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1
INTRODUCTION

Have you ever wondered how a tiger gets its stripes? How a disease like ebola spreads?
How a bacteria finds its centre before dividing? The behaviour of these systems is deter-
mined by the change in concentration of one or more of its components in space and
time. These systems are called reaction-diffusion systems, where diffusing components
react when they come in contact with each other. Reaction-diffusion systems are om-
nipresent in nature and in industry. In fact, a living cell can be thought of as a reaction-
diffusion system.

Many reaction-diffusion processes span several orders in length and time scales. Ex-
amples are biochemical networks in living cells, catalytic reactions in, e.g. a fuel cell, or
dynamics of surfactant/water/oil mixtures. In these systems, the spatial dynamics of the
reactants at mesoscopic length and time scales of microns and seconds are coupled to
the reactions between the molecules, at microscopic length and time scales of nanome-
ters and milliseconds. This wide range of length and time scales makes these systems
notoriously difficult to simulate.

The conventional strategy to simulate such reaction-diffusion systems, is to coarse-
grain the dynamics at molecular scales. One approach is to divide the reaction volume
into a number of subvolumes; particles can then react within one volume, but also dif-
fuse from one volume to the next [1]. Another approach is to take into account the par-
ticulate nature of the reactants [2, 3, 4, 5, 6, 7]. In these particle-based schemes, coarse
graining typically involves describing the reactants and their interactions by effective
cross sections, diffusion constants and rate constants. This approach drastically coarse
grains the dynamics at molecular scales. However, it is now clear that the dynamics at
the molecular scale can qualitatively change the macroscopic behavior of the system. It
has been shown that the rapid rebinding between a catalyst and its substrate can drasti-
cally change the rate of product formation[8], especially when one or both reactants are
on a surface[9]. In such cases, the binding between substrate and enzyme, the confor-
mational dynamics of the molecules, the formation and release of the product, the ori-
entational diffusion of the reactants and products has to be described explicitly, and can-
not be integrated out. Another approach, to simulate such systems is using (ab-initio)
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molecular dynamics at all scales. This, while possible in principle, would be highly inef-
ficient if not impossible in practice, since most CPU time would be spent on propagating
the reactants towards each another before they can react. There is not a single technique,
that can describe the dynamics at both the mesoscopic and the microscopic scales which
is both accurate and efficient. These problems thus call for a particle-based, multi-scale
modeling approach.

In this thesis we propose such a particle-based, multi-scale modelling approach.
When far apart, the particles are propagated towards each other using a mesoscopic
technique. Here, the dynamics at the molecular scales are not important since the parti-
cles are far apart. When the particles come close to each other, the algorithm switches to
a microscopic/atomistic description of the particle dynamics, which takes into account
the anisotropy of the particles and their conformational dynamics. In the multi-scale
scheme proposed here, the particle dynamics at the different scales are thus described
by different techniques, and the algorithm switches seamlessly between them based on
predefined scenarios. The algorithm can be applied to any reaction-diffusion system,
but it becomes particularly efficient when there is a clear separation in length and time
scales between the dynamics at the microscopic and the mesoscopic levels. In the con-
text of this thesis we use GFRD as the mesoscopic technique and BD as the microscopic
technique, but other techniques like underdamped Langevin dynamics, or even Molec-
ular dynamics, could in principle be used.

1.1. ALGORITHMS TO SIMULATE BIOCHEMICAL NETWORKS

A biochemical network is a network of chemical interactions and physical interactions
between biomolecules, such as proteins and DNA in a cell. Biochemical networks are
the computational devices of living cells. They allow cells to perform a number of com-
putational tasks, such as signal integration and amplification.

The conventional approach to analyse biochemical networks is to numerically solve
the macroscopic rate equations. The evolution of a network in this method is deter-
ministic since the equations are ordinary differential equations. In this approach, the
stochasticity can be neglected because it is assumed that the concentrations are high.
The concentrations of molecules in a living cell however, can be very low, i.e. in the mi-
cromolar to nanomolar range. Because of this the stochasticity in biochemical networks
cannot be neglected [10] [11].

The stochastic nature of biochemical networks can be addressed by adding a noise
term to the macroscopic rate equations[12]. However, at low concentrations, the con-
tinuum approach is bound to fail as shown by Togashi and Kaneko [13] and Shnerb et al
[14]. In a living cell, where the concentrations are low, we have to recognise the discrete
nature of the reactants.

If the system is well-stirred and well-mixed at all times, the dynamics is exactly given
by the chemical master equation.This description holds when there are many non-reactive
collisions in between the reactive collisions, so that the system becomes self-stirred. This
would mean that at each instant the particles are uniformly distributed in space. The ac-
curacy of this description increases when the diffusion constant increases. If the system
is linear, the CME can be solved analytically. This means that the variances, covariances
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and power spectra can be obtained analytically and exactly. However, the reactions are
often bimolecular, or even of higher order. In these cases the CME becomes non-linear
and obtaining an analytical solution is not possible. However, there are approximate
analytical solutions, such as the Linear-Noise Approximation. If, however, exact results
are required for a non-linear CME, one typically has to resort to simulations. One tech-
nique is the SSA developed by Gillespie [15]. The SSA is an exact, event-driven kinetic
Monte Carlo algorithm that generates trajectories which are consistent with the CME.
The iterative nature of the Gillespie algorithm reduces memory demands, as opposed
to when solving the CME directly. However, this algorithm only applies to the CME,
which describes the dynamics of a well-stirred system, where space is integrated out.
This is a serious limitation. A major reason for noise in biochemical networks is due to
the fluctuations of various components is space [16]. It has also been shown that these
fluctuations, which the mean-field analyses usually ignore, have a dramatic effect on the
response of a signalling pathway[17]. Signals are often transmitted in biological systems
by diffusion of particles. The concentration of these particles may not be uniform and
their low diffusion constant can limit the response time of the network. Hence it is nec-
essary to describe the system in space and time.

Techniques have been developed to consider the distribution of the components in
space and the stochasticity with which the reactions occur [18, 19, 20]. The reaction-
diffusion master equation is the basis for all these techniques, where the space is discre-
tised into a finite number of sub-volumes or voxels. Bimolecular reactions are allowed
for two particles in the same voxel, and these particles can move between two voxels
by diffusion. In all these techniques work under the assumption that the particles are
well stirred in the sub-volume. Hence, these techniques rely on the existence of a time
and length scale on which the system is spatially uniform. It is not always clear that
there exists such a length and time scale on which the system is well-stirred and well-
mixed, especially when the system is deep in the diffusion-limited regime. Indeed, in
the past years, this question has been investigated in much detail, and several schemes
have been presented that resolve this point by adjusting the voxel size based on the dis-
tance between the particles.

This calls for a truly particle-based approach, where the reactants are modelled as
ideal (spherical) objects that have a finite size and move by diffusion and the most com-
mon algorithm is one based on Brownian dynamics (BD) [21]. BD is a special case of the
Langevin equation where the inertial term is zero. In BD, the solute particles are sim-
ulated explicitly and the solvent is modelled implicitly. The forces experienced by the
particles can be divided into three parts: (i) the drag force, Fd, arising due to the motion
of the solute particles in a viscous solvent (ii) the potential force, Fp, due to interaction of
one solute particle with another and (iii) a random force, Fr, which due to the stochas-
tic collisions of the solute with the solvent. The fluctuation-dissipation theorem and
the Einstein relation, relates , Fr to Fd both of which depends on the diffusion constant,
D , of the solute particles. BD has clear advantages when compared to other grid-based
techniques: it naturally allows for anisotropic particles and orientational dynamics and
the way in which the solute particles interact i.e. the interaction potential, can be easily
described. In biochemical networks, as explained earlier, there is a separation of scales
due to the low concentration of the reactants. If BD is used to simulate such a system
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the algorithm has to use the microscopic time step to propagate particles. Hence the al-
gorithm spends most of the computational effort on propagating particles toward each
another before they react. This is one of the main downsides of using BD to simulate
biological systems.

To overcome this disadvantage of BD, a new technique, Green’s Function Reaction
Dynamics(GFRD) was developed [17, 22]. The central idea of GFRD is to decompose the
many-body reaction-diffusion problem into sets of one- and two-body problems that
can be solved analytically. To this end, single particles and pairs of particles are put
into protective domains that do not overlap with each other. For each of the domains,
the reaction-diffusion problem is solved analytically using Green’s functions. This yields
for each domain an event type, which is either a reaction or an exit of a particle from
the domain and an event time, which is when this event will happen. These events are
put in an event list, which is updated in chronological order. GFRD is thus an event-
driven, asynchronous algorithm. Because the domains do not overlap with each other,
the stochastic processes of the respective domains are independent, which turns GFRD
into an exact algorithm for simulating reaction-diffusion systems at the particle level. It
has been shown that at biologically relevant concentrations (micromolar to nanomolar)
GFRD performs up to six orders of magnitude faster than brute force BD. Despite the in-
credible computational speed up offered by GFRD, there are disadvantages of using this
technique. GFRD assumes idealised particle shape interacting with effective rate con-
stants and neglects the dynamics at the microscopic scale, such as the conformational
and orientational dynamics of the particles. At mesoscopic scales where particles are
diffusing, the latter can be integrated out without any serious consequences. However,
at the microscopic scales it is important to explicitly describe the microscopic dynamics
of the particles.

Brute force BD captures the dynamics at the microscopic scales, but wastes most of
the computational time propagating the particles toward each another. On the other
hand, GFRD particles take huge leaps in space and time, speeding up the diffusion pro-
cess significantly, but fails to capture the microscopic dynamics. There is not a single
technique that can describe the dynamics at both the mesoscopic and the molecular
scale which is both accurate and efficient. These problems thus call for a particle-based,
multi-scale modelling approach.

1.2. OVERVIEW OF THE THESIS

In chapter 1, we propose a novel approach that combines GFRD for simulating the sys-
tem at the mesocopic scale where particles are far apart, with a microscopic technique
such as Langevin Dynamics or Molecular Dynamics, for simulating the system at the mi-
croscopic scale where reactants are in close proximity. This scheme defines the regions
where (i) the particles are close together and simulated with high microscopic resolu-
tion and (ii) the particles are far apart and simulated with lower mesoscopic resolution,
adaptively on the fly. The new multi-scale scheme, called Molecular Dynamics Green’s
Function Reaction Dynamics (MD-GFRD), is generic and can be used to efficiently sim-
ulate reaction-diffusion systems at the particle level. MD-GFRD is tested with analytical
results for idealised spherical particles interacting via isotropic potentials.
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In chapter 2, we extend this multiscale MD-GFRD approach to include orientational
dynamics, crucial to describe the anisotropic interactions often prevalent in biomolec-
ular systems. We present the novel algorithm focusing on Brownian Dynamics only, al-
though the methodology is generic. We illustrate the novel algorithm using a simple
patchy particle model. After validation of the algorithm we discuss its performance. The
rotational Brownian Dynamics MD-GFRD multiscale method will open up the possibil-
ity for large scale simulations of e.g. protein signalling networks.

In chapter 3, we provide microscopic expressions for the intrinsic rate constants for
association and dissociation processes of isotropically interacting particles and illustrate
how these rates can be computed using rare event simulation techniques. In addition,
we address the role of the orientational dynamics for particles interacting via anisotropic
potentials.

Using the microscopic expressions derived in chapter 3 , we investigate how the rate
of association depends on the strength and the range of the isotropic potential, and the
strength of the non-specific attraction in case of the anisotropic potential in chapter 4.
In addition, we determine the location of the interface where these expressions become
valid for anisotropic potentials. In particular, by investigating the orientational distribu-
tions of the particles we verify whether the interface at which these distributions become
isotropic agrees with the interface predicted by the effective association rate constant.
Finally, we discuss how large the intrinsic association rate can become, and what the
consequences are for the existence of the diffusion limited regime.

If the substrate has multiple binding sites, a bound enzyme can, besides dissociat-
ing into the bulk, also hop to another binding site. However, the expressions derived
in chapter 3 are valid only when the substrate has one binding patch. In chapter 5, we
compute the association, dissociation, and hopping rates as a function of the distance
between the binding sites and the rotational diffusion constant. We also determine the
effect of blocking of one of these binding sites on the rates. We first derive a new generic
expression to calculate transition rates using Forward Flux Sampling, when the states
are not necessarily separated by all the interfaces. This is necessary to calculate tran-
sition rates between multiple states. Finally, we illustrate this approach by computing
these rates for a system in which an enzyme binds to a substrate with two binding sites,
and we show how the rates depend on the distance between the binding sites and the
orientational diffusion constant of the particles.

Finally, we use the multiscale scheme developed in chapters 1 and 2 along with the
rate constants that are calculated in chapter 5 to simulate a biochemical network. As
the saying goes ‘the proof of pudding is in the eating”. To demonstrate the applicability
of MD-GFRD, we simulate the response of a MAPK pathway. In each layer of the MAPK
cascade, a protein is phosphorylated at two sites. We present a proof-of-principle simu-
lation for a system that is in the linear regime, where the enzyme concentration is much
larger than that of the substrate. The aim is to simulate the system under more biolog-
ically realistic conditions, in particular more reasonable enzyme and substrate concen-
trations. We would also like to see the effect of the distance between the binding sites
and the orientational diffusion constant on the response of the system.
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2
COMBINING MOLECULAR

DYNAMICS WITH MESOSCOPIC

GREEN’S FUNCTION REACTION

DYNAMICS SIMULATIONS.

In many reaction-diffusion processes, ranging from biochemical networks, catalysis, to
complex self- assembly, the spatial distribution of the reactants and the stochastic charac-
ter of their interactions are crucial for the macroscopic behavior. The recently developed
mesoscopic Green’s Function Reaction Dynamics (GFRD) method enables efficient simu-
lation at the particle level provided the microscopic dynamics can be integrated out. Yet,
many processes exhibit non-trivial microscopic dynamics that can qualitatively change
the macroscopic behavior, calling for an atomistic, microscopic description. We propose
a novel approach that combines GFRD for simulating the system at the mesocopic scale
where particles are far apart, with a microscopic technique such as Langevin Dynamics or
Molecular Dynamics, for simulating the system at the microscopic scale where reactants
are in close proximity. This scheme defines the regions where the particles are close together
and simulated with high microscopic resolution and those where they are far apart and
simulated with lower mesoscopic resolution, adaptively on the fly. The new multi-scale
scheme, called Molecular Dynamics Green’s Function Reaction Dynamics (MD-GFRD), is
generic, and can be used to efficiently simulate reaction-diffusion systems at the particle
level.

9
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2.1. INTRODUCTION

Many important reaction-diffusion processes span many orders in length and time scales.
Examples are biochemical networks in living cells, catalytic reactions in, e.g. a fuel cell,
or dynamics of surfactant/water/oil mixtures. In these systems, the reactants’ spatial
dynamics at mesoscopic length and time scales of microns and seconds is coupled to
the reactions between the molecules at microscopic length and time scales of nanome-
ters and milliseconds. This wide range of length and time scales makes these systems
notoriously difficult to simulate.

The conventional strategy to simulate such reaction-diffusion systems, is to coarse-
grain the dynamics at molecular scales. One approach is to divide the reaction volume
into a number of subvolumes; particles can then react within one volume, but also dif-
fuse from one volume to the next [1]. Another approach is to take into account the par-
ticulate nature of the reactants [2, 3, 4, 5, 6, 7]. In these particle-based schemes, coarse
graining typically involves describing the reactants and their interactions by effective
cross sections, diffusion constants and rate constants. This approach drastically coarse
grains the dynamics at molecular scales. However, it is now clear that the dynamics at
the molecular scale can qualitatively change the macroscopic behavior of the system. It
has been shown that the rapid rebinding between a catalyst and its substrate can drasti-
cally change the rate of product formation[8], especially when one or both reactants are
on a surface[9]. In such cases, the binding between substrate and enzyme, the confor-
mational dynamics of the molecules, the formation and release of the product, the ori-
entational diffusion of the reactants and products has to be described explicitly, and can-
not be integrated out. Another approach, to simulate such systems is using (ab-initio)
molecular dynamics at all scales. This, while possible in principle, would be highly ineffi-
cient if not impossible in practice, since much CPU time would be spent on propagating
the reactants towards one another before they can react. There is not a single technique,
that can describe the dynamics at both the system and the molecular scale which is both
accurate and efficient. These problems thus call for a particle-based, multi-scale mod-
eling approach.

In this article we propose such a particle-based, multi-scale scheme. When far apart,
the particles are propagated toward each other using a mesoscopic technique. Here,
the dynamics at the molecular scales are not important since the particles are far apart.
When the particles are close to each other, the algorithm switches to a microscopic/atomistic
description of the particle dynamics, which takes into account the anisotropy of the par-
ticles and their conformational dynamics. In the multi-scale scheme proposed here, the
particle dynamics at the different scales are thus described by different techniques, and
the algorithm switches seamlessly between them based on predefined scenarios. The
algorithm can be applied to any reaction-diffusion system, but it becomes particularly
efficient when there is a clear separation in length and time scales between the dynamics
at the molecular and system level.

The challenges to develop a particle-based multi-scale scheme are three-fold. First,
we need a mesoscopic description of particle dynamics when the particles are far apart,
to simulate particle diffusion. Second, we need a microscopic description of particle dy-
namics when the particles come close together, to simulate reactions. Third, we need to
couple the two techniques to obtain a multi-scale scheme. While the scheme presented
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here can be applied to any particle-based reaction-diffusion model, we describe it here
with the application to cellular biochemical networks in mind.

In cellular systems, the mesoscopic particle diffusion typically occurs on time scales
of seconds and length scales of microns. A particle based algorithm, based on brute-
force Brownian Dynamics[10, 3, 4, 5], would be an obvious choice to describe particle
diffusion at the cellular scale. In this approach, the particles have a certain (idealized)
size and shape, move with a prescribed diffusion constant, and can react with each other
upon contact. This approach, while much more efficient than straightforward Molecu-
lar Dynamics, is still highly inefficient, because in these cellular systems the concentra-
tions of the reactants are often low, i.e. in the nM or µM range, which means that most
CPU time is spent on propagating the particles towards one another. To overcome this
problem, Green’s Function Reaction Dynamics (GFRD) was developed [11, 8]. The crux
of GFRD is to decompose the many-body reaction-diffusion problem into sets of one-
and two-body problems that can be solved analytically using Green’s Functions. These
Green’s Functions are then used to set up an exact, event-driven algorithm, in which
the particles can make large jumps in time and space when they are far apart from each
other. Indeed, GFRD can be up to 6 orders of magnitude faster than Brownian Dynam-
ics under biologically relevant conditions. GFRD assumes idealized particle shape and
neglects the dynamics at the microscopic scale, such as the conformational and orien-
tational dynamics of the particles. However, at the mesoscopic scale the latter can be in-
tegrated out. In our multi-scale scheme we therefore use GFRD to simulate mesoscopic
particle diffusion. A detailed description of GFRD is given in the next section.

The microscopic particle dynamics typically occurs on time scales of milliseconds
and length scales of nanometers, given by the typical size of proteins. When the parti-
cles come close to each other, their encounters can be simulated using microscopic tech-
niques such as Molecular Dynamics, Brownian dynamics or an accurate coarse grained
representation of the microscopic dynamics such as Markov State Modeling(MSM) [12,
13]. In the scheme presented here, we use Brownian Dynamics (BD) to treat the dynam-
ics at the molecular scale. BD is Langevin dynamics in the overdamped regime, which
is a stochastic dynamics scheme that describes the solutes explicitly, but treats the sol-
vent molecules only implicitly via the stochastic and friction forces that they exert on
the solutes. In this article, the second order quasi symplectic integrator suggested by[14]
is used to numerically solve the BD equations. This integrator can propagate the orien-
tational dynamics of the particles, although here we limit ourselves to simple Lennard-
Jones particles with isotropic interactions.

In the multi-scale Molecular Dynamics - Green’s Function Reaction Dynamics (MD-
GFRD) scheme that we propose here, we use BD to simulate the reactants that are within
a reaction distance, and we use GFRD to propagate the particles that are beyond this dis-
tance. MD-GFRD thus exploits the power of GFRD to allow particles to make large jumps
in time and space when they are far away from each other. Importantly, in contrast to
other multi-scale schemes [15, 16], the regions where the particles are close together
and simulated with high microscopic resolution, and the parts of space where they are
far apart and simulated with lower mesososcopic resolution, are defined adaptively on
the fly. This makes MD-GFRD, under biologically relevant conditions, orders of magni-
tude more efficient than brute-force BD with the same microscopic resolution. While
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- GFRD domain - particle

Figure 2.1: The Multi-scale scheme: particles that are far away from each other are surrounded
by an GFRD domain, and particles close to each other are in the BD regime and propagated at the
same time.

we use BD for simulating the particles at close distances, the principal idea is generic.
In the scheme presented here, GFRD can also be combined with other schemes such as
atomistic MD or MSM.

2.2. THE MULTI-SCALE SCHEME

2.2.1. OVERVIEW

Before we introduce MD-GFRD, it is instructive to first briefly describe GFRD [8]. The
central idea of GFRD is to decompose the many-body reaction-diffusion problem into
sets of one- and two-body problems that can be solved analytically [11, 17]. To this end,
single particles and pairs of particles are put into protective domains that do not over-
lap with each other [8, 18]. For each of the domains, the reaction-diffusion problem is
solved analytically using Green’s functions. This yields for each domain an event type,
which is either a reaction or an exit of a particle from the domain, and an event time,
which is when this event will happen. These events are put in an event list, which is up-
dated in chronological order. GFRD is thus an event-driven, asynchronous algorithm.
Because the domains do not overlap with each other, the stochastic processes of the re-
spective domains are independent, which turns GFRD into an exact algorithm for simu-
lating reaction-diffusion systems at the particle level.

In the scheme proposed here, we only keep the Single domains of the original GFRD
scheme. Single particles that are sufficiently far away from other particles according to
a predefined cut-off distance are put into protective domains, as shown in Fig. 3.1. For
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each of these domains, the algorithm determines, as in the conventional GFRD scheme,
the next-event type, which is either a mono-molecular decay reaction or an exit of the
particle from the domain, and the corresponding next-event time. Each domain is then
updated only when its time has come, i.e. when the simulation time has reached the
event time of the domain. This allows MD-GFRD to make large jumps in time and space
when the domains are large. It is the origin of the high efficiency of the scheme.

The other particles, which are within the predefined cut-off distance from another
particle or GFRD domain, are propagated with conventional BD. They are not put into
protective domains and, as in conventional BD, they are propagated collectively using
small time steps. The particles interact with each other via an interaction-potential, al-
lowing for a detailed microscopic description of the conformational and orientational
dynamics of the particles that are in close vicinity of each other. This dynamics also
implements the bimolecular association reactions, which in the original GFRD scheme
were treated via the Pair domains.

MD-GFRD as presented here can thus incorporate two types of reactions: mono-
molecular decay reactions and bi-molecular association reactions. How these reactions
are simulated is described in detail in the sections below. Here we give a brief overview.

In a bi-molecular reaction two particles A and B can react with an intrinsic rate con-
stant ka to form products:

A+B
ka→ C+D+ . . . (2.1)

Only particles in the BD regime can undergo a bi-molecular reaction. Bi-molecular re-
actions are discussed in detail in Sec. 2.2.3.

In a mono-molecular reaction the particle can instantaneously decay into products
with an intrinsic rate constant kd according to:

A
kd→ B+C+ . . . (2.2)

The decay reaction is assumed to be a Poisson process. A particle in either the GFRD or
the BD regime can decay into its products.

By combining Eqs. 2.1 and 2.2 essentially any complex biochemical network can be
simulated. Here we present MD-GFRD for the simple case of three species A, B and C,
which react according to

A+B
ka


kd

C.

Two particles A and B are in the bound state if they are close enough together such that
the inter-particle force between them is strong enough to create the dimer A-B. When
the monomers are beyond the interaction range of the potential, the inter-particle force
no longer holds the dimer A-B together, and the particles enter the unbound state. In
MD-GFRD, the association reaction is always simulated with BD. Also the dissociation
reaction could be simulated with BD: we could explicitly simulate the monomers in the
dimer A-B, until they dissociate into A and B. However, when the dissociation time is
longer than the time it takes for the dimer to randomize its orientation, we can replace
the dimer with a single particle C, which can then be simulated with GFRD. This reduces
the time to simulate the dimer, making the scheme more efficient. The C particle can
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then decay with a rate constant kd , yielding the monomers A and B again. The value of
kd can be obtained by a preliminary simulation or analytically.

At the heart of MD-GFRD, there is thus an event list, ordered based on the next event
times of the particles. These next events can be: (1) Escape of a particle from a GFRD
domain, (2) Decay of a particle in a GFRD domain, (3) Decay of a Brownian particle. The
scheme then proceeds as follows. The particles in the BD regime are propagated. During
this time, attempts are continually being made to put BD particles in the GFRD domain.
If an attempt is successful, the event list is updated. This dynamics continues until the
simulation time reaches the time of the first event in the event list. This event is then
executed, the system is updated accordingly, for the updated particles the next event
types and times are determined and inserted into the event list, and the BD particles
are propagated again, and so on. The scheme becomes particularly powerful when most
particles are in GFRD domains. A key objective is thus to keep the number of BD particles
to a minimum. In the subsequent section, we describe in more detail the different steps
of the algorithm.

2.2.2. GREEN’S FUNCTION REACTION DYNAMICS(GFRD)
A particle in a GFRD domain has, as discussed in the previous section, two possible next

events. It can either exit the domain or decay into other species (C
kd−→A+B). For each

of these tentative events, we compute the tentative event time. The next-event type for
the domain is then the tentative event with the smallest tentative event time; this time
then also becomes the next-event time for that domain. We now briefly describe how we
compute the event times for the two event types.

ESCAPE FROM THE DOMAIN

The Einstein diffusion equation describes the motion of a freely diffusing spherical par-
ticle:

∂tp(r, t |r0, t0) = D∇2p(r, t |r0, t0), (2.3)

where p(r, t |r0, t0) denotes the probability that a freely diffusing spherical particle will be
located at r at time t, given that it was at r0 at time t0. We obtain the solution to Eq.2.3,
by imposing the following initial and boundary conditions:

p(r, t0|r0, t0) = δ(r − r0), (2.4a)

p(|r− r0| = a, t0|r0, t0) = 0, (2.4b)

where a is the radius of the domain D and δ is the Dirac delta function. The solution
obtained is the Green’s function p(r, t |r0, t0), and integrating this over the whole domain
gives the survival probability S(t ), which is the probability that the particle is still in the
domain at time t :

S(t ) =
∫
D

p(r, t |r0, t0)dr. (2.5)

The propensity function, which is the probability per unit amount of time that the par-
ticle escapes the domain for the first time, qe(t ), is related to the survival probability by

qe(t ) = −∂S(t )

∂t
. (2.6)
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The cumulative distribution of q(t ) is given by

Q(t ) =
∫ t

t0

q(t )d t = 1−S(t ), (2.7)

which can be used to sample next escape times. The tentative next escape time, τe, is
sampled from Q(t ) by numerically solving,

Q(τe) = 1−S(τe) =Re, (2.8)

where Re ∈ [0,1] is a uniformly distributed random number.

MONO-MOLECULAR DECAY

The propensity function for the next dissociation reaction, is exponentially distributed
and is given by,

qd(t ) = kde−kdt , (2.9)

where kd is the rate of the dissociation reaction. The tentative next event time for the
dissociation reaction, τd, is sampled using

τd =−kdln(Rd), (2.10)

where Rd ∈ [0,1] is a uniformly distributed random number.

NEXT EVENT TIME

The next event time, τ, is the time at which the particle either dissociates or escapes from
the domain, given that the particle is in the center of the domain. As soon as a domain
is constructed, τd and τe are evaluated using Eq. 7.9 and Eq. 2.8 respectively. The next
event time is then calculated as:

τ= min(τd,τe). (2.11)

DOMAIN BURSTING

In the course of the simulation, a particle that has just escaped from the GFRD domain
may have come close to another GFRD domain. In principle a small domain could be
constructed around this particle, but this would make the scheme inefficient. Moreover,
a particle in the BD regime, which is propagated with a fixed finite time step, may pene-
trate a GFRD domain to which it is close. In both cases, the GFRD domain of interest—
the domain to which the particle is close—is burst to generate more space. More specif-
ically, a GFRD domain is burst when: (1) A particle that has just escaped from a GFRD
domain is within a distance rBD (see Fig. 2.4) from the boundary of the domain of inter-
est; (2) A particle in the Brownian regime comes with in a distance rBD from the boundary
of the domain of interest; (3) A particle in a domain decays into its products.

Bursting means generating a position of the particle at time τb before it escapes from
the domain, where τb < τe. The radial position is sampled by numerically solving

PS(τb)(rb) =Rb, (2.12)
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where Rb ∈ [0,1] is a uniformly distributed random number and the cumulative condi-
tional PDF

PS(τb)(rb) = 1

S(τb)

∫ rb

0

∫ 2π

0

∫ π

0
p(r,θ,φ,τb|r0)r 2

sin(θ)dθdφdr. (2.13)

PS(τb)(rb) is normalized with the survival probability S(τb), since we know that the parti-
cle is inside the domain at time τb.

2.2.3. BROWNIAN DYNAMICS

Particle dynamics at the molecular scale is generated by numerically propagating the
BD equations. BD is the overdamped version of Langevin Dynamics, meaning that we
propagate only the positions of the particles, and not their velocities. A second order
quasi symplectic integrator is used to numerically integrate the BD equations [14]. This
integrator is particularly well suited for taking into account the orientational dynamics,
although we will not employ this feature here. For a detailed description of the algorithm
please see Ref.[14].

THE LENNARD-JONES POTENTIAL

The particles in the BD regime influence each other through a potential. To present the
algorithm, we use simple particles that interact via a conventional, isotropic Lennard-
Jones potential. In future work we will describe how anisotropic interactions, including
orientational dynamics, can be included into MD-GFRD. The Lennard-Jones potential,
V (r ), shown in Fig. 2.2, is given by

V (r ) = 4ε

[(σ
r

)12
−

(σ
r

)6
]

(2.14)

where r is the inter-particle distance.
The potential has two parameters, σ and ε. The parameter σ is the inter-particle

cross section, i.e. the distance r at which the potential, V (r ), is zero. The parameter ε
is the potential well depth, which is a measure of the interaction strength between the
particles.

For all other interactions, A-A, B-B, C-C, C-A, C-B, we use the following repulsive
potential

VWCA(r ) = 4ε

[(σ
r

)12
−

(σ
r

)6
]
+ε if r < 2

1
6σ (2.15)

FREE ENERGY OF TWO INTERACTING PARTICLES

BD simulates the reaction between the two particles. To achieve this we need a definition
of the bound and the unbound states. To this end, we will use the free energy (F ) of a two-
particle system as a function of its distance. The probability density that two particles
interacting via a potential V (r ) are at a distance r is given by

P (r ) = 1

Z
r 2e

− V (r )
kB T , (2.16)
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Figure 2.2: Lennard-Jones Potential as given by Eq. 2.14. The parameters used for our simulations
are: ε= 10kB T and σ= 5nm

where kB is the Boltzmann constant, T is the temperature and Z the partition function
given by

Z =
∫

r 2e
− V (r )

kB T dr. (2.17)

The Landau free energy, F (r ), of the system as a function of r is given by the negative log
of the P (r )

F (r ) =−kB T ln[P (r )] =−2kB T ln(r )+V (r )+kB T ln Z . (2.18)

We note that the free energy contains a log(r) term due to the Jacobian in three dimen-
sions and will use this free energy F (r ) to define the bound and the unbound state, as
described in the following section.

REACTIONS AND FIRST-ESCAPE

The scheme handles reactions of the type

A+B
ka


kd

C (2.19)

where ka and kd are the association and dissociation rates, respectively. The free energy
landscape, Fig. 2.3 is used to determine whether the particles are bound or not. The free
energy landscape shows a peak for an inter-particle distance rp . If the inter-particle dis-
tance is less than rp , the particles are in the bound state, while if it is larger, the particles
are in the unbound state.
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Figure 2.3: Free Energy landscape showing a peak at rp . This forms a barrier between the bound
and the unbound state. Reactions occur based on the inter-particle distance, r . If r < rp , then the
particles associate, and are in the bound state. If r > rp , then the particles dissociate, and go to the
unbound state. The time taken for a particle starting at the bottom of the potential well, to cross
the barrier, is called as the dissociation time.

The central idea is that the association reactions are implemented via BD. As de-
scribed in detail in the next section, when two particles come within a predefined cut-off
distance, they are simulated with BD. An association reaction between the two particles
then occurs when these two particles spontaneously cross the free-energy barrier at rp .

