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Abstract

In multigroup factor analysis, different levels of measurement invariance are accepted as tenable when
researchers observe a nonsignificant (A)x test after imposing certain equality constraints across groups. Large
samples yield high power to detect negligible misspecifications, so many researchers prefer alternative fit
indices (AFIs). Fixed cutoffs have been proposed for evaluating the effect of invariance constraints on change
in AFIs (e.g., Chen, 2007; Cheung & Rensvold, 2002; Meade, Johnson, & Braddy, 2008). We demonstrate
that all of these cutoffs have inconsistent Type I error rates. As a solution, we propose replacing x? and fixed
AFI cutoffs with permutation tests. Randomly permuting group assignment results in average between-groups
differences of zero, so iterative permutation yields an empirical distribution of any fit measure under the null
hypothesis of invariance across groups. Our simulations show that the permutation test of configural
invariance controls Type I error rates better than x> or AFIs when the model contains parsimony error (i.e.,
negligible misspecification) but the factor structure is equivalent across groups (i.e., the null hypothesis is
true). For testing metric and scalar invariance, Ax* and permutation yield similar power and nominal Type I
error rates, whereas AAFIs yield inflated errors in smaller samples. Permuting the maximum modification
index among equality constraints control familywise Type I error rates when testing multiple indicators for
lack of invariance, but provide similar power as using a Bonferroni adjustment. An applied example and
syntax for software are provided.

Translational Abstract

Researchers measuring psychological constructs may first want to examine whether the items used to measure
these constructs are interpreted equivalently in different contexts. Multiple-group factor analysis is a popular
tool for testing measurement equivalence/invariance across populations, but methods for detecting item
differences, such as observing a nonsignificant (A)x> test after imposing equality constraints, may detect
negligible differences in large samples. Researchers have instead suggested the use of alternative fit indices
(AFIs) and have proposed fixed cutoffs for change in AFIs when evaluating invariance (e.g., Chen, 2007;
Cheung & Rensvold, 2002; Meade, Johnson, & Braddy, 2008). Alternatively, we propose replacing x> and
fixed AFI cutoffs with permutation tests. Our simulations show that permutation tests yielded well controlled
Type I error rates even when the model does not fit perfectly, providing the only valid test of configural
invariance across groups of which we are currently aware. In addition, regardless of which AFI is preferred
for tests of metric (i.e., item factor loadings) or scalar (i.e., item intercepts) equivalence, permutation tests
provide well controlled Type I error rates, with power to detect true differences that is comparable with Ax>.
Conversely, we do not recommend that researchers use fixed cutoffs for AAFIs because our results suggest
these cutoffs lead to inflated Type I error rates at smaller sample sizes. To encourage applications of the
permutation procedure for testing measurement equivalence, we provide a complete real-data example,
including software syntax for analysis and an interpretation of the results.

Keywords: measurement equivalence, configural invariance, differential item functioning, permutation,
multiple group confirmatory factor analysis
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PERMUTATION INVARIANCE

Measurement equivalence/invariance (ME/I) is a key concept in
psychological measurement (Brown, 2015) concerning whether
indicators used to measure latent constructs have the same mean-
ing across different contexts, such as different occasions or pop-
ulations (Meade & Lautenschlager, 2004). The assumption of
ME/I must be satisfied before groups or occasions can be com-
pared on common factors. Previous studies have shown that failure
to meet this assumption can result in selection bias or false detec-
tion of group differences (Chen, 2008; Millsap & Kwok, 2004).
Given the importance of ME/I, various methods have been devel-
oped to examine it. In the current study, we focus on the multi-
group confirmatory factor analysis (CFA) framework, which is one
of the most common frameworks used to test ME/I across groups
(Vandenberg & Lance, 2000).

This article is organized as follows. We begin by describing the
current recommended best practices for testing ME/I, as well as
discussing their limitations. We then introduce permutation ran-
domization tests before proposing a permutation framework for
testing ME/I across groups. We present Monte Carlo simulation
studies to compare the power and Type I error rates of the per-
mutation method to other methods, which we organize into three
sections: testing equivalence of model form, testing equivalence of
sets of model parameters, and detecting differences in individual
indicator parameters. We illustrate the permutation procedure in a
real-data application, and we conclude with recommendations for
applied researchers and for further development of permutation
methods for tests of ME/I (or lack thereof).

