responsible for the induction of LTP. Other
forms of NMDA-independent LTP have also been reported
in rodent cortex that requires the activation of metabotropic
glutamate receptors (Wilsch et al., 1998; Huemmeke et al.,
2002).

LTD
The induction of LTD of excitatory synapses is mainly
determined by the magnitude of the post-synaptic increase
in intracellular calcium concentration (Mulkey and Malenka,
1992). A smaller increase in intracellular calcium concentration
evoked by the activation of NMDA receptors will lead to
the activation of a signaling cascade involving phosphatases
such as calcineurin and PP1 (Lisman and Zhabotinsky, 2001)
which results in the de-phosphorylation of synaptic AMPA
receptors and their internalization causing a reduction of
synaptic efficacy. Other forms of LTD involve the activation
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of metabotropic glutamate receptors followed by an increase
in intracellular calcium concentration. Depending on the
receptor subtype different signaling pathways are engaged.
In pyramidal neurons from the neocortex (Czarnecki et al.,
2007), mGluR1 receptors activation causes an increase in
intracellular calcium that leads to the activation of protein
kinase C (PKC) and AMPA receptors internalization. It
has also been suggested that activation of mGluR5 or
mGluR1 receptors, respectively in striatum and in nucleus
accumbens, results in an increase in post-synaptic calcium
concentration and in the synthesis of endocanabinoïds (eCBs)
which activate presynaptic CB1R to decrease glutamate release
(Chevaleyre et al., 2006). Finally another form of LTD has been
described in visual cortex where LTD is induced by coincident
activation of presynaptic NMDA auto-receptors and of CB1R,
activated by retrograde signaling of eCBs (Sjöström et al.,
2003).

Plasticity of Inhibitory Synapses
Post synaptic changes of GABAergic neurotransmission can
be explained by: (i) a modulation of GABA receptors activity
by protein kinases such as PKC, CaMKII or by phosphatases
such as calcineurine (Kittler and Moss, 2003; Houston et al.,
2009); (ii) trafficking of GABAA receptors at the synapse
(Saliba et al., 2007; Arancibia-Cárcamo and Kittler, 2009;
Castillo et al., 2011). As for excitatory synapses, modulations
of postsynaptic calcium concentration are supposed to play a
role in the induction of inhibitory synaptic plasticity. It has
been demonstrated in hippocampus that LTP of inhibitory
synaptic transmission is induced by an increase in post-synaptic
calcium concentration resulting from the activation of GABAB
receptors and the subsequent synthesis of IP3 leading to
the release of calcium from the IP3-sensitive calcium store
(Gaiarsa and Ben-Ari, 2006). It has also been demonstrated
that, in the case of heterosynaptic plasticity, different sources
of calcium (VGCC, ionotropic NMDA receptors, metabotropic
mGluR1 glutamate receptors) contribute to the increases in
post-synaptic calcium concentration responsible for changes
in synaptic efficacy (Goldberg et al., 2003; Nyíri et al., 2003;
Topolnik et al., 2005). This variety of post-synaptic calcium
sources allows a precise control of calcium signaling and
a fine tuning of synaptic plasticity (Camiré and Topolnik,
2012).

The best characterized form of presynaptic plasticity of
GABAergic synapse involves the activation of presynaptic
receptors by retrograde messengers such as: eCBs, BDNF and
NO. eCB-mediated synaptic plasticity has been described in
several brain regions such as hippocampus (Chevaleyre and
Castillo, 2003), amygdala (Marsicano et al., 2002; Azad et al.,
2004), striatum (Adermark and Lovinger, 2009), visual cortex
(Jiang et al., 2010) and cerebellum (Pitler and Alger, 1992;
Llano et al., 1994). The induction of eCB-mediated plasticity is
initiated by glutamate release from presynaptic terminals which
induces the post-synaptic synthesis of eCBs. eCBs retrogradely
activate CB1R located on presynaptic afferents from GABAergic
interneurons (heterosynaptic iLTD) to decrease GABA release

through a signaling cascade which inhibits the cAMP/protein
kinase A (PKA) pathway (Heifets and Castillo, 2009). Whereas
eCBs induce i-LTD, other retrograde messengers such as BDNF
and NO can induce i-LTP. It has been shown in visual cortex and
hippocampus (Lu, 2003; Gubellini et al., 2005; Sivakumaran et al.,
2009) that the activation of NMDA receptors and/or VGCC and
the subsequent increase in intracellular calcium concentration
in the post synaptic element can result in the synthesis of
BDNF or NO which increases GABA release (Nugent et al.,
2007).