In principle, the algorithm could continue to propagate these two particles that are
now in the bound state, with BD. However, when the interaction between the two parti-
cles is strong, as is typically the case in cellular systems, then it will take a relatively long
time before they cross the free-energy barrier and dissociate again. During this time,
the two particles will simply rattle around each other in the potential well, while their
center-of-mass slowly diffuses. If the dissociation time is longer than the time it takes
for the dimer to reorient itself, then it becomes advantageous to treat the particles as a
single particle C, centered at the center-of-mass of the particles A and B. This C particle
diffuses with a diffusion constant, which depends on the nature of the interaction poten-
tial; if the interaction potential depends on the inter-particle distance only, the diffusion
constant is simply the sum of the diffusion constants of particles A and B, respectively
[8]. Around this particle C, a GFRD domain can be built if the space is available, which
would significantly speed up the simulations. The C particle then diffuses, either explic-
itly with BD or implicitly with GFRD, until it dissociates again into the monomers A and
B. Upon dissociation, the monomers are put at a close distance as described below, and
in a random orientation (if necessary), which is justified when the dissociation time is
longer than the reorientation time of the dimer.
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When the dimer A-B is treated as a single particle C, we need the time τd at which it
dissociates into the monomers A and B again. When the potential well is deep enough,
the distribution of dissociation times τd will be exponential and given by Eq.3.5. Clearly,
we can generate the next dissociation time τd using Eq. 7.9, once we know the dissoci-
ation rate kd. To determine kd, we perform prior to the MD-GFRD simulations, a brute-
force BD simulation of two particles, in which we compute the distribution of dissocia-
tion times. The rate constant kd is then obtained by fitting the measured distribution to
Eq. 3.5.

Lastly, while rp defines the boundary between the bound and the unbound state, we
do not use this dividing surface to switch between the bound and unbound state dur-
ing the simulations. The reason is that with a single dividing surface (located at rp ) the
system would rapidly recross this dividing surface many times before the two particles
either escape from each other or settle in the potential well. Inspired by the indicator
functions used in rare-event simulation techniques [19, 20, 21, 22], we therefore define
two dividing surfaces B1 and B2, as shown in Fig. 2.4. Two unbound particles need to
cross the dividing surface B1 to enter the bound state. But once bound, the (monomers
of) the dimer has to cross the dividing surface B2 for dissociation. By putting B1 and B2
a few kB T s below the top of the barrier, the rapid re-bindings are eliminated. And since
the time the system spends near the top of the barrier is small compared to that in the
free energy minima, this procedure does not affect the value of the rate constants ka and
kd [19].

2.2.4. COUPLING THE TWO SCHEMES

To couple BD and GFRD we need to address two questions: When should a BD particle
be put into a protective GFRD domain? And when should a particle that escapes from a
GFRD domain be treated as a BD particle? To start with the first question, if during the
BD integration, a BD particle has moved away from the other BD particles and GFRD
domains farther than a distance rGFRD , then a GFRD domain will be constructed around
the particle.

When should the scheme switch back from GFRD to BD? A particle in a GFRD do-
main has two possible next event types (Fig. 2.5). It can either dissociate or escape from
the domain. If the particle C in a GFRD domain dissociates, it is replaced by particles A
and B. The particles A and B are now placed at a distance rd (Fig. 2.4) and propagated
with BD. When the particle escapes from the GFRD domain, the position of the particle
is updated to a random position on the boundary of the domain and the domain is re-
moved. We then check if a new domain can be constructed on the particle that escaped.
To this end we measure the distance from the particle of interest to its nearest neighbor,
to determine if there is enough space to construct a domain. The nearest neighbor to the
particle of interest can either be a BD particle or a GFRD domain. If the nearest neigh-
bor is a BD particle, and the distance r from the BD particle to the particle of interest
is greater than 2rBD (Fig. 2.4), we construct a GFRD domain of radius 0.5r around the
particle of interest. If r is less than 2rBD then we propagate the particle of interest with
BD since there is no space to build a domain. On the other hand, if the nearest neighbor
is a GFRD domain, and the distance r from the particle of interest to the boundary of
the GFRD domain is greater than rBD, we construct a domain of radius r around the par-
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Figure 2.4: Dividing surfaces and their functions. If two particles in the BD regime come close to
each other, such that r < ra, then the particles associate. The two particles are replaced by a single
particle of the appropriate species. The next dissociation time is drawn from the distribution given
by Eq. 3.5. When a particle dissociates, we replace the single particle by its products and place
them at a distance r = rd. When two BD particles move far from each other, such that r > rGFRD,
we build domains over the particles and put them in the GFRD regime. When two particles in the
GFRD regime come close, such that r < rBD, we put the particles in the BD regime. See Fig.2.5 for
more details.
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ticle of interest. If however r is less than rBD, the particle of interest bursts the domain,
as discussed in 2.2.2. When a domain is burst, a new position is generated for the par-
ticle inside the domain and the particle is converted to a BD particle. It could happen
that this newly created BD particle is within a distance less than rBD from a neighboring
domain. In such a case, the newly created BD particle bursts the neighboring domain.
This can lead to a cascade of domain bursting until finally no BD particle is within a dis-
tance of rBD from any domain (Fig. 2.5, pop-up panel). Now we loop over all the newly
created BD particles and attempt to build domains around them. For each newly cre-
ated BD particle, we find the distance to its nearest neighbor. If the nearest neighbor is
a GFRD domain, then we build a domain of radius r equal to the distance to the bound-
ary of that domain, since we know that this distance r is larger than rBD (otherwise the
domain would have been burst). If the nearest neighbor is instead a BD particle, then, if
the distance r is greater than 2rBD, a domain of radius r is constructed, else the particle
is propagated with BD.

As sketched in Fig. 2.4, rGFRD is taken to be larger than rBD. This is important, because
it prevents the system from rapidly switching between BD and GFRD many times before
firmly settling in either the BD or GFRD mode.

2.2.5. OUTLINE OF THE ALGORITHM

This section gives an outline of the multi-scale scheme. In the simulations there are
two types of particles: BD particles and GFRD particles and three types of species; A,
B and C. A BD particle has only one type of next event namely dissociation, whereas a
GFRD particle’s next event type maybe a dissociation or an escape from its domain. The
algorithm is described in Alg. 2.

Algorithm 1 The heart of the Multi-scale scheme. Pn is the list of all particles, τn the
next event times, Tn the next event types, tsi m the time passed since the start of the
simulation, δt the time step interval used for the BD integrator and r the inter-particle
distance. When a domain is burst or when a particle escapes from a domain, the
particle might burst a neighboring domain and this may continue. This is called
successive bursting. create_domains is a user defined routine which deals with
successive bursting and attempts to build domains around particles. Fig. 2.5 outlines
the switching from GFRD to BD, including a description of the function
create_domains.

Initialization:
tsi m ← 0
Pn ← read in initial particle positions and velocities
create_domains for all BD particles pl in Pn

rearrange Pn based on τn

Main loop:

while tsi m < tend do

BD section:
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Figure 2.5: The switching from GFRD to BD. A particle in a GFRD domain has two possible next
event types. It can either dissociate or escape from the domain. If the particle dissociates, the
products are propagated with BD since they are placed at a distance Dd < 2rBD. If the particle es-
capes from the domain, the nearest neighbor to this particle of interest is determined. The nearest
neighbor can either be a BD particle or a GFRD domain.

(continued next page)
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Figure 2.5: (continuing from previous page) If the nearest neighbor is a BD particle and the dis-
tance r from this particle to the particle of interest is greater than 2rBD a domain of radius 0.5r is
built around the particle of interest and if r < 2rBD both particles are propagated with BD. On the
other hand, if the nearest neighbor is a GFRD domain, the distance r from the particle of interest
to the boundary of the GFRD domain is measured. If r ≥ rBD, a domain of radius r is built around
the particle of interest. If however r < rBD, the GFRD domain is burst. Bursting a domain leads to
a BD particle with a newly sampled position. Now this newly created BD particle due to the burst
domain, can in turn burst another neighboring domain leading to another BD particle and this
can happen recursively until finally no BD particle is within a distance of rBD from any domain.
This is shown in the second panel of the figure. After all possible domains are burst, for each of
the newly created BD particles we find the nearest neighbor. If for a BD particle the nearest neigh-
bor is a GFRD domain, we build a domain of radius r around the BD particle since we know that
they are separated by at least rBD. If for a BD particle, the nearest neighbor is another BD particle,
the distance r between the two particles is measured. If r ≥ 2rBD a domain of radius 0.5r is built
around the BD particle of interest, else if r < 2rBD the BD particle of interest is propagated with
BD. Please note that some of the steps are numbered, to facilitate the description of the algorithm
in the text; the numbers do not correspond to any particular order in which the steps need to be
executed.

if number of BD particles > 0 then

Check if any BD particle dissociates:
for all BD C particles pl in Pn do

if Tl ==dissociation and tsi m ≥ τl then
dissociate pl and update Pn

place the products at rd (see Fig. 2.4)
end if

end for

BD numerical integrator:
for all BD particles pl in Pn do

calculate forces
update position

end for
tsi m+= δt

Check if any two BD particles react:
for all BD A and B particles pl in Pn do

for all BD A and B particles pm in Pn −pl do
if r ≤ ra(see Fig. 2.4) then

replace A and B (if possible) by C
update Pn

end if
end for

end for
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create_domains for all BD particles pl in Pn

rearrange Pn based on τn

end if

GFRD section:
if number of GFRD particles > 0 then

for p0, the first particle in the Pn

if tsi m ≥ τ0 or number of BD particles == 0 then

if T0 == escape (Step 1. in Fig. 2.5) then
tsi m ← τ0

update position of p0

make p0 an BD particle
create_domains for all BD particles pl in Pn (Step 4. in Fig. 2.5)
rearrange Pn based on τn

end if

if T0 == dissociation (Step 2. in Fig. 2.5) then
burst the domain
place the products at rd (see Fig. 2.4; Step 3. in Fig. 2.5)
rearrange Pn based on τn

end if

end if
end if

end while

2.3. RESULTS AND DISCUSSION

In this section we discuss the tests performed to check the validity of the multi-scale
scheme. Tests are performed for the system

A+B
ka


kd

C. (2.20)

First we discuss how we determine the rate constant, kd. Then using this value of kd, we
perform a multi-scale MD-GFRD simulation where the probability of the two species, A
and B, being bound is calculated for two cases:(1) One A particle surrounded by many B
particles; (2) Many A particles surrounded by many B particles. In both cases the simu-
lation results are validated with analytical results. Next, the power spectrum is evaluated
for the multi-scale simulation and is compared to that of a brute force BD simulation.
Finally, the performance of the multi-scale simulation is compared to that of a brute
force BD simulation. For all MD-GFRD simulations the box width is 120σ, mass=5kDa,
rBD = 3σ, rGFRD = 5σ and time step for the BD integrator δt =10ns. The diffusion constant



2.3. RESULTS AND DISCUSSION

2

25

5 10 15

0

0.1

0.2

0.3

0.4

5 10 15

100

101

102

τd [ms]
q(
τ d

)
[s−

1 ]

τd [ms]

q(
τ d

)
[m

s−
1 ]

Escape time distribution
Exponential fit

Figure 2.6: Escape Time distribution fitted with an exponential curve. From the fit we obtain
kd=0.42ms−1. q(τd) is the probability per unit time, that the particle dissociates at time τd. The
simulation was performed for a well depth of ε = 10kBT. The inset shows a semi-log plot of the
exponential fit.

D , the number of particles N and the interaction strength ε are varied and described
below.

2.3.1. RATE CONSTANT

When the dimer A-B is treated as a C particle, then, as discussed in Sec. 2.2.3, we need the
value of the rate constant, kd. For this purpose, a brute force BD preliminary simulation
with two particles in a box, with periodic boundaries, is performed. The particles are in
a bound state if the inter-particle distance r < ra, see Fig. 2.4. If the particles move apart
and r > rd, then the particles are unbound. The time, called the escape time, τes, taken
for a bound particle to become unbound is recorded. A typical histogram of the escape
times is shown in Fig. 2.6. If the well of the inter-particle potential is deep enough, the
escape times will follow an exponential distribution Eq. 3.5. The histogram of the escape
times is fitted to an exponential and the value of kd is calculated.

2.3.2. BIMOLECULAR REACTIONS

As a first test of the multi-scale scheme, we simulate a reversible bimolecular reaction,
Eq. 2.20. In these simulations, we start of with two species of particles, A and B. One A
and one B can react to form a dimer. The dissociation time of the dimer is typically much
larger than the time for the dimer A-B to randomize its orientation, so that the A-B dimer
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can be treated as a single particle C around which a GFRD domain can be built. Also,
one C particle can dissociate to form one A and one B. Here we assume that particles of
similar species do not interact with each other and species C does not interact with any
species. We test the scheme for two different scenarios as described below.

ONE A MANY B

In the first case, one particle of species A, is surrounded by NB particles of species B, in
a box of volume V , with periodic boundary conditions. This means that the number of
C particles, NC , is either zero or one and that at any moment in time we will have 1−NC

A particles and NB −NC B particles. The simulation calculates the average time that the
particle A is bound. From this, we calculate the probability Pb of the particle A being
bound to a particle B. We repeat the simulation for different NB keeping V constant. We
validate the value of Pb obtained from the simulation to the analytical value given by,

Pb = 1

1+ KDV

NB

(2.21)

where KD is the dissociation constant given by,

KD = 1

4π
∫ rp

0 r 2e−βV (r )dr
(2.22)

where rp is defined by Fig. 2.3 and V (r ) is given by Eq. 2.14. Fig. 2.7 shows excel-
lent agreement between the simulation and analytical results, for two different values of
inter-particle potential strength, ε (see Eq. 2.14).

MANY A MANY B

The second case is a slightly more complex system, where NA > 1 particles of species A
and NB particles of species B are simulated in a box, with periodic boundary conditions.
This means that, at any moment we will have NA −NC A particles, NB −NC B particles
and NC C particles. In this case the the maximum number of C particles is min(NA , NB ),
and the probability Pb of particle A being bound is given by,

Pb = 〈NC 〉
NA

, (2.23)

where 〈NC 〉 is the average number of C particles. Using mean field chemical rate equa-
tions we have,

〈NC 〉 =
M −

√
M 2 −4NA NB

2
,

M = (NA +NB )+KDV , (2.24)

where KD is given by Eq. 2.22
Fig. 2.8 shows that the simulation results of MD-GFRD agree very well with the ana-

lytical predictions of Eq. 2.24. The top panel shows that the MD-GFRD simulation results
also agree with those of brute-force BD. These results show that MD-GFRD successfully
predicts average quantities.
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Figure 2.7: The probability Pb that a particle A is bound to a particle B, with increasing NB in a
box of constant volume V . In this case there is one A particle and NB B particles in the box. The
main panel shows Pb for two different values of the interaction strength ε. The symbols are the
results of MD-GFRD and the solid lines are the mean-field prediction of Eq. 2.21. It is seen that the
agreement is very good. The top panel shows the difference between the results of MD-GFRD and
those of brute-force BD, |δ = Pb(MSS) −Pb(BD)|, for ε = 12kBT . Box width is 120σ, where σ sets
the length scale of the Lennard Jones potential. The diffusion constant, which is not important for
the value of Pb , is 1µm2/s.
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Figure 2.8: The probability Pb that a particle A is bound to a particle B, with increasing NA and NB
in a box of constant volume V . In this case there are N = NA+NB particles, with NA = NB = N

2 . The
main panel shows the results of MD-GFRD (symbols with error bars) together with the analytical
prediction of Eq. 2.21 (sold lines). It is seen that the agreement between simulation and theory
is very good. The top panel shows the difference between the MD-GFRD simulation results and
those of brute-force BD, |δ=Pb(MSS) −Pb(BD)|, for ε= 12kBT . Clearly, the MD-GFRD results are
in excellent agreement with those of brute-force BD. Box width is 120σ, where σ sets the length
scale of the Lennard Jones potential. The diffusion constant, which is not important for the value
of Pb , is 1µm2/s
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Figure 2.9: Power spectrum P (ω) of MD-GFRD validated with that of brute force BD proves that
the scheme can simulate dynamic quantities. The simulation to generate the power spectrum was
performed with one A and one B particle.

2.3.3. POWER SPECTRUM

MD-GFRD not only predicts the mean quantities, but also successfully describes dy-
namic quantities. To illustrate this we generate a power spectrum P (ω) of the time trace
n(t ) of two particles switching from the bound state with n(t ) = 1, to the unbound one
with n(t ) = 0. The Fourier transform of the correlation function of n(t ) gives the power
spectrum. In Fig. 3.10 the power spectrum of MD-GFRD is compared to that of the brute
force BD scheme. It can be seen that the two power spectra are in very good agreement
with each other. This demonstrates the ability of MD-GFRD to predict dynamic quanti-
ties.

2.3.4. PERFORMANCE

One of the main motivations of developing MD-GFRD was the speed up GFRD provides
when the particles are far apart. Unlike brute force Brownian dynamics which spends a
lot of CPU time in propagating particles toward each other, GFRD makes large jumps in
space and time when the particles are far apart on average. This, however, means that the
efficiency of GFRD depends on the concentrations of the particles in the system. If the
concentrations are low, the particles are far apart. This means that the GFRD domains
will be large in size and the particles will be able to make large jumps in space and time.
Here we can expect outstanding performance by the scheme, when compared to brute
force BD. On the other hand, if the concentration is high, the particles are close to each
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Figure 2.10: The CPU time to simulate 1ms real time as a function of the concentration of A and
B, for MD-GFRD (solid line) and BD (dashed line). The concentration is varied by changing the
volume of the simulation box, while the number of particles is kept constant at NA = NB = 5. It is
seen that in the biologically relevant concentration range of nanomolar to micromolar the perfor-
mance of MD-GFRD is much better than that of brute-force BD, but at higher concentrations the
relative performance of MD-GFRD goes down. This is because at higher concentrations, the par-
ticles will be close to each other, and the system cannot capitalize on the potential of MD-GFRD
to make large jumps in time and space.

other, the GFRD domains will be small, and the particles will not be able to make big
jumps in space and time. Now we can expect some speed up, but not as high as the
previous case. For even higher concentrations, we expect MD-GFRD to perform less
than brute force BD because of the overhead of checking whether the scheme should
switch between BD and GFRD.

In Fig. 3.11 we compare the performance of MD-GFRD to that of brute force BD. It
should be noted that the BD algorithm used here is not optimized i.e. with neighbor lists
etc. But since we use only up to ten particles, the speedup obtained by neighbor lists is
not substantial. Fig. 3.11 shows that at low concentrations MD-GFRD can be much faster
than brute-force BD, because in this regime the algorithm can exploit the power of GFRD
to make large jumps in time and space. It is also seen that at higher concentrations, the
relative performance decreases, because the particles are now closer to each other. In
addition, the figure shows that the efficiency depends on the diffusion constant: the



2.3. RESULTS AND DISCUSSION

2

31

0.05 0.15 0.25

0

50

100

150

10−13 10−10 10−7
101

106

1011

δr [m]
P

(δ
r)

[m
−

1 ]

δr [µm]

P
(δ
r)

[µ
m

−
1 ]

10 particles (c = 0.6µM)
30 particles (c = 1.8µM)

Figure 2.11: The probability density P (δr ) of spacial step sizes r for the multi-scale simulation, for
two different number of particles N, yielding, at constant volume, two different concentrations c,
as indicated. The inset shows the two regimes, GFRD and BD. It is seen that particles in the BD
regime take a large number of smaller steps as compared to particles in the GFRD regime which
take a smaller number of larger steps. Please also note that as the density is increased (by increas-
ing the number of particles at constant volume), particles are more often propagated with BD. The
simulations were performed with a box width of 120σ, well depth ε = 10kBT , diffusion constant
D = 1µm2/s.

lower the diffusion constant, the higher the performance of MD-GFRD as compared to
brute-force BD. This can be understood by noting that at lower diffusion constants, the
particles in the GFRD domains escape from their domains more slowly, and hence need
to be updated less frequently.

From Fig. 3.11 we see that for a typical protein diffusion constant of 1µm2/s, MD-
GFRD is less efficient than brute force BD for concentrations larger than around 1mM.
This is in line with a previous performance test of GFRD (www.GFRD.org). Importantly,
for cellular systems, mM concentrations are high: in gene networks the concentrations
of transcription factors are typically in the nM regime, and in signal transduction path-
ways the concentrations tend to be in the µM range. As the figure shows, under these
concentrations MD-GFRD is much faster than brute force BD.

2.3.5. SPACIAL STEP-SIZE

Fig. 2.11 shows the probability density of spacial step sizes in the multi-scale simula-
tion for D = 1µm2s−1, N = 10 and N = 30 particles in a cubic box of width L = 120σ (as
before), corresponding to concentrations of 0.6µM and 1.8µM respectively. The inset
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shows the same data on a log-log scale. This inset reveals two distinct regimes: one cor-
responding to BD particles with a step size of approximately 10pm and another regime
corresponding to particles propagated with GFRD. This distribution has a peak at around
10nm, but exhibits a long tail, which means that steps of a 100nm are not uncommon,
when the concentrations are low. This is the origin of the power of MD-GFRD.

2.4. CONCLUSIONS AND FUTURE WORK

We have developed a multi-scale scheme, called MD-GFRD, which can simulate reaction-
diffusion systems at different length and time scales. When the particles are far apart,
the scheme capitalizes on the power of GFRD. GFRD breaks down the N -particle prob-
lem into sets of one and two particle problems by putting single particles and pairs of
particles into protective domains, and solve the reaction-diffusion problem for each of
the domains analytically. MD-GFRD presented here only uses the Single domains of
GFRD, which consist of single particles only. While the Pair domains provide speed up
in the original GFRD scheme, much, if not most of the speed up, comes from the Single
domains. For these Single domains, the Green Functions can be computed efficiently,
we do not need to construct separate domains for the center-of-mass and for the inter-
particle vector as for the Pair domains, and, most importantly, also the Single domains
allow particles to make large jumps in time when they are far apart from each other.
Hence, also in MD-GFRD, the time needed to propagate the particles towards one an-
other is drastically reduced.

Since we want to describe the particle encounters with microscopic detail, MD-GFRD
switches to a microscopic simulation technique when the particles come close together.
For purpose of illustration, the MD-GFRD presented here employs Brownian Dynamics.
However, to simulate the particle encounters, in principle any microscopic technique
could be used, such as Molecular Dynamics or a coarse grained representation of MD,
like Markov state modeling. All these techniques allow for a more accurate description of
the orientational and conformational dynamics of the particles at the microscopic scale,
which can influence the dynamics at the macroscopic scale [8].

MD-GFRD not only predicts average quantities, but also dynamic quantities success-
fully. Moreover, while it captures the particle dynamics at the microscopic level, it is
much more efficient than brute force BD at low concentrations, as observed in cellular
systems. MD-GFRD is a self-organizing algorithm that automatically zooms in on the
particles that are close together, thus keeping particles as much as possible at the meso-
scopic level, where they can be simulated with high speed.

Finally, MD-GFRD is very generic: it can be used to simulate any reaction-diffusion
system at the particle level. It can not only simulate on a molecular level a wide range
of cellular processes, but can also be used to describe the kinetics of self-assembly pro-
cesses in polymeric systems, catalysis in a complex environment(eg. fuel cells), the dy-
namics of micellar surfactant systems or crystallization from dilute solution. In future
work, we will include orientational dynamics into BD, where the orientation of a particle
influences the behavior of the system.
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3
MULTISCALE SIMULATIONS OF

ANISOTROPIC PARTICLES

COMBINING MOLECULAR

DYNAMICS AND GREEN’S

FUNCTION REACTION DYNAMICS

The modeling of complex reaction-diffusion processes in, for instance, cellular biochemi-
cal networks or self-assembling soft matter can be tremendously sped up by employing a
multiscale algorithm which combines the mesoscopic Green’s Function Reaction Dynam-
ics (GFRD) method with explicit stochastic Brownian, Langevin, or deterministic Molecu-
lar Dynamics to treat reactants at the microscopic scale [A. Vijaykumar, P.G. Bolhuis and
P.R. ten Wolde, J. Chem. Phys. 143, 21: 214102 (2015)]. Here we extend this multiscale
MD-GFRD approach to include the orientational dynamics that is crucial to describe the
anisotropic interactions often prevalent in biomolecular systems. We present the novel al-
gorithm focusing on Brownian Dynamics only, although the methodology is generic. We
illustrate the novel algorithm using a simple patchy particle model. After validation of
the algorithm we discuss its performance. The rotational Brownian Dynamics MD-GFRD
multiscale method will open up the possibility for large scale simulations of e.g. protein
signalling networks.

35



3

36
3. MULTISCALE SIMULATIONS OF ANISOTROPIC PARTICLES COMBINING MOLECULAR

DYNAMICS AND GREEN’S FUNCTION REACTION DYNAMICS

3.1. INTRODUCTION

Complex systems such as biochemical networks in living cells, catalytic reactions in,
e.g. a fuel cell, surfactant/water/oil mixtures, or self-assembling soft matter, can be mod-
eled efficiently as reaction-diffusion systems. In such reaction-diffusion systems the
spatial distribution of reactants and the stochastic nature of their interactions are cru-
cial for the system’s macroscopic behaviour. At sufficiently low concentrations, the time
taken for the reactants to diffuse and randomly find each other is much larger than the
time required for the reaction. For example, in cellular systems, the concentrations
of proteins are often in the nM−µM range. Experiments indicate that proteins inside
the living cell move by normal diffusion [1] with effective diffusion constants in the
1− 10µm2s−1 range. This means that, with typical protein cross sections of 10nm, the
time it takes for reactants to find each other is on the order of milliseconds to seconds.
This is often much longer than the microsecond timescales on which the actual associ-
ation events occur once the particles have found each other [2, 3]. Reaction-diffusion
systems thus often exhibit a strong separation of length and time scales, with the dif-
fusive search process happening on length and timescales of microns and milliseconds
to seconds, and the reactions occurring on scales of nanometers and sub-milliseconds
[3]. Simulating such systems with conventional, brute-force simulation techniques is
notoriously difficult. Indeed, simulating cellular biochemical networks with straightfor-
ward brute-force Brownian Dynamics (BD) [4, 5, 6, 7] often means that most CPU time is
spent on propagating the particles towards one another [8]. To overcome the inefficiency
of straightforward BD requires special techniques such as Green’s Function Reaction Dy-
namics (GFRD)[9, 10].

GFRD is a mesoscopic technique that decomposes the many particle reaction diffu-
sion problem into sets of one- and two-body problems that can be solved analytically.
This is achieved by putting single particles and pairs of particles in so-called protective
domains that do not overlap with each other. For each of these domains the reaction-
diffusion problem is solved analytically using Green’s functions. This yields for each do-
main a next event type which can either be a reaction in the domain or an escape from
the domain, as well as a next event time, i.e. the time at which this event occurs. These
events are put in a scheduler list which is updated chronologically. This makes GFRD
an asynchronous, event-driven algorithm. Since stochastic processes in the individual
domains are independent of each other, GFRD is an exact algorithm to simulate large
reaction-diffusion systems. As the particles make huge leaps in space and time in GFRD
the computational effort in propagating the particles to one another is greatly reduced,
making GFRD orders of magnitude faster than brute force BD. However, the particles are
assumed to be idealized spheres interacting via an isotropic potential and the reactions
to occur according to intrinsic rates in pair domains. Solving the Green’s function for re-
active events involving the complex anisotropic potentials required for proper modeling
of proteins or other molecules is extremely cumbersome, and in fact most likely will re-
duce the efficiency of the GFRD approach substantially. In contrast, straightforward BD
is able to naturally simulate orientational dynamics of protein particles with complex
anisotropic (effective) interactions.

This observation raises the question whether it is possible to combine the computa-
tional power of GFRD with the microscopic detail of BD. In previous work, we introduced
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a novel multi-scale scheme, called Molecular Dynamics-GFRD (MD-GFRD), which com-
bines GFRD with a microscopic simulation technique such as deterministic molecular
dynamics (MD), or stochastic Langevin Dynamics (LD) or Brownian Dynamics (BD)[11].
In this scheme GFRD handles diffusion of particles at the mesoscopic scale, while MD,
LD or BD treats the particles that are coming close to each other. In previous work and
here, we limit ourselves to BD, although the scheme can very easily formulated for MD
and LD. The multi-scale algorithm defines the micro- and mesoscopic regions adaptively
on the fly and switches seamlessly between the two techniques based on predefined sce-
narios.

In this work we extend MD-GFRD to incorporate the orientational dynamics of par-
ticles that interact via an anisotropic potential. As in the original MD-GFRD technique
[11], GFRD is used for propagating the particles towards one another when they are far
apart. Once the particles are within a predefined threshold distance from each other,
the algorithm switches to BD. The complex orientational dynamics once the particles
are close together is thus simulated with BD. When the particles are bound, MD-GFRD
could in principle continue to simulate these particles with BD. However, in many cases,
and typically in cellular systems, the particles are bound much longer than the time it
takes to diffuse and thermalise within the interaction well, meaning that dissociation is
a rare event. MD-GFRD exploits this separation of timescales by treating the dissocia-
tion as a first order reaction, with an intrinsic dissociation rate constant that has been
pre-determined. After dissociation, the particles can be propagated again with GFRD.
Importantly, however, after dissociation the particles do not immediately loose their ori-
entational memory, which means that they must be propagated with Green’s Functions
that do not only describe the translational dynamics of the particles, but also their ori-
entational dynamics. In this paper, we describe in detail how the MD-GFRD scheme
switches between MD and GFRD and how this switching depends on the translational
and orientational dynamics of the particles. We also present the Green’s Functions that
allow GFRD to simulate the particles’ orientational dynamics.

The remainder of the paper is organized as follows. In the methods section we first
give an overview of the MD-GFRD algorithm. Then we describe how the algorithm sim-
ulates the diffusion of particles with rotational degrees of freedom, both for particles
in BD and GFRD mode. We discuss how MD-GFRD handles the association-dissociation
reactions, and we describe how it switches between BD and GFRD propagation. In many
systems, including that studied here, dissociation is a rare event. This means that com-
puting the intrinsic dissociation rate constant, as used by MD-GFRD, requires rare event
methodology, like Transition Interface Sampling [12] and Forward Flux Sampling (FFS)
[13]. Here, we briefly describe how we use FFS to pre-compute the dissociation rate
constant. We then illustrate the new technique by simulating the association and dis-
sociation of patchy particles. In many cases, globular proteins can be coarse-grained as
so-called patchy particles, where the complex binding sites are modeled as patches on a
spherical particle. These patchy particles also play an important role in the modeling of
soft matter[14, 15]. We demonstrate that the algorithm reproduces quantities that can
be obtained analytically such as the equilibrium constants, binding probabilities and the
power spectra of the binding reactions. We end with a discussion of the performance of
the algorithm.
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- GFRD domain - particles

Figure 3.1: MD-GFRD scheme: particles that are far away other particles are put into a GFRD
domain. For each GFRD domain the next event time and type is determined. These next event
times are added to a chronologically ordered event list, and updated when the simulation time
has reached the time of the next event. Particles that are close to other particles are propagated
collectively with Brownian Dynamics.

3.2. METHODS

3.2.1. SUMMARY OF MULTISCALE APPROACH

The MD-GFRD algorithm is a generic algorithm that enables simulation of any reaction-
diffusion system at the particle level. It allows for mono-molecular reactions of the type
A → B+C+ . . . and bi-molecular reactions of the type A+B → C+D+ . . . . By combining
these two reactions, any complex biochemical network can be simulated. Here, however,
we will limit ourselves to simple association-dissociation reactions A+B � C. The MD-
GFRD algorithm distinguishes two types of particles as shown in Fig. 3.1: 1) BD particles
that are propagated collectively in a conventional, brute-force manner using small time
steps, and 2) GFRD particles that are updated asynchronously in an event-driven man-
ner Single particles that are sufficiently far away from all other particles according to a
predefined cut-off distance are put into protective domains. For each of these domains,
the algorithm determines, as in the conventional GFRD scheme [10], the next-event type,
which is either a mono-molecular decay reaction (such as dissociation) or an exit of the
particle from the domain, and the corresponding next-event time, which is when this
next event will happen. The next-event times of the respective GFRD domains are put
in a chronologically ordered event list, which is updated only when the simulation time
has reached the time of the first next event. The event-driven nature of GFRD allows
MD-GFRD to make large jumps in space and time when the domains are large. It is the
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origin of the high efficiency of the scheme.
The other particles are simulated explicitly with BD. This part of the algorithm takes

into account the forces between the particles when they come within the interaction
range of the potential from each other. The BD propagation also naturally simulates the
association reaction A+B → C: two particles A and B form the bound complex C when
they enter the well of the interaction potential. The two monomers A and B in the dimer
C could be propagated separately with BD, but it is more efficient to propagate them as
a single particle C. The dissociation of C into A and B is then treated as a uni-molecular
reaction event, which is added to the event list.