Testing Full and Partial Measurement Invariance

In the context of CFA, researchers commonly test three or four
ME/I models in a sequence: configural, metric, scalar, and strict
invariance. To test for configural invariance (i.e., the same form),
researchers fit a model with identical factor structure across
groups, but allow all freely estimated measurement-model param-
eters (factor loadings, intercepts, and residual variances) to differ
between groups (except scale-identification constraints). The x>
test statistic (Byrne, Shavelson, & Muthén, 1989; Meredith, 1993)
is used to judge whether the configural invariance model is sup-
ported. If the test is not significant at the specified o level, the
analyst can conclude that the configural model fits well and
proceed to test metric (or “weak”) invariance by constraining
factor loadings to equality across groups. Metric invariance as-
sumptions are deemed tenable if the change in fit (Ax? between
configural and metric models) is not significant, in which case
valid comparisons of latent variances and covariances can be made
(and equivalence can be tested) across groups. Similar criteria and
procedures can be used to test scalar (or “strong”) invariance by
constraining intercepts or thresholds to equality across groups, or
to test strict invariance by constraining residual variances to equal-
ity across groups. Scalar invariance is required for valid compar-
isons of latent means to be made. Latent-parameter comparisons
do not require strict invariance, but researchers might be interested
in that test if they are interested in whether the reliability of a scale
is equivalent across groups.

The sz tests for metric, scalar, and strict ME/I are “omnibus”
in the sense that they test several parameter constraints simulta-
neously. Like using ANOVA for multiple group-mean compari-
sons, rejecting the null hypothesis (H,,) for the omnibus test typ-
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ically necessitates multiple follow-up hypotheses to be tested (e.g.,
all possible pairwise comparisons, complex contrasts). If the om-
nibus H, of ME/I is rejected, it is still possible to make valid
comparisons of latent parameters between groups, as long as some
of the measurement parameters can be constrained to equality
across groups. Constraining some, but not all, measurement pa-
rameters is often called partial invariance (Byrne et al., 1989;
Steenkamp & Baumgartner, 1998). To establish partial invariance,
it is necessary to identify which parameters substantially differ
across groups. We borrow the term differential item (or indicator)
functioning" (DIF) from the item-response theory (IRT) literature
to refer to differences in measurement parameters across groups.

The CFA literature provides some guidance on the detection of
DIF, most of which involves investigation of modification indices
and expected parameter changes (Byrne et al., 1989; Steenkamp &
Baumgartner, 1998). Other proposed methods to detect DIF in-
clude fitting a series of models (e.g., releasing equality constraints
for one indicator at a time and testing Ax* compared with the fully
constrained model) and calculating a test statistic for the difference
between groups’ factor loadings (Meade & Bauer, 2007). Modifi-
cation indices approximate the change in the x? statistic if a
constraint is released so they accomplish the same goal as the
model-comparison approach without having to fit several models.
According to Byrne, Shavelson, and Muthén (1989), researchers
can release the across-groups equality constraint which has the
largest expected decrease in the x? statistic, as estimated by mod-
ification indices. For example, if the H, of metric invariance is
rejected by the data, then modification indices for constrained
factor loadings should be investigated to indicate which loadings
should be freely estimated across groups. A partial metric invari-
ance model can be identified by releasing the fewest constraints
that result in similar fit as the model with no constraints on
loadings (i.e., nonsignificant Ax? compared with the configural
model).

Limitations of Current Best Practices

The x? statistic confounds two sources of model misfit (Cudeck
& Henly, 1991; MacCallum, 2003): estimation discrepancy (due to
sampling error) and approximation discrepancy (due to a lack of
correspondence between the population and analysis models). Be-
cause configural ME/I is assessed by testing the absolute fit of the
configural model, x> for a multigroup model further confounds
two sources of approximation discrepancy; the overall lack of
correspondence between the population and analysis models could
theoretically be partitioned into (a) differences among the groups’
true population models and (b) discrepancies between each
group’s population and analysis models. It is possible (perhaps