BALANCED NEURONAL NETWORKS

Neurons in the cerebral cortex consist of a majority of excitatory
(glutamatergic) pyramidal neurons (75%–80%) making synaptic
contacts both locally (local network) and over long distances
(across distinct cortical areas) and of inhibitory (GABAergic)
interneurons (25%–20%) making extensive local connections.
Within a given local cortical network, neurons receive inputs
from neighboring neurons which form recurrent excitatory
and feedforward and feedback inhibitory circuits (Peters
and Kara, 1985; White, 1989; Abeles, 1991; Markram et al.,
2004). The great diversity of interneurons, in terms of their
connectivity and their functional properties, allows them to
control cortical excitation leading to a dynamic equilibrium
between excitation and inhibition (Shu et al., 2003b). This
dynamic control of excitation that regulates cortical network
activity is performed through feedback and feedforward
inhibition (Isaacson and Scanziani, 2011). Feedforward
inhibition occurs when excitatory afferents activate first
interneurons, prior to activating principal neurons, and
results in a reduced excitation of the target neuron. This
well described mechanism (Isaacson and Scanziani, 2011)
contributes to the weakening of excitatory inputs. Feedback
inhibition takes place when active principal neurons excite
inhibitory interneurons which, in a feedback loop, inhibit
principal neurons themselves (for instance, see Silberberg and
Markram, 2007; Berger et al., 2010) to ensure the stability to the
network.

It is remarkable to note that despite the diversity of neuronal
networks, the relative contribution of excitatory and inhibitory
input conductance to a given neuron is dynamically maintained
at comparable values across different cortical layers and different
cortical areas to guarantee a proper balance between excitation
and inhibition (E-I balance). The E-I balance, determined as
the ratio between excitatory and inhibitory input conductance
onto a neuron evoked by an electrical stimulation of afferents
(in vitro) or by sensory stimuli (in vivo), is maintained at
approximately 20% excitation and 80% inhibition (Le Roux et al.,
2006; Monier et al., 2008; Lucas-Meunier et al., 2009; Zhang
et al., 2011; Xue et al., 2014; den Boon et al., 2015). This
dynamic E-I balance is thought to result from the coordinated
activities of direct and recurrent excitation and (feed-forward
and feedback) inhibition and reflects the activity of neuronal
networks at a given moment (Haider and McCormick, 2009;
Isaacson and Scanziani, 2011). A proper balance between
excitatory and inhibitory inputs onto cortical neurons is essential
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to maintain the stability of cortical networks in order to perform
cognitive functions such as memory and sensory information
processing. For instance, it determines proper cortical network
rhythms responsible for higher order cognitive functions (Shu
et al., 2003b; Haider et al., 2006). It is also essential for
physiological processes such as short term memory and long
term memory (Saghatelyan et al., 2001; Egorov et al., 2002).
Cortical responses elaborated by L5PyNs depend on the balance
between excitatory and inhibitory inputs perceived (Borg-
Graham et al., 1998; Wehr and Zador, 2003). Balanced excitatory
and inhibitory neurotransmission also appears to be fundamental
in the fine tuning of neuronal responses to specific sensory
features.

It is conceivable to think that any alterations of excitation
or inhibition will generate aberrant information processing in
the cortex (Haider and McCormick, 2009) and will lead to
pathological situations. Indeed, disturbances in the E-I balance
are associated with a broad spectrum of neuropsychiatric and
neurological diseases, such as autism, schizophrenia and epilepsy
(Cobos et al., 2005; Lewis et al., 2005; Rubenstein, 2010). It
has been observed that, in epilepsy, an altered maturation of
chandelier cells (interneurons) interferes with the activity of
pyramidal neurons (Marco et al., 1996), leading to an unbalanced
E-I ratio (Cossart et al., 2005). It is also hypothesized that, in
schizophrenia, a dysfunction of NMDA receptors (Coyle, 2006)
changes the level of excitation and consequently the E-I balance
(Kehrer et al., 2008). Finally, a dysregulation of the E-I balance
has also been observed in autism (Rubenstein and Merzenich,
2003; Powell, 2004; Rippon et al., 2007), Rett syndrome (Dani
et al., 2005) and Tourette syndrome (Singer and Minzer, 2003).