BD propagation is continued until one of the following events occurs: i ) the escape
of a particle from a GFRD domain; i i ) the decay of a GFRD particle, e.g. the dissociation
of C into A and B; i i i ) a BD particle dissociates into its products, e.g. the dissociation
of C into A and B; i v) two BD particles A and B bind each other to form a dimer species
C; v) a BD particle comes too close to a GFRD domain so that the GFRD domain must
be burst, which means that a position for the particle in that domain is generated at the
current simulation time; vi ) BD particle moves sufficiently far away from all other BD
particles and GFRD domains, so that it can be put into a GFRD domain. These six pos-
sible events are illustrated in Fig. 3.3. After the event has been executed, the system is
updated accordingly; for newly formed GFRD domains, the next-event types and times
are determined and inserted into the event list. The propagation of the BD particles is
then resumed. The scheme becomes particularly powerful when most particles are in
GFRD domains. A key objective is thus to keep the number of BD particles to a mini-
mum.

The multiscale method that we pursue here involves particles interacting via anisotropic
potentials. This requires an explicit BD integrator allowing rotational dynamics. More-
over, the GFRD part requires rotational Green’s functions. In the next subsections we
provide these ingredients, which constitute the most salient differences of the novel
scheme with the previous isotropic MD-GFRD scheme [11]. In the subsequent subsec-
tion, we discuss in detail how the algorithm switches between GFRD and BD. The next
two subsections describe how MD-GFRD handles the dissociation events and how the
dissociation rate constant, needed in MD-GFRD, can be computed efficiently. In the last
subsection, we describe the specific interaction potential used to illustrate how orienta-
tions can be included in MD-GFRD.

3.2.2. BROWNIAN DYNAMICS OF PATCHY PARTICLES

Brownian dynamics is used to simulate the solute particles at the microscopic scales. In
this algorithm the position and the orientation of each solute particle in the BD regime is
updated based on the total force and torque acting on the particle. The force and torque
contain a deterministic component, which arises from the (solvent-mediated) interac-
tion potential with the other solute particles and the frictional drag from the solvent,
and a stochastic component, originating from the stochastic forces exerted by the sol-
vent molecules. Although the interactions between particles are anisotropic, we model
the particles as spheres of finite radius. We represent the rigid body orientation of the
particles using a four component unit vector known as a quaternion, q = (q0, q1, q2, q3).
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x y

θ1 θ2

Figure 3.2: Each particle may have one or more attractive regions on its surface, called ‘patches’,
that facilitate short ranged, highly directional attractive interactions.

The quaternion is an efficient encoding of the rotation matrix, A given by,

A =
 q0

2 +q1
2 −q2

2 −q3
2 2(q1q2 +q0q3) 2(q1q3 −q0q2)

2(q1q2 −q0q3) q0
2 −q1

2 +q2
2 −q3

2 2(q2q3 +q0q1)
2(q1q3 +q0q2) 2(q2q3 −q0q1) q0

2 −q1
2 −q2

2 +q3
2

 .

which relates vectors in the stationary lab frame, ûs, to the vectors in the moving body
frame, ûb via

ûs = AT ûb (3.1)

For example, the vectors ûb might point to the patches on the surface of the particle
which are fixed in the body frame.

Each particle has a center of mass, and one or more sticky spots on its surface called
‘patches’ (see Fig. 3.2). The particles interact with each other both via a center of mass
isotropic pair potential and via a short ranged isotropic patch-patch interaction. We
describe the anisotropic model potential that we employ for illustrative purposes in de-
tail in Sec. 6.2.3. We note that the choice of potential is not limited to simple models.
In principle any other anisotropic complex potential can be used, even an anisotropic
protein-protein interaction derived from all atom MD simulations.

The particles are propagated with the first order Brownian dynamics integrator[16]
explained in Algorithm 1:

Algorithm 2 The Brownian dynamics integrator [16] used in our multi-scale scheme.
We consider n particles in three dimensions with center of mass coordinates

r = (r 1>, . . . ,r n>)> ∈R3n , r j = (r j
1 ,r j

2 ,r j
3 )> ∈R3, and rotational coordinates in the

quaternion representation q = (q1>, . . . , qn>)>, q j = (q j
0 , q j

1 , q j
2 , q j

3 )> ∈S3, such that
|q j | = 1. Particles are characterized by their mass m, the mass moment of inertia
M = 8

15 mσ2, and the translational and rotational friction coefficients, γ and Γ,
respectively. These parameters can differ among species. Note that this algorithm uses
γm as an effective friction. The mass in this effective friction is canceled by the
presence of the mass in the integration itself. Furthermore, δt is the time-step used in
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the simulations, β= 1
kBT , ξk and η j ,l

k are independent and identically distributed (i.i.d.)
Gaussian random variables. f is the total force and F is the total torque, which follow
from the interaction potential.

R0 = r, Q0 = q, |q j | = 1, j = 1, . . . ,n,

Rk+1 = Rk + δt
γm f(Rk ,Qk )+p

δt
√

2
γβm ξk ,

Y j
k = δt

ΓM F j (Rk ,Qk )+p
δt

√
2

ΓβM

∑3
l=1η

j ,l
k Sl ,

Q j
k+1 = exp(Y j

k )Q j
k .

where S1,S2 and S3 are 4×4 matrices S1 =
[0 −1 0 0

1 0 0 0
0 0 0 1
0 0 −1 0

]
,S2 =

[0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0

]
,S3 =

[0 0 0 −1
0 0 1 0
0 −1 0 0
1 0 0 0

]
.

3.2.3. GREEN’S FUNCTIONS FOR ROTATIONS

GFRD handles the free diffusion of single particles. A freely-moving particle will undergo
rotational as well as translational diffusion. Although the interactions between parti-
cles are anisotropic, we model the particles as spheres of finite radius for the purpose of
modeling diffusion. This assumption allows the decoupling of the rotational and trans-
lational diffusion of isolated particles, which is possible since in MD-GFRD the GFRD
domains only contain single particles. The Green’s functions for translational diffusion
are given by the Green’s functions for single particles inside Single GFRD domains, de-
tailed in previous work [11]. These Green’s functions determine (probabilistically) when
the particles escape from their respective domains, or what their radial positions inside
the domains become when the domains are burst. Although rotational motion does not
influence the center-of-mass dynamics of a freely diffusing particle, and hence cannot
cause escape from Single Domains, it is nonetheless important to reproduce the decor-
relation of orientations for particles evolving under GFRD. For example, simply drawing
orientations at random when a particle leaves a GFRD Single Domain will lead to un-
physically rapid decorrelation of orientations when domains are short-lived, and influ-
ence properties such as rebinding probability.

More specifically, on bursting or escape from a Single Domain, a new orientation Ω
is drawn using the Green’s function G(Ω,Ω0, t ), with Ω0 being the initial orientation and
t the time since domain formation. The Green’s functions, expressed in terms of Euler
angles α,β,γ, can be found in the literature [17, 18, 19]. For particles with spherically
symmetric diffusion tensors the Green’s function is

G(α,β,γ,α0,β0,γ0, t ) =
∞∑

L=0

L∑
K ,M=−L

2L+1

8π2 D (L)∗
K ,M (α0,β0,γ0)D (L)

K ,M (α,β,γ)exp(−Dr L(L+1)t ).

(3.2)
Here, Dr is the threefold degenerate eigenvalue of the diffusion tensor, given by Dr =
kBT /(8πηR3) for a particle of radius R in a fluid of viscosityη. The quantities D (L)

K ,M (α,β,γ)

and its complex conjugate D (L)∗
K ,M (α,β,γ) are elements of the Wigner rotation matrices
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[17, 18, 19]:
D (L)

K ,M (α,β,γ) = exp(−i Kα)d (L)
K ,M (β)exp(−i Lγ), (3.3)

with

d (L)
K ,M (β) = ((L+K )!(L−K )!(L+M)!(L−M)!)1/2× (3.4)

min(L+M ,L−K )∑
S=max(0,M−K )

( (−1)K−M+S .[cos(β/2)]2L+M−K−2S [sin(β/2)]K−M+2S

(L+M −S)!S!(K −M +S)!(L−K −S)!

)

For the purposes of clarity, we emphasize that the Euler angles used here should be un-
derstood in the following way. If a body frame B has an orientation Ω = (α,β,γ) with
respect to some reference frame F , then B can be obtained from F by:

1. Rotating F around Fz by γ to give F ′.

2. Rotating F ′ around Fy by β to give F ′′.

3. Rotating F ′′ around Fz by α to give B .

Moreover, note that the Green’s functions are defined without the Jacobian, so that (α,β,γ)
should be drawn from the distribution sin(β)G(α,β,γ,α0,β0,γ0, t ).

Drawing directly from such a distribution is non-trivial. However, rejection sampling
can be used if the maximum of sin(β)G(α,β,γ,α0,β0,γ0, t ) is known. Physically, the most
likely orientation is always aligned with the initial direction, which suggests a rejection
scheme in which a trial orientation (α,β,γ) is drawn uniformly from ([0,2π], [0,π], [0,2π]),
and accepted with a probability

sin(β)G(α,β,γ,α0,β0,γ0, t )

sin(β0)G(α0,β0,γ0,α0,β0,γ0, t )
,

with Euler angles defined with respect to the lab frame. Unfortunately, the angular Jaco-
bian implies that sin(β)G(α,β,γ,α0,β0,γ0, t ) is not in general maximized by (α=α0,β=
β0,γ= γ0), violating a requirement of rejection sampling. It is true, however,
that sin(β)G(α,β,γ,α0,β0,γ0, t ) is maximized by (α=α0,β= β0,γ= γ0) if β0 = π/2,α0 =
0,γ0 = 0. We therefore define a new reference frame Ftemp for each calculation such that
the particle initially has orientationΩ0 = (0,π/2,0) with respect to Ftemp. Using rejection
sampling, we can then obtain a new orientation Ω = (α,β,γ) with respect to Ftemp. The
particle orientation is updated by first rotating the particle by −π/2 about the z-axis of
the original particle frame to obtain a particle aligned with Ftemp, and then performing
rotations (α,β,γ) about the axes of Ftemp as outlined above.

Even with rejection sampling, drawing from the distribution can be computationally
challenging due to the costs of evaluating Green’s functions. Eq. 3.2 has an infinite sum
that must be truncated; we perform truncation when new contributions are smaller than
the current value by a factor of 108. To reduce the cost of the summations, we find it
helpful to tabulate factorials. We also note that terms in Eq. 3.2 can be combined in
complex conjugate pairs to eliminate imaginary numbers during the calculation.
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Accurate evaluation of the Green’s function is most challenging when Dr t < 1, when
G(α,β,γ,α0,β0,γ0, t ) is sharply peaked and many terms are needed. For small Dr t , we
use early rejection, discarding a large fraction of draws of (α,β,γ) if (α,β−β0,γ) is large
without evaluating G(α,β,γ,α0,β0,γ0, t ), and compensating for this bias at the accep-
tance stage. Finally, for values of Dr t < 0.05, we use the approximate approach of rotat-

ing about a random axis through an angleφ=
√
φ2

x +φ2
y +φ2

z , whereφi are i.i.d. random

variables drawn from a Gaussian of mean 0 and variance 2Dr t [20].

3.2.4. HANDLING THE DISSOCIATION/ASSOCIATION REACTION IN MD-GFRD
While particles that are sufficiently far away from each other can be propagated with
GFRD, particles that are within a pre-defined cutoff distance from each other will be
propagated with MD, or, as we restrict ourselves to here, BD. As described in more detail
in the next section, this cut-off distance is beyond the range of the interaction poten-
tial, rc . Indeed, the association between two particles, which is driven by their inter-
molecular attraction forces, is thus simulated explicitly with BD. Also the dissociation
reaction could in principle be simulated with BD: we could explicitly simulate the bound
monomers in the dimer A-B, until they dissociate again into A and B. However, the bound
state is typically very stable: the time the particles spent inside the potential well is typ-
ically much longer than the time it takes for the particles to loose their orientation and
thermalise inside the well. Simulating these particles explicitly means that much CPU
time would be wasted on propagating them while they simply rattle around each other
inside the potential well. In MD-GFRD, we therefore exploit that dissociation is a rare
event: when two BD particles meet a predefined criterion signifying that they are deep
inside the interaction well, the two ‘reactants’ A and B are replaced by species C. In turn,
the dissociation of C into A and B is treated as a first-order reaction C → A+B with a
dissociation rate constant kd.

More specifically, when two BD particles come within a distance such that their in-
teraction energy E drops below some predefined threshold Ebind, then the particles A
and B are replaced by a single particle of species C, with a position that is given by the
center-of-mass of the reactants A and B. If space permits, the C particle is directly put
into a GFRD domain, which significantly speeds up the simulation. If there is no space
to construct a protective domain, the C particle is propagated with BD. The C particle
then diffuses, either explicitly with BD or implicitly with GFRD, until it dissociates again
into the monomers A and B at a later time τd. Since the interaction well is deep, τd will
be exponentially distributed:

qd(t ) = kde−kdt . (3.5)

Knowing the dissociation rate constant kd, the time τd can thus be sampled from

τd =−kdln(Rd), (3.6)

where Rd ∈ [0,1] is a uniformly distributed random number.
The intrinsic dissociation rate constant kd could in principle be inferred from experi-

ments. However, a more consistent and rigorous approach is to obtain kd from a simula-
tion that is performed prior to the MD-GFRD simulation of interest. This pre-simulation
can then also be used to generate the distributions of the positions and orientations of
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A and B at the moment of dissociation. In the MD-GFRD simulation, the positions and
orientations of the particles at the moment of dissociation can then be sampled from
these distributions, respectively.

In our previous study on isotropic potentials, we determined kd by performing a
brute force BD simulation of two particles prior to the MD-GFRD simulations [11]. How-
ever, the particles in our model interact via an anisotropic interaction potential. This
anisotropic interaction is mediated via patches on the surfaces of the particles, see Fig.
3.2. The range of the patch-mediated interaction must be short, in order to provide a
strong anisotropy in the interaction. The short range, however, means that the well of
the patch-mediated potential must be deep in order to induce significant binding: the
depth of the well, ∼ 25kBT , is much larger than that of isotropic particles, ∼ 5kBT . The
deep well makes it very hard to obtain good statistics in determining the distribution of
dissociation times via brute force simulations. However, it is possible to efficiently com-
pute the dissociation rate with rare event techniques such as Transition Interface Sam-
pling [12] or Forward flux sampling (FFS)[13]. Here we use the latter technique, which
we describe in section 3.2.6.

3.2.5. COUPLING BD AND GFRD
Now that we have described how MD-GFRD simulates the association and dissociation
of two particles A and B, we will discuss how the algorithm switches between BD and
GFRD when simulating many particles. At any one point in time, the simulation consists
of a set of isolated particles inside GFRD domains that each have a radius of at least
dmin, and a set of particles that are propagated with BD and interact with each other via
a pair potential that has an interaction range rc. There is also a chronologically ordered
next-event list that contains the times at which the GFRD particles escape from their
respective domains, and the times at which the respective particles dissociate, be they in
GFRD or BD mode. The particles that are not inside GFRD domains are propagated with
brute-force BD until the first next-event happens. This event can be an event from the
next-event list, but it can also be the formation of a GFRD domain or the bursting of a
GFRD domain when a BD particle comes too close it. After the event has been executed,
BD propagation is resumed.

Specifically, before each step of BD propagation, the algorithm checks for the follow-
ing events, as illustrated in Fig. 3.3:

ESCAPE FROM A GFRD DOMAIN

When the next event in the list is a particle that escapes from a single domain, that par-
ticle is put at a random center of mass position on the surface of the domain, with an
orientation sampled from Eq. 3.2. The domain is removed and the particle is put in BD
mode. This event is shown in Fig. 3.3.I. Note that at the next BD time step, the algorithm
will check whether the particle can be put into a protective GFRD domain again (see
Sec. 3.2.5).
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Figure 3.3: At each BD time step, the algorithm checks whether BD should be interrupted. The
BD propagation is halted when the time of the first next event occurs before the global simulation
time at the end of the time step. These next events can be any of the following: I. A particle escapes
from a GFRD domain; the position of the particle is updated to a randomly chosen point on the
surface of the domain and the domain is removed. II. A particle dissociates inside a GFRD domain;
the domain bursts and the particle is updated to a position and orientation sampled using Green’s
functions, and is then replaced by its product particles. III. A BD particle dissociates; it is replaced
by its product particles. IV. The binding energy of two BD particles is below the binding threshold;
the particles enter the bound state and are replaced by a single product particle. V. The distance
from a BD particle to a domain is smaller than dmin + rc; the neighboring domain is burst and the
position and orientation of the particle in this domain is updated. This particle may in turn burst
another domain and this happens recursively until there is no BD particle within a distance dmin+
rc from any other domain. VI. a. The distance between a BD particle and its nearest neighbor is
larger than dmin + rc in case the nearest neighbor is a GFRD domain; a domain of radius r − rc
is built on the BD particle. b. The distance between a BD particle and its nearest neighbor is
larger than 2dmin + rc in case the nearest neighbor is a BD particle; a domain of radius 0.5(r − rc)
is built on the BD particle of interest. The inset shows the procedure for determining the nearest
neighbor, which is the GFRD domain or the BD particle with the closest interaction horizon to
the (central green) particle of interest: for BD particles the relevant distance is the distance minus
the sum of the minimum domain radius dmin and the potential interaction range rc , while for a
GFRD domain the relevant distance is the distance to the surface of that domain minus rc . In the
example configuration the blue particle is the nearest neighbor.
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DISSOCIATION INSIDE A GFRD DOMAIN

When the next event is a particle C inside a GFRD domain decaying into its products at
time t , the domain is burst and a new radial position r for the reactant is generated ac-
cording to the normalized translational Green’s function p(r, t , |r0, t0)/S(t − t0|r0), where
r0 is the original position of the particle, which is the center of the domain constructed at
time t0, and S(t−t0|r0) is the survival probability. The reactant is replaced by its products,
whose configuration is chosen at random from the ensemble of configurations recorded
at the moment of dissociation, obtained in the FFS pre-simulation. This event is shown
in Fig. 3.3.II.

DISSOCIATION OF A BD PARTICLE

When the next event is the dissociation of a BD particle, the particle is replaced by its
products, whose configurations are chosen at random from the ensemble of configura-
tions recorded at the moment of dissociation in the FFS pre-simulation. This event is
shown in Fig. 3.3.III.

ASSOCIATION OF BD PARTICLES

When the pair potential energy between two particles becomes smaller than a threshold
energy, here taken to be Ebind =−10kBT , the two particles are defined to be in the bound
state. The two particles are replaced by a single BD particle at their center of mass. This
event is shown in Fig. 3.3.IV. Note that at the next BD step, the algorithm will check
whether the particle can be put into a GFRD domain, as described under Sec. 3.2.5.

RECURSIVE DOMAIN BURSTING

When a BD particle comes at time t within a distance of dmin + rc from the surface of
a GFRD domain, the domain is burst and a radial position r of the particle inside that
domain is drawn from the normalized translational Green’s function p(r, t |r0, t0)/S(t −
t0|r0), where t0 is the time and r0 the position of the center of the domain when it was
constructed, and S(t − t0|r0) the survival probability. A new orientation of the particles is
sampled from Eq. 3.2. If this particle, after updating its position, comes within a distance
of dmin + rc from another domain, that domain is also burst. This may lead to a cascade
of domain bursting, which ceases when no BD particle is within a distance of dmin + rc

from any GFRD domain. This event is shown in Fig. 3.3V. Note that domains are always
at least rc apart from each other.

DOMAIN CONSTRUCTION

For each BD particle, the algorithm determines the nearest neighbor, which is either an-
other BD particle or a GFRD domain. The procedure to determine the nearest-neighbor
distance depends on whether the neighbor is a BD particle or a GFRD domain, as shown
in the inset of Fig. 3.3. A BD particle is put into a GFRD domain when the distance r
between the particle and its nearest neighbor:

(a) is larger than dmin + rc in case the nearest neighbor is a GFRD domain. A domain
of radius (r − rc) is built around the particle of interest. This event is shown in Fig.
3.3.VI a.
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(b) is larger than 2dmin + rc in case the nearest neighbor is a BD particle. A domain
of radius 0.5(r − rc) is built around the particle of interest. This allows enough
space to build a domain with a radius of at least dmin around the neighbor, thus
preventing the neighbor from prematurely bursting the newly built domain. This
event is shown in Fig. 3.3.VI b.

For the newly constructed domain the tentative next-event times for the respective ten-
tative event types (e.g. dissociation and escape) are determined, and the event type with
the smallest tentative next-event time is added to the event list. To achieve maximum
efficiency, the minimal domain size dmin should be as small as is practical.

3.2.6. COMPUTING THE DISSOCIATION RATE WITH FORWARD FLUX SAM-
PLING

The Forward Flux Sampling (FFS) algorithm enables efficient evaluation of rare event
kinetics. FFS uses a series of interfaces between the reactant and the product states to
construct the transition path ensemble and calculate the corresponding transition rate.
Each interface is defined by an order parameterλ: the reactant state is defined byλ<λ−1

and the product state by λ > λn . The remaining interfaces are defined by intermediate
values of λ: (λ0 . . .λn−1). The FFS technique requires that λi+1 > λi for all i , and all the
trajectories from reactant to product state pass through each interface in succession as
shown in Fig. 3.4. Trajectories starting in the reactant state and reaching product state
are rare, but trajectories starting at an interface and crossing the next interface are more
common. This is the central idea used in FFS [13].

Here we use the ‘direct’ FFS variant, DFFS, to compute the dissociation rate [21]. In
this process the reactant state is the bound A,B dimer, and the product state corresponds
to the dissociated dimer. For the purpose of simulating dissociation, we take an order
parameter to determine the interfaces based on a combination of the energy of interac-
tion and the inter-particle distance. The reactant bound state interface λ−1 is defined by
a potential energy Ebi nd , while the product state is defined by zero potential energy in
addition to an inter-particle distance larger than the cut-off rc .

In the first step of FFS, a brute-force BD simulation is performed to compute the flux
φ of crossing the interface λ0 while coming from the bound state. This brute-force sim-
ulation generates an ensemble of configurations at λ0. In the next step, a trajectory is
fired from a randomly chosen configuration from this ensemble; this trajectory is then
propagated until it either hits the next interface λ1 or returns to the reactant state (i.e.,
recrosses λ−1). This procedure is repeated until a sufficiently large number of configura-
tions at the next interface λ1 is generated. The fraction of trajectories that makes it from
λ0 to λ1 yields the conditional probability P (λ1|λ0) that a trajectory that comes from
the bound state and crosses λ0 for the first time will subsequently reach λ1 instead of
returning to the bound state. This whole procedure is then repeated for all subsequent
interfaces until the final interface λn is reached, signifying the fully dissociated pair. Un-
der the assumption of rare event kinetics, the intrinsic dissociation rate kd is then given
by [12, 13]

kd =φ
n−1∏
i=0

P (λi+1|λi ). (3.7)
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Figure 3.4: An illustration of the FFS method. An ensemble of transition paths is generated by
starting trial runs from randomly picked configurations on interfaces, which are the end points of
previous successful trial runs.

3.2.7. ILLUSTRATIVE ANISOTROPIC INTER-PARTICLE POTENTIAL

In this section we describe the interaction potential for the specific patchy-particle sys-
tem. We reiterate that our multi-scale scheme is independent of the choice of potential,
and can in principle be applied with arbitrarily complex potentials.

For convenience, we split our inter-particle potentials into three parts. Every pair of
particles experiences a repulsive potential Urep(R) and an isotropic attractive potential
UisoAtt(R) based on the distance R between the centers of mass. Additionally, each pair
of complementary patches interacts through an attractive potential Uatt(r ) based on the
distance r between complementary patches (see Fig. 3.2). For a pair of particles with a
single pair of complementary patches,

U (R,r ) =Urep(R)+UisoAtt(R)+Uatt(r ). (3.8)

Mediating the attractive interactions through surface-based patches naturally captures
short-range contact interactions.

It is common to use 12-6 Lennard-Jones or related potentials in biomolecular mod-
eling. Although the r−6 dependence is required for van der Waals interactions between
atoms and even between larger entities, in general there is no fundamental reason to
choose this functional form in case of complex effective interactions between biomolecules,
e.g. hydrophobic interactions. In preliminary simulations, we observed that using Lennard-
Jones potentials leads to numerical difficulties, forcing the use of extremely small time
steps. The underlying reason is that Lennard-Jones potentials have a large curvature
close to the minimum of the bound state, a situation for which the Brownian integra-
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Figure 3.5: Inter-particle interactions. Total interaction potential Urep(R)+UisoAtt(R)+Uatt(R −
2dpatch) for two particles with perfectly aligned complementary patches, and the total interaction
potential Urep(R)+UisoAtt(R)+Uatt(R+2dpatch) when the complementary patches are completely
misaligned. The existence of patches introduces an attractive bound state with the particles in
close contact.

tor is poorly suited. This effect is exacerbated by the use of short-ranged anisotropic
attractions between particles, which reduces the entropy of the bound state and must
be compensated for by stronger attractive potentials, in order to model realistic equi-
librium binding constants. Stronger attractive potentials lead to larger second deriva-
tives of the potential. Moreover, requiring potentials to be short-ranged and orientation-
specific implies variation over short length and angular scales, again increasing the sec-
ond derivatives of the potential.

Instead of using a Lennard-Jones type potential we therefore illustrate our method
using piece-wise quadratic potentials similar to those employed elsewhere [22]. These
potentials give us more control over the shape, and allow for easier integration with po-
tentials that are short-ranged and highly orientation-specific. We stress that using an
alternative potential that is more challenging for the integrator would not remove the
advantages of the multi-scale scheme.

Urep(R), UisoAtt(R) and Uatt(r ) have the form

Ui (x) =


εi (1−ai

( x
σ

)2) if x < x?i ,

εi bi (
xc

i
σ − x

σ )2 if x?i < x < xc
i ,

0 otherwise,

(3.9)
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Figure 3.6: Total potential Urep(R) +UisoAtt(R) +Uatt(r ) for two particles with complementary
patches. (a) Potential as a function of the distance between centres of mass R and alignment of
patches with inter-particle vector, θ1 and θ2 (see definition in Fig. 3.2), given θ1 = θ2. (b) Potential
as a function of θ1,θ2 given R = 1.1σ. Note the relatively narrow range of orientations over which
strong bonding occurs.

with i = rep, isoAtt,att, respectively. The overall strength εi , the length scale σ (i.e. the
particle diameter), the stiffness ai and the parameter x?i , which combined with ai deter-
mines the range of the potential, are free parameters. Cut-offs xc

i and smoothing param-
eters bi are fixed by requiring continuity and differentiability at x?i . For our illustrative
purposes, we take the following parameters: εrep = 100kBT, arep = 1 and R∗

rep = 0.85σ,
implying brep = 2.6036 and Rc

rep = 1.1764σ; εatt = 20kBT , aatt = 20 and r∗
att = 0.1σ, imply-

ing batt = 5 and r c
att = 0.5σ; and εisoAtt = 10kBT, aisoAtt = 1 and R∗

isoAtt = 0.85σ, implying
brep = 2.6036 and Rc

rep = 1.1764σ.

In Fig. 3.5, we plot the resulting total inter-particle potential as a function of distance
R when the two complementary patches are aligned to face each other, so that r = R −
σ. A narrow attractive well corresponding to the two particles being in close contact is
evident. For comparison, we also show the total inter-particle potential as a function of R
when the two complementary patches are misaligned to face opposite each other, so that
r = R+σ. In this case, the patches do not contribute to the interaction; the non-specific,
isotropic part of the potential, however, still gives rise to a weak attraction. In Fig. 3.6,
we demonstrate the orientational dependence of the attractive potential, showing that
the attractive interaction is highly sensitive to misalignment. We note that our choice of
potential makes truncation at short distances relatively trivial. This is helpful in allowing
rapid switching to GFRD domains once the particles are separated.

For our model potential the interaction range is set rc = 1.6σ, where the pair potential
in Eq. 6.29 has vanished. Moreover, in the MD-GFRD simulations we set the minimum
domain size dmin = 0.5σ and the particle diameter to σ= 5nm.

3.3. RESULTS AND DISCUSSION

We test the MD-GFRD simulation using the patchy-particle model described in section
6.2.3. In the simulations there are three species of particles, A, B and C, which react
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according to
A+B �C . (3.10)

The system specific parameters of the simulation are as follows: The particle diameter
is σ = 5nm, the time step δt = 0.1ns, the mass of the particle is m = 50kDa, the mass
moment of inertia M = 8

15 mσ2 the translational and rotational diffusion constants, are
D t = 1µm2/s and Dr = 1.6×107rad2/s for all particles, the translational and rotational
friction coefficients are γ = kBT

D t m the Γ = kBT
Dr M respectively, where kB = 1.38×10−23JK−1

is the Boltzmann constant and T = 300K is the temperature of the system. To check if
our Green’s function and BD correctly describe the rotational motion of the particles, we
have measured the correlation function of the dot product of the patch vector at a given
time t with the initial patch vector. This correlation function decays as e−2Dr t , where
Dr = kBT /ΓM , as expected.

In the following subsections we first present the results of the FFS-BD pre-simulation
used to determine the value of the intrinsic dissociation rate kd. Next, using the value of
kd, we perform MD-GFRD simulations in which we compute the probability that A and
B are bound, as a function of system size. We compare the results against Monte Carlo
simulations and analytical expressions. We compute the power spectra for the binding
process. Finally, we discuss the performance of the algorithm.

3.3.1. RATE CONSTANT DETERMINATION USING FFS-BD PRE-SIMULATION

As explained in Sec. 3.2.6, it is advantageous to treat the dimer A-B as a single parti-
cle C, which then can dissociate again into A and B with an intrinsic rate kd. We used
direct FFS to precompute the intrinsic rate constant kd . The interfaces λi are defined
in terms of the interaction energy, as shown in Fig. 3.7. The bound state interface λ−1

was defined by U (R,r ) < −10kBT , the dissociated state final interface λ5 was set at a
distance R = 1.6σ. Five intermediate interface were set at respectively λ0 = −10kBT ,
λ1 =−2.5kBT , λ2 =−0.75kBT , λ3 =−0.025kBT , λ4 =−0.0075kBT . A straightforward BD
trajectory created 100,000 configurations at the first interface. Subsequently, performing
direct FFS yielded 20,000 configurations for each successive interface. Using Eq. 6.1, we
find for the intrinsic dissociation rate constant kd = 4.66s−1. The configurations at the
final interface can be used to draw from when performing the dissociation step in the
MD-GFRD, see Sec. 3.2.5.

3.3.2. BIMOLECULAR REACTIONS

To test the multi-scale scheme, we simulate the bi-molecular reaction shown in Eq. 7.8.
In these simulations we start off with two species of particles A and B, each having one
patch on its surface. An A particle can react with a B particle to form a dimer. Also, a C
particle can dissociate to form one A and one B, with an intrinsic rate kd that has been
pre-computed using FFS (see previous section). We assume that the mixture is ideal:
only species A and B have an attractive interaction U (R,r ). All other interaction poten-
tials between pairs A-A, B-B, C-C, C-A and C-B are repulsive only. We test the scheme for
two different scenarios, one starting with a single A and a single B particle and the sec-
ond starting with two A and two B particles. The simulation results are compared with
Monte Carlo simulations of the same model and with analytical expressions.
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Figure 3.7: FFS interfaces were defined by the potential energy: λ0 = −10kBT , λ1 = −2.5kBT ,
λ2 = −0.75kBT , λ3 = −0.025kBT , λ4 = −0.0075kBT . The final interface λ5 was defined by zero
energy and a distance R > 1.6σ. Using these interfaces as starting points for successive trial runs,
the particles are driven from the bound to the unbound state.