! Although “item” typically refers to a discretely measured test item,
DIF has also been used to refer to measurement-parameter differences in
the context of continuous indicators in CFA (e.g., Gonzalez-Roma, Tomas,
Ferreres, & Hernandez, 2005; Kim & Willson, 2014), and Kline (2011, p.
253) referred to differentially functioning “indicators.” Other terms have
been used for the same phenomenon, such as measurement bias (Jak, Oort,
& Dolan, 2010; Millsap, 2011, p. 47). Byrne et al. (1989) referred to
differences in measurement parameters as noninvariance, whereas Mere-
dith (1993) avoided using a double-negative prefix by introducing the term
structural bias. Response shift in the health-related quality-of-life literature
refers to changes in measurement properties over time; this would require
extending the current method to longitudinal CFA.
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even probable) that an analysis model corresponds only approxi-
mately to the groups’ population models, yet the analysis model is
equally (in)appropriate for each group (Jorgensen, Kite, Chen, &
Short, 2017). Although overall model fit is certainly important to
assess in conjunction with tests of ME/I, the H, of configural
invariance is only concerned with group equivalence, so x> does
not truly provide a test of configural invariance.

Consider an example that helps illustrate this distinction. The
population factor loadings in Table 1 represent a four-factor CFA
model with approximate simple structure (i.e., the first four indi-
cators have high loadings only in the first factor, the second four
indicators have high loadings only on the second factor, etc.).
However, all 16 indicators have small nonzero factor loadings on
the remaining factors. If we fit a four-factor CFA without any
cross-loadings, the H,, of perfect fit would be false, and the power
to detect the discrepancy from simple structure would increase
with sample size. But suppose we measure these indicators in
samples of both men and women, and that simple structure is
approximately (but not exactly) correct in both populations. The
H, of perfect correspondence between population and analysis
models would still be false (arguably, to a degree of little practical
consequence), but the H, of configural invariance would be true
because the analysis model approximates each population’s data-
generating process equally well. A valid test of configural invari-
ance should therefore fail to reject the H,, of group equivalence
even if the H,, of perfect overall model fit were rejected. In such a
situation, we would still need to assess whether the model fits
adequately well enough to serve as a useful approximation of the
real data-generating process (i.e., whether our model makes pre-
dictions that correspond closely with observations). If model mod-
ification is deemed necessary, ruling out group differences (i.e.,
failing to find evidence against configural invariance) could sim-
plify the process, for example, by freeing parameters simultane-
ously in all groups instead of conducting independent specification
searches within each group’s model.

Table 1
Population Factor Loadings (A Matrix)
Indicator Factor 1 Factor 2 Factor 3 Factor 4
1 .68 (.54) -.03 -.02 —.11
2 76 (.62) .02 —.03 —.03
3 .74 (.60) —.04 -.03 .00
4 75 (.61) .00 —.01 .08
5 04 76 (.61) 07 00
6 —.06 56 (.41) —.03 04
7 —.08 75 (.60) 07 06
8 —.02 72 (.57) .05 —.03
9 .07 —.01 80 (.65) 00
10 —.01 —.03 58 (.43) —.02
11 —.04 06 80 (.65) .03
12 .04 .00 .39 (.24) .05
13 -.02 -.02 —.01 .65 (.51)
14 .00 —.13 —.03 .67 (.53)
15 00 .03 —.01 .59 (.45)
16 00 .03 02 .67 (.533)

Large sample sizes make (A)x” sensitive even to minute differ-
ences in model form or measurement parameters, which have little
or no practical consequence on latent parameter estimates (Bran-
nick, 1995; Meade & Bauer, 2007). Many researchers would prefer
to use an alternative fit index (AFI) to assess the approximate fit of
the configural model or to judge the similarity in approximate fit
between nested models. AFIs could be thought of as measures of
effect size or “practical” significance—indicating the degree to
which a model’s predicted values deviate from observed values—
that accompany the test of statistical significance provided by
(A)x>. Researchers often (Putnick & Bornstein, 2016) find it
justifiable to use a theoretically derived model whose predictions
approximate observations quite closely, even if the small discrep-
ancies are statistically significant, and multiple AFIs could be used
to characterize this approximation in different ways. Putnick and
Bornstein’s (2016) review of 126 articles over a 1-year period
indicates that only 17% of ME/I tests are decided by (A)x? alone,
whereas 46% also involve at least one AFI, and 34% are decided
using AFIs alone.