Given that neuronal networks require a proper E-I balance
to perform cognitive functions, how does network stability
deal with synaptic plasticity? In other words, how to learn
within dynamically balanced networks? The learning process
might not only be considered not only as a gain or a loss of
efficacy at a given synapse but also as dynamic changes of both
excitatory and inhibitory synaptic strength. This homeostatic
maintenance of excitation and inhibition balance may be a
determining factor in the regulation of neuronal input-output
function and information processing (learning) within a given
neuronal network (Daoudal and Debanne, 2003; Staff and
Spruston, 2003; Marder and Buonomano, 2004). Although the
effects of concerted regulation of excitation and inhibition are
still poorly understood, it has been suggested that balanced
or imbalanced changes in synaptic strength of excitatory and
inhibitory inputs have a different impact on the neuronal input-
output function and consequently on neuronal firing. Indeed
the two parameters, threshold and gain (rate of change or
sensitivity of the input-output function), that characterize the
probability of a neuron to fire action potentials as a function
of stimulus intensity can be modulated by the ratio between
excitation and inhibition. By combining a computational model
with experimental data obtained in hippocampus, Carvalho
and Buonomano (2009) have shown that imbalanced plasticity
of excitatory synaptic inputs affects the threshold while the
E-I balance affect the gain allowing neurons to optimize their
information processing.

The method we use to determine the E-I balance is based
on the continuous measurement of evoked postsynaptic currents
and the decomposition of the conductance dynamics into its
excitatory and inhibitory components (Monier et al., 2003,
2008). This continuous and simultaneous determination of both
excitatory and inhibitory inputs also offers the possibility to
determine the changes in excitatory and inhibitory synaptic
strength occurring after applying a high frequency stimulus
evoking long-term synaptic plasticity. We have shown that,
in rat visual cortex and in mouse PFC, HFSs of layer 2–3
(theta-burst stimulation), not only induced LTP of excitatory
inputs measured from L5PyNs but also LTP of inhibitory
inputs resulting in an E-I balance that remains equal to
the control situation (Le Roux et al., 2006; Meunier et al.,
2013). These results are in accordance with the notion of
homeostatic regulation which mainly involves a dynamic
adjustment of excitatory and inhibitory circuits (Turrigiano and
Nelson, 2004). Because alterations in several neurotransmitter
systems have been correlated with cognitive deficits resulting
in impairments of learning and memory, we will focus our
attention on the importance of the cooperation between different
neuromodulators in the modulation of the plasticity of excitatory
and inhibitory synapses. Based on our recent findings, we will
highlight the importance of the coordinated action of 5-HT
and DA in regulating the interaction between excitation and
inhibition in the PFC, a cortical area involved in higher order
cognitive functions.

TUNING THE PLASTICITY

Serotonin as a Modulator
5-HT is the most widely distributed neuromodulator in the
brain (Dahlström and Fuxe, 1964; Steinbusch, 1981). 5-HT is
implicated in the regulation of many physiological functions
such as mood, sleep, vigilance, cognitive functions, learning and
memory. In the brain, serotoninergic axons originating from the
raphe nucleus make synapses ‘‘en passant’’ and release 5-HT
from varicosities (Oleskevich and Descarries, 1990) to activate
a great diversity of 5-HT receptors (up to 16 types of receptors
have been identified; Bockaert et al., 2006). We will focus here
our attention on the role of the metabotropic 5-HT1A receptor
(5-HT1AR) which is predominant in the PFC (Santana et al.,
2004).

5-HT1ARs have been identified both on serotoninergic
neurons (autoreceptors) where they regulate the release of
5-HT through a negative feedback and on neuronal targets of
serotoninergic neurons where they function as heteroreceptors.
In the cortex, the majority of postsynaptic 5-HT1ARs (50%–60%)
are expressed in glutamatergic neurons. In L5PyNs, 5-HT1ARs
are located in the soma, in the initial axonal part (Czyrak
et al., 2003; Cruz et al., 2004; Santana et al., 2004) and
in dendrites (Kia et al., 1996; Riad et al., 2000). We have
shown for instance that in the cerebral cortex this specific
distribution of 5-HTRs on pyramidal neurons is important
to control output signals from the cortex (Moreau et al.,
2010). In the PFC, a weaker proportion (25%) of 5-HT1ARs
is also expressed in GABAergic interneurons projecting onto
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the dendrites of pyramidal cells (Santana et al., 2004). From
this distribution of 5-HT1ARs in the PFC, it appears that
5-HT can regulate the excitability of both glutamatergic and
GABAergic neurons (Andrade, 2011; Puig and Gulledge, 2011)
but the modulatory effects of 5-HT1ARs activation are not clearly
understood.

Several pathologies such as mood disorders, anxiety,
psychosis and fear are associated with serotonergic disorders
and dysfunction of 5-HT1ARs. For instance, it has been shown
that the number of postsynaptic 5-HT1ARs is decreased in
depressive or anxious human brain (Shively et al., 2006;
Lanzenberger et al., 2007; Akimova et al., 2009). One of the
most commonly used pharmacological treatments of anxiety
disorders is the use of selective serotonin reuptake inhibitors
(SSRIs; Kasper et al., 2005). However, failures in SSRI treatment
seems to be associated with the polymorphism of the gene
encoding 5-HT1AR (Lemonde et al., 2003; Czesak et al., 2012)
which might differently affect the nature (or type) of pre-
vs. post-synaptic 5-HT1AR (Bortolozzi et al., 2012). A better
understanding of the role of post-synaptic 5-HT1AR in the PFC
is a prerequisite to the design of more selective psychoactive
drugs.