In the first case, one particle of species A and one particle of species B, each having
one patch, are put in a cubic box of volume V , with periodic boundary conditions. This
means that the number of C particles, NC , is either zero or one. From the computed
time average of NC , we calculate the probability Pb that the A particle is bound to B.
We repeat this procedure for different box sizes. In Fig. 3.8 we compare the value of Pb

obtained using the new MD-GFRD algorithm to the results obtained from Monte Carlo
simulations of the same system. The figure also shows the analytical result

Pb = 〈NC 〉
NA

= kon

kon +V koff
= φ(V )

φ(V )+1
, (3.11)

where 〈NC 〉 is the average of NC and φ(V ) is the ratio of the probability that an A particle
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Figure 3.8: The probability Pb that a particle A is bound to a particle B, as a function of the volume
of the box. Simulations are performed with one A particle and one B particle in the box. The points
with the error bars are the results of the MD-GFRD simulations and the Monte Carlo simulation.
These results are validated with the analytical prediction of Eq. 3.11. It is seen that the agreement
is very good. The translational and rotational diffusion constants, which are not important for the
value of Pb , are 1µm2/s and 1.6×107rad2/s .

is bound versus unbound

φ(V ) = kon

V koff
= Keq

V
. (3.12)

Here, kon and koff are the effective association and dissociation rates, respectively, and
Keq is the equilibrium constant

Keq =
∫

dR
∫

d û1

∫
d û2e−βV (R,r (R,û1,û2)), (3.13)

where U (R,r (R, û1û2)) is the interaction potential given by Eq. 6.29, with R the inter-
particle vector, R the magnitude of R, r the distance between the patches of the particles,
which depends on R and the orientation of the two particles denoted by the patch vec-
tors in the stationary lab frame, û1 and û2, respectively given by Eq. 3.1. Solving Eq. 3.13
analytically is not possible for the complex anisotropic potential used here. However,
recently we have shown how in one TIS/FFS simulation both the association rate kon

and the dissociation rate koff can be computed [23], which then allows us to obtain Keq
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Figure 3.9: The probability Pb that a particle A is bound to a particle B, as a function of the volume
of the box. Simulations are performed starting with two A particles and two B particles in the box.
The points with the error bars show the results of the new MD-GFRD scheme and the Monte Carlo
simulations. These results are validated with the analytical prediction of Eq. 3.14. It is seen that
the agreement is very good. The translational and rotational diffusion constants, which are not
important for the value of Pb , are 1µm2/s and 1.6×107rad2/s .

from Eq. 3.12. Applying this technique to this potential revealed that kon = 0.135µm3s−1

and koff = 1.384s−1. Fig. 3.8 shows that the results of the MD-GFRD simulations agree
very well with both the results of the Monte Carlo simulations and with the analytical
predictions.

In the second test, we start with 2 A particles and 2 B particles, which can again in-
teract via the same interaction potential to form species C. We can analytically compute
the probability that an A particle is bound to a B particle, by carefully summing over all
possible configurations [24]:

Pb = φ(V )+φ(V )2

2(0.25+φ(V )+ φ(V )2

2 )
, (3.14)

where φ(V ) is given by Eq. 3.12. The results of the MD-GFRD simulations, the Monte
Carlo simulations, and the analytical prediction are shown in Fig. 3.9. It is seen that the
agreement is very good.
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Figure 3.10: MD-GFRD successfully predicts the power spectrum Pn (ω) of the binding state n(t )
of two particles switching between the bound state n(t ) = 1 and the unbound state n(t ) = 0. The
dotted line shows the results of the MD-GFRD simulations, while the solid line shows the ana-
lytical prediction of Eq. 3.15, where the association rate kon and dissociation rate koff have been
computed from a single FFS simulation as described in Ref. [23]. Two particles, one of each species
A and B were simulated in a box of side length 100σ.

3.3.3. POWER SPECTRUM

We can use MD-GFRD to compute the power spectrum Pn(ω) of the time trace of the
binding state n(t ) of two particles, switching between the bound state with n(t ) = 1 and
the unbound state with n(t ) = 0. The dotted line in Fig. 3.10 shows the result. We expect
that this power spectrum is given by that of a random telegraph process [25]:

P (ω) = 2µPb(1−Pb)

µ2 +ω2 , (3.15)

where ω is the frequency, µ = kon/V +koff is the renormalized/effective decay rate, and
Pb = kon/(kon +V koff) is the binding probability. To predict the power spectrum, we
thus need the effective association rate kon and the effective dissociation rate koff. As
described in the previous section, these rates can be computed in a single TIS/FFS sim-
ulation [23]. Using the computed values of the rate constants in combination with Eq.
3.15, we arrive at the analytical prediction of the solid line in Fig. 3.10. It is seen that the
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Figure 3.11: The CPU time to simulate 1ms real time as a function of the concentration of A and
B, for MD-GFRD (solid line) and BD (dashed line). The concentration is varied by changing the
volume of the simulation box, while the number of particles is kept constant at NA = NB = 5. It is
seen that in the biologically relevant concentration range of nanomolar to micromolar the perfor-
mance of MD-GFRD is much better than that of brute-force BD, but at higher concentrations the
relative performance of MD-GFRD goes down. This is because at higher concentrations, the par-
ticles will be close to each other, and the system cannot capitalize on the potential of MD-GFRD
to make large jumps in time and space.

agreement with the MD-GFRD simulation results is excellent. MD-GFRD thus not only
reproduces mean quantities but also successfully predicts dynamic quantities.

3.3.4. PERFORMANCE

The motivation to combine GFRD and MD into a multi-scale scheme is the computa-
tional speed up it can provide. Unlike brute force Brownian dynamics which spends a
lot of CPU time in propagating the particles toward each other, GFRD makes large jumps
in space and time when the particles are far apart from each other and the GFRD do-
mains are large. The computational power of GFRD can thus especially be reaped when
the particles are often far apart, which is the case when the concentrations are low. This
can be seen in Fig. 3.11, which shows a comparison of MD-GFRD against brute force
BD as a function of concentration. It is seen that MD-GFRD is much more efficient than
brute force BD, especially when the concentrations are below a µM. However, for high
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concentrations, the performance of MD-GFRD becomes comparable to that of BD. In
this regime, the particles are often so close together that no big jumps in time and space
can be made. Interestingly, however, the crossover happens only at a mM concentra-
tion, which means that for most biologically relevant concentrations MD-GFRD is much
faster than brute-force BD.

We performed a profiling of the code to establish the overhead associated with the
GFRD checks. To determine the percentage of the total time the code spends in build-
ing domains and updating positions, the code was first profiled for a low concentration
where all the particles are in GFRD. In that case, 50% of the time is spent on nearest
neighbour searches and the other 50% is spent on constructing and bursting the do-
mains and updating particles. To determine the overhead associated with GFRD com-
pared to a brute force BD simulation, we profiled the code for a high concentration such
that all the particles are in the BD regime. The code spends 60% of the total time inte-
grating the BD particles (neighbour searches, force calculations, torque calculations and
updating position and orientation) and 40% of the time attempting to build domains on
these BD particles. The overhead associated with the nearest neighbour searches can be
decreased, if the code is optimised such that the nearest neighbour search is performed
just once for both the BD and GFRD.

3.4. CONCLUSION

In this work we extended the MD-GFRD scheme [11] to include the orientational dy-
namics of the particles, enabling the simulation of reaction and diffusion of particles
that interact via anisotropic interaction potentials. This opens up the possibility to treat
a whole class of interesting problems. Biomolecules such as proteins and DNA typically
interact with each other via anisotropic potentials. In some cases of biological interest
the dynamics at short length and time scales can be integrated out [26, 27, 28, 3]. For
example, a gene regulatory protein that has just dissociated from its promoter on the
DNA either rapidly rebinds the DNA or rapidly escapes into the bulk, where it will loose
its orientation; conversely, a new protein tends to arrive at the promoter from the bulk
in a random orientation. In these cases, we expect that the regulatory proteins can be
modeled as isotropic particles that interact with the DNA via effective rate constants,
which take into account the anisotropy of the interaction. However, it is now well estab-
lished that in many systems the dynamics at molecular length and timescales, arising
from e.g. enzyme-substrate rebindings, can qualitatively change the macroscopic be-
havior of the system at cellular length scales [10, 29]. This phenomenon can occur in
biochemical networks with multi-site protein modification, which are omnipresent in
cellular biology [10]. In such systems, the orientational dynamics cannot be integrated
out: the probability that an enzyme which has dissociated from its substrate molecule
rebinds to another site on the same substrate molecule to chemically modify it, will de-
pend in a non-trivial manner on the translational and orientational diffusion constants
of the particles, their size, and the distance between the patches on the substrate. The
MD-GFRD scheme presented here now makes it possible to study the interplay between
the microscopic dynamics at the molecular scale and the network dynamics at the cel-
lular scale in this large class of systems.
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In addition, the MD-GFRD scheme could more generally be used for soft matter self-
assembly where building blocks that are diffusing in the dilute solution come together
and bind occasionally to form large complexes and structures[14].

While the MD-GFRD scheme has been set up for simulating 3D bulk solutions, in
principle the method can be extended to include other geometries, where GFRD in-
cludes reaction and diffusion in 1D and 2D [30, 31, 32].

Finally, we note that in our multiscale MD-GFRD algorithm we assume that the in-
teraction potentials are short ranged, which is usually the case in a highly screened en-
vironment such as the living cell. Moreover, the algorithm, similar to most algorithms to
simulate biochemical networks in time and space, assumes that the particles move by
normal diffusion [33, 4, 5, 7, 34], as indeed experiments suggest proteins do inside the
living cell [1]. The algorithm cannot straightforwardly treat long-range hydrodynamics
interactions, which can be of importance under certain (non-equilibrium) conditions.
For future work it would be of interest to study whether hydrodynamic interactions could
be included in MD-GFRD, for instance via the Oseen tensor approximation.
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4
THE INTRINSIC RATE CONSTANTS IN

DIFFUSION-INFLUENCED

REACTIONS

Intrinsic rate constants play a dominant role in the theory of diffusion-influenced reac-
tions, but usually as abstract quantities that are implicitly assumed to be known. However,
recently it has become clear that modelling complex processes requires explicit knowledge
of these intrinsic rates. In this paper we provide microscopic expressions for the intrinsic
rate constants for association and dissociation processes of isotropically interacting par-
ticles and illustrate how these rates can be computed using rare event simulations tech-
niques. In addition, we address the role of the orientational dynamics, for particles inter-
acting via anisotropic potentials.
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4.1. INTRODUCTION

The association and dissociation of two particles are elementary steps in many processes
in biology, such as receptor-ligand and enzyme-substrate binding in cell signalling, and
protein-DNA binding in gene regulation. Also in materials science association and dis-
sociation play a central role, e.g. in the self-assembly of colloidal particles, the formation
of micro-emulsions, or the phase behavior of polymer solutions. In these processes, the
particles typically come into contact via diffusion, after which they bind with a rate that
depends on the intrinsic association rate constant; conversely, the associated particles
dissociate with an intrinsic dissociation rate, after which they move apart via diffusion.

In the past decades, theories of diffusion-influenced reactions have been developed
that show how the effective rate constants depend on the diffusion constants of the par-
ticles, their cross section, their interaction potential, and the intrinsic association and
dissociation rate constants [1]. However, these theories assume a priori given intrinsic
association and dissociation rate constants. Similarly, techniques to simulate networks
of chemical reactions have been developed, in which the particles typically have an ide-
alized shape, move by diffusion, and react upon contact with given intrinsic rate con-
stants [2, 3, 4, 5, 6, 7]. In parallel, simulation techniques have been developed that enable
the calculation of association and dissociation rate constants for pairs of particles that
interact via potentially complex interaction potentials [8, 9]. Yet, these techniques typ-
ically compute effective rate constants, which result from the combined effects of diffu-
sion, the interaction potential, and binding upon contact. Moreover, also in experiments
typically the effective rate constants are measured. How the intrinsic rate constants de-
pend on the interaction potential, the cross section, and the diffusion constants of the
particles, has thus received little attention.

In general, an association-dissociation reaction is a complicated non-Markovian many-
body problem that cannot be solved analytically. The reason is that the process of bind-
ing generates non-trivial spatio-temporal correlations between the positions of the reac-
tants, which depend on the history of the association and dissociation events. Capturing
these correlations requires knowledge of not only the diffusion constants, the interaction
potential, and the cross section, but also the intrinsic rate constants.

In dilute systems, however, typically only the effective rate constants are needed to
describe the system’s dynamics at long times [10, 11]. When the concentrations are low,
the time it takes for two reactants to meet each other is much longer than the time they
spend in close proximity: once the reactants are near each other, they either rapidly bind
or rapidly diffuse back into the bulk. Similarly, after a dissociation event, the two reac-
tants either quickly rebind or rapidly move away from each other. Under these condi-
tions, it is often possible to integrate out the dynamics at the molecular scale, and de-
scribe the association-dissociation reaction as a Markovian process with effective asso-
ciation and dissociation rates [10, 11]. While these effective rates depend on the intrinsic
rate constants, only the effective rate constants determine the dynamics at the relevant
length and time scales [10, 11].

Yet, is now clear that even in dilute systems, spatio-temporal correlations at the molec-
ular scale can dramatically change the behavior of the system at the macroscopic scale
[4, 12]. In the case of multi-site protein modification, enzyme-substrate rebindings can
lead to the loss of ultra-sensitivity and even bi-stability, essentially because rebindings
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can turn a distributive mechanism into a processive one [4, 12]. In such a scenario, even
the long-time dynamics cannot be described by effective rate constants: one needs to
know the diffusion constants, the cross sections, and the intrinsic rate constants. More-
over, while spatial heterogeneity at the molecular scale can arise from these non-trivial
spatio-temporal correlations, in cellular systems microscopic heterogeneity is also im-
posed via molecular structures. In fact, it is now becoming increasingly recognized that
cells exploit the spatial heterogeneity of micro-domains, lipid rafts, clusters, and scaf-
folds as a computational degree of freedom for enhancing information transmission
[13, 14]. Modeling the reactions in these spatially heterogeneous systems often requires
knowledge of the intrinsic rate constants. Last but not least, for simulating association
and dissociation reactions in 1D and 2D, knowledge of the intrinsic rate constants is even
more pertinent, because no well-defined effective rate constant exists in the long-time
limit.

In this manuscript, we provide microscopic expressions for the intrinsic rate con-
stants, and illustrate how these expressions can be used to compute rate constants in
rare-event simulation techniques such as Transition Interface Sampling (TIS) [15, 16, 17]
and Forward Flux Sampling (FFS) [18, 19]. While computing both the forward and back-
ward rate typically requires two separate simulations, we will show how, by exploiting
analytical expressions for the binding and escape probability, both the association and
dissociation rate constants (and hence the equilibrium constant) can be obtained in
one single simulation. We discuss the relationship with the technique developed by
Northrup and coworkers [8] for computing effective association rates. Finally, we ad-
dress the role of orientational dynamics in association and dissociation reactions.

4.2. THEORY OF DIFFUSION-INFLUENCED REACTIONS

We consider two particles A and B that interact via an isotropic interaction potential
U (r ), and move with an interparticle diffusion constant D = D A +DB , where D A and DB

are the diffusion constants of A and B, respectively. Upon contact at the interparticle
distance σ, the particles can associate with a rate that is determined by the intrinsic
associate rate constant ka , and, when bound, the two can dissociate with an intrinsic
dissociation rate kd . Following the work of Agmon and Szabo [1], we rederive in the
appendix the following central results. The effective association rate constant is given by

kon = ka peq(σ)kD

ka peq(σ)+kD
= [1−Srad(t →∞|σ)]kD . (4.1)

Here, kD is the diffusion-limited rate constant, which determines the rate at which the
two particles diffuse towards each other, and peq(σ) ' e−βU (σ), with β= 1/(kB T ) the in-
verse temperature, is the equilibrium probability that they are at the distance σ. The
survival probability Srad(t →∞|σ) = kD /(ka peq(σ)+kD ) is the probability that the two
particles, given that they are at contact, escape into the bulk before binding to each
other. Hence the effective association rate is given by the rate at which the two parti-
cles get in contact, which is determined by kD , and the probability 1−Srad(t →∞|σ) =
ka peq(σ)/(ka peq(σ)+kD ) that upon contact, they bind.
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The effective dissociation rate is given by

koff =
kd kD

ka peq(σ)+kD
= kd Srad(t →∞|σ). (4.2)

The effective dissociation rate is thus given by the dissociation rate kd times the prob-
ability Srad(t →∞|σ) = kD /(ka peq(σ)+kD ) that the particles upon dissociation diffuse
away from each other and escape into the bulk.

It can also be verified that the equilibrium constant is given by

Keq = ka peq(σ)

kd
= kon

koff
. (4.3)

At this stage, a few points are worthy of note. First, these results hold for isotropic, but
otherwise arbitrary interaction potentials U (r ). Secondly, the contact distance σ serves
to define the dividing surface that separates the bound from the unbound state. This
surface is usually taken to be near the free-energy barrier that separates the bound from
the unbound state. The precise location of this dividing surface is somewhat arbitrary,
as the effective rate constants can by definition not depend on the choice made for σ.
This is in marked contrast to the intrinsic rate constants ka and kd and the diffusion-
limited rate kD , which all sensitively depend on σ. Thirdly, the diffusion-limited rate
constant depends not only on σ and D , but also on the interaction potential U (r ). For
arbitrary interaction potentials U (r ), no analytical expression for kD is, in general, avail-
able. However, when σ is chosen to be beyond the range rc of the interaction potential,
then an exact expression is well known—the Smoluchowski diffusion-limited reaction
rate constant [20]:

kD = 4πσD. (4.4)

Moreover, when σ> rc , then U (σ) = 0, and peq(σ) = 1 In this scenario, the effective rate
constants are given by:

kon = ka(σ)kD (σ)

ka(σ)+kD (σ)
(4.5)

koff =
kd (σ)kD (σ)

ka(σ)+kD (σ)
. (4.6)

Here, and below, we have written ka = ka(σ), kd = kd (σ) and kD = kD (σ) to remind our-
selves that these rate constants, in contrast to the effective rate constants kon and koff,
depend on our choice for σ.

4.3. EFFECTIVE POSITIVE FLUX EXPRESSION

To obtain the intrinsic rate constants in computer simulations, we need expressions in
terms of microscopic quantities that can be measured in the simulation. We will focus
on the dissociation pathway, and the dissociation rate koff. To compute this rate, we
use the “effective positive flux” expression of van Erp and coworkers [15, 16, 17]. The
progress of the dissociation reaction is quantified via a parameter λ(r ), which depends
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on the separation r between the particles A and B. For simplicity, we use λ = r A series
of interfaces is chosen, r0,r1, . . . ,rn−1,rn , such that r0 is deep in the bound state and rn is
in the unbound state. Strictly speaking the unbound state is defined by rn →∞, a point
to which we will return in the next section. Defining the history-dependent functions
indicator hB and hU such that hB = 1 and hU = 0 if the system was more recently in
the bound state B (r < r0) than in the unbound state U (r > rn), and hB = 0 and hU = 1
otherwise, the rate constant koff for transitions from B to U is given by [15]

koff =
ΦB ,n

hB

= ΦB ,0

hB

P (rn |r0). (4.7)

Here,ΦB , j is the flux of trajectories coming from the bound state B (with r < r0) that cross
r j for the first time; thus,ΦB ,n is the flux of trajectories from the bound state towards the

unbound state, r > rn , andΦB ,0 is the flux reaching the first interface r0. The factor hB is
the average fraction of time that the system spends in the bound state B. P (rn |r0) is the
probability that a trajectory that reaches r0 subsequently arrives at interface rn instead
of returning to the bound state r0. The expression thus states that the total flux of tra-
jectories from the bound state to the unbound state is the flux of trajectories from B to
r0 multiplied by the probability that such a trajectory will later reach rn before returning
to r0. P (rn |r0) can be expressed as the product of the probabilities P (ri+1|ri ) that a tra-
jectory that comes from r0 and crosses ri for the first time will subsequently reach ri+1

instead of returning to r0:

P (rn |r0) =
n−1∏
i=0

P (ri+1|ri ). (4.8)

Combining Eqs. 4.7 and 4.8, the effective dissociation rate can thus be expressed as

koff =
ΦB ,0

hB

n−1∏
i=0

P (ri+1|ri ). (4.9)

The individual factors P (ri+1|ri ) can be determined in a Transition Interface Sam-
pling [15] (TIS) or a Forward Flux Sampling [18, 19] (FFS) simulation, as the fraction of
trajectories crossing the interface ri that reach the interface ri+1 instead of returning to
r0. FFS and TIS are both based on the effective positive flux expression, Eq. 4.7, but differ
in the way they construct the path ensembles.

4.4. INTRINSIC DISSOCIATION RATE AND EFFECTIVE POSITIVE

FLUX

To obtain a microscopic expression for the intrinsic dissociation rate kd , we rewrite
Eq. 4.9 as

koff =
ΦB ,0

hB

P (rn′ |r0)P (rn |rn′ ), (4.10)
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where P (r ′
n |r0) = ∏n′−1

i=0 P (ri+1|ri ) and P (rn |rn′ ) = ∏n−1
i=n′ P (ri+1|ri ). Now, the crux is to

define rn′ =σ. Comparing Eq. 4.10 with Eq. 4.2, we can then make the following identi-
fications:

kd (σ) = ΦB ,0

hB

P (σ|r0) (4.11)

Srad(t →∞|σ) = kD (σ)

ka peq(σ)+kD (σ)
= P (rn |σ) (4.12)

Eq. 4.11 provides a microscopic expression for the intrinsic dissociation rate, and is one
of the central results of this paper. It shows that the intrinsic dissociation rate is the flux
of trajectories that come from the bound state and cross the dividing surface rn′ =σ. The
expression makes explicit that the intrinsic dissociation rate depends on the choice forσ.
Also Eq. 4.12 highlights the idea that not only the intrinsic rates, but also the diffusion-
limited rate kD depends on this choice. We further iterate that σ need not be chosen
beyond the interaction range of the potential; the expressions hold for any choice of σ.

The microscopic expressions of Eqs. 4.11 and 4.12 make it possible to obtain both
the effective dissociation rate koff and the intrinsic dissociation rate kd from computer
simulations. Again, Transition Interface Sampling [15] and Forward Flux Sampling [18,
19] are particularly well suited, because they are both based on the effective positive flux
expression, Eq. 4.7.

In fact, by choosing the cross-sectionσ beyond the range rc of the interaction poten-
tial, it is possible to obtain from one simulation not only the intrinsic dissociation rate kd

and effective dissociation rate koff, but also the intrinsic association rate ka and effective
association rate kon, and hence the equilibrium constant Keq. One TIS/FFS simulation
yields both kd , from Eq. 4.11, and P (rn |σ) = Srad(t → ∞|σ), from Eq. 4.12. Yet, when
σ> rc (and U (σ) = 0), we know that the latter is also given by

P (rn |σ) = Srad(t →∞|σ) = kD (σ)

ka(σ)+kD (σ)
, (4.13)

with kD = 4πσD , as discussed in section 4.2. In other words, having computed P (rn |σ)
in the TIS/FFS simulation, we can use the above expression and the analytical solution
kD = 4πσD , to obtain not only kd but also ka :

ka(σ) = (1−P (rn |σ))kD (σ)

P (rn |σ)
. (4.14)

From kd and ka , we obtain the equilibrium constant Keq = ka/kd , from which we then
find kon = Keqkoff.

As pointed out above, the effective rates are strictly defined for rn → ∞, meaning
that Eqs. 4.11 and 4.14 are also only valid in that limit. However, to keep the simulations
tractable, in practice one would like to use an interface at finite rn . In the next section
we derive an expression that holds for finite interface values rn .
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4.5. COMPUTING THE INTRINSIC RATES FOR AN INTERFACE AT

FINITE Rn

While the intrinsic association rate constant kd does not rely on taking the position of
the last interface rn →∞, the intrinsic rate constant ka does (see Eq. 4.14). To obtain an
expression for ka for a finite value of rn , we start by rewriting the effective association
rate Eq. 4.6 as the sum of reciprocal intrinsic rates:

1

kon
= 1

ka(σ)
+ 1

kD (σ)
. (4.15)

Since the effective association rates are independent on the choice of the dividing sur-
face σ, we can choose to set the dividing surface at rn >σ

1

kon
= 1

ka(rn)
+ 1

kD (rn)
. (4.16)

Combining the above two equations and rearranging yields

1

ka(rn)
− 1

ka(σ)
= 1

kD (σ)
− 1

kD (rn)
. (4.17)

To make progress we need to relate the intrinsic rate constants ka(σ) and ka(rn). This
relation is provided by linking the intrinsic dissociation rates, Eq. 4.11 at the respective
surfaces, yielding

kd (rn) = ΦB ,0

hB

P (rn |r0) = ΦB ,0

hB

P (σ|r0)P (rn |σ) = kd (σ)P (rn |σ). (4.18)

Since detailed balance implies Keq = ka(σ)/kd (σ) = ka(rn)/kd (rn), the desired relation
for the intrinsic association rate constants is

ka(rn) = ka(σ)P (rn |σ). (4.19)

Inserting Eq. 4.19 into Eq. 4.17 and rearranging yields

ka(σ) = (1−P (rn |σ))kD (σ)

P (rn |σ)(1−Ω)
, (4.20)

where Ω≡ kD (σ)/kD (rn), which using kD (b) = 4πσb, reduces to Ω=σ/rn . Eq. 4.20 pro-
vides an explicit expression for the intrinsic association rate ka for finite rn , featuring
a correction factor 1/(1 −Ω). For rn → ∞, Ω vanishes and the expression reduces to
Eq. 4.14. However, the correction factor decays slowly with rn , and in practice it cannot
be neglected. Since Ω is known analytically, Eq. 4.20 turns this approach into a feasi-
ble strategy for computing both kd and ka in TIS and FFS, which directly give access to
P (rn |σ). Lastly, combining this expression with Eqs. 4.5 and 4.6, we obtain the following
expressions for the effective on and off rates, respectively:

kon = (1−P (rn |σ))kD (σ)

1−P (rn |σ)Ω
, (4.21)

koff = kd (σ)P (rn |σ)
1−Ω

1−P (rn |σ)Ω
. (4.22)
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Figure 4.1: The intrinsic rate constant for the isotropic Lennard-Jones potential. Left: ka (σ) as a
function of the position of last interface, rn in units of kD (σ), for a fixed cross sectionσ= 3σLJ. The
correction factor 1

1−Ω and the factor (1−P (rn |σ))/P (rn |σ) are also shown. As expected the value
of ka (σ) remains constant as rn is varied. Right: ka (σ) and kon as a function of the cross section
σ. The position of the last interface, rn, is kept constant at 6.5σLJ. It is seen that while ka varies
with σ, kon does not.

4.5.1. ILLUSTRATIVE EXAMPLE

As an illustration of the above scheme we numerically evaluated Eq. 4.20 for a two parti-
cle system undergoing Brownian dynamics (BD). The interaction potential between the
two particles is given by

u(r ) =
{

4ε
[(σLJ

r

)12 − (σLJ
r

)6
]

, 0 < r < 3σLJ

0, r > 3σLJ,
(4.23)

where σLJ sets the length-scale of the Lennard-Jones potential, ε sets the well depth, and
r is the interparticle distance. In the simulations σLJ = 5nm, ε= 10kBT. The length of the
simulation box is 60σLJ. We evaluate kd (σ) and P (rn |σ) using one single FFS simulation.
First, we fix the cross section σ= 3σLJ, just beyond the cut-off distance of the potential.
Interfaces were set at r ={1.3, 1.5, 2.0, 2.5, 3.0, 3.2, 3.4, 3.6, 3.8, 4.0, 4.2, 4.4, 4.6, 4.8, 5.0,
5.5, 6.0, 6.5 }, in units of σLJ. From each interface, 10000 trajectories are started and the
conditional probability as in Eq. 4.8 is calculated.

We test the independence of Eq. 4.20 on the location of the final interface by varying
rn , while keeping σ= 3.0σLJ fixed. As seen in Fig. 4.1(left) the value of ka(σ) is indepen-
dent of the position of the rn surface. Note, however, that the correction factor 1/(1−Ω)
is not negligible, even for rn = 6.5σLJ.

Next, we plot in Fig. 4.1(right) the dependence of the intrinsic association rate ka(σ)
on the location of the cross sectionσ, keeping rn = 6.5σLJ constant. The intrinsic associ-
ation rate constant decreases with σ, but the effective rate constant kon is independent
of σ, as expected.

The intrinsic dissociation rate kd (σ) is evaluated via Eq. 4.11. From kd (σ) and ka(σ),
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the values of kon and koff, are evaluated using Eq. 4.5 and Eq. 4.6. Keq is calculated using
Eq. 4.3. The results are summarized in Table 4.1.

4.5.2. VALIDATION OF THE EFFECTIVE RATE CONSTANTS

To validate the values of kon and koff obtained from the FFS simulations, we calculate
these values also from a brute force Brownian Dynamics simulation of the same system
of two particles. First, the equilibrium constant Keq is evaluated using the analytic ex-
pression

Keq = 4π
∫ 3σLJ

0
r 2e−βu(r )dr = kon

koff
, (4.24)

where u(r ) is given by Eq. 4.23, and the integral is over the bound state 0 < r < 3σLJ.
The brute force simulation generates a time trace n(t ), switching from the bound

state with n(t ) = 1 to the unbound state with n(t ) = 0. From this time trace we generate
a time autocorrelation function

c(τ) = 〈n(τ)n(0)〉
〈n(0)2〉 ≈ e−µτ, (4.25)

that relaxes exponentially with a decay constant µ given by

µ= kon/V +koff. (4.26)

Fig. 4.2 shows this time autocorrelation function. The simulation results are fitted to
Eq. 4.25 to obtain the value of µ and by combining with Eqs. 4.24 and 4.26, the effective
rate constants are obtained.

Alternatively, we can generate a power spectrum P (ω) from the same n(t ) time trace [10].
The power spectrum for a random telegraph process with switching rates k f and kb is
given by

P (ω) = 2µp(1−p)

µ2 +ω2 , (4.27)

where ω is the frequency, µ = k f +kb is the decay rate and p = k f /(k f +kb). The low-
frequency part of the power spectrum as obtained from the simulations is expected to
be given by the above expression, with k f = kon/V and kb = koff (see Ref. [10]). Table 1
compares the values of kon and koff as obtained via this scheme, with those from FFS,
using Eq. 4.3 and Eqs. 4.18–4.22, and the results from the time auto-correlation function,
Eqs. 4.25 and 4.26. It is seen that the values are in very good agreement.

Keq[10−3µm3] kon[µm3

s ] koff[
1
s ]

FFS 5.127 0.2417 47.14
Time autocorrelation 5.145 0.2589 50.33

Power Spectrum 5.145 0.2571 49.99

Table 4.1: Comparison of the effective rate constants as determined via different approaches:
FFS, using Eq. 4.3 and Eqs. 4.18–4.22; the autocorrelation function, Eqs. 4.25 and 4.26; the power
spectrum, Eq. 4.27. The table shows good agreement between the values of kon and koff, and
hence Keq, obtained via these different approaches.
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Figure 4.2: Left: The autocorrelation function c(τ) obtained from simulation is fit to Eq. 4.25,
yielding µ = 59.9236s−1. Right: Power spectrum P (ω) fitted to Eq. 4.27 to determine the value
of µ= 59.5192s−1. In both cases the effective rate constants are calculated by solving Eq. 4.26 and
Eq. 4.24.

4.6. RELATION TO OTHER TECHNIQUES

Northrup et al. [8, 21] provide a method to compute the effective association rate directly
from Eq. 4.1

kon = [1−Srad(t →∞|σ)]kD (σ) ≡β∞kD (σ), (4.28)

where β∞ = 1−Srad(t →∞|σ) is defined as the probability that particles starting at a dis-
tanceσ associate rather than diffuse away and escape into the bulk. This probability can
be computed explicitly by generating trajectories from an isotropically distributed en-
semble of configurations of particles at distance σ. To prevent needlessly long trajecto-
ries, Northrup et al. introduced an additional surface c at which they halt the trajectories.
The computed association probability β 6=β∞ is now defined as the chance to associate
rather than to escape to c. They then relate β to β∞ using a branching method, adding
up all probabilities of paths that leave c but return to σ rather than reach infinity[21],
yielding a geometric series that can be written as

β∞ = β

1− (1−β)Ω
, (4.29)

where Ω= kD (σ)/kD (c) =σ/c. As the association probability β∞ is related to the intrin-
sic rate constant through β∞ = ka(σ)/(ka(σ)+kD (σ)), it follows that

ka(σ) = βkD (σ)

(1−β)(1−Ω)
. (4.30)

The link with the intrinsic rate constant expression Eq. 4.20 can be made by realizing that
the association probability β= 1−P (c|σ), leading to

ka(σ) = (1−P (c|σ))kD (σ)

P (c|σ)(1−Ω)
. (4.31)
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This expression is identical to Eq. 4.20, with c = rn . Strikingly, while derived in a dif-
ferent way, the intrinsic rate expression based on the Northrup method yields the same
correction factor as our analysis for finite interfaces.