Dozens of AFIs have been proposed since the early 1970s, but
we will focus only on the few that have been recommended for use
in assessing ME/I: the comparative fit index (CFI; Bentler, 1990),
McDonald’s (1989) centrality index (Mc), the root mean square
error of approximation (RMSEA; Steiger & Lind, 1980), and the
standardized root-mean-square residual (SRMR; Bollen, 1989, p.
258). CFI was reported for 73.2% of ME/I tests, making it the most
popular AFI in this context (Putnick & Bornstein, 2016). AFIs
reflect overall discrepancies between observed and model-implied
sample moments, so using them to assess configural invariance
would confound group equivalence with overall misfit, just like
(A)x>. In the example above (involving the parameters in Table 1),
suppose the x? test was significant and that the CFI and RMSEA
did not meet the conventional criteria for acceptable approximate
fit. The H,, of configural invariance is still true, and failing to reject
the H,, of group equivalence would imply that model modification
would be required for all groups, not just one group. AFIs have
additional limitations, some of which are discussed below.

Most AFIs do not have known sampling distributions,” so eval-
uating the fit of a configural model involves some subjective
decisions (e.g., which fit indices to use, what values indicate
acceptable fit), often using arbitrary rules of thumb (e.g., Mc > .90
or SRMR < .08; Hu & Bentler, 1999). Sometimes there are
conflicting recommendations based on different criteria. For ex-
ample, Bentler and Bonett (1980) suggested® CFI > .90 indicates
good fit, yet Hu and Bentler (1999) recommended CFI > .95 as a
stricter criterion. Browne and Cudeck (1992) suggested RMSEA <
.05 indicates close fit, RMSEA < .08 indicates reasonable fit, and
RMSEA > .10 indices poor fit (RMSEA between .08-.10 indi-
cates mediocre fit; MacCallum, Browne, & Sugawara, 1996); yet
Hu and Bentler (1999) recommended RMSEA < .06 as a stricter
criterion. According to an August, 2016 Google Scholar search,
Hu and Bentler’s (1999) criteria seem to be more widely applied

Note. For conditions with eight indicators per factor, As in parentheses
were used as population parameters, and s for Indicators 17-32 were
identical to As for Indicators 1-16. Bold indicates indicators with DIF when
investigating power for metric and scalar invariance. Cells with only one
value (near zero) are minor discrepancies from simple structure (approxi-
mation error).

2 A notable exception is RMSEA. See an excellent discussion by Kenny,
Kaniskan, and McCoach (2015).

3 CFl itself was not proposed until 1990, but Bentler and Bonett’s (1980)
recommendation applied to incremental fit indices in general, of which CFI
is the most popularly applied in the context of ME/I (Putnick & Bornstein,
2016).
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(34,425 citations) than Bentler and Bonett’s (1980) (13,632 cita-
tions) or Browne and Cudeck’s (1992) (2,774 citations).

Cutoff criteria for change (A) in AFIs to compare nested models
(e.g., metric or scalar equivalence) have also been proposed.
Cheung and Rensvold (2002) recommended ACFI > —.01 or
AMc > —.02 based only on controlling Type I error rates. Meade,
Johnson, and Braddy (2008) recommended ACFI > —.002 to yield
greater power, and provided variable cutoffs for AMc based on the
number of indicators and factors. Under different simulation con-
ditions, Chen (2007) recommended a general ACFI > —.005 for
metric and scalar equivalence, but recommended ranges of
ASRMR between .005 and .03 or ARMSEA between .005 and .015
depending on sample size, sample size ratio, and whether metric or
scalar equivalence was tested. Putnick and Bornstein (2016) did
not report the frequency with which these different criteria were
used, but an August, 2016 Google Scholar search suggested that
Cheung and Rensvold’s (2002) criteria (4,594 citations) have been
applied more often than Chen’s (2007) (1,144 citations) or Meade
et al.’s (2008) (343 citations).