Dopamine as a Modulator
Dopaminergic fibers, mainly originating from the Substantia
nigra, are widely distributed in all areas of the PFC and target
layer 2 and layer 5 (Emson and Koob, 1978; Callier et al.,
2003; Van De Werd et al., 2010). The effects of DA are
mediated by the D1-class receptors (D1 and D5 receptors)
and by the D2-class receptors (D2, D3 and D4 receptors;
Beaulieu and Gainetdinov, 2011). Activation of the D1 class
enhances the activity of adenylate cyclase whereas activation
of the D2 class inhibits it (Girault and Greengard, 2004). In
rat PFC, D1-like receptors (D1Rs) and D2Rs are localized
on dendritic spines of L5PyNs (Gaspar et al., 1995; Negyessy
and Goldman-Rakic, 2005; Paspalas and Goldman-Rakic, 2005).
D2Rs are also present on GABAergic interneurons (Santana et al.,
2009) while D1Rs are mainly expressed in the parvalbulmin-
positive subtype of GABAergic interneurons (Glausier et al.,
2009). Such a distribution of D1 and D2 receptors is again in
favor of a modulatory role of DA on neuronal networks in
the PFC.

Many electrophysiological studies have shown that activation
of DA D1Rs favors the induction of LTP at hippocampal-PFC
synapses by increasing NMDAR-mediated responses in PFC
(Gurden et al., 2000; Chen et al., 2004). This enhancement
of NMDA current (Shih, 2004; Tseng and O’Donnell, 2004)
is explained by either the externalization of NMDA receptors
(Dunah and Standaert, 2001; Dunah et al., 2004) or by
their phosphorylation. D1Rs and NMDAR are co-localized
in pyramidal neurons of the PFC and a direct interaction
between the C-terminal domain of D1R and NR1-NR2A subunits
of the NMDAR has been proposed to explain the increase
in NMDA current (Kruse et al., 2009). Activation of D2Rs
results in a decrease in NMDA currents (Zheng et al., 1999;
Wang et al., 2003) presumably through the inhibition of the
CaMKII by the PKA and the subsequent internalization of

NMDARs (Wang et al., 2003). Alternatively, another signaling
cascade leading to the internalization of the NR2B subunit
of the NMDAR and a decrease in NMDA current has
been proposed. It involves, in the PFC, an increase in the
activity of the glycogen-synthase kinase-3 (GSK3) after D2R
activation (Beaulieu et al., 2008; Li et al., 2009; Skinbjerg et al.,
2009; Beaulieu and Gainetdinov, 2011; Sutton and Rushlow,
2011).

It is of particular interest to note that in the treatment of
schizophrenia, new therapeutic strategies consist in targeting
both 5-HT1ARs and DA receptors by combining either
5-HT1ARs agonists with D2Rs antagonists (Newman-Tancredi,
2010) or 5-HT1A agonists with a D1R agonist and a D2R
antagonist to prevent positive and negative symptoms of
schizophrenia (Newman-Tancredi and Kleven, 2011). These
clinical observations, highlight the importance of taking
into account the interactions between serotoninergic and
dopaminergic systems and their consequences on the physiology
of the PFC, a brain area particularly associated with depressive
disorders and schizophrenia.

Complex Interactions Between Modulators
of the Plasticity in the PFC
5-HT, through the activation of postsynaptic 5-HT1AR, is known
to regulate the excitability of glutamatergic and GABAergic
neurons in the PFC (Andrade, 2011; Puig and Gulledge, 2011).
5-HT modulates the induction of plasticity, depending on the
5-HT receptor subtype and brain regions (Kemp and Manahan-
Vaughan, 2004). In the rat PFC, consequences of HFS on
synaptic plasticity are rather complicated given that tetanic
stimulations in superficial layers can induce either LTP or
LTD or no plasticity. Indeed, it has been reported that such a
HFS protocol can induce LTD in about one half of the cells
and LTP in about one third of the cells, the remaining cells
did not display any change of synaptic properties (Hirsch and
Crepel, 1990, 1991; Nowicky and Bindman, 1993; Matsuda et al.,
2006).