4.7. ANISOTROPIC INTERACTIONS

The above derivations hold for particles interacting via an isotropic pair potential. How-
ever, many molecular systems, such as proteins and ligands, have anisotropic interac-
tions that depend on the relative orientation of the particles. For such systems it is not
immediately clear whether the expressions derived above are still valid. The point is that
while the Boltzmann distribution of the particles’ orientations is isotropic beyond the
cutoff distance of the potential, the distribution in the ensemble of reactive trajectories,
as harvested by TIS and FFS, is not: in these reactive trajectories, the particles tend to
have their patches aligned. Naturally, one can still define and measure an effective asso-
ciation and dissociation rate. Yet, the simple expressions derived in the appendix are no
longer valid.

Following Northrup et al. [8, 21], one can always express the effective association rate
for anisotropic particles as

kon =β∞kD (σ), (4.32)

where the diffusion-limited rate constant is again kD (σ) = 4πDσ, and β∞ is given by
Eq. 4.29. Now, we define the intrinsic rate ka(σ) via β∞ ≡ ka(σ)/(ka(σ)+kD (σ)), which
yields

ka(σ) = βkD (σ)

(1−β)(1−Ω)
, (4.33)

with Ω, as before, given by Ω= kD (σ)/kD (c). This yields an explicit expression for ka(σ)
in terms of the probability β of binding rather than reaching the surface rn = c, starting
from an isotropic distribution at the surfaceσ; this is indeed the essence of the technique
of Northrup et al. [21]. When the distribution as generated in the TIS/FFS simulation
is isotropic at σ, then Eqs. 4.20 and 4.33 with β = 1−P (rn |σ) are equivalent and both
can be used. The problem arises when we want to connect Eq. 4.33 to the expression
used in TIS/FFS to compute the dissociation rate in the case that the distribution at σ
is not isotropic. The principal idea of the scheme presented in sections 4.4 and 4.5 is
that P (rn |σ), as obtained in a TIS/FFS computation of the dissociation rate, is given by
the analytical result kD (σ)/(ka(σ)+kD ), for rn → ∞. We could thus use this analytical
result to obtain the intrinsic rate ka(σ) in Eqs. 4.13 and 4.14; the expression that relates
P (rn |σ) to ka(σ) when rn is finite, is Eq. 4.20. However, in the case of anisotropic interac-
tion potentials the distribution of reactive trajectories at theσ interface can also become
anisotropic. In that case one can no longer identify P (rn |σ) as obtained in an TIS/FFS
simulation with 1−β in Eq. 4.33, and Eq. 4.20 or Eq. 4.33 cannot be used to obtain ka(σ)
from a TIS/FFS simulation. In summary, when the distribution at σ as obtained in the
TIS/FFS simulation is isotropic, we expect both Eq. 4.33 and Eq. 4.20 to hold. However,
if the distribution is not isotropic Eq. 4.20 ceases to be valid.
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Nevertheless, even when the potential is anisotropic, Eq. 4.20 still provides a route
towards computing ka(σ). Indeed, if at a certain interface σ′ sufficiently far away from
contact the distribution of trajectories has become uniform, the intrinsic rate for that
surface is given by Eq. 4.20

ka(σ′) = (1−P (rn |σ′))kD (σ′)
P (rn |σ′)(1−Ω)

, (4.34)

where Ω= kD (σ′)/kD (rn), and rn >σ′. Since we know that the effective association rate
is independent on the choice of the dividing surface, we can write

1

kon
= 1

ka(σ)
+ 1

kD (σ)
= 1

ka(σ′)
+ 1

kD (σ′)
, (4.35)

even if the distribution at σ is anisotropic. Inserting Eq. 4.34 into this identity gives

1

ka(σ)
= P (rn |σ′)(1−Ω)

(1−P (rn |σ′))kD (σ′)
+ 1

kD (σ′)
− 1

kD (σ)
, (4.36)

or, rearranging,

ka(σ) = (1−P (rn |σ′))kD (σ′)kD (σ)

P (rn |σ′)(kD (σ′)−kD (σ)Ω)+kD (σ)−kD (σ′)
. (4.37)

This expression reduces reduces to Eq. 4.20 when σ = σ′, as expected. For σ 6= σ′, the
expression holds even when the distribution at σ is anisotropic, provided that the dis-
tribution at σ′ is isotropic. The value of ka(σ) thus obtained via a TIS/FFS computa-
tion of the dissociation pathway, yielding an anisotropic distribution at σ, is the same
as that would have been obtained from a simulation of the association pathway via the
Northrup scheme starting from a uniform distribution at σ.

Inserting Eq. 4.36 into Eq. 4.35 yields

kon = (1−P (rn |σ′))kD (σ′)
1−ΩP (rn |σ′)

, (4.38)

which is indeed identical to Eq. 4.21 withσ=σ′. Since kon is independent of the interface
σ′, the rate given by Eq. 4.38 as a function of σ′ should reach a constant value. Any
deviation from this limiting value is due to a loss of isotropy. Hence, this expression
provides a criterion for testing the isotropy requirement.

4.7.1. ILLUSTRATIVE EXAMPLE

We consider a system comprising of two patchy particles interacting via a pair potential
that consists of several contributions. The particles interact via a center-center potential
Vcc (r ) = Vcc-rep(r )+Vcc-att(r ) based on the distance r between the centers of mass, that
is in turn built up from a repulsive and an attractive potential. Additionally, there is
an attractive patch-patch pair interaction Vpp(δ) based on the distance δ between two
points (patches) located on either particle’s surface. Fig. 4.3 illustrates this setup. The
total pair interaction potential is thus

V (r,δ) =Vcc-rep(r )+Vcc-att(r )+Vpp(δ). (4.39)
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Figure 4.3: The anisotropic interaction potential. Top left: The particles interact via a combination
of a center-center potential Vcc(r ) and a patch-patch attraction Vpp(δ) between the small patches
on the surface of the particle. Top right: Total interaction potential Vcc(r )+Vpp(r −d) for two par-
ticles with perfectly aligned complementary patches (orange solid curve), and oppositely aligned
patches Vcc(r ) +Vpp(r + d) (dark green curve). The existence of patches introduces a strongly
attractive bound state with the aligned particles in close contact. Bottom left: Heat map of the
potential as a function of the distance between centres of mass r and the angle between the patch
vector and inter-particle vector, θ1 and θ2 (see also top left) with θ1 = θ2 Bottom right: Heat map
of potential as a function of θ1,θ2 given r = 1.1d . Note the relatively narrow range of orientations
over which strong bonding occurs.
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Note that δ implicitly depends on the location of the patch, and hence on the orientation
of the particle. The potential Vcc-rep(r ), Vcc-att(r ) and Vpp(δ) have the simple quadratic
form

Vi (x) =


εi (1−ai

( x
d

)2) if x < x?i ,

εi bi (
xc

i
d − x

d )2 if x?i < x < xc
i ,

0 otherwise.

(4.40)

where the index i refers to one of the labels {cc-rep, cc-att, pp }, and d is the parti-
cle diameter and sets the length scale. The overall strength εi , the stiffness ai and the
parameter x?i , which combined with ai determines the range of the potential, are free
parameters. Cut-offs xc

i and smoothing parameters bi are fixed by requiring continu-
ity and differentiability at x∗

i . These potentials give us a firm control over the potential
shape, and allow for easy integration with potentials that are short-ranged and highly
orientation-specific. For our illustrative purposes, we take the following parameters:
εcc-rep = 100kBT , acc-rep = 1 and R∗

cc-rep = 0.85d , implying bcc-rep = 2.6036 and Rc
cc-rep =

1.1764d ; εpp = 20kBT , app = 20 and r∗
pp = 0.1d , implying bpp = 5 and r c

pp = 0.5d ; and
εcc-att = 10kBT , acc-att = 1 and R∗

cc-att = 0.85d , implying bcc-rep = 2.6036 and Rc
cc-rep =

1.1764d .
As an illustration we plot in Fig. 4.3 the total inter-particle potential as a function of r

when the two complementary patches are aligned to face each other, so that δ= r −d . A
narrow attractive well arises when the two particles are in close contact. In the same plot
we also give the inter-particle potential as a function of r when the two complementary
patches are oppositely aligned (with the patches facing in opposite directions) so that
δ= r+d . Here, there is only a very shallow attractive interaction at contact, caused by the
isotropic center-center potential Vcc (r ). In Fig. 4.3 we also demonstrate the orientational
dependence of the attractive potential, showing that the attractive interaction is highly
sensitive to misalignment.

A Brownian Dynamics (BD) simulation employing an anisotropic potential requires
translation as well rotational dynamics. We use a second order quasi-symplectic BD
integrator which works particularly well for orientational dynamics [22], and can be
straightforwardly combined with FFS. We performed an FFS simulation, with interfaces
based on the binding energy when the particles are within the range of the potential [23],
and beyond that with interfaces based on the center-to-center distance r : r ={1.5, 1.6,
1.8, 2.0, 2.2, 2.4, 2.6, 2.8 ,3.0, 3.5 , 5.5, 6.5, 7.5 } in units of d . From each interface, 10000
trajectories are started, and the conditional probability as in Eq. 4.8 is calculated.

To illustrate that Eq. 4.20 does not hold when the distribution at σ is not isotropic,
we evaluated ka(σ) using this equation for a fixed cross section σ = 1.5d , see Fig. 4.4.
The range of the anisotropic interaction potential depends on the orientation, but even
when the patches are aligned (and the range is maximal), the potential approaches zero
beyond 1.5d (see Fig. 4.3); this is indeed why we have chosen the cross-section to be
σ= 1.5d . Fig. 4.4 shows ka(σ) as a function of the position of the last interface, rn . It also
shows the factors 1/(1−Ω) = 1/(1−σ′/rn) and 1−P (rn |σ′)/P (rn |σ′), which both depend
on rn . However, while for the isotropic potential, ka(σ) is independent of rn as long as σ
(and rn) are beyond the range of the interaction potential (see Fig. 4.1), here this is not
the case, because the distribution at σ is not isotropic. This shows that Eq. 4.20 cannot



4.7. ANISOTROPIC INTERACTIONS

4

75

2 3 4 5 6 7 8

0

1

2

3

4

Position of the rn surface [d]

1
1−Ω

1−P(rn|σ)
P(rn|σ)

ka [kD]

Figure 4.4: The intrinsic rate constant ka(σ) from Eq. 4.20 (in units of kD(σ)) as a function of the
position of the last interface, rn , for the anisotropic interaction potential shown in Fig. 4.3. The
cross section σ surface is kept constant at 1.5d . The correction factor 1/(1−Ω) = 1/(1−σ′/rn )
and the factor (1−P (rn|σ′))/P (rn|σ′) are also shown. In contrast to the behavior for the isotropic
potential, Fig. 4.1, the value of ka(σ) depends on rn , even when rn is beyond the range of the
potential r > σ = 1.5d . This is because for this anisotropic potential the distribution at σ is not
uniform. As a result, Eq. 4.20 cannot be used.

2 3 4 5 6
0.13

0.14

0.15

0.16

Position of the σ′ surface [d]

k o
n

[µ
m

3 /
s]

Effective association rate

2 3 4 5 6

0.2

0.3

0.4

0.5

0.6

0.8

Position of the σ surface [d]

k a
[µ

m
3 /

s]

σ′ = 1.6 σ′ = 1.8
σ′ = 2.0 σ′ = 2.2
σ′ = 2.4 σ′ = 2.6
σ′ = 2.8 σ′ = 3.0
σ′ = 3.5 σ′ = 5.5
σ′ = 6.5

Figure 4.5: The effective and intrinsic association rates for the anisotropic potential of Fig. 4.3.
Left: Effective association rate kon, computed via Eq. 4.38, as a function of the position of the
σ′ surface, with the position of the last surface fixed at rn = 7.5d . The value of kon is constant for
σ′ ≥ 3d , indicating that at and beyond this surface the particles are isotropically distributed. Right:
The intrinsic rate constant ka(σ), computed via Eq. 5.12, as a function of the cross section σ for
different positions of the σ′ surface, with the position of the last interface fixed at rn = 7.5d . The
curves for σ′ = 3.0, 3.5, 5.5, 6.5 overlap since the distribution of particles beyond this distance has
become isotropic. For these values of σ′, ka (σ) as a function of σ can be obtained.
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be used for anisotropic interactions, if at σ the orientational distribution of the particles
is still anisotopic.

However, plotting the effective rate kon given by Eq. 4.38 as a function of σ′ for rn =
7.5d in Fig. 4.5(left), shows that kon becomes constant beyond σ′ = 3d , indicating that
this is the distance at which the particles become isotropically distributed. This obser-
vation allows us, via Eq. 5.12, to determine ka(σ), even when at σ the distribution is not
isotropic. This is illustrated in Fig. 4.5(right), which shows ka(σ) as a function of σ from
Eq. 5.12, for several values of σ′, and for a fixed position of the last interface, rn = 7.5d .
The intrinsic rate shows qualitatively similar behavior as in Fig. 4.1, but for σ′ < 3d , the
value of ka(σ) does depend on σ′, because the distribution at σ′ is not isotropic yet.
However, for σ′ > 3d , ka(σ) becomes independent of σ′, and the intrinsic rate constant
ka can thus be obtained for all values of σ that are beyond the range of the interaction
potential.

4.8. CONCLUSION

In this work we derived explicit microscopic expressions for the intrinsic rate constants
for diffusion influenced reactions. Remarkably all intrinsic and effective rate constants,
as well as the equilibrium constant can be computed from a single TIS or FFS simulation
of the dissociation process. To the best of our knowledge this is a new result, and has not
been reported in the literature before. We illustrated that this approach works for generic
isotropic potentials and even for anisotropic potentials when the reference interface is
sufficiently far from contact such that the orientational distributions are isotropic. This
later condition led to a criterion for testing this isotropic behavior.

The results obtained in this paper are very general and can be used to compute ac-
curate rate constants in complex systems using rare events techniques such as Forward
Flux Sampling or Transition Interface Sampling. In future work we will also study how
the magnitude of the intrinsic rate constant compares to that of the diffusion-limited
rate constant, and how this depends on the binding affinity. This question is, for in-
stance, important for understanding how tightly diffusion puts a fundamental upper
bound on the precision of chemical sensing [24, 25, 11, 26].
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APPENDIX A: THE RATE CONSTANTS FOR TWO PARTICLES THAT

INTERACT VIA AN ISOTROPIC INTERACTION POTENTIAL

It will be instructive to first revisit the derivation of the rate constants. Following Ag-
mon and Szabo [1], we consider a single static receptor at the origin and a single ligand
molecule that moves with diffusion constant D . The probability that the ligand molecule
is at distance r at time t given that it was initially at a distance r0 is given by the Green’s
function p(r, t |r0). The evolution of the Green’s function is given by the diffusion equa-
tion

∂p(r, t |r0)

∂t
= 1

r 2

∂

∂r
Dr 2e−βU (r ) ∂

∂r
eβU (r )p(r, t |r0), (4.41)

whereβ is the inverse temperature and U (r ) is the interaction potential. The effective as-
sociation and dissociation rate constants are obtained by solving Eq. 4.41 with different
boundary conditions. We start with the association reaction.

ASSOCIATION REACTION

To obtain the effective association rate constant kon, we solve Eq. 4.41 subject to the
boundary condition

4πσ2D
∂p(r, t |r0)

∂r

∣∣∣∣
r=σ

= ka p(σ, t |r0). (4.42)

Here ka is the intrinsic rate constant, which determines the rate at which receptor and
ligand associate given they are at the contact distance σ. If ka is finite, then the bound-
ary condition is called a radiation boundary condition, while if ka →∞, the boundary
condition is an absorbing condition. The latter can be used to obtain the rate constant of
diffusion-limited reactions, where receptor and ligand associate upon the first collision.

The survival probability Sα(t |r0) is the probability that a particle, which starts at a
position r0, has not yet reacted at a later time t . It is given by

Sα(t |r0) = 4π
∫ ∞

σ
dr r 2p(r, t |r0). (4.43)

The subscript α is either “rad” or “abs”, corresponding to ka being finite or infinite,
respectively. The propensity function Rα(t |r0) is the probability that a ligand particle,
which starts at r = r0, reacts for the first time at a later time t :

Rα(t |r0) =−∂Sα(t |r0)

∂t
. (4.44)

The time-dependent rate constant kα(t ) is

kα(t ) = 4π
∫ ∞

σ
dr0r 2

0 Rα(t |r0)peq(r0). (4.45)

The distribution peq(r0) is the equilibrium radial distribution function, peq(r ) = e−βU (r ).
If ligand and receptor only interact at contact, then U (r ) = 0 for r ≥σ and peq = 1, mean-
ing that the equilibrium distribution corresponds to a spatially uniform distribution.
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The time-dependent rate constant kα(t ) divided by the volume V is the probability per
unit amount of time that receptor and ligand associate for the first time at a later time t ,
averaged over all initial positions r0 drawn from the equilibrium distribution peq(r0).

The expressions Eq. 4.43 - Eq. 4.45 hold for both radiating and absorbing boundary
conditions, corresponding to ka being finite and infinite, respectively. When ka is finite,
Rrad(t |r0) is also given by

Rrad(t |r0) = ka p(σ, t |r0) (4.46)

and the time-dependent rate constant krad(t ) is then also given by

krad(t ) = 4πka

∫ ∞

σ
dr0r 2

0 p(σ, t |r0)peq(r0) (4.47)

To relate krad(t ) to kabs(t ) in what follows below it will be useful to exploit the detailed-
balance condition

peq(r0)p(r, t |r0) = peq(r )p(r0, t |r ). (4.48)

We can integrate this equation over r0 to find

4π
∫

dr0r 2
0 p(r, t |r0)peq(r0) = peq(r )Sα(t |r ). (4.49)

Combining this equation with Eq. 4.47 we find that

krad(t ) = peq(σ)kaSrad(t |σ). (4.50)

The time-dependent rate constant krad(t ) can be related to the time-dependent rate
constant kabs(t ) via

krad(t ) =
∫ t

0
d t ′Rrad(t − t ′|σ)kabs(t ′). (4.51)

This can be understood by noting that kabs(t ′)/V is the probability per unit amount of
time that receptor and ligand come in contact for the first time at time t ′, while Rrad(t −
t ′)|σ) is the probability that receptor and ligand which start at contact r = σ at time t ′
associate a time t − t ′ later. In Laplace space, the above expression reads

k̂rad(s) = R̂rad(s|σ)k̂abs(s). (4.52)

Since Rrad(t |σ) =−∂Srad(t |σ)/∂t , R̂rad(s|σ) is also given by

R̂rad(s|σ) = 1− sŜrad(s|σ). (4.53)

Combining the Laplace transform of Eq. 4.50 with Eq. 4.52 and Eq. 4.53 yields

k̂rad(s) = ka peq(σ)k̂abs(s)

ka peq(σ)+ sk̂abs(s)
. (4.54)
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The effective association rate kon is given by the long-time limit of krad(t ). Using Eq. 4.54
we thus find:

kon = lim
t→∞krad(t ) = lim

s→0
sk̂rad(s) = ka peq(σ)kD

ka peq(σ)+kD
. (4.55)

Here, kD = lims→0 sk̂abs(s) is the diffusion-limited association rate for two particles inter-
acting via an interaction potential U (r ). By combining Eq. 4.50 with Eqs. 4.52 and 4.53,
it also follows that the probability that a particle at contact σ does not bind but escapes,
is

Srad(∞|σ) = lim
s→0

sŜ(s|σ) = kD

ka peq(σ)+kD
. (4.56)

Hence, the effective association rate constant, Eq. 4.55, can be interpreted as being given
by the rate constant kD of arriving at the surfaceσ, followed by the probability 1−Srad(∞|σ) =
ka peq(σ)/(ka peq(σ)+kD ) that the arrival leads to binding.

The results derived above hold for arbitrary peq(r ) = e−βU (r ). We now consider the
case that U (r ) = 0 for r ≥σ. The time-dependent rate constant kabs(t ) is then [27]

kabs(t ) = 4πσD
(
1+σ/

p
πDt

)
, (4.57)

which in the Laplace domain becomes

sk̂abs(s) = kD (1+τ(s)) , (4.58)

where τ (s) ≡σps/D =p
sτm with the molecular time scale τm =σ2/D and kD ≡ kabs(t →

∞) = 4πσD is the diffusion-limited rate constant for two particles that do not interact
except at contact. Substituting this in Eq. 4.54 with U (σ) = 0 gives

k̂rad(s) = kakD

s

1+τ (s)

ka +kD (1+τ (s))
. (4.59)

This expression yields for the effective association rate kon = lims→0 sk̂rad(s):

kon = kakD

ka +kD
. (4.60)

We note that this expression also follows from the much simpler steady state ap-
proximation of the macroscopic rate equations for association, in which the surface σ is
viewed as an intermediate state. In this approximation ka is taken as the rate from the
intermediateσ surface to the associated/bound state and kD is the diffusion limited rate
to reach the σ surface from the unbound state. However, the above derivation is more
general, and does not require the (rather strong) approximations that are made in the
simple approach.
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THE DISSOCIATION RATE CONSTANT

Following Amgon and Szabo [1], we will derive the effective dissociation rate constant
koff from Srev(t |∗):

1

koff
= τoff =

∫ ∞

0
d t [1−Srev(t |∗)] . (4.61)

Here Srev(t |∗) is the probability that the ligand, which is bound initially, is free at a later
time t . The subscript “rev” indicates that during the time t the ligand may bind and
unbind many times.

To obtain Srev(t |∗), we first consider Srev(t |r0) and the following boundary condition
for Eq. 4.41 [1]:

4πσ2D
∂prev(r, t |r0)

∂r

∣∣∣∣
r=σ

= ka prev(σ, t |r0)−kd [1−Srev(t |r0)]

= Rrev(t |r0). (4.62)

Using R̂rev(s|r0) = 1− sŜrev(s|r0) we can rewrite the above boundary condition as

R̂rev(s|r0) = ska

s +kd
p̂rev(σ, s|r0). (4.63)

The rate is, analogous to Eq. 4.45,

krev(t ) = 4π
∫

dr0r 2
0 Rrev(t |r0)peq(r0). (4.64)

Using the detailed-balance relation Eq. 4.49, this equation can be combined with Eq. 4.63,
to give

k̂rev(s) = ska peq(σ)

s +kd
Ŝrev(s|σ). (4.65)

Combining this equation with k̂rev(s) = R̂rev(s|σ)k̂abs(s) and R̂rev(s|σ) = 1− sŜrev(s|σ), we
can derive that

k̂rev(s) = ka peq(σ)k̂abs(s)

ka peq(σ)+ (s +kd )k̂abs(s)
. (4.66)

We now consider Srev(t |∗). Since Srev(0|∗) = 0, R̂(s|∗) = −sŜrev(s|∗). The boundary
condition, Eq. 4.62, then becomes

R̂rev(s|∗) = ska p̂rev(σ, s|∗)−kd

s +kd
. (4.67)

Exploiting the Laplace transform of the detailed balance condition ka prev(σ, t |∗) = kd prev(∗, t |σ)
and the definition prev(∗, t |σ) ≡ 1−Srev(t |σ), the above equation yields

Ŝrev(s|∗) = kd

s +kd
Ŝrev(s|σ). (4.68)



BIBLIOGRAPHY

4

81

In the time domain, this gives

Srev(t |∗) = kd

∫ t

0
exp(−kd t ′)Srev(t − t ′|σ)d t ′. (4.69)

which can be understood by noting that kd exp(−kd t ′) is the probability per unit amount
of time that the bound ligand dissociates at time t ′ and Srev(t−t ′|σ) is the probability that
the dissociated particle, which is now at contact σ, is unbound at a later time t − t ′ (but
it could have associated and dissociated in between multiple times).

Combining Eq. 4.68 with Eq. 4.65 gives

k̂rev(s) = sKeqŜrev(s|∗). (4.70)

where Keq ≡ ka peq(σ)/kd . Combining this result with Eq. 4.66, we find

sŜrev(s|∗) = kd kabs(s)

ka peq(σ)+ (s +kd )kabs(s)
. (4.71)

The off rate is then

1

koff
= τoff =

∫ ∞

0
d t [1−S(t |∗)] = lim

s→0

[
1/s − Ŝrev(s|∗)

]= 1

kd
+ Keq

kD
, (4.72)

where, as before, kD is the long-time limit of kabs(t ): kD = lims→0 skabs(s). This result can
be rewritten as

koff =
kd kD

ka peq(σ)+kD
, (4.73)

which, using Eq. 4.56, is also given by

koff = kd Srad(∞|σ). (4.74)

Indeed, the effective off rate is the intrinsic dissociation rate kd times the probability
Srad(∞|σ) = kD /(ka peq(σ)+kD ) that the particle subsequently escapes. As written, the
above results for koff hold for any U (r ). When U (r ) = 0 for r ≥ σ, peq(σ) = 1 and kD =
4πσD .

Finally, we note that, from Eqs. 4.55 and 4.73, it is clear that the equilibrium constant
is also given by

Keq = ka peq(σ)

kd
= kon

koff
. (4.75)
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5
THE MAGNITUDE OF THE INTRINSIC

RATE CONSTANT: HOW DEEP CAN

ASSOCIATION REACTIONS BE IN THE

DIFFUSION LIMITED REGIME?

Intrinsic and effective rate constants have an important role in the theory of diffusion-
limited reactions. In a previous paper, we provide detailed microscopic expressions for
these intrinsic rates [1], which are usually considered as abstract quantities and assumed
to be implicitly known. Using these microscopic expressions, we investigate how the rate
of association depends on the strength and the range of the isotropic potential, and the
strength of the non-specific attraction in case of the anisotropic potential. In addition, we
determine the location of the interface where these expressions become valid for anisotropic
potentials. In particular, by investigating the particles’ orientational distributions we ver-
ify whether the interface at which these distributions become isotropic agrees with the in-
terface predicted by the effective association rate constant. Finally, we discuss how large
the intrinsic association rate can become, and what the consequences are for the existence
of the diffusion limited regime.

85



5

86
5. THE MAGNITUDE OF THE INTRINSIC RATE CONSTANT: HOW DEEP CAN ASSOCIATION

REACTIONS BE IN THE DIFFUSION LIMITED REGIME?

5.1. INTRODUCTION

Association and dissociation of pairs of particles plays a central role, not only in cellular
processes such as the binding of a ligand to a receptor, an enzyme to its substrate, or of
a protein to DNA in gene regulation, but also in the self-assembly of colloids, in micro-
emulsion formation or in the phase behavior of polymer solutions. During association
particles come into contact via diffusion, and bind with a rate depending on the intrin-
sic association rate constant. When dissociating, a bound particle pair separates with
an intrinsic dissociation rate, and after which the particles diffuse away from each other.
Theories of diffusion-influenced reactions express the experimentally important effec-
tive rate constants in terms of diffusion constants, cross section, interaction potential of
the particles, and the intrinsic association and dissociation rate constants [2]. The latter
are often assumed as a priori given.

While simulation techniques exist that can compute association and dissociation
rate constants for arbitrarily complex interaction potentials [3, 4], these are typically ef-
fective rate constants, resulting from both the diffusion process, and the binding rate
upon contact due to the interaction potential. Since the effective rate is also what is of-
ten measured in experiments, few studies have focused on the dependence of intrinsic
rate constants on the interaction potential, the cross section, and the particles’ diffusion
constants.

Knowledge of the effective association and dissociation rates is sufficient for describ-
ing the dynamics of dilute systems when the association and dissociation can be re-
duced to a two-body problem. Yet, it should be realized that, in general, association-
dissociation reactions present a complicated non-Markovian many-body problem due
to non-trivial spatio-temporal correlations between the reactions, such as rebinding events.
In dilute systems it is often possible to integrate out the dynamics at the molecular scale,
and describe association-dissociation as a Markovian process with effective rates de-
scribing the long time dynamics [5, 6]. However, the evidence is accumulating that even
in dilute systems molecular-scale spatio-temporal correlations can dramatically influ-
ence the system’s macroscopic scale behavior. For example, it has been predicted [7, 8]
and shown by experiments [9] that in cellular systems which rely on multi-site pro-
tein modification, enzyme-substrate rebindings at the micrscopic scale can dramati-
cally change the macroscopic behavior at the cellular scale. Also in chemical sensing,
either by living cells or man-made sensors [10, 11, 12, 13, 14], the accuracy of sensing
is affected by the microscopic dynamics of the ligand binding to and hopping between
multiple receptors. In these cases, the effective rate constants are not sufficient for de-
scribing the dynamics: instead, this requires knowledge of diffusion constants, the cross
sections, and the intrinsic rate constants. Also for the modeling of reactions in spatially
heterogeneous cellular systems as well as in confined geometries or reduced dimen-
sions, knowledge of the intrinsic rate constants is required. In addition, in recent years
much effort has been devoted to understanding how the accuracy of sensing is set by
the diffusion-limited arrival of the ligand at the receptor [10, 11, 12, 15, 13, 6, 16, 17, 14].
However, the limit derived is only tight if the ligand-receptor association reactions are in-
deed diffusion limited, meaning that the intrinsic rate constant is much larger than the
diffusion-limited rate constant. Last but not least, knowledge of intrinsic rates is essen-
tial for simulations techniques that model (bio)chemical networks of chemical reactions
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via reaction-diffusion, in which particles move by diffusion, and react at contact with a
given intrinsic rate constant [18, 19, 7, 20, 21, 22, 23, 1, 24].

In Ref. [1] we derived microscopic expressions for these intrinsic rates that can be
evaluated by focusing on a single dissociation reaction using a rare-event sampling tech-
nique. We demonstrated that these expressions not only hold for generic isotropic po-
tentials, but also for anisotropic potentials, provided the cross section where the intrinsic
rates are calculated is sufficiently far from contact that the particles’ orientational distri-
butions are isotropic.

In this work we use the technique introduced in Ref. [1] to study the intrinsic and
effective rate constants as a function of the parameters of both isotropic and anisotropic
(patchy) interaction potentials. For the isotropic potential we use the potential intro-
duced in Ref. [25], which can accurately describe the phase behavior of small globular
proteins such as lysozyme. For this potential, we investigate how the intrinsic and ef-
fective rate constant vary with the strength and the range of the interaction potential.
For the anisotropic potential, we use the potential introduced in Ref. [1], which provides
an effective coarse-grained model for proteins with patchy binding sites. The particles
experience a repulsive force based on the distance between their centres of mass and
a strong specific attractive force if their patches are aligned. In addition, particles also
experience a weaker, isotropic attractive force, which models the non-specific binding
in proteins. Besides the bound and unbound state, this isotropic non-specific attrac-
tion facilitates an intermediate weakly bound state, in which the particles are not bound
to a specific patch but are likely to remain close to each other, increasing the chances
that they rebind to a patch. We compute for this system how the intrinsic and effective
rate constants vary with the non-specific attraction strength. Since the expressions for
the rates derived in Ref. [1] are valid for the anisotropic potential only at cross sections
sufficiently far from contact, we also determine the interface where the orientational
distributions become isotropic as a function of the non-specific attraction strength.

The article is organized as follows: In the methods section, we present a brief deriva-
tion of the expressions for the rate constants using rare-event sampling techniques, fol-
lowed by a short description of the particle model and the interaction potential and
the methods that are used to perform the simulations. In the results section we eval-
uate these rates for the isotropic potential, varying its range and strength. Not surpris-
ingly, the intrinsic and effective association rates increase with the interaction strength,
while the corresponding dissociation rates strongly decrease. More interestingly, the in-
trinsic and effective association rates fall as the interaction range decreases, while the
corresponding dissociation rate constants increase. We then determine the cross sec-
tion beyond which these expressions hold for anisotropic potentials and calculate the
anisotropic rates as a function of the non-specific attraction strength. The results show
that non-specific binding can significantly speed up association and slow down disso-
ciation. We end with a concluding section in which we discuss the question how deep
the association process can be in the diffusion limited regime. For the potentials studied
here the intrinsic association rate is about a factor 10 higher than the effective rate con-
stant, which means that the overall association speed is more limited by diffusion than
by the binding rate at contact, but certainly is not entirely dominated by it.
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5.2. METHODS

5.2.1. INTRINSIC AND EFFECTIVE RATE CONSTANTS

In this section we briefly recapitulate the derivation that led up to the expressions for
the intrinsic rate constants [1]. The central quantities in a reaction-diffusion system,
as shown in Fig. 5.1, are: (i ) the relative diffusion constant, D , which is the diffusion
constant associated with the interparticle vector of the two associating species A and B :
D = D A +DB , where D A and DB are the dissociation constants of the respective particles
[26, 7]; (i i ) the cross section σ; this cross section is the “contact distance” at which the
particles can associate with each other; (i i i ) the intrinsic association rate, ka, at which
the particles can go from the contact state to the bound state; (i v) the intrinsic dissocia-
tion rate, kd at which the particles can unbind from the bound state to the contact state;
(v) the interaction potential U (r ).