5-HT1A Receptors Direct the Orientation of Plasticity
in Layer5 Pyramidal Neurons of the PFC
To explore the role of 5-HT1ARs in the modulation of
the plasticity of excitatory and inhibitory synaptic inputs
to L5PyNs of the PFC, we compared the excitatory and
inhibitory conductances evoked by electrical stimulations of layer
2/3 between wild-type (129/Sv WT) and 5-HT1AR-knock out
(5-HT1AR-KO) mice. These transgenic mice are considered as a
model for anxiety disorder (Ramboz et al., 1998) and have been
designed to better understand human psychiatric conditions
where a profound decrease of 5-HT1AR expression has been
demonstrated (Sargent et al., 2000; Bhagwagar et al., 2004; Shively
et al., 2006; Lanzenberger et al., 2007; Akimova et al., 2009).

Our experimental approach, based on the simultaneous
determination of excitatory (E) and inhibitory (I) conductance
in L5PyNs, also allows the determination of the E-I balance
in the PFC. Electrical stimulations of layer 2/3 (low frequency
stimulation, 0.05 Hz) evoked complex postsynaptic current in
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L5PyNs (Figure 1A). The evoked total synaptic conductance (gT)
was extracted (see Le Roux et al., 2006) and decomposed into
excitatory (gE) and inhibitory (gI) conductance (Figure 1A).
This allowed further evaluation of the relative contribution of
evoked excitatory and inhibitory inputs reaching the soma of
the recorded pyramidal neuron (Le Roux et al., 2006; Moreau
et al., 2010). Calculated integrals of excitatory (IntgE) and
inhibitory (IntgI) conductance were expressed as percentages of
the integral of the total conductance (IntgT; Figure 1B). Analysis
of recorded neurons showed that the E-I balance was significantly
different in 5-HT1AR-KO mutants (23%–77%) compared to
129/Sv WT mice (20%–80%; Figure 1B). In control 129/Sv WT
mice and in the presence of WAY 100635 (a 5-HT1AR selective
antagonist) the E-I balance was shifted towards more excitation
(24%–76%), a value similar to what we observed in 5HT1AR-KO
mice (Meunier et al., 2013). These results show that L5PyNs
in 129/Sv mice express functional 5HT1ARs and that 5HT1ARs
play a crucial role in tuning the E-I balance in L5PyNs of
the PFC.

We observed that, in both strains, HFS (theta burst) induced
either LTP or LTD of both excitatory and inhibitory conductance
or no plasticity (Figure 1C). These changes in synaptic efficacy
were due to the activation of NMDARs since their blockade
with D-L-AP5 prevented the induction of synaptic plasticity.
When comparing 129/Sv WT and 5HT1AR-KO mice showing
LTP of excitatory and inhibitory synaptic transmission, we
observed that the absence of functional 5HT1AR resulted in a
reduced potentiation of excitatory synaptic transmission while
the potentiation of inhibition remained unaffected (Meunier
et al., 2013). The use of a specific 5-HT1AR antagonist confirmed
the role of 5-HT1ARs in the modulation of LTP of excitation
in the PFC. We also observed that the proportion (calculated
from the whole neuronal population) of L5PyNs displaying either
LTP or LTD or no change were different between 129/Sv WT
and 5-HT1AR-KO mice. In 5-HT1AR-KO mice, the percentage
of neurons displaying LTP was significantly increased compared
to 129/Sv WT mice (Figure 2) whereas the percentage of
neurons showing LTD remained identical. Our results indicate

FIGURE 1 | Determination of the Excitation-Inhibition balance (E-I balance) in the prefrontal cortex (PFC) and analysis of synaptic plasticity. (A) Brief
description of the method to determine the E-I balance. (a) Representative current traces of synaptic responses (upper part) to layer 2–3 stimulation (arrow) recorded
from a layer 5 pyramidal neuron (L5PyN) under voltage-clamp at various holding potentials in 129/Sv and KO 5-HT1A mice. (b) The second row represents the
corresponding total conductance changes (gT) at the somatic level (for a complete description of the method, see Le Roux et al., 2006; Lucas-Meunier et al., 2009).
(c) gT was then decomposed into its Excitatory (gE) and the Inhibitory (gI) components (third row). (B) The percentage of excitation and inhibition is expressed as the
ratio of its integral value integrals of excitatory (IntgE) and inhibitory (IntgI) to the total conductance IntgT to determine the E-I balance. We observed a significant shift
of the E-I balance towards more excitation between 129/Sv mice (20%–80%) and 5-HT1AR-KO mice (23%–77%; Meunier et al., 2013). (C) High frequency
stimulation (HFS) protocol (Theta burst) in layer 2–3 of the PFC induced in L5PyNs, long term potentiation (LTP) or long term depression (LTD) or no plasticity of the
responses. LTP (upper insert) was recorded 15 min, 30 min, 45 min and 60 min after the stimulation. Histograms represent relative changes (compared to the control
before HFS: 100%) of IntgT, IntgE, IntgI. Synaptic conductances were determined under control conditions or after HFS protocol with a low frequency of stimulation
(0.05 Hz). LTD (lower insert) was recorded in the same condition. ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001.
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FIGURE 2 | Schematic summary of the orientation of the plasticity in L5PyNs of the PFC. Ratio of L5PyNs displaying LTP, LTD or no plasticity calculated
45 min after HFS under different conditions. In each case, the analysis of the neuronal population results from 15 independent experiments. Left and right charts
were obtained from control 129/Sv mice or from 5-HT1AR-knock out (5-HT1AR-KO) mice. Note that the ratio of L5PyNs displaying LTP was significantly increased in
5-HT1AR-KO mice (see Meunier et al., 2013). In 129/Sv mice, the D1-like receptors (D1Rs) agonist, SKF 81297, markedly reduced the proportion of L5PyNs
displaying LTD while it enhanced the ratio of L5PyNs displaying LTP (Meunier et al., 2015). The D2Rs agonist, quinpirole, markedly increased the ratio of L5PyNs
displaying LTD (from Meunier et al., 2017). In 5-HT1AR-KO mice, the D1Rs agonist, SKF 81297, markedly increased the proportion of L5PyNs displaying LTD while it
reduced the ratio of L5PyNs displaying LTP. Activation of D2R with quinpirole had no significant effect on the ratio of L5PyNs displaying LTD.

that 5-HT1ARs play an important role in the orientation of the
synaptic plasticity of L5PyNs in the PFC towards either LTP or
LTD or no plasticity (Meunier et al., 2013).

It is established that different forms of synaptic plasticity
such as LTP and LTD are induced by NMDAR activation
(Stanton, 1996) that leads to the control of the trafficking of
AMPA receptors. The externalization (Malenka and Nicoll, 1999;
Malinow and Malenka, 2002) or the internalization (Beattie et al.,
2000; Hanley and Henley, 2005; Fernández-Monreal et al., 2012)
of AMPA receptors are commonly considered to be responsible
for LTP and LTD induction respectively. The orientation of the
synaptic plasticity towards LTP or LTD relying on AMPARs
trafficking is known to be correlated with the magnitude of the
dendritic calcium signal (Cormier et al., 2001). We observed that
the activation of 5-HT1ARs enhanced evoked NMDA currents,
indicating that 5-HT1ARs modulate NMDARs (Meunier et al.,
2013). Therefore we propose that the increase in the percentage
of neurons displaying LTP observed in the absence of functional
5-HT1ARs (5-HT1AR-KO mice) could result from a reduced
calcium influx through NMDARs. So it appears that, in the
PFC, 5-HT1ARs limit the induction of LTP and favor LTD by
modulating the NMDA currents.

D1R-Mediated Modulation of Synaptic Plasticity
Depends on Functional 5HT1AR
At hippocampal-PFC synapses, DA (acting at D1Rs) is
known to favor LTP induction (Gurden et al., 2000; Chen

et al., 2004). We have shown recently (Meunier et al.,
2015) that a high frequency protocol of stimulation (HFS)
in the presence of the D1R agonist SKF 81297 results in
an increase of the population of L5PyNs displaying LTP
in 129/Sv mice (Figure 2). By contrast, we observed an
increase in the amount of neurons showing LTD when D1R
were activated in the absence of functional 5-HT1ARs (KO).
This cooperation between 5-HT1ARs and D1Rs to determine
the direction of the synaptic plasticity was confirmed by a
pharmacological approach (Meunier et al., 2015). We also
observed in 129/Sv mice, an increase in the number of
L5PyNs in the ‘‘no plasticity’’ class after D1Rs activation
(Figure 2).

This orientation of the plasticity could be the result
of a modulation of NMDA-mediated currents by D1Rs
and 5-HT1ARs. A strong increase in intracellular calcium
concentration within the dendritic spines of L5PyNs would
facilitate LTP induction whereas a weaker calcium signal would
facilitate LTD induction. D1Rs activation is known to modulate
NMDARs and this modulation relies on the expression of
different NMDARs subunits (NR2B vs. NR2A; Liu et al., 2006;
Varela et al., 2009). The subunit composition of NMDARs
determines the amplitude and the duration of the transient
calcium signal that will lead direct synaptic plasticity towards
either LTP or LTD (Mulkey and Malenka, 1992; Huang et al.,
2010). We therefore make the assumption that the cooperation
between 5-HT1ARs and D1Rs would set the magnitude of the
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calcium influx through NMDARs (Meunier et al., 2015). The
resulting calcium signal at the dendrite would lead to the
modulation of the CamKII activity (Chen et al., 2007; Ashpole
et al., 2012; Coultrap et al., 2014) to control the trafficking
of AMPARs at the synapse and consequently determine the
direction of the synaptic plasticity. When D1Rs are activated
in the absence of functional 5-HT1ARs (5-HT1AR-KO mice),
the increased proportion of neurons showing LTD responses
(Meunier et al., 2015) could then be the result of reduced NMDA
currents due to changes in NMDARs subunits composition.