When the intereaction potential U (r ) is zero beyond the constant distance σ, the
rate at which the particles come into contact, starting from an equilibrium distribution,
is given by the diffusion-limited rate constant, kD = 4πσD . In this case, the long-time
limit of the time-dependent association rate is given by the effective association rate [2]:

kon = kD(σ).
ka(σ)

ka(σ)+kD(σ)
. (5.1)

This expression shows that that the effective association rate kon can be interpreted as
the rate at which particles come into contact, kD (σ), times the probability that given they
are in contact, they also react, ka(σ)/(ka(σ)+kD(σ)). We also emphasize that while kon is
independent of the choice of the contact distanceσ, ka and kD do depend on this choice.

In the same limit U (r = 0) for r >σ, the effective dissociation rate is given by [2]:

koff = kd(σ).
kD(σ)

ka(σ)+kD(σ)
. (5.2)

The effective dissociation rate koff is thus the rate at which the bound particles dissociate,
kd(σ), times the probability that they subsequently escape to infinity. While the effective
dissociation rate koff is independent of the choice of σ, the intrinsic dissociation rate
kd(σ) does depend on it.

Dissociation is a rare event when particles are bound to patches, owing to strong
specific attractive forces. Rare event sampling techniques such as Transition Interface
Sampling [27] (TIS) or Forward Flux Sampling [28, 29] (FFS) allow evaluation of the cor-
responding low rate constants. The effective dissociation reaction koff can be expressed
as koff =Φ0P (∞|r0), whereΦ0 is the flux of trajectories coming from the bound state, and
crossing the r0-interface for the first time, and P (∞|r0) is the conditional probability for
trajectories starting at the r0-interface to reach infinity (unbound state), instead of re-
turning back to the bound state. This probability of escaping to the unbound state from
the r0-interface can in turn be written as the probability of escaping from the bound
state to the σ-interface first, multiplied by the probability of subsequently escaping to
the unbound state from the σ-interface. It follows that

koff =Φ0P (σ|r0)P (∞|σ). (5.3)
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R)

kD

kd
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Figure 5.1: Central quantities in a reaction-diffusion system. Particles from an equilibrium distri-
bution arrive at the contact interface, σ, with a diffusion limited rate, kD. In the case of particles
freely diffusing with a diffusion constant D, the analytical expression for the diffusion limited rate,
kD = 4πσD . From contact the particles can go to the bound state with an intrinsic association
rate, ka and once bound the particles can unbind with an intrinsic dissociation rate, kd. R is the
inter-particle distance and U (R) is the interaction potential.

Note that this expression is exact [27], and applies to any interaction potential. More
specifically, it does not require that U (r ) is zero beyond the cut-off distance σ. The first
two terms of Eq. 6.4 can be recognized as the definition of the intrinsic dissociation
constant

kd =Φ0P (σ|r0), (5.4)

which makes it possible to write the effective dissociation constant as

koff = kdP (∞|σ). (5.5)

This expression is also exact, applying even when U (r ) is non-zero beyond σ. However,
if the contact distance σ is chosen beyond the cut-off distance where the potential be-
comes zero, then we can combine Eq. 5.5 with Eq. 5.2 to express the escape probability
in terms of the intrinsic association rate and the diffusion-limited rate constant:

P (∞|σ) = kD(σ)

ka(σ)+kD(σ)
. (5.6)
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Figure 5.2: The main interfaces used in the FFS/TIS simulation, to calculate the rate constants.
Particles within the r0-interface are in a bound state and beyond the rn-interface are in the un-
bound state. The σ-interface which is in between the r0 and the rn interfaces, is the cross-section
where the particles are at contact. The conditional probabilities in the case of FFS/TIS is the prob-
ability of going from one interface to the next, as opposed to going back to r0. R is the inter-particle
distance and U (R) is the interaction potential.

Rearranging leads to an expression for the intrinsic association rate

ka(σ) = kD(σ)
1−P (∞|σ)

P (∞|σ)
. (5.7)

P (∞|σ) could in principle be obtained by performing a single TIS/FFS simulation for the
dissociation reaction. Hence, by putting σ beyond the cut-off distance of the potential,
and by exploiting the analytical expressions for the diffusion-limited rate, kD(σ) = 4πσ,
and the escape probability, P (∞|σ) = kD(σ)/(ka(σ) + kD(σ), we can obtain from one
TIS/FFS simulation of a dissociation reaction, not only obtain the intrinsic rate kd(σ),
via Eq. 6.3, and the effective dissociation rate koff, via Eq. 5.5, but also the intrinsic asso-
ciation rate ka(σ), via Eq. 5.7, and the effective association rate kon, via Eq. 5.1. Indeed,
in all analyses performed below, we always put the cross section beyond the cutoff of the
potential.

P (∞|σ) cannot be comnputed directly within a FFS/TIS simulation, because the last
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interface can not be put at infinity in practice. In the simulations, we thus put the last
interface at a finite distance rn , and compute P (rn |σ) instead. However, we then need
a correction, because the particles can rebind; in fact, even when rn is chosen to be
large, we still need this correction, because the rebinding probability decays, as we will
see, only very slowy with rn , namely as 1/rn . To relate P (∞|σ) to P (rn |σ), we exploit
that the effective rate constants are independent of the choice of the dividing interface,
kon(σ) = kon(rn), so that

kD(σ)(1−P (∞|σ)) = kD(rn)(1−P (∞|rn)), (5.8)

where 1−P (∞|σ) = ka(σ)/(ka(σ)+kD(σ)) is the splitting probability for binding (c.f. Eq. 5.1).
Factorizing P (∞|σ) as

P (∞|σ) = P (∞|rn)P (rn|σ), (5.9)

and simultaneously solving Eqs. 5.8 and 6.27 yields expressions for P (∞|rn) and P (∞|σ).
Substituting the expression of P (∞|σ) in Eq. 5.7 gives

ka(σ) = kD(σ)
1−P (rn|σ)

P (rn|σ)

(
1− kD(σ)

kD(rn)

)−1

(5.10)

Thus for a rn-interface chosen at a finite distance, we need to correct ka by dividing
through a factor (1−kD(σ)/kD(rn)) The only unknown, P (rn|σ), follows directly from the
FFS/TIS simulation. This procedure can also be used to calculate the rate constants for
particles interacting with anisotropic potentials, provided the position of the interface
where these rates are measured is sufficiently far from contact, such that the orienta-
tional distributions on this interface are isotropic [1].

Now let us consider an interface, σ′ between the σ-interface and rn-interface. The
association rate kon in terms of σ′- and rn-interfaces is given by [1]

kon =
(
1−P (rn|σ′)

)
kD(σ′)

1−ΩP (rn|σ′)
, (5.11)

where Ω = σ′/rn. We showed in Ref. [1] that the value of kon as a function of σ′ be-
comes constant beyond σ′ > 3σan for a non-specific interaction strength εns = 10kBT ,
and predicted that at this interface the orientational distributions of the particles be-
come isotropic. We also in Ref. [1] showed that it is still possible to extract a meaningful
value for the intrinsic rate constant at cross sections σ < σ′ by using the following ex-
pression:

ka(σ) = (1−P (rn |σ′))kD (σ′)kD (σ)

P (rn |σ′)(kD (σ′)−kD (σ)Ω)+kD (σ)−kD (σ′)
. (5.12)

In this paper, we study how the interface at which the distributions become isotropic
changes as a function of the strength of the non-specific attraction.

5.2.2. PARTICLE MODELS AND INTERACTION POTENTIALS

We employ two models of particles: (i ) spherical particles interacting via an isotropic in-
teraction potential between their centres of mass; (i i ) spherical particles with an isotropic
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Figure 5.3: The isotropic potential, Ui (Eq. 5.13), as a function of the inter-particle distance R.
The range and the interaction strength of the potential are set by α and ε respectively. A larger
value of α results in a potential with a smaller range. The isotropic is potential plotted for three
ranges ( α = {1000,100,50}) with each two different attraction strengths (ε = 5kBT,10kBT ). The
12-6 Lennard-Jones potentials have also been plotted for comparison.The intrinsic and effective
association and dissociation constants are evaluated for these six cases.

centre of mass interaction, dressed with one or more sticky spots on their surface called
‘patches’, which allow for highly directional, anisotropic interactions. In the following
subsections we describe the isotropic and anisotropic potentials used to calculate the
rate constants.
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(c) Heat maps of the anisotropic potential

Figure 5.4: (a) Particles interacting via the anisotropic potential have sticky spots on the surface
called ‘patches’. These patches facilitate highly directional attractive interactions, which provides
an effective model for proteins with binding sites. Particles interact via a combination of a repul-
sive force based on the centre-of-mass distance, R, between the particles, and a strong attractive
force based on the distance between patches, r . In addition to this, particles experience a centre-
of-mass distance based weak, non-specific, attractive force. This non-specific attraction facilitates
a weakly bound state causing the particles not to immediately diffuse away once they unbind from
the patches. This increases the probability of rebinding of the particles. (b) The anisotropic poten-
tial (Eq. 6.30) as a function of the inter-particle distance for aligned (dashed line) and misaligned
(solid line) patches. The anisotropic potential is plotted for ten different non-specific attraction
strengths (εns = 2kBT , 4kBT , 6kBT , 8kBT , 10kBT , 12kBT , 14kBT , 16kBT , 18kBT , 20kBT ). When
the patches are aligned the distance between the patches is r = R −σan, and when misaligned
r = R +σan, where σan is the length scale of the anisotropic potential and determines the parti-
cles’ diameter. (c) Left: Heat map of the anisotropic potential as a function of distance R and the
angle between the patch vector and the inter-particle vector, with θ1 = θ2 (angles as defined in
(a)). Right: Heat map of the anisotropic potential as a function of θ1 and θ2, for a fixed R = 1.1σan.
From these heat maps it follows that the specific attraction is strong only for a narrow range of
orientations.
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ISOTROPIC POTENTIAL

For the isotropic interaction we use the Lennard-Jones-inspired potential from Ref. [25],
which allows easy control of the interaction range.

Ui(R) = 4ε

α2

([(
R

σi

)2

−1

]−6

−α
[(

R

σi

)2

−1

]−3)
, (5.13)

where R is the centre-of-mass distance between the particles. This potential diverges
asymptotically at R = σi , as opposed to the 12-6 LJ potential, which asymptotically di-
verges at R = 0. The strength of interaction is set by ε and the interaction range by α.
Larger value of α means smaller interaction range. 5.3 shows the potential for three val-
ues of α = {50,100,1000} as a function of R, each plotted for two different interaction
ranges (ε= 5kBT and 10kBT ). In our simulations, σi = 5nm, roughly corresponding to a
protein’s diameter. For the sake of comparison, we also plot the standard 12-6 Lennard-
Jones interaction, given by

ULJ(R) = 4ε

[(σLJ

R

)12
−

(σLJ

R

)6
]

. (5.14)

Note that this standard LJ potential is indeed much longer ranged.

ANISOTROPIC POTENTIAL

Patchy particles (illustrated in Fig. 5.4a) model can proteins in an (idealized) coarse-
grained way, where the patches represent the binding sites on the protein. Pairs of patchy
particles, in our model, experience a strong attractive potential, Us(r ), over a narrow
band of orientations (see Fig. 5.4c). This specific attraction depends on the distance, r ,
between the patches, i.e. stronger attraction when the patches are closer. When the
patchy particles approach each other, they experience a repulsive potential, Urep(R),
which is a function of the center-of-mass distance, R. In addition, particles experience a
weak, isotropic, non-specific attraction, Uns(R). The total patch potential reads:

Uan(R,r ) =Us(r )+Urep(R)+Uns(R), (5.15)

where Us(r ), Urep(R) and Uns(R) have the form

Ui (x) =


εi

(
1−ai

(
x
σan

)2
)

if x < x?i ,

εi bi

(
xc

i
σan

− x
σan

)2
if x?i < x < xc

i ,

0 otherwise,

(5.16)

with i = {s,rep,ns} respectively. The overall strength εi , the length scale σan=5nm, the
stiffness ai and the parameter x?i , which combined with ai determines the range of the
potential, are free parameters. Cut-offs xc

i and smoothing parameters bi are fixed by re-
quiring continuity and differentiability at x?i . In this paper we set the following parame-
ters: εs = 20kBT , as = 20 and r∗

att = 0.1σan, implying bs = 5 and r c
s = 0.5σan; εrep = 100kBT,

arep = 1 and R∗
rep = 0.85σan, implying brep = 2.6036 and Rc

rep = 1.1764σan; and ans = 1
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and R∗
ns = 0.85σan, implying bns = 2.6036 and Rc

ns = 1.1764σan. εns is varied from 2kBT
to 20kBT with steps of 2kBT . Fig. 5.4b shows the total potential as a function of R, when
the patches are aligned (r = R −σan) and misaligned (r = R +σan). When the patches are
aligned, particles experience both specific and non-specific attraction, creating a deeper
potential well and a stronger bond. When the patches are misaligned, Us = 0 and the par-
ticles only experience the weak Uns which results in a shallow potential well and a weaker
bond. The non-specific attraction, however, promotes realignment since the particles do
not diffuse away immediately.

5.2.3. BROWNIAN DYNAMICS OF PATCHY PARTICLES

Propagation of the particle dynamics is done with Brownian dynamics, where each time
step δt the particles position and orientation are updated based on the the instanta-
neous total force and torque acting on the particle. This total force/torque on the parti-
cle can be divided into three parts: Ftot = Fv+Fp+Fr. Fv is the viscous drag force, arising
from the motion of the particle in a viscous solvent. Fp is the potential force due to in-
teractions between the solute particles, as specified above. Fr is the random force, which
models the interaction of the larger solute particles with smaller solvent particles.

In case of anisotropic interactions the total force and the torque is calculated, where
the orientation of the particles are represented using quaternions. We use the Brownian
dynamics integrator derived in Ref. [30] to simulate the rotational particle dynamics.
Parameters that important in this integrator are the temperature T , the time step δt , and

the translational and rotational friction coefficients γ = kBT
D t m and Γ = kBT

Dr M , respectively,
where Dr and D t are the translational and rotational diffusion coefficients, respectively,
with kB Boltzmann’s constant. The mass of the particle m and the mass moment of
inertia M are needed due to the formalism of the algorithm, but drop out during the
integration, so that the dynamics will be not dependent on inertia. For more details see
Ref. [30] and Refs. [23, 1, 24].

5.2.4. DISSOCIATION RATES BY FORWARD FLUX SAMPLING

As explained in Sec. 5.2.1, evaluation of the rate constants requires simulation of the
dissociation reaction. Since dissociation is a rare event, brute force BD is very ineffi-
cient, and we have to use a rare event sampling technique such as TIS[27] or FFS. Here
we use the ‘direct-FFS’ variant [29] to compute the rate constants. FFS is a simple, com-
putationally efficient and inherently parallel algorithm to obtain good statistics of rare-
event kinetics. At heart, FFS uses a series of interfaces between the bound and unbound
state to calculate the transition path ensemble and calculate the corresponding transi-
tion rate. Trajectories starting in the bound state and reaching the unbound state are
rare, but those starting at an interface and reaching the next interface is more common,
if the interfaces are placed sufficiently close to each other. The interfaces are defined
by a suitable order parameter λ: (λ0...λn−1). FFS assumes that all trajectories from the
bound to the unbound state should pass through all the interfaces in succession and
that λi+1 > λi for all i . The order parameters used to define the interfaces in FFS are
given below.
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Figure 5.5: The intrinsic (a,c) and effective (b,d) rate constants and the equilibrium constants (e)
as a function of the range of the isotropic potential (see Eq. 5.13), plotted for two different values
the strength of the potential, ε= 5kBT,10kBT . The range of the potential is set by the parameterα,
where a larger value of α results in a potential having a smaller range. The intrinsic rates are cal-
culated at the σ-interface (R = 1.6σi), beyond which the value of the potential is truncated to zero.
The values of kd and koff increase with decreasing range and increasing strength of the potential.
The values of ka and kon decrease with decreasing range and increasing strength of the poten-
tial. In panel (e), the equilibrium constant is either calculated via Keq = ka /kd = kon/koff, where
ka ,kd ,kon,koff are computed via the simulation technique presented in this paper, or analytically,
by integrating the interaction potential, see Ref. [23].

5.2.5. SIMULATION DETAILS

The system specific parameters of the simulation are as follows: The time step δt = 0.1ns
for the anisotropic potential and δt = 10ns for the isotropic potential, the mass of the
particle is m = 50kDa, the mass moment of inertia M = 8

15 mσ2
an the translational and

rotational diffusion constants, are D t = 1µm2/s and Dr = 1.6× 107rad2/s for all parti-
cles, the translational and rotational friction coefficients are γ = kBT

D t m and Γ = kBT
Dr M re-

spectively, where kB = 1.38× 10−23JK−1 is the Boltzmann constant and T = 300K is the
temperature of the system.

For the isotropic potential, the order parameters that define interfaces in the FFS
simulation, is based on the distance R between the centres-of-mass of the particles. The
first interface (r0-interface), which defines the bound state is at R = 1.2σi. Successive
interfaces are placed at R = 1.3,1.4,1.5 and 1.6σi. At 1.6σi, the isotropic potential is trun-
cated to zero, and this interface is the σ-interface. Beyond the cutoff there is only one
interface at R = 2.0σi: this is the rn-interface, which is used to compute the escape prob-
ability P (∞|σ).

In case of the anisotropic potential, the interfaces are defined in terms of energy,
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Uan(R,r ) until the cut-off of the potential, beyond which they are based on the inter-
particle distance, R. The first interface (r0-interface), defining the bound state is placed
at 18kBT . The successive interfaces are located at 15, 10, 5kBT . The σ-interface at the
cut-off of the potential is defined by zero energy and R = 1.6σan. Beyond the cut-off of
the potential, interfaces are placed at R=1.7, 1.9, 2.1, 2.3, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5 and
finally the rn-interface is placed at R = 7σan.

5.3. RESULTS

We calculated the rate constants by systematically varying the strength and the range
of interaction for the isotropic potential and the non-specific attraction strength for the
anisotropic potential. In the latter case of the anisotropic potential we also determine,
as a function of the non-specific attraction strength, the interface beyond which the ex-
pressions of these rate constants are valid.

5.3.1. RATE CONSTANTS FOR THE ISOTROPIC POTENTIAL

We calculate the intrinsic and effective, association and dissociation rates as detailed in
5.2.1 for different values of the range (α) and the strength (ε) of the isotropic potential.
The r0, σ and rn interfaces are at R = 1.2σi, R = 1.6σi and R = 2.0σi respectively.

Figs. 5.5a and 5.5b plot the dissociation rates kd and koff, respectively, for two dif-
ferent values of interaction strength, ε, as a function of α, which sets the range of the
potential (larger α results in a potential with a smaller range). Both kd and koff in-
crease marginally with decreasing range, but increase significantly when the interaction
strength is halved. Decreasing range or the strength facilitates easier unbinding of the
particles and hence increases the dissociation rate constants. Hence, the strength of the
potential has a large influence on the dissociation rates.

Figs. 5.5c and 5.5d show ka and kon, respectively, as a function of α, for two differ-
ent values of interaction strength, ε. Here, ka decreases by roughly a factor of two with
decreasing range and only marginally when the interaction strength is halved. The ef-
fective rate constant kon decreases only marginally with decreasing range and decrease
even less when the interaction strength is halved. The range and the strength of the po-
tential, have thus a very small influence on the association rates.

Figs. 5.5e shows the equilibrium constant computed from Keq = ka/kd = kon/koff as
a function of α, for two different values of interaction strength, ε. For comparison we in-
cluded the values obtained from the analytical expression Keq = K −1

D = 4π
∫ rp

0 r 2e−βV (r )dr .
The simulations agree extremely well with the analytical expression.

5.3.2. ORIENTATIONAL DISTRIBUTION FOR THE ANISOTROPIC POTENTIAL

First, we determine how far from the σ-interface the orientational distributions of the
particles become isotropic, as a function of the non-specific attraction strength, εns. We
determine this interface using two approaches: (i) Constructing the orientational dis-
tributions of the particles and checking at which interface these distributions become
isotropic.(ii) Identifying the interface at which the value of kon, calculated from Eq. 5.11,
converges to a constant value [1].

The orientational distributions are constructed from an extensive brute force BD
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simulation of two particles initially in the bound state. As the simulation progresses,
the particles move away from each other. The position and orientation of the particles
are recorded each time they cross one of the FFS interfaces at position r beyond the po-
tential cut-off distance σ. The orientation is monitored via two parameters: 1) the angle
θ between the inter-particle vectors at the initial bound state and the particles’ current
position, 2) the angle α between the patch vectors of the two particles. These two angles
are illustrated at the top of 5.6. The remainder of Fig. 6 plots the probability distribu-
tions for the angle θ ( left column) and of the angle α ( right column) for five interfaces
R = 1.7,1.9,2.1,2.3σan. The interface where the angular distributions becomes isotropic
is indicated in grey; a distribution is considered to be isotropic when. The isotropic dis-
tribution is plotted in orange for the sake of comparison. The peak in the θ distributions
is shifted to lower angles for relatively small values of non-specific attraction strength εns

at interfaces near the bound state, due to a strong correlation with the initial orientation.
At interfaces further away, due to diffusion and the truncation of the potential, particles
are less correlated to the initial orientation and position, and are eventually isotropically
distributed. However, for larger values of the non-specific attraction strength, εns , the
distribution of θ becomes isotropic already at interfaces close to the bound state. This
loss of correlation is caused by particles lingering longer in the non-specifically bound
state and not immediately diffusing away. The probability distribution of α in the right
column of 5.6 becomes isotropic at interfaces closer to the bound state, when compared
to the distribution of θ for the same non-specific attraction strength, εns. We also observe
that with increasing εns the shift in the interface where the orientational distributions α
become isotropic does not shift as drastically as for the distributions of θ.

5.3.3. RATE CONSTANTS FOR THE ANISOTROPIC POTENTIAL

Next, we study the behaviour of the rate constants by increasing the non-specific attrac-
tion strength εns . We calculate the rate constants as explained in Sec. 5.2.1. As discussed
above, it is important to determine the interface at which the orientational distributions
become isotropic, so that the expressions of the association rate constants are valid for
anisotropic potentials. This can either be done by plotting the orientational distribu-
tions (see previous section and 5.6), or by calculating kon(σ′) and determine the value
of σ′ for which the effective association rate becomes independent of σ′, and reaches a
constant. To this end, we computed kon(σ′) as a function of σ′ using Eq. 5.11, for ten
different values of the non-specific interaction strength εns, see Fig. 5.7a. We observe
that as εns increases, the value of kon increases. We also notice that for interfaces close to
the bound state, Eq. 5.11 predicts incorrect values for kon. However, as we move further
away the orientational distributions become isotropic and kon converges to the correct
value. To quantitatively determine the interface where the value of kon converges to the
correct value, we calculate the relative error in kon. The relative error in kon is given by

kon(σ′)
kon(5.5σan) −1, where kon(σ′) is the value of at a given interface σ′ and kon(5.5σan) is the
value at the interface at R = 5.5σan. Fig. 5.7b shows this relative error plotted as a func-
tion of the σ′-interface for ten different values of εns. We assume that if the relative error
is smaller than 0.1%, the value of kon has converged to the correct value and at this point
we predict that the orientational distributions become isotropic. The interface value
where kon(σ′) converges is plotted as a function of εns in Fig. 5.7c. For a smaller value
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Figure 5.6: The distributions of angles θ (left) and α (right) at different interfaces. θ is the angle
between the initial (bound state) centre-of-mass vector and the centre-of-mass vector when the
particle reaches the interface. α is the angle between the patch vector of the particle at the initial
bound state and the patch vector when the particle reaches the interface. These angles are illus-
trated in the cartoon at the top of the figure. We see that the distribution of α becomes isotropic
faster than the distribution of θ for any given εns.
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Figure 5.7: The rates of association and dissociation for the anisotropic interaction potential.(a)
kon calculated from Eq. 5.11 as a function of the position of the σ′-interface, plotted for ten differ-
ent values of the non-specific attraction strength, εns. The value of kon increases with increasing
εns. The plot shows kon converging to the correct value as we move σ′ further from the bound
state. This is because Eq. 5.11 is valid only if the orientational distributions are isotropic in the in-
terface where we measure kon (b) The relative error in evaluating kon as function ofσ′. At the inter-
face where the value of kon becomes a constant, the orientational distributions become isotropic.

To determine this interface, we calculated the relative error kon(σ′)
kon(5.5σan) −1. If this relative error is

below 0.01%, we conclude kon has converged. The inset shows the same plot in a semi-log scale.
The dashed line denotes 0.1% relative error. (c) The interface at which the value of kon becomes a
constant as a function of the non-specific attraction strength εns . The orientational distributions
become isotropic at smaller distances for higher εns , because the particles spend more time near
each other and have more time to decorrelate from the bound state configuration. (d) ka, kd, kon
and koff as a function of the non-specific attraction strength. koff and kd decrease significantly
with increasing εns . The kon and ka on the other hand, increase initially with increasing non-
specific attraction strength, but later levels off. The increase in the association rates for a potential
with ten times stronger εns is one order of magnitude.
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of εns particles need to move further away from the bound state for the value of kon to
converge. For a larger value of εns, kon converges at smaller distances since the particles
stay longer in the nonspecific state, before diffusing away. We also predict that when kon

converges the orientational distributions become isotropic. Indeed, the interface where
the distribution of θ becomes isotropic as shown in 5.6, matches with the the interface
where the value of kon converges as shown in Fig. 5.7c.

Finally, Fig. 5.7d shows the behaviour of all the four converged rate constants as a
function of εns, evaluated at a cross section σ= 1.6σan. The intrinsic rates ka were com-
puted using Eq. 5.12. The dissociation rate constants kd and koff decrease with increasing
εns. In contrast, ka and kon increase initially with increasing εns because the non-specific
attraction promotes specific binding, as particles stay in each others vicinity. The in-
crease in the association rates is not dramatic with increasing non-specific attraction
strength: about an order of magnitude for a ten times increase in non-specific attraction
strength. This behavior was also found in Ref. [31]. Moreover, beyond a limiting value
of εns, the association rates reach a plateau. This is clearly caused by a flattening of the
intrinsic association rate constant. This raises the question, whether the intrinsic rate
constant can ever become very high, as is assumed in many diffusion influenced rate
theories.

5.4. DISCUSSION AND CONCLUSIONS

In this work we have evaluated intrinsic and effective rate constants using the explicit
microscopic expressions that we presented in Ref. [1]. Knowledge of these rates is im-
portant to study the microscopic dynamics of reaction-diffusion systems. Furthermore,
to construct Markov State Models of reaction-diffusion systems, these rates are essen-
tial input parameters. Here we studied these rates in the context of an isotropic and an
anisotropic potential. In the case of the isotropic potential we evaluated these rates as a
function of the range and the strength of the potential. We observed that the dissocia-
tion rates increase slightly as the interaction range is decreased, yet increases drastically
when the strength of the potential is halved. On the other hand, the association rates
decrease with decreasing range. The change in the effective association rate constants is
not significant.

In case of the anisotropic potential, we studied the behaviour of these rates as a func-
tion of the non-specific isotropic attraction. In addition to the bound and unbound
states, this non-specific attraction facilitates a third non-specifically bound state in which
the particles are attracted to each other, but not strongly bound to a particular patch.
This increases the possibility of the particles to realign and bind at a specific patch, be-
fore diffusing away. The expression for the rates that we derived holds only if the orienta-
tional distributions of the particles are isotropic at the cross-section where the rates are
measured. We determined this interface directly from two angular distributions of the
particles, and by calculating the effective association rate as a function of the interface
and identifying where this rate constant is converged. The interfaces obtained from both
methods agree with each other. Knowledge of the location of this interface becomes im-
portant when we use the computed intrinsic rates to construct a Markov State Model,
and combine them with the mesoscopic Greens Function Reaction Dynamics method
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within a multi-scale scheme [23, 24].

The simulations also reveal that the dissociation rate decreases drastically when the
non-specific isotropic attraction strength is increased (see Fig. 5.7). This is because non-
specific binding increases the likelihood that particles that have just dissociated rebind
instead of diffusing away. The association rate increases with the non-specific isotropic
attraction strength. Non-specific binding keeps the particles that have diffused toward
one another in close proximity, given them time to align their patches and bind specif-
ically. This effect is akin to the antenna effect in the binding of transcription factors to
their specific sites on the DNA [32]: non-specific binding increases the effective cross-
section for the binding of proteins to their specific site. Our simulations also show that
the effect of non-specific binding on the association rate is much weaker than that on the
dissociation rate: while the effective and intrinsic dissociation rates decrease by more
than two orders of magnitude when the non-specific interaction strength εns is increased
from 2kB T to 10kB T , the effective association rate increases by less than an order of
magnitude [31]. Moreover, while the effective dissociation rate continues to decrease as
εns is increased, the effective association rate saturates. This is because the overall asso-
ciation rate becomes increasingly limited by diffusion. Indeed, the intrinsic association
rate continues to increase with εns, although a close inspection of Fig. 5.7 shows that this
rise levels off too—also the intrinsic association ultimately becomes limited by diffusion.

Many reactions are believed to be diffusion limited. This means that the intrinsic
rate ka is much higher than the diffusion-limited arrival rate kD. Yet, how much larger
the intrinsic rate can be, has, to our knowledge, not been systematically addressed be-
fore. Addressing this question, it should first be realized that the values of both ka and
kD depend on the choice of the cross section σ: the larger σ, the larger the diffusion-
limited arrival rate kD and the lower the intrinsic rate ka. However, a natural choice forσ
is the distance as given by the effective physical size of the particles. After all, the intrin-
sic rate is typically interpreted as the rate at which the particles react given that they are
in contact. Moreover, a small cross section also facilitates the modelling of many-body
reaction-diffusion systems—the larger the cross section, the more often three-body (and
higher) interactions have to be taken into account. Yet, at the microscopic scale there is
no unique definition for what the effective physical size is: one choice is the distance
where the particles start to repel each other; another is the range of the interaction po-
tential. However, choosing the first option would violate the basic assumption made
in Eq. 5.1, namely that the cross section has to be chosen beyond the potential cutoff.
Fortunately, for proteins interacting via isotropic potentials, the range of the potential
is typically short, and hence the ambiguity in the definition is not critical. The natural
choice for σ is therefore the range of the interaction potential, or more specifically its
cutoff. This also means the intrinsic association rate ka cannot be made arbitrarily large,
but has an upper limit. This maximally achievable value of ka will also depend on the
shape of the isotropic potential. For instance, replacing the potential with a square well
potential, of the same depth, while keeping the equilibrium constant Keq fixed, moves
the potential cutoff to lower values, with a corresponding higher ka. For the isotropic
Lennard Jones-based systems considered in this work, the intrinsic rate ka, computed
for a cross section σ given by the cutoff of the potential, is about a factor 1-10 higher
than the diffusion-limited rate kD. Thus, while these systems are in the diffusion-limited
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regime, they are still influenced by the intrinsic association rate ka.

For particles interacting via anisotropic potentials, the interaction range is short for a
given orientation of the particles. However, the distance beyond which the orientational
distribution of the dissociating particles has become isotropic, is much longer (see 5.6).
It then follows from detailed balance that also the distribution of associating particles
(more specifically, the distribution of trajectories that start in the unbound state and
end in the bound state) becomes isotropic only beyond this distance. In this regime, one
can truly speak of one well-defined intrinsic rate ka(σ), one diffusion-limited arrival rate
kD (σ), and one cross-section σ, independent of the orientation of the particles. How-
ever, as our earlier work [1] and that of Northrup et al. [33, 3] show, it is still possible to
talk about intrinsic association rate constants for cross section values that are smaller
than the distance where the orientational distribution of association and dissociation
trajectories becomes isotropic. These intrinsic rate constants should then be viewed as
an average over all orientational dependent intrinsic rates. Indeed, as long asσ is chosen
beyond the cut-off of the potential, our approach, via Eq. 5.12, does also make it possi-
ble to obtain ka and kD in this regime where the distribution of association/dissociation
trajectories has not become isotropic yet.