It cannot be excluded that other signaling pathways following
5-HT1ARs and D1Rs activation play a role in AMPARs trafficking
and in the modulation of synaptic plasticity. Following 5-HT1AR
activation (Polter and Li, 2010) as well as D1R activation
(Gurden et al., 2000; Huang et al., 2004; Kruse et al., 2009),
the cAMP/PKA signaling cascade could also be involved in
regulating the incorporation of AMPARs at the synapse.

There is also growing evidence that D1/D5R stimulation
leads to Gq-dependent activation of PLC, IP3-mediated Ca2+

release and CamKII activation (Chen et al., 2007). It is important
to note that several studies have reported that metabotropic
receptor activation coupled to PLC stimulation lead to LTD
induction (Choi et al., 2005). In the 5-HT1ARs-KO mice, the
D1Rs effects could mostly rely on the regulation of PLC
activity.

Activation of D2R in the Presence of Functional
5-HT1ARs Promotes HFS-Induced LTD of Excitatory
Synapses via the Activation of GSK3
DA is known to modulate NMDAR- and AMPAR-mediated
currents, neuronal excitability and synaptic plasticity towards
LTD through the activation of D2Rs. Both DA and 5-HT
can regulate neuronal activity via a common signaling
pathway involving the regulation of the activity of GSK3,
a serine/threonine kinase playing an important role in the
regulation of several receptors for neurotransmitters (Chen et al.,
2009).

Two isoforms of GSK3 have been identified (GSK3α and
GSK3β; Woodgett, 1990, 2001) which can be inactivated through
their phosphorylation by Akt (Cross et al., 1995; Frame et al.,
2001). It has been reported that, in the PFC and the striatum,
the activation of D2Rs induces the activation of GSK3 (Beaulieu
et al., 2004, 2008; Chen et al., 2009; Beaulieu and Gainetdinov,
2011). This activation of GSK3β has been shown to promote the
internalization of the NR2B subunit of NMDARs leading in the
rat hippocampus to the induction of LTD (Peineau et al., 2007)
while LTP could be favored by higher levels of phosphorylation
of GSK3β (Hooper et al., 2007; Peineau et al., 2007). It has also
been observed that GSK3 can modulate NMDARs and AMPARs
through either 5-HT1AR or 5-HT2AR activation (Li et al., 2004,
2007).

Importantly, like 5-HT1ARs and D2Rs, GSK3 is also a
molecular target in the treatment of neuropsychiatric disorders
such as major depression and anxiety (Meltzer et al., 2003;
Meltzer and Massey, 2011). We therefore investigated the
possible cooperation between 5-HT1AR and D2R in the
modulation of synaptic plasticity within the PFC. We have

shown that the activation of D2Rs and the downstream
activation of GSK3 favor the induction of LTD of excitatory
synaptic transmission (Meunier et al., 2017). In addition,
we demonstrated that this control of synaptic plasticity via
GSK3 requires the presence of functional 5-HT1ARs. We
therefore made the hypothesis of cooperation between 5-HT1AR
and D2R, via the regulation of GSK3, to modulate excitatory
synaptic transmission. This hypothesis is supported by recent
observations showing that D2R and 5-HT1AR can modulate
the phosphorylation or the dephosphorylation of GSK3β (the
dephosphorylated form being the active form).

The pathway downstream D2R activation leads, via the
regulation of cyclic AMP production and β-arrestin activity, to
the dephosphorylation (deactivation) of Akt and consequently
to the dephosphorylation (activation) of GSK3 by the protein
phosphatase 2A (PP2A Beaulieu et al., 2004, 2005, 2008,
2009; Beurel et al., 2015). There are apparent contradictory
observations regarding the regulation of GSK3β by 5-HT
receptors. It has been reported, in rat hippocampus, that the
activation of 5-HT1ARs increases the phosphorylation of GSK3β

by Akt, promoting the inactivated form (Polter et al., 2012).
Others have suggested that 5-HT1ARs activation could activate
GSK3 via the phosphorylation of Akt by PP2A (Hsiung et al.,
2008). We have shown, in the PFC of 5-HT1AR-KO mice, an
increase in the phosphorylated form of GSK3 (Meunier et al.,
2017). This suggests that in the PFC, the activation of 5-HT1ARs
promotes the active form of GSK3 and leads to the internalization
of AMPARs and to the induction of LTD of excitatory synapses.