Since the ratio ka/kD increases with decreasing σ, to address the maximal value of
ka/kD , we thus compute ka and kD for the smallest possible choice of σ, which is again
the cut-off of the potential. This ratio ka/kD depends on the strength of the non-specific
attraction, see Fig. 5.7. When the non-specific attraction is weak, ka ≈ 0.7kD , which
means that association is reaction limited. This is because of the strong anisotropy of
the interaction potential: the particles can only bind when their patches are properly
aligned with each other, limiting the binding probability (of course, this reaction itself
is also a diffusion process). Yet, the figure also shows that when εns is increased, the
intrinsic association rate increases. But it does not increase indefinitely. Instead ka levels
off, at a value that is on the order of 10 kD (see Fig. 5.7d). With ka ≈ 10kD , the effective
association rate is dominated by the diffusion-limited arrival rate, yet still influenced by
the intrinsic association rate.

Finally, it would also be of interest to study the effect of the shape of the potential
on the values of the rates constant. For example, it would be of interest to compare the
rates computed here for the modified LJ potential to those of a square-well potential.
This comparison would then have to be performed on the footing of equal well-depth
and equal range of the potential, since this guarantees that the phase behaviour and the
equilibrium constants are very similar. We leave this for future work.
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6
TRANSITION RATES FOR PROTEINS

ASSOCIATING TO SUBSTRATES WITH

MULTIPLE BINDING SITES USING A

NOVEL GENERIC FORWARD FLUX

SAMPLING EXPRESSION

Intrinsic and effective rates are key quantities to predict the response of a biochemical sys-
tem. In our previous paper [1], we derived microscopic expressions to calculate the in-
trinsic and effective rate constants, using a single simulation of the dissociation reaction.
However, these expressions are valid when the substrate has one binding patch. If the sub-
strate has multiple binding sites, a bound enzyme can, besides dissociating into the bulk,
also hop to another binding site. In this paper, we compute the association, dissociation,
and hopping rates as a function of the distance between the binding sites and the rota-
tional diffusion constant. We also determine the effect of blocking of one of these binding
sites on the rates. We first derive a new generic expression to calculate transition rates
using Forward Flux Sampling, when the states are not necessarily separated by all the in-
terfaces. This is necessary to calculate transition rates between multiple states. Finally, we
illustrate this approach by computing these rates for a system in which an enzyme binds
to a substrate with two binding sites, and we show how the rates depend on the distance
between the binding sites and the orientational diffusion constant of the particles.
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6.1. INTRODUCTION

Unimolecular and bimolecular reactions are the building blocks of many complex pro-
cesses in biology, chemistry, and soft condensed matter. When studying such molecular
interactions, it is natural to use the equilibrium constants of the reactions to predict the
direction of the reaction from the equilibrium concentrations of the reactants and prod-
ucts. The knowledge of equilibrium constants is imperative to evaluate the relevance of
biological reactions like DNA-protein binding, receptor-ligand binding, enzyme-substrate
binding. However, knowledge of the equilibrium constant alone is not sufficient to study
the kinetics of these processes. The equilibrium constant is the ratio of the rate at which
the reactants bind to the rate at which they unbind. For the same value of the equi-
librium constant, the binding an unbinding rates can be very different. Binding and
unbinding rates also determine the response time of living cells, which is vital for the
fitness of the organism in fluctuating environments. Knowledge of the individual rates
is also important in the field of drug development, for example, it is important to know
how long the drug is bound to its target to set an optimal dosage and to improve drug
efficacy [2]. Also discrimination by our immune system is believed to depend on the
dissociation rate, rather than the equilibrium constant.

Many substrates (proteins, DNA) have multiple binding sites, to which enzymes can
bind. When bound to a binding site of the substrate, the enzyme can, for instance, phos-
phorylate the substrate. Subsequently, the enzyme can dissociate from this site, and
diffuse into the bulk, and later bind to the other (or the same) site. This is called a dis-
tributive mechanism. Alternatively, the enzyme can hop between the two binding sites,
without dissociating and moving to the bulk, in a processive mechanism. The response
of such a network can change drastically based on the mechanism of the rebinding to the
other site [3]. To predict this behavior requires computation of the microscopic rates of
hopping, association and dissociation. These rates are also dependent on environmen-
tal conditions. For instance, In a crowded environment, the rotational diffusion constant
of the proteins can be varied independent of the translational diffusion constant by vary-
ing the nature and the concentration of the crowders [4].

In a previous paper [1], we derived explicit microscopic expressions for the intrin-
sic and effective rate constants and describe a technique to compute these rates using
rare-event simulation techniques. Using these expressions, we can not only calculate
the binding and unbinding rates of isotropic particles, but also those of anisotropic par-
ticles, with orientational dynamics. The intrinsic rate constants are important to model
biological reactions, and serve as input parameters for multi-scale techniques to simu-
late reaction-diffusion systems over multiple length and time scales[5, 6]. The effective
rates are of interest to experimentalists since typically in experiments the effective rates
are measured. The strength and novelty of our technique is to calculate all these rates
with a single simulation of the dissociation reaction using a rare-event technique like
forward flux sampling or transition interface sampling [4, 7, 8].

In this paper, we first derive the expression to calculate the transition rate using for-
ward flux sampling, in the case where the initial and final states are not separated by
all the intermediate interfaces. This is necessary to calculate the hopping rates between
the multiple binding sites. Next we derive expressions for the binding and unbinding
rates in the case that a substrate has two binding sites. Finally we compute and compare
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the binding and unbinding rates in five cases: (1) the substrate has one binding site, (2)
the substrate has two binding sites, but we do not distinguish between them, (3) the sub-
strate has two binding sites, and we differentiate between them, (4) the substrate has two
binding sites and one of them is blocked. In all the cases the enzyme has one binding
site.

6.2. METHODS

6.2.1. RATE CONSTANTS FROM FORWARD FLUX SAMPLING WHEN TWO STATES

ARE NOT SEPARATED BY ALL INTERFACES

Dissociation of anisotropic particles is often a rare event. In order to simulate such
rare event kinetics with minimal computational effort, an efficient rare event simula-
tion technique such as Forward Flux Sampling(FFS) [9, 10] or Transition Interface Sam-
pling(TIS) [11] is necessary. Here, we use FFS to simulate the dissociation reaction.

The crux of FFS is to drive the system from one state to another in a ratchet-like
manner by capitalizing on those fluctuations that happen to move the system in the
right direction. To capitalize on these fluctuations, FFS uses a series of interfaces be-
tween the initial and final state. These interfaces make it possible to store configurations
along trajectories that have progressed in the direction of the final state. While FFS is
typically employed for computing transition rates between two states, here we present a
new expression, which may prove useful for computing transition rates between multi-
ple states.

Fig. 6.1 illustrates the scheme for a scenario of three metastable states: A, B , and
U . These states are defined in terms of an order parameter λ. Here, we are interested
in the transition rates kAB and kAU . While the expressions that we will derive below are
generic, and can be generalized to any system consisting of multiple metastable states,
it is illuminating to consider the concrete scenario in which state A corresponds to an
enzyme molecule that is bound to patch A of a substrate molecule, state B as the enzyme
molecule being bound to patch B of the substrate molecule, and state U as the state in
which the enzyme and substrate molecules are unbound. The dissociation rate kAU is
then defined as the rate of dissociating from patch A into the unbound state U while not
visiting state B ; the ensemble of transition paths that corresponds to kAU thus contains
trajectories that start in A and end in U , yet do not visit B . In contrast, the hopping
rate kAB is defined as the rate at which the enzyme molecule dissociates from patch A
and then diffuses to and rebinds to patch B . Importantly, the transition path ensemble
that corresponds to this hopping rate contains not only trajectories that directly go from
A to B , yet also contains trajectories that have significantly progressed in the direction
of U before arriving in B . Here, we will derive the expressions that make it possible to
compute the transition rates kAB and kAU in an FFS simulation.

As Fig. 6.1 illustrates, the interfaces λ0,λ1, . . . ,λn−1,λn are defined such that all tra-
jectories of the transition path ensemble corresponding to kAU necessarily cross all in-
terfaces λ0,λ1, . . . ,λn−1,λn . As a result, the expression for kAU is based on the conven-
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Figure 6.1: Illustration of the possible trajectories starting from a state A and ending either in a
state B or a state U and the interfaces λ0...λn−1 used in the FFS simulation. A trajectory starting
at A and terminating at B, need not pass through all these interfaces, but a trajectory starting at A
and terminating at U has to pass through all the interfaces.

tional TIS expression used also in FFS [11, 9]:

kAU =Φ0

n−1∏
i=0

P (λi+1|λi ). (6.1)

Here, λi define the intermediate interfaces between state A and state U , as illustrated in
Fig. 6.1. The quantity Φ0 is the flux of trajectories that start in A and then cross inter-
face λ0, while P (λi+1|λi ) is the conditional probability that a trajectory that comes from
A and crosses λi for the first time will subsequently reach λi+1 instead of returning to
A or progressing to B . In an FFS simulation, one thus first performs a brute-force sim-
ulation in state A; this makes it possible to not only compute the flux Φ0 through the
first interface λ0, but also to generate an ensemble of points at λ0. In the next step, one
then randomly picks a configuration from this ensemble of points at λ0, launches and
propagates a trajectory from this configuration until it either arrives at λ1, returns to A,
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or arrives in B.; by iterating this a number of times, one obtains not only an ensemble
of configurations at λ1, but also P (λ1|λ0) as the fraction of trajectories that reaches λ1.
This procedure is then repeated for all the subsequent interfaces, yielding P (λi+1|λi ) for
all interfaces λi .

In contrast to the trajectories of the AU transition path ensemble, the trajectories of
the AB path ensemble do not necessarily cross all interfaces λ0,λ1, . . . ,λn−1,λn . Some
paths directly go from A to B , while other trajectories cross λ1 and perhaps even λi >
λ1, before proceeding to B . All these excursions must be accounted for to calculate the
transition rate from A to B . This means that Eq. 6.1 cannot be used to compute kAB . A
general expression for the transition rate between two states, where the trajectories start
in A and end in B yet do not necessarily cross all intermediate interfaces, is given by

kAB =Φ0

[
P (λB|λ0)+P (λ1|λ0)P (λB|λ1)+

+P (λ1|λ0)P (λ2|λ1)P (λB|λ2)+·· ·+
+P (λ1|λ0) . . .P (λn−1|λn−2)P (λn|λn−1)P (λB|λn)

]
=Φ0

n∑
i=1

P (λB|λi )P (λi |λ0) (6.2)

Here, P (λB |λi ) is the probability that a trajectory that is launched at interface λi arrives
in B before reaching either A or λi+1, while P (λi+1|λi ) is, as before, the probability that a
trajectory that is fired at λi arrives at λi+1 before reaching either A or B . In the last line
we summed the expression realizing that P (λi |λ0) =∏i−1

j=0 P (λ j+1|λ j ).
Eq. 6.2 is a generic equation to calculate transition rate between two states. Eq. 6.2

reduces to Eq. 6.1, when the trajectories from the initial state have to pass through all
the interfaces to reach the final state.

We note that a similar situation of stables states nested between interfaces occurs in
multiple state TIS and single replica exchange TIS, which was treated in [12, 4, 7, 8].

6.2.2. EFFECTIVE AND INTRINSIC RATES FOR TWO BINDING SITES

We now apply the generic Eq. 6.2 to the specific case of an enzyme-substrate association-
dissociation reaction, where the enzyme has one binding site while the substrate has two
binding sites. We will first discuss the details of the path ensembles that correspond to
each of the rate constants.

The intrinsic dissociation rate for the enzyme initially bound at patch A, k A
d (σ), in-

volves counting to the trajectories that start at A and reach σwithout reaching the patch
B . Similarly, the effective dissociation rate for the enzyme starting at patch A, k A

off, takes
into account all trajectories starting at A and going up to infinity, without visiting patch
B . The effective association constant of an enzyme to bind to patch A, k A

on, corresponds
to trajectories that start at infinity and terminate at patch A without first visiting B ,
while the intrinsic association rate k A

a (σ) corresponds to trajectories that start at the σ-
interface and terminate at patch A without first visiting B . The intrinsic rate of hopping
from patch A to B , k AB

hop(σ), corresponds to trajectories that start in patch A and end in

patch B, without first visiting the σ-interface, while the effective rate constant of hop-
ping from patch A to patch B , k AB

effHop(σ), corresponds to trajectories that start in patch
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Figure 6.2: The path ensembles contributing to each rate constant. The substrate has two patches
A and B and when the particle diffuses to infinity, it is in the unbound state. All rates are calculated
with respect to the patch A, i.e. the rate of binding to patch A or the rate of unbinding from patch
A. σ is the interface where the intrinsic rates are measured and rn is an interface beyond σ.

A and end in patch B , without diffusing to infinity (however, they may cross the σ inter-
face). We can similarly define the ensemble of trajectories that define the rate constants
for associating to and dissociating from patch B . We emphasize that while the intrinsic
rate constants depend on the definition of σ, the effective rate constants do not.

We will now show how from a single FFS simulation of a dissociation reaction from
patch A, both the intrinsic and effective dissociation rates and the intrinsic and effective
hopping and association rates can be computed. The intrinsic dissociation rate at the
σ-interface is given by

k A
d (σ) =Φ0P (σ|r0), (6.3)

where, as before, Φ0 is the flux across the first FFS interface r0, and P (σ|r0) is the proba-
bility that an enzyme starting at this first interface reaches theσ-interface before binding
to either patch, and can be computed using Eq. 6.1 . The effective dissociation constant
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can be similarly expressed as,

k A
off =Φ0P (σ|r0)P (∞|σ) = kA

d (σ)P (∞|σ), (6.4)

where P (∞|σ) is the probability that a trajectory that has reached σ, escapes to infinity,
i.e. dissociates, before it associates with either patch A or patch B . Below, we describe
how P (∞|σ) can be obtained efficiently in an FFS simulation.

The intrinsic hopping rate given that the enzyme starts at patch A, is given by

kAB
hop =Φ0P (B |r0), (6.5)

where P (B |r0) is the probability that the enzyme, starting in patch A, associates with
patch B before it arrives at σ.

The effective hopping rate, given that the enzyme starts bound to patch A, is,

k AB
effHop =Φ0 [P (B |r0)+P (σ|r0)P (B |σ)] (6.6)

where P (σ|r0) is the probability of the enzyme starting at the first interface r0, subse-
quently reaches the σ-interface before binding to either patch. P (B |σ) is the probability
that the enzyme, starting at σ, reaches B before it either escapes (i.e. dissociates) or
reaches A; the path ensemble corresponding to this effective hopping rate, does include,
however, trajectories that progress (significantly) beyond the σ interface.

To see how all the rate constants (intrinsic/effective association, dissociation and
hopping rates) can be obtained from one single FFS simulation of a dissociation reac-
tion, it is instructive to imagine that starting in the bound state A, we have generated
N configurations at interface σ. These configurations are thus distributed over the σ
surface according to the distribution as obtained from an FFS dissociation simulation
starting from patch A.

Of the N trajectories at interface σ, Nσ→B progress (on average) to B , Nσ→A return
to A, and Nσ→∞ dissociate, i.e. escape to infinity: N = Nσ→B + Nσ→A + Nσ→∞. In the
limit of N →∞, we can define the probabilities P (B |σ) = Nσ→B /N , P (A|σ) = Nσ→A/N ,
P (∞|σ) = Nσ→∞/N . For a finite number of sampled trajectories, the trajectory fractions
become approximations of these probabilities. We can then write

P (B |σ) = P (B |σ)

P (A|σ)+P (B |σ)
(P (A|σ)+P (B |σ))

= P (B |σ)

P (A|σ)+P (B |σ)
(1−P (∞|σ))

=α(1−P (∞|σ)). (6.7)

where we have defined

α≡ P (B |σ)

P (A|σ)+P (B |σ)
(6.8)

and made use of the fact that P (A|σ)+P (B |σ)+P (∞|σ)) = 1, and we have introducedα as
a ’splitting probability’ for trajectories from σ arriving at B versus A. To compute P (∞|σ)
in a brute-force manner, one would have to generate extremely long trajectories, because
there is always a small but finite probability that an enzyme molecule which has diffused
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far away and deep into the bulk, will return to the substrate molecule. To mitigate this
problem, we put, following our earlier work [1], an interface at a position rn > σ. As
we will show below, this extra interface makes it possible to efficiently compute P (∞|σ).
Moreover, the probability P (B |σ) for trajectories that move from σ to B is then given by
the sum of the probability Pdir(B |σ) of trajectories that directly go from σ to B without
first visiting rn, and the probability Prn (B |σ) for those that first visit rn and then proceed
to B ,

P (B |σ) =Pdir(B |σ)+Prn (B |σ)

=αdir (Pdir(A|σ)+Pdir(B |σ))+ (6.9)

αrn (Prn (A|σ)+Prn (B |σ))

=αdir(1−P (rn|σ))+αrn P (rn|σ)(1−P (∞|rn)).

Here, αdir and αrn are, respectively, the splitting probabilities of arriving in A versus B of
those trajectories that proceed directly from σ to either A or B and those that arrive at A
or B passing via rn:

αdir =
Pdir(B |σ)

Pdir(A|σ)+Pdir(B |σ)
(6.10)

αrn = Prn (B |σ)

Prn (A|σ)+Prn (B |σ)
(6.11)

Similarly for the trajectories starting at the σ-interface and reaching A, we can write

P (A|σ) = (1−αdir)(1−P (rn|σ))+
+ (1−αrn )P (rn|σ)(1−P (∞|rn)). (6.12)

As a sanity check, we can add Eq. 6.9 and Eq. 6.12 which gives

P (A|σ)+P (B |σ) = 1−P (rn|σ)+P (rn|σ)(1−P (∞|rn)

= 1−P (rn|σ)P (∞|rn)

= 1−P (∞|σ), (6.13)

which is indeed equal to the probability to observe trajectories that do not escape to
infinity and hence bind to either A or B .

Combining Eqs. 6.8, 6.9 and 6.12 yields

α= αdir(1−P (rn|σ))+αrn P (rn|σ)(1−P (∞|rn))

1−P (∞|σ)
.

The quantities P (rn|σ), P (∞|σ) and αdir can be directly obtained from the FFS simu-
lations. Hence, to close the above equation and find P (B |σ) (see Eq. 6.7), we need an
expression forαrn . Since Prn (B |σ) is the product of the probability P (rn|σ) of trajectories
going from σ to rn and the probability P (B |rn) of subsequently reaching B , the splitting
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probability αrn in Eq. 6.11 is also given by

αrn = Prn (B |σ)

Prn (A|σ)+Prn (B |σ)

= P (rn|σ)P (B |rn)

P (rn|σ)P (A|rn)+P (rn|σ)P (B |rn)

= P (B |rn)

P (A|rn)+P (B |rn)
(6.14)

We emphasize that up to this point, no assumption has been made. In particular, the ex-
pressions hold for any choice of the location σ, including one that is close to the bound
state, which would lead to a non-uniform distribution of configurations at σ. With such
a non-uniform distribution, αrn is likely to be unequal to αdir, which would make it im-
possible to close Eq. 6.14. In contrast, if the distributions at the σ and the rn interfaces
are isotropic, then

Prn (B |σ)

Prn (A|σ)+Prn (B |σ)
' Pdir(B |σ)

Pdir(A|σ)+Pdir(B |σ)
(6.15)

and, thus

αrn =αdir. (6.16)

Inserting Eq. 6.16 in Eq. 6.14, we find

α≡ P (B |σ)

P (A|σ)+P (B |σ)
=αdir, (6.17)

which reduces Eq. 6.7 to
P (B |σ) =αdir(1−P (∞|σ)). (6.18)

Hence the effective hopping rate from Eq. 6.6 reduces to,

k AB
effHop =Φ0 [P (B |r0)+αdirP (σ|r0)(1−P (∞|σ))] . (6.19)

Eq. 6.4 shows that the effective dissociation rate k A
off is given by an intrinsic dissoci-

ation rate k A
d times an escape probability P (∞|σ). The escape probability, together with

the diffusion-limited arrival rate kD (σ), makes it possible to define the intrinsic associa-
tion rate [1]:

P (∞|σ) = kD(σ)

kA∨B
a (σ)+kD(σ)

. (6.20)

where kA∨B
a is the intrinsic rate at which a particle atσ binds either A or B. This equa-

tion, and hence the intrinsic association rate, can, in principle, also be defined for sur-
faces σ for which the distribution of configurations is not isotropic [1]; yet, the expres-
sion for the diffusion-limited arrival rate kD (σ) is then, in general, not known. In the
case considered here, where the distribution of configurations at σ is isotropic (and σ

is (significantly) beyond the cut-off of the potential), the diffusion-limited arrival rate is,
however, simply given by kD (σ) = 4πσD , where D is the (sum of the) diffusion constants
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of the particles. Rearranging the above equation yields the intrinsic rate of binding to
either A or B,

kA∨B
a (σ) = kD(σ)

1−P (∞|σ)

P (∞|σ)
. (6.21)

The effective association rate of binding to either A or B is given by the diffusion-
limited arrival rate kD (σ) times the binding probability (1−P (∞|σ)),

kA∨B
on = kD(σ)(1−P (∞|σ)), (6.22)

and the effective association rate of binding to patch A is

kA
on =α(1−P (∞|σ))kD(σ). (6.23)

and the intrinsic association rate of binding to patch A is given by,

kA
a (σ) =αkA∨B

a (σ) (6.24)

Eqs. 6.3, 6.4, 6.5, 6.19, 6.24, and 6.23 yield the expressions for the intrinsic and effective
dissociation, hopping and association rates. Only one point remains to be addressed,
which is how P (∞|σ) can be obtained efficiently in an FFS simulation. To this end, we
exploit that the effective rate of binding either patch is independent on the location of
the effective cross section [1]:

kA∨B
on (σ) = kA∨B

on (rn), (6.25)

which means, using Eq. 6.22, that

kD(σ)(1−P (∞|σ)) = kD(rn)(1−P (∞|rn)). (6.26)

P (∞|σ) can be factorized as

P (∞|σ) = P (∞|rn)P (rn|σ) (6.27)

Solving Eq. 6.26 and Eq. 6.27 yields

P (∞|σ) = P (rn|σ)(1−Ω)

1−ΩP (rn|σ)
, (6.28)

where Ω ≡ kD(σ)/kD(rn). If the interfaces σ and rn are beyond the cut-off of the poten-
tial, then the particles move by free diffusion. In this case, we can exploit the analytic
expression for the diffusion-limited arrival rate kD(σ) = 4πσD to evaluate all the rate
constants.

The above equations hold for situation in which both A and B are very long lived
states, so that the association rate kAU for binding to A is dominated by the paths that
directly proceed from the unbound state to path A, and the paths that visit B do not
contribute significantly to kAU. We argue that also in the (mean-field) modelling of bio-
chemical networks this is the most natural and useful definition of the association rate.
However, in some cases, one may wish to treat B as an intermediate state for the binding
to and the unbinding from A.
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6.2.3. PARTICLE MODEL AND INTERACTION POTENTIAL

All particles are spherical with an isotropic centre of mass interaction, dressed with one
or more sticky spots on their surface called ‘patches’, which allow for highly directional,
anisotropic interactions. We use two species of such particles in our simulations, a sub-
strate particle which has two patches and an enzyme particle that has one patch.

The enzyme-substrate pair, in our model, experiences a strong attractive potential,
Us(r ), over a narrow band of orientations (see Fig. 6.3). This specific attraction depends
on the distance, r , between the patches, i.e. stronger attraction when the patches are
closer. When the patchy particles approach each other, they experience a repulsive po-
tential, Urep(R), which is a function of the center-of-mass distance, R. In addition, par-
ticles experience a weak, isotropic, non-specific attraction, Uns(R). The total patch po-
tential reads:

Uan(R,r ) =
n∑

i=1
Us(ri)+Urep(R)+Uns(R), (6.29)

where n is the number of patches on the substrate (two in the context of this paper) and
ri are the inter-patch distances between the patch of the enzyme and the i th patch of the
substrate. Us(r ), Urep(R) and Uns(R) have the form

Ui (x) =


εi

(
1−ai

(
x
σan

)2
)

if x < x?i ,

εi bi

(
xc

i
σan

− x
σan

)2
if x?i < x < xc

i ,

0 otherwise,

(6.30)

with i = {s,rep,ns} respectively. The overall strength εi , the length scale σan=5nm, the
stiffness ai and the parameter x?i , which combined with ai determines the range of the
potential, are free parameters. Cut-offs xc

i and smoothing parameters bi are fixed by re-
quiring continuity and differentiability at x?i . In this paper we set the following parame-
ters: εs = 20kBT , as = 20 and r∗

att = 0.1σan, implying bs = 5 and r c
s = 0.5σan; εrep = 100kBT,

arep = 1 and R∗
rep = 0.85σan, implying brep = 2.6036 and Rc

rep = 1.1764σan; and ans = 1
and R∗

ns = 0.85σan, implying bns = 2.6036 and Rc
ns = 1.1764σan. εns is varied from 2kBT

to 20kBT with steps of 2kBT . Fig. 5.4b shows the total potential as a function of R, when
the patches are aligned (r = R −σan) and misaligned (r = R +σan). When the patches are
aligned, particles experience both specific and non-specific attraction, creating a deeper
potential well and a stronger bond. When the patches are misaligned, Us = 0 and the par-
ticles only experience the weak Uns which results in a shallow potential well and a weaker
bond. The non-specific attraction, however, promotes realignment since the particles do
not diffuse away immediately.

Particles of the same species, i.e enzyme-enzyme and substrate-substrate only have
a WCA repulsion based on the centre of mass distance, R.

6.3. RESULTS

In this section, we evaluate the transition rates using the expressions derived in the sec-
tion 6.2.2 for the patchy particle model system described in the 6.2.3. First, we determine
all rate constants for the case with the enzyme initially bound to a one of the patches
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Figure 6.3: Potential energy landscape (left column) of the enzyme-substrate system as a function
of the spacial position of the pair, and rate constants evaluated with the derived expressions(right
column). The energy landscape is obtained by moving the enzyme around the substrate, with
the patch of the enzyme pointed to the centre of the substrate. The rows A, B, C correspond to a
patch spacing θ (angle between the two patch vectors) of 45◦,90◦ and 120◦ respectively. For all
three angles all the rates increase as a function of the orientational diffusion constant Dr. How-
ever the hopping rates show the strongest dependence, while the association rates the least. The
hopping rates are largest when θ = 45◦ and decreases as the spacing increases. The dissociation
rates are smallest when θ = 45◦, increases when θ = 90◦. Further, increase in the spacing between
the patches has no effect on the dissociation rate. The association rates are not influenced by the
patch spacing.

of the substrate. Employing FFS on the dissociation reaction we determine all six rate
constants as a function of the rotational diffusion constant Dr for several patch angu-
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Figure 6.4: Potential energy landscapes when one of the patches is blocked by an enzyme when
θ = 90◦(left) and θ = 120◦(right). The second enzyme particle(not shown in the figure), feels a
strong attraction around the free patch, a weak non-specific attraction around the substrate and a
repulsive force around the blocking enzyme.

lar spacings. Next, we compare the computed association and dissociation rates for this
case to two other scenarios: (i) the other substrate patch is blocked by a static/inert (sec-
ond) enzyme (ii) the substrate has only a single patch, which is identical to the other
patch being blocked by an infinitesimally small enzyme.

All simulations are performed using a Brownian dynamics integrator [13]. The sys-
tem specific parameters of the simulation are as follows: The particle diameter is σ =
5nm, the time step δt = 0.1ns, the mass of the particle is m = 50kDa, the mass moment
of inertia M = 8

15 mσ2, the translational and rotational friction coefficients are γ = kBT
D t m

the Γ = kBT
Dr M respectively, where D t and Dr translational and rotational diffusion con-

stants, kB = 1.38×10−23JK−1 is the Boltzmann constant and T = 300K is the temperature
of the system.

6.3.1. EFFECT OF THE ROTATIONAL DIFFUSION CONSTANT AND PATCH SPAC-
ING ON THE RATE CONSTANTS

From the FFS simulation of the dissociation reaction of an enzyme initially bound to
a patch we compute the association, dissociation and the hopping rate constants as a
function of the rotational diffusion constant for patch opening angles 45◦,90◦ and 120◦.
Fig. 6.3 shows the potential energy landscapes and the rate constants resulting from Eqs.
Eqs. 6.3, 6.4, 6.5, 6.19, 6.24, and 6.23.

For all path opening angles the rate constants only weakly increase as a function of
the orientational diffusion constant Dr. The hopping rate constant has the strongest de-
pendence on Dr, whereas the association rate constant has the weakest. At higher Dr

the particles rotate faster, allowing the particle to leave the potential well more easily,
since even a small misalignment of the patches causes unbinding. Once unbound, the
particle either dissociates or hops to the other patch. Hence, the hopping and dissocia-
tion rate constants sensitively depend on Dr. The association rate constant, on the other
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Figure 6.5: Clockwise from top left: The intrinsic association rate, ka, intrinsic dissociation rate,
kd, effective dissociation rate, koff and effective association rate, kon, plotted as a function of the
rotational diffusion constant, Dr, for three cases: (i) substrate with two patches and both patches
are free (Free patch), (ii)substrate with two patches and one of the patch is blocked, (iii) substrate
with one patch. The association rates are largest when the substrate has one patch and when
one patch is blocked with θ = 120◦. The association rates for the blocked patch when θ = 90◦ is
lower than the above value and is least when the substrate has two patches with no blocking. The
dissociation rate on the other hand is largest when the substrate has a single patch and least when
both patches are free. When one patch is blocked the dissociation rates lie in between the above
values.

hand increases only marginally with Dr, as the rotational diffusion does not limit the rate
constant of association for these values of Dr.

Fig. 6.3A shows that for the θ = 45◦ case, the two patches partly overlap, enhancing
the probability for hopping rather than dissociation. Hence, for θ = 45◦ the dissociation
rate constant is lower and the hopping rate constant is orders of magnitude larger when
compared to the dissociation and the hopping rate constants when θ = 90◦ or θ = 120◦.
For the higher patch angles the two patches truly separate, so that an enzyme unbinding
from one patch rarely hops to the other patch. Whenthe patch angle is increased from
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θ = 45◦ to θ = 90◦, the dissociation rate constant initially increases but levels off when
the patches are positioned at θ = 120◦. Association rate constants are hardly dependent
on the angular distance between the patches.

6.3.2. EFFECT OF BLOCKING ON THE RATE CONSTANTS

As the substrate has more than one binding site (patch), multiple enzymes can bind si-
multaneously. The presence of another bound enzyme might affect the association as-
sociation and dissociation rate constants of an enzyme to and from the free patches.
Restricting ourselves to a substrate with two patches we consider first the case where
one of the two patches is blocked by an identical enzyme. We assume this enzyme to re-
main bound and treat it as being static and inert. In this case, the hopping rate constants
are zero since the enzyme cannot hop to the other patch. We compute the effective and
intrinsic association/dissociation rate constants for patch opening angles θ = 90◦ and
θ = 120◦ We also compare the computed rate constants to those obtained when there is
no blocking and the case where the substrate has only one patch.

Fig. 6.4 shows the energy landscapes for θ = 90◦ and θ = 120◦, while Fig. 6.5 shows
the intrinsic and effective association and dissociation rate constants for all cases. From
the energy landscape we see that the mobile enzyme(not in figure) feels a strong specific
attractive force around the free patch, a weak non-specific attractive force around the
substrate and a repulsive force near the blocking enzyme. Fig. 6.5 shows the association
rate constants kA

a and kA
on are highest for the one patch case and for blocked patch case

with θ = 120◦. For the blocked patch case with θ = 90◦ the association rate constants
are slightly smaller because the blocking enzyme is closer to the free patch and causes
steric hindrance, reducing the association rate constant. When the patches are further
apart, this effect is reduced, corresponding to an increased association rate constant.
The association rate constants are lowest for the unblocked two patch case. Since the
association is specific to patch A, we do not count trajectories that bind to patch B, which
acts as a trap, effectively reducing the association rate constant for binding to patch A.

The dissociation rate constants are largest for the one patch situation, because once
the enzyme leaves the potential well, it is only held by the weak non-specific attraction,
enhancing the chance to escape. The dissociation rate constants are lowest for the un-
block two-patch case, since an enzyme leaving a potential well still can hop to the other
patch and rebind to the substrate, thus reducing the dissociation rate constants. The
dissociation rate constants for the blocked-patch scenario is in between the two other
cases, as then an enzyme leaving a potential well is repelled by the blocking enzyme and
rebinds to the patch where it started from. This effect is larger for small distances be-
tween the patches, leading to smaller dissociation rate constants for θ = 90◦ compared
to the dissociation rate constant for θ = 120◦.

6.4. CONCLUSION

In this work, we derived a generic expression to evaluate the dissociation rate constant
using FFS, for cases where two states are not necessarily separated by all interfaces. Next,
we derive microscopic expressions for intrinsic and effective association, dissociation
and hopping rate constants, to be used in conjunction with a single rare-event simula-
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tion of the dissociation reaction.
Because in signalling networks, the rebinding of the enzyme to the substrate can sig-

nificantly change the response of the system, it is interesting to study the rate constants
of binding, unbinding and hopping(rebinding) of an enzyme to the substrate. In our
model, we restrict the number of binding sites on the substrate to two and the enzyme
has one binding site. For this model we calculate the rate constants as a function of the
rotational diffusion constant, Dr, and the spacing between the two patches on the sur-
face of the substrate. We find that the association rate constants are mostly independent
of how fast the particles rotate, while the dissociation and hopping rate constants are
more strongly correlated with Dr. When the patches are close to each other, the enzyme
hops(rebinds) to the other substrate patch, instead of diffusing away. This hopping rate
constant depends on the patch distance very strongly. In contrast, the association and
dissociation rate constants do not change significantly with patch separation. Finally,
we studied the effect of a blocking enzyme on the associating/dissociation/hopping rate
constants. In the presence of an (inert) blocking enzyme, the association rate constants
decrease and the dissociation rate constants increase when compared to the unblocked
case. Evaluation of these rate constants is useful for understanding in general the associ-
ation reactions in an enzyme-substrate system and to study the response characteristics
of such a system. The intrinsic rate constants also serve as input parameters for a multi-
scale simulation[5, 6], where, by using these rate constants, explicit simulations of the
association reactions can be avoided, which dramatically speeds up the simulations.
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7
MULTI-SCALE SIMULATIONS OF

MULTI-SITE PHOSPHORYLATION IN

A MAPK SIGNALLING PATHWAY

In many reaction-diffusion processes, the spatial distribution of the reactants and the
stochastic character of their interactions are crucial for the macroscopic behaviour. A
prime example is multi-site protein modification, as in the MAPK system. To efficiently
simulate such systems, it is necessary to use a particle based modelling approach. The ob-
vious choice is to use a particle based simulation technique based on Brownian Dynamics.
Brownian Dynamics can capture the dynamics at the microscopic scales naturally. How-
ever, when the concentration of the system is low, the technique becomes very inefficient
since it spends most of the time bringing the particles close to each other. The recently
developed mesoscopic Green’s Function Reaction Dynamics (GFRD) method enables effi-
cient simulation at the particle level provided the microscopic dynamics can be integrated
out. Yet, many processes exhibit non-trivial microscopic dynamics that can qualitatively
change the macroscopic behavior, calling for an atomistic, microscopic description. In
our previous work, we present a multi-scale scheme Molecular Dynamics - Green’s Func-
tions Reaction Dynamics (MD-GFRD), that combines the computational power of GFRD
and the microscopic detail of BD. MD-GFRD simulates the particles with GFRD when the
particles are far apart and switches to BD to capture the microscopic dynamics when the
particles come close to each other. In this paper, we use MD-GFRD to simulate the MAPK
signalling pathway and determine the response of the network. Our study will enable a
systematic study of the response of the network as a function of the distance between the
binding sites, the rotational diffusion constant and the ratio of the substrate to the enzyme
concentration.
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7. MULTI-SCALE SIMULATIONS OF MULTI-SITE PHOSPHORYLATION IN A MAPK

SIGNALLING PATHWAY

7.1. INTRODUCTION

It is now clear that in many reaction-diffusion systems, events at the microscopic scale
can qualitatively change the behaviour at the macroscopic scale [1]. A prime example is
given by the phenomenon of enzyme-substrate rebindings in cellular systems that em-
ploy multi-site protein modification. Multi-site protein modification is a very common
motif in cellular signaling. Examples are the Kai system [2], the CDK inhibitor Sic1 [3],
the NFAT system [4], and the CAMKII system [5]. But arguably the most studied and best
characterized example is provided by the MAPK signaling cascade, which is involved in
cell differentiation, cell proliferation, and apoptosis [6]. Recently, Takahashi and cowork-
ers showed that in these systems enzyme-substrate rebinding at the molecular scale can
qualitatively the response of the system at the cellular scale [1]. However, they studied a
rather coarse-grained model of the MAPK system, in which the particles are modeled as
ideal spherical objects with isotropic interactions. It thus remains an open question how
strong the effect of enzyme-substrate rebinding is in a more detailed model that takes
into account the orientational dependence of the interaction potential and the effect of
the orientational diffusion of the proteins.

A cascade of the MAPK system is made up of three layers. In each layer, an enzyme (a
kinase) activates a substrate (also a kinase) of the next layer. A substrate is fully activated
when both its sites are phosphorylated. A kinase phosphorylates and a phosphatase de-
phosphorylates a site of the substrate. The response of the system changes based on
whether these enzymes modify the substrate processively or distributively [7, 8, 9]. A
distributive mechanism is one where the enzyme, after modifying the first site, has to
unbind from the substrate, diffuse into the bulk and undergo another independent en-
counter with the substrate, to bind to the next site in order to modify it. On the other
hand, in a processive mechanism, the enzyme, after modifying a site, remains bound
to the substrate before it modifies the next site, thus requiring only a single encounter
with the substrate. Therefore, models based on mean-field chemical rate equations pre-
dict that an ultra-sensitive response is generated by a distributive mechanism. This is
because the rate of full activation depends quadratically on the concentration of the up-
stream kinase [7, 8, 9]. In contrast, ultra sensitivity is lost for a processive mechanism.
Moreover, when the enzymes are present in limiting amounts, then, according to these
mean-field models, a distributive mechanism can generate bistability, while a processive
scheme cannot [10].

However, Takahashi and coworkers showed that spatio-temporal fluctuations at the
molecular scale can drastically change the predictions of the mean-field models [1].
Particle-based simulations using the GFRD algorithm revealed that enzyme-substrate
rebinding can effectively turn a distributive mechanism into a processive one. This is
because the probability that an enzyme molecule which has just dissociated from a sub-
strate molecule, rebinds that molecule instead of diffusing away, does not depend on
the concentration. Indeed, these rebinding events are not described by conventional
chemical kinetics. As a result, the response of the system does not depend on whether
the enzyme and substrate molecule remain physically bound to each other in between
the modifications of the two sites, but rather on whether both sites are modified by one
and the same enzyme molecule—an enzyme molecule that dissociates and then rebinds
gives the same response as one that remains bound. The prediction of Takahashi et al.
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was confirmed experimentally by Matsuda and coworkers [11]. A theoretical framework
for describing the behavior of the system in the presence of rebindings was provided by
Gopich and Szabo [12]. The implication of pseudo-processivity for kinetic proofreading
was studied in Ref. [13].

The model of Takahashi et al. assumed that the reactants are highly idealized, spher-
ical objects, interacting via isotropic interactions [1]. Here, we address the question of
how the response depends on the distance between the interaction sites on the substrate
and on the orientational diffusion constants of the particles. To this end, we apply our
recently developed Molecular Dynamics - Green’s Function Reaction Dynamics (MD-
GFRD) technique [14, 15]. MD-GFRD is an exact scheme that makes it possible to simu-
late systems with complex interaction potentials. In the multi-scale MD-GFRD scheme,
we use BD to simulate the reactants that are within a reaction distance, and we use GFRD
to propagate the particles that are beyond this distance. MD-GFRD thus combines the
power of GFRD to make large jumps in time and space when the particles are far away
from each other with the ability of BD to resolve the microscopic dynamics when they
are close. The regions where the particles are close together and simulated with high
microscopic resolution, and the parts of space where they are far apart and simulated
with lower mesoscopic resolution, are defined adaptively on the fly. This makes MD-
GFRD, under biologically relevant conditions, orders of magnitude more efficient than
brute-force BD with the same microscopic resolution [14, 15]. While we use Brownian
Dynamics for simulating the particles at close distances, the principal idea is generic.
In the scheme presented here, GFRD can also be combined with other schemes such as
atomistic Molecular Dynamics (MD) or Markov State Modelling (MSM).

In this chapter, we present a proof-of-principle demonstration that MD-GFRD can
simulate relatively complex biochemical networks such as the MAPK system. An exten-
sive analysis of the behaviour or of the system as a function of the orientational diffusion
constant and the distance between the patches is on-going work.

7.2. SYSTEM

While the MD-GFRD scheme is generic, it will be illuminating to describe the various
steps of the algorithm in the context of the system that we aim to simulate here. We
therefore first describe the system.

The system that we will study is one layer of the MAPK pathway, consisting of one
dual modification cycle. The system thus consists of a kinase with one binding patch,
a phosphatase with one binding patch, and a substrate with two patches, correspond-
ing to the two phosphorylation sites. These molecules move with a given translational
diffusion constant D t and with a given orientational diffusion constant Dr . Phosphory-
lation and dephosphorylation proceeds via Michaelis-Menten kinetics and according to
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a distributive mechanism. The reactions of the system are:

S +K 

kd

SK
kp→ SpK → K +Sp (7.1)

Sp +K 

kd

SpK
kp→ SppK → K +Spp (7.2)

SK +K 

kd

K SK
kp→ K SpK → K +SpK (7.3)

SpP +K 

kd

K SpP
kp→ K SppP → SppP +K (7.4)

Spp +P 

kd

SppP
kdp→ SpP → P +Sp (7.5)

Sp +P 

kd

SpP
kdp→ SP → P +S (7.6)

SppP +P 

kd

PSppP
kdp→ PSpP → P +SpP (7.7)

SpK +P 

kd

K SpP
kdp→ K SP → SK +P (7.8)

The top four reactions describe the phosphorylation of the substrate by the kinase, while
the bottom four describe the dephosphorylation of the substrate by the phosphatase.
For this study we assume that the system is symmetric: (1) the rate constants for phos-
phorylation, kp , equal those of dephosphorylation, kd p ; (2) the two phosphorylation
sites on the substrate are identical. Even though the sites are identical, it will be impor-
tant to also include an event that is not listed in the reactions above, namely a hopping
event, in which an enzyme dissociates from one patch and then rebinds to the other
patch before it reaches a predefined distance from the substrate. This is because the dy-
namics of enzyme-substrate binding and unbinding can generate spatio-temporal cor-
relations that will also depend on the (history of the) hopping events.

The phosphorylation reactions and dephosphorylation reactions are modeled as sim-
ple uni-molecular reactions, characterized with given rate constants kp and kd p (which
we here take to be equal): these rates are part of the model specification, and hence in-
put parameters for the simulations. The association, dissociation and hopping rates are
determined by the interaction potential, and the translational and orientational diffu-
sion constants; the latter three are part of the model definition (“input”), but the rates
are not. The principal idea of MD-GFRD is that association, dissociation, and hopping
are simulated via brute-force BD, meaning that these rates are naturally captured in the
simulations. However, since the interaction between the enzyme and substrate is strong,
dissociation and hopping are rare events. While we could thus simulate dissociation and
hopping explicitly on the fly, most CPU time would be wasted on propagating the en-
zyme and the substrate particles while they would simply rattle around each other in
the potential well. To circumvent this problem, we will pre-compute the dissociation
and hopping rate by simulating two particles using a rare-event technique as described
below, and then use the pre-computed rates in the final MD-GFRD simulations. In the
MD-GFRD simulations, these rate constants have thus become “input”, and for this rea-
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Repulsive force (WCA)

Repulsive force (WCA)

Repulsive force (WCA)

Repulsive force (WCA)

Non-specific attraction and
specific attraction if the 
patch is unphosphorylated.

Non-specific attraction and
specific attraction if the 
patch is phosphorylated.

Kinase Phosphotase Substrate

Figure 7.1: The interaction potentials between different species in the simulation. A pair of en-
zymes (kinases or phosphatases or one of each kind) and a pair of substrates experience a WCA
repulsive force. A kinase is attracted to a substrate non-specifically and can bind specifically to a
patch, only if the patch is unphosphorylated. Similarly a phosphatase is attracted to a substrate
non-specifically and can bind specifically to a patch, only if the patch is phosphorylated.

son we have added a subscript kd to the reactions above. We iterate, however, that these
rates follow from the microscopic dynamics on the interaction potential, which is part
of the model definition.

The interaction potential between an enzyme and a substrate molecule depends on
the modification state of the phosphorylation sites of the substrate molecule. A kinase
can have a specific—a strong and highly directional—attraction with only an un phos-
phorylated patch of the substrate and a phosphatase can have a specific attraction with
only a phosphorylated patch of the substrate. In addition to these specific interactions,
both the kinase and the phosphatase also interact non-specifically with the substrate;
this non-specific interaction is much weaker and independent of both the orientation
of the particles and the modification state of the substrate. All other interactions, i.e.



7

130
7. MULTI-SCALE SIMULATIONS OF MULTI-SITE PHOSPHORYLATION IN A MAPK

SIGNALLING PATHWAY

substrate-substrate and enzyme-enzyme are purely repulsive, modelled as a WCA re-
pulsion. The interactions between different species is shown in Fig. 7.1. For a detailed
description of the interaction potentials and particle models, we refer to Sec 3.2.2. and
Sec 3.2.7. In summary, and for ease of description below, the complexes that are pos-
sible are thus: kinase-substrate and phosphatase-substrate complex, both described
as an enzyme-substrate (ES) complex in the sections below; kinase-substrate-kinase,
phosphatase-substrate-phosphatase, and kinase-substrate-phosphatase complex, de-
scribed as enzyme-substrate-enzyme (ESE) complex — since the two patches are iden-
tical, there is only one unique kinase-substrate-phosphatase complex.

7.3. METHODS

7.3.1. MOLECULAR DYNAMICS – GREEN’S FUNCTIONS REACTION DYNAM-
ICS (MD-GFRD)

MD-GFRD is an exact multiscale scheme that can straightforwardly be applied to any
reaction-diffusion system with patchy particles. When particles are far apart, each par-
ticle is put into a non-overlapping spherical GFRD domain. Since the GFRD domains do
not overlap, the stochastic processes in these domains are independent of one another.
For each of the domains, the reaction-diffusion problem can be solved analytically using
Green’s functions. This yields for each domain an event type, which is either a reaction or
an escape of a particle from the domain, and an event time, which is when this event will
happen. These events are put in an event list, which is updated in chronological order.
GFRD is thus an event-driven, asynchronous algorithm. A detailed description of GFRD
is given in 2.2.2.

When the particles come close to each other, MD-GFRD switches to a microscopic
technique like conventional BD. The GFRD domains around the particles are burst and
the particles are collectively propagated with small time steps. The particles interact
with each other via an interaction potential. This naturally allows for anisotropic parti-
cles and a description for conformational and orientational dynamics. When an enzyme
molecule and a substrate molecule associate, the dimer is replaced by a single particle,
which can be propagated with GFRD. After association, the enzyme may dissociate, hop
from one site to the other, or phosphorylate/dephosphorylate the site. The dissocia-
tion/hopping reaction is not done explicitly in MD-GFRD. Instead, a pre-simulation is
performed with just two particles using BD. To efficiently sample the dissociation and
hopping reactions, which are rare events, Forward Flux Sampling (FFS) is used. The FFS
simulation gives the dissociation rate kd and hopping rates kh, which describe expo-
nential relaxation of these unimolecular reactions. Knowing the rate constants for the
dissociation and hopping reactions, the next time for each of these reactions, τα with
α= d,h, can be sampled from

τα =−kαln(R), (7.9)

where R ∈ [0,1] is a uniformly distributed random number. This step is discussed in
detail in Sec. 7.3.3. For a detailed description of the coupling between the two schemes,
we refer Sec. 3.2.5.
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Enzyme Substrate ES-complex ESE-complex GFRD domain

B

A

Figure 7.2: Handling association reactions in MD-GFRD. A. When an enzyme, comes closer than
Dmin to the surface of a GFRD domain that has a substrate, the domain is burst. The substrate and
the enzyme is simulated explicitly with BD. Now one of two things may happen: (i) the enzyme can
bind to the substrate (ii) the enzyme diffuses away from the substrate. If the enzyme binds to one
of the patches of the substrate, then the enzyme-substrate dimer is replaced by a single particle,
the enzyme-substrate (ES) complex. Now a domain can be constructed on the ES-complex, if there
is space and is propagated with GFRD. On the other hand, if the enzyme diffuses away from the
substrate, such that the distance between them is larger than 2Dmin, then a domain is built around
the substrate, and it is propagated with GFRD. B. When an enzyme, comes closer than Dmin to
the surface of a GFRD domain that has an ES-complex, the domain is burst. The EA-complex
is split into its constituents i.e. the enzyme-substrate dimer which along with the enzyme are
simulated explicitly with BD. At this point one of two things may happen: (i)the enzyme can bind
to the free patch of the substrate (ii) the enzyme diffuses away from the enzyme-substrate dimer.
If the enzyme binds to the free patch of the substrate, then the enzyme-substrate-enzyme trimer
is replaced by a single particle, the enzyme-substrate-enzyme (ESE) complex. Now a domain can
be constructed on the ESE-complex, if there is space and is propagated with GFRD. However, if
the enzyme diffuses away from the enzyme-substrate dimer, such that the distance between them
is larger than 2Dmin, then the enzyme-substrate dimer is replaced by a single particle, the ES-
complex. A domain is now built around the substrate, and it is propagated with GFRD.
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7.3.2. HANDLING ASSOCIATION REACTIONS

When the distance between two particles is smaller than 2Dmin, where Dmin is the mini-
mum domain radius, the particles are explicitly simulated with brute force rotational BD.
If an enzyme and a substrate molecule happen to associate as shown in Fig. 7.2.A, the
resulting enzyme-substrate dimer is replaced by a single particle, the enzyme-substrate
(ES) complex in Fig. 7.2). This ES-complex is now placed in a GFRD domain, if there
is space to build a domain of radius 2Dmin. It could happen that another particle ap-
proaches this ES-complex in the domain as shown in Fig. 7.2.B. If the particle comes
closer than Dmin to the surface of the domain, then the domain is burst; a new position
and orientation for the ES-complex (propagated as a single particle) is then drawn for
the time elapsed since the construction of the domain. If the distance between the ES-
complex and the other particle is now smaller than 2Dmin, then the enzyme-substrate
complex, which was propagated as a single particle, is replaced by an enzyme-substrate
dimer, with the enzyme in the potential well of the appropriate patch of the substrate
and with the same centre of mass and the orientation drawn from the FFS-BD pre-
simulation; the three particles are then simulated with brute force BD. If the third par-
ticle is an enzyme particle that binds to the other free patch of the substrate, then the
enzyme-substrate-enzyme (ESE) trimer is replaced by a single particle, and if possible
subsequently put in a GFRD domain. On the other hand, if the third particle diffuses
away, farther than 2Dmin, then the enzyme-substrate dimer is again replaced by a single
particle and a GFRD domain is built around it.

7.3.3. HANDLING DISSOCIATION, HOPPING AND PHOSPHORYLATION /DE-
PHOSPHORYLATION REACTION

Once an enzyme is bound to a substrate, one of three events can happen. The enzyme
can either dissociate from the patch, phosphorylate/dephosphorylate the patch, or hop
to the other patch, depending on the state of the patch (as mentioned, a kinase can only
bind and hence hop to an unphosphorylated patch, while a phosphatase can only bind
and hop to a phosphorylated patch). When the enzyme dissociates from the substrate,
a new configuration is picked at random from the ensemble as generated in the BD-FFS
pre-simulation. In this configuration as picked from the BD-FFS ensemble, the enzyme
and substrate molecule not only have a certain relative position, but also a relative orien-
tation with respective to each other; the position for the center-of-mass and the overall
orientation of the particles in the complex are determined by the position and orien-
tation of the complex (modeled as a single particle) just prior to the moment of disso-
ciation. Here we capitalize on the idea that dissociation is a rare event: an event that
happens rarely, yet rapidly when it does. Moreover, we assume it happens so fast, that
we can take it to occur instantaneously, that is, no other event occur during the dissoci-
ation process. When the event is a hopping reaction, the enzyme particle ends up in the
potential well corresponding to the other patch of the substrate; the relative position and
orientation of the enzyme and substrate particle are again determined by the configura-
tion picked from the BD-FFS pre-simulation and, as for dissociation, the overall position
(center-of-mass) and orientation are determined by the position and orientation of the
ES complex (which was modelled as a single particle) just prior to the event. Finally,
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Figure 7.3: Handling dissociation/hopping/phosphorylation reactions in MD-GFRD. After an en-
zyme, say a kinase, binds to an unphosphorylated patch, the kinase can either dissociate, phos-
phorylate the given patch or depending on the state of the other patch, hop to the other patch.
The figure shows the different rates that are calculated using BD-FFS pre-simulations. kAU, k

p
AU

and kb
AU are the dissociation rates of the kinase starting in patch A and reaching the 2σ-interface

before hopping to B or going back to A, when the other patch is unphosphorylated, phosphory-
lated and blocked respectively where σ is the radius of the particle. kAB is the hopping rate of the
kinase starting in patch A and reaching the patch B before diffusing to the 2σ-interface or going
back to patch A, given that the patch B is unphosphorylated. kph is the rate of phosphorylation.
After association, the next event times for all these events are drawn, the least of which will be the
next event. If the next event is dissociation, then the kinase is placed at the 2σ-interface and if it is
hopping the state of the patch of the substrate is changed to phosphorylated and the kinase is left
in contact with the substrate. If the next event is hopping, the kinase is placed on the other patch.
The rates for a phosphatase is taken to be the same as the above rates.
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if the event is a phosphorylation or dephosphorylation reaction, then the ES complex
(which was modeled as a single particle) is split into its products, the patch is phospho-
rylated/dephosphorylated and the enzyme is placed in contact with the same patch. As
the patch interaction has now changed, the pair can dissociate and diffuse away sponta-
neously.

We define five types of rate constants: (i) Dissociation rate of an ES-complex, kAU

when the other patch is free and unphosphorylated if the dissociating enzyme is a ki-
nase (or phosphorylated if the dissociating enzyme is a phosphatase). (ii) Dissociation
rate of an ES-complex, kp

AU when the other patch is free and phosphorylated if the dis-
sociating enzyme is a kinase (or unphosphorylated if the dissociating enzyme is a phos-
phatase). (iii) Dissociation rate of an ESE-complex, kb

AU when the other patch is blocked
by another enzyme. (iv) Hopping rate for an ES-complex, kAB to the other patch when
its is free and unphosphorylated if the dissociating enzyme is a kinase or phosphory-
lated if the dissociating enzyme is a phosphatase. (v) Phosphorylation rate, kp, of phos-
phorylating an unphosphorylated site, which equals the rate kdp of dephosphorylating a
phosphorylated site. The dissociation and the hopping rates are obtained from the BD-
FFS pre-simulation. The rates and the events after association are illustrated in Fig. 7.3.
These rate constants are used to determine the next event times for each of these events
using Eq. 7.9. The event with the shortest tentative event time is the next event.

7.4. SYSTEM PARAMETERS

The system specific parameters of the simulation are as follows: The particle diameter
is σ = 5nm, the time step δt = 0.1ns, the mass of the particle is m = 50kDa, the mass
moment of inertia M = 8

15 mσ2 the translational and rotational diffusion constants, are
D t = 1µm2/s and Dr = 1.6×105rad2/s for all particles, the translational and rotational
friction coefficients are γ = kBT

D t m the Γ = kBT
Dr M respectively, where kB = 1.38×10−23JK−1

is the Boltzmann constant and T = 300K is the temperature of the system. The disso-
ciation and hopping rates obtained from the BD-FFD pre-simulation are kAU = 0.73s−1,
kb

AU = 1.1s−1, kp
AU = 1.4s−1 and kAB = 0.7s−1. The phosphorylation and dephosphoryla-

tion rates are kp = kdp = 15s−1.

We place into a cubic box with a side of 10σ, one substrate molecule and add a vary-
ing number of kinases NK and phosphatases NP. In this proof-of-principle simulation
we vary NK and NP between 1 and 3.

7.5. RESULTS

We present the steady state input-output response of the MAPK signalling pathway. The
response does not only depend on the rate constants, but also on the ratio of total en-
zyme to total substrate concentration: [K] + [P] vs [St] ratio. In Fig. 7.4 we present a
proof-of-principle simulation for a system that is in the linear regime, where the enzyme
concentration is much larger than that of the substrate: For both the kinase and the
phosphatase we have 3 particles while we have only 1 substrate particle. We vary the
concentration of the kinase over that of the phosphatase. The figure shows that the con-
centration of the active substrate, i.e. the doubly phosphorylated substrate, increases
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Figure 7.4: Steady state input-output relations for patches separated by 90◦, with translational
diffusion constant, 1µm2/s and rotational diffusion constant 1.6×105. The simulation was per-
formed with one substrate, three kinase and three phosphatase particles in a box of size 120σ,
where σ = 5nm, is the radius of the particle. [K], [P], [Spp] and [St]is the concentration of kinase,
phosphatase, doubly phosphorylated substrate and the total number of substrate. In this case we
see the enzymes phosphorylate the substrate processively, because after modifying one patch the
enzyme rapidly rebinds to the other patch, instead of diffusing away. This is a proof-of-principle
example to demonstrate that MD-GFRD can be used to simulate complex biochemical networks.

rather linearly with the ratio of the kinase to phosphatase concentration. This is is to
be expected, given that the enzyme is in excess and the enzyme can rapidly rebind the
substrate after modification of the first site, leading to pseudo-processivity.

7.6. OUTLOOK

In this paper we have presented one set of simulations to demonstrate that MD-GFRD
can be used to simulate complex reaction-diffusion systems like biochemical networks.
The aim is to simulate this system under more biologically realistic conditions, in partic-
ular more reasonable enzyme and substrate concentrations. Next, we would like to sys-
tematically study how the response depends on the orientational diffusion constant and
the distance between the phosphorylation sites on the substrate. An interesting ques-
tion will be whether these results can also be described (quasi) analytically, adopting the
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theoretical approach of Gopich et al. and Ouldridge et al.. [12, 13]. Here the key quan-
tity will be the rebinding probability or the hopping rate. More specifically, the question
would be whether the response can be predicted from a modified chemical rate equation
[12, 13], using a pre-computed hopping rate. Lastly, we point out that for this particu-
lar system it might be feasible to develop a custom-made code that, using precomputed
rebinding probabilities and precomputed association propensities that depend on the
phosphorylation states of the respective sites, can simulate this system very efficiently
in a GFRD-like manner. However, MD-GFRD is exact and versatile, and can straightfor-
wardly be applied to any reaction-diffusion system with patchy particles.
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8
SUMMARY

In many reaction-diffusion processes, ranging from biochemical networks, catalysis, to
complex selfassembly, the spatial distribution of the reactants and the stochastic char-
acter of their interactions are determine the macroscopic behavior of the system. While
mean-field rate equations cannot describe such processes, the recently developed meso-
scopic Green’s Function Reaction Dynamics (GFRD) method enables efficient simula-
tion at the particle level provided the microscopic dynamics can be integrated out. Yet,
many processes exhibit non-trivial microscopic dynamics that can qualitatively change
the macroscopic behavior, which requires an atomistic, microscopic description. In
the first part of the thesis, i.e. chapters two and three, I describe our new simulation
technique named Molecular Dynamics-GFRD (MD-GFRD), to simulate such reaction-
diffusion system. In chapter two, I propose a novel approach that combines GFRD for
simulating the system at the mesoscopic scale where particles are far apart, with a mi-
croscopic technique such as Langevin dynamics or Molecular Dynamics (MD), for sim-
ulating the system at the microscopic scale where reactants are in close proximity. This
scheme determines the regions where the particles are close together, where the system
is simulated using with a microscopic resolution using MD simulations. Regions where
the particles are far apart allow using the more coarse grained simulation GFRD. Impor-
tantly, our algorithm switches adaptively between the two simulation techniques on the
fly. The new multi-scale scheme MD-GFRD, is generic and can be used to efficiently
simulate reaction-diffusion systems at the particle level. In chapter three, I extend MD-
GFRD for simulating anisotropic particles with orientational diffusion. The next part of
the thesis i.e. chapters four, five and six, deals with the derivation of microscopic expres-
sions for the intrinsic and effective association and dissociation rate constants. Here, I
address the role of the orientational dynamics, for particles interacting via anisotropic
potentials. I systematically vary the strength and range of the interaction potential and
investigate how these rates vary. I show how these rates can be computed using rare
event simulations techniques. Using Forward Flux Sampling (FFS), I provide a general-
ized expression to calculate the transition rates, and use these expressions to calculate
the rates for a system in which an enzyme binds to a substrate with two binding sites.

139
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Chapter seven combines the two branches of the thesis to solve an important biologi-
cal system, the MAPK signalling pathway. The association rates calculated in chapter six
are plugged into MD-GFRD, such that the dissociation reaction need not be explicitly
simulated. Our new simulation algorithm allows us to systematically study the response
of the network as a function of the distance and angle between the binding sites, the
rotational diffusion constant and the ratio of the substrate to the enzyme concentration.
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SAMENVATTING

In veel reactie-diffusie processen, bijvoorbeeld biochemische netwerken, katalyse, en de
zelfassemblage van moleculaire complexen, bepaalt de ruimtelijke ordering van de rea-
gerende stoffen en het stochastisch karakter van hun onderlinge reacties in hoge mate
het macroscopisch gedrag van het systeem. Omdat mean-field snelheidsvergelijkingen
deze processen slecht beschrijven, is een simulatie op deeltjes niveau cruciaal. Simu-
laties waarbij elk deeltje expliciet beschreven wordt kosten echter veel tijd. Met het re-
cent ontwikkelde Green’s Function Reaction Dynamics (GFRD) is het wel mogelijk het sys-
teem zeer efficiënt op deeltjes niveau te simuleren. Het werkt echter alleen als het micro-
scopisch gedrag van de deeltjes grofkorrelig beschreven kan worden. Het macroscopisch
gedrag van veel systemen hangt echter juist vaak af van het microscopisch gedrag van
de onderliggende processen. Dit vereist een atomistische, microscopische beschrijving
van de reacties. In hoofdstuk twee en drie beschrijf ik een nieuwe simulatie techniek
met de naam Moleculaire Dynamica-GFRD (MD-GFRD), om reactie-diffusie systemen
te simuleren. In hoofdstuk twee stel ik een nieuwe methode voor die twee bestaande
simulatie technieken combineert: 1) GFRD, welke het systeem op mesoscopische schaal
beschrijft als de deeltjes ver van elkaar verwijdert zijn, en 2) moleculaire dynamica, voor
de microcopische beschrijving als de deeltjes dicht bij elkaar zijn. Het algortime bepaalt
regionen waar de deeltjes dicht bij elkaar zijn en waar MD gebruikt moet worden, en
de regionen waar slechts één deeltje voorkomt zodat GFRD voldoet. Het krachtige van
ons algoritme is dat het naadloos de juiste simulatie metode kiest naargelang de lokale
dichtheid van deeltjes. Ons nieuwe meerschalige algoritme MD-GFRD, is generiek en
kan zeer efficiënt reactie-diffusie systemen op deeltjes niveau simuleren. In hoofdstuk
drie breid ik MD-GFRD uit met de simulatie van anisotropische deeltjes en orienta-
tionele diffusie. In hoofdstuk vier, vijf en zes, leid ik de microscopische uitdrukkingen
af voor de associatie en de bijbehorende dissociatie reactiesnelheidsconstanten. We
berekenen zowel de intrinsieke en effectieve reactieconstanten. Hier behandelen we de
rol van de oriëntatie in reacties tussen deeltjes met een anisotropische reactiepotentiaal.
Ik varieer systematisch de sterkte en het berijk van de interactiepotentiaal en bestudeer
hoe de reactiesnelheidsconstanten veranderen. Daarnaast laat ik zien hoe we deze con-
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stanten kunnen bepalen met behulp van de rare event simulatie techniek Forward Flux
Sampling (FFS). Ik leid een algemene uitdrukking af voor de reactiesnelheidsconstanten
van een anisotropische potentiaal zodat we deze kunnen bepalen met behulp van FFS.
In hoofdstuk zeven combineer ik alle technieken die ik ontwikkelt heb om een belan-
grijk biologisch systeem, de MAPK signaalweg, beter te begrijpen. De associatieconstan-
ten die ik in hoofdstuk zes berekend heb gebruik ik in MD-GFRD zodat de dissociatie
van een complex niet expliciet gesimuleerd hoeft te worden. Dit maakt de simulatie
veel sneller. Ons nieuwe algortime maakt een systematische studie van het gedrag van
een biochemisch netwerk mogelijk. Ik bestudeer de fosforylatie van een substraat in het
MAPK systeem welke meerdere bindingsplekken voor bijvoorbeeld een kinsase heeft.
Als functie van de afstand en de hoek tussen de bindingsplekken op het substraat, de
orientationele diffusie constante en de ratio tussen de substraat-enzyme concentratie
bepaal ik de hoe sterk het substraat gefosforyleerd is.
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