FIGURE 3 | Schematic view of the action of 5-HT1AR on D1R or D2R to
orientate the plasticity of an excitatory synapse in the PFC. The
orientation of synaptic plasticity by dopamine (DA) acting at either D1Rs or
D2Rs is dependent on the concomitant activation of 5-HT1ARs. We assume
that the induction of either LTP or LTD of excitatory synapses depends on the
magnitude of calcium transient (controlling AMPARs trafficking) within the
dendritic spines which is determined by the calcium influx through NMDARs.
Therefore, an increased calcium transient (High Ca2+) following 5-HT1AR and
D1R activation (see the NMDA current on the right inset) would lead to LTP
whereas a reduced calcium transient (low Ca2+) following 5-HT1AR and D2R
activation would lead, via the activation of glycogen-synthase kinase-3
(GSK3), to LTD.
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Our results highlight the importance of the cooperation
between D2Rs and 5-HT1ARs in the regulation of the E-I
balance and of the plasticity of excitatory synapses in the PFC.
5-HT2AR activation is also known to have a clear excitatory
effect on L5PyNs and layer 2–3 GABAergic interneurons in
the PFC (Andrade, 2011; Celada et al., 2013) to modulate
NMDARs and AMPARs through GSK3 (Li et al., 2004, 2007).
It it thus very likely that 5-HT2AR activation plays a role in
the modulation of the E-I balance and in the modulation of
long-term synaptic plasticity by DA. The functional dimerization
between D2R and 5-HT2AR (Franklin and Carrasco, 2012)
that can be modulated by cannabinoid receptors, introduces
another level of complexity that has to be taken in account.
Recent findings indicate a prominent co-localization of D2Rs
and 5-HT1ARs in the neurons of the PFC compared to other
brain regions (Łukasiewicz et al., 2016) suggesting that D2Rs-
5-HT1ARs heteromers may be expressed in the PFC. When
expressed in HEK cells (Łukasiewicz et al., 2016), it appears that
the activation of such heteromers recruits metabolic pathways
different from those downstream the activation of homomeric
5-HT1A or D2 receptors. This could open up new therapeutic
strategies based on the selective activation of one or the other
metabolic pathways to improve the treatment of pathologies such
as schizophrenia.

Schematic Overview and Perspectives
Based on our own research, we focused here our attention
on the role of 5-HT1ARs in the dopaminergic modulation of
long-term synaptic plasticity. The modulatory effect of D1 or
D2R on excitatory synaptic plasticity depends on the presence
of functional 5-HT1ARs. It appears that 5-HT1AR cooperate
with either D1R or D2R to direct the long term plasticity
towards either LTP (D1Rs) or LTD (D2R). We assume that
it is the cooperation of 5-HT1ARs with either D1Rs or D2Rs
that will determine the magnitude of the Ca2+ influx through
NMDARs evoked by high frequency synaptic stimulation and
consequently favor either LTP or LTD. As illustrated in Figure 3,
we consider the Ca2+ transient within dendritic spines as a key
element of long-term synaptic plasticity. However it remains to

determine how the recruitment of different signaling pathways
following the activation of D1Rs, D2Rs and 5-HT1ARs leads
to the regulation of AMPAR trafficking at the synapse which
determines the synaptic strength. The cooperation between 5-HT
and DA receptors in the modulation of the long-term plasticity of
excitatory synaptic inputs may have consequences on neuronal
output (spiking behavior) and information processing within the
PFC. The absence of modulatory effects on inhibitory synaptic
inputs would result in imbalanced changes in synaptic strength
in favor of excitation affecting the threshold of neuronal input-
output functions (Carvalho and Buonomano, 2009).

GSK3β is considered as a key player in synaptic plasticity
(reviewed in Bradley et al., 2012). It is therefore important
to understand the factors regulating GSK3β activity in the
perspective of adapting therapy for several neurological and
psychiatric disorders in which a dysregulation of GSK3β activity
has been reported (Beurel et al., 2015). Mood disorders (major
depressive disorder and bipolar disorder) are characterized by a
disruption of the fine equilibrium between 5-HT and DA systems
regulating the balance between the inactive and the active form of
GSK3β at the synaptic level. Many therapeutic strategies using
Li+ as a blocker of GSK3ß activity have been considered as
an attempt to resettle such a balance (Jope, 2011). Our results
suggest that in the case of pathologies such as major depression
for which a reduction of the number of 5-HT1ARs is observed,
new therapeutic strategies resetting the equilibrium between the
active and the inactive form of GSK3ß could rather consist in
acting at both 5-HT and DA receptors.
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