The problem with using fixed cutoffs, even as mere rules of
thumb, is that they ignore conditions specific to the study, such as
sample size (and by implication, sampling error), number of
groups, sample size ratios, number (and pattern) of indicators and
factors, magnitude of population parameters, number and magni-
tude of omitted variables and parameters from the analysis model,
data distributions, and so forth (Cheung & Lau, 2012; Pornpraser-
tmanit, Wu, & Little, 2013). Even when Chen (2007) or Meade et
al. (2008) provided variable cutoffs to accommodate some of these
factors, they could only provide recommendations for the condi-
tions they investigated, which might differ from an applied re-
searcher’s situation (e.g., like Cheung & Rensvold, 2002, they
simulated only two groups). And although they recommended
constant (yet conflicting) ACFI cutoffs, these cutoffs fail to control
Type I errors because even when the expected values AAFIs are
not sensitive to N, the larger sampling variance at smaller N yields
a greater probability of rejecting a true H, (see Marsh, Hau, &
Wen, 2004). Fixed cutoffs can also lead to the apparent paradox
that larger samples yield lower power, which occurs when the
(A)AFI cutoff is more extreme than the population-level (A)AFL*

Limitations of DIF Detection Method

A body of literature (e.g., French & Finch, 2008; MacCallum,
Roznowski, & Necowitz, 1992) has demonstrated that data-driven
rather than theory-driven use of modification indices leads to
models that are overfit to nuances of sample data, rather than to
models that generalize to new samples from the same population.
Using modification indices to detect DIF in the absence of theo-
retical guidance, researchers must screen indicators one-by-one for
DIF, rather than freeing all indicators flagged for DIF in the full
metric invariance model (Yoon & Kim, 2014). Because this pro-
cedure might involve multiple steps, preventing the inflation of
Type I error rates requires a Bonferroni-like correction to the o
level (French & Finch, 2008). This has implications for loss of
power: The number of indicator parameters to test increases with
the number of indicators,” and the number of constraints per
parameter increases with the number of groups. If one were to
divide the overall a level by the total number of modification

indices to be inspected, preventing inflation of Type I errors would
yield unacceptably high Type II error rates.°

Analogously, a Bonferroni correction is not the preferred method of
controlling Type I errors following a significant ANOVA when there
are several groups. Rather, a less conservative approach (e.g., Tukey
or Schefté tests) would still control Type I error rates but would yield
greater power to detect group differences. A similar method would be
desirable in the context of detecting DIF, and in the next section we
show how permutation provides a method with these desirable char-
acteristics. We begin with a brief introduction to permutation tests in
general.

Permutation Randomization

When a theoretical distribution of a statistic is unavailable for
null-hypothesis significance testing, it is possible for researchers to
use a resampling method to create an empirical sampling distribu-
tion from their observed data. Rodgers (1999) provided a useful
taxonomy of resampling methods. One method that can be used to
create an empirical approximation of a sampling distribution is the
permutation randomization test. A current disadvantage of permu-
tation tests (and of resampling methods in general) is the increased
computing time needed to form empirical distributions by resam-
pling the data hundreds or thousands of times and applying the
same statistical procedure (e.g., fitting the same models) to each of
the permuted data sets. But the advantage of permutation tests is
their flexibility. If a method of resampling the data can be con-
ceived such that a H, is known to be true (in the permutation
distribution), then reference distributions can be empirically ap-
proximated for statistics whose sampling distributions are un-
known or intractable.

A simple example of a permutation test is to compare two group
means. An independent-samples ¢ test can be conducted under
assumptions of independence, normality, and homoscedasticity,
using student’s ¢ distribution with the appropriate degrees of free-
dom to calculate the probability (i.e., the p value) of a ¢ statistic at
least as extreme as the observed one, on the condition H, is true.
If the data are not approximately normally distributed, the theo-
retical ¢ distribution is no longer an accurate representation of how
the ¢ statistic truly varies across samples from the same population,

* Population-level (A)AFIs can be obtained by fitting the analysis mod-
el(s) to the population moments, or can be estimated from the average
(A)AFI across Monte Carlo samples.

> Methods could be used to reduce the number of follow-up tests, rather
than investigating all possible items. For example, French and Finch (2008)
and Woods (2009) propose ways of identifying sets of invariant indicators,
and Millsap and Olivera-Aguilar (2012) proposed measures of effect size
that could be used to narrow down indicators with substantial DIF.

¢ Cheung and Lau (2012) described a method to define differences
between groups’ measurement parameters as functions of other model
parameters. Differences can then be tested using bias-corrected bootstrap
confidence intervals, although the confidence level also requires a
Bonferroni-like correction. Asparouhov and Muthén (2014) developed
an alignment technique similar to rotation of an EFA solution, but
freely estimated factor loadings in the configural model are transformed
using an algorithm that assumes most indicators are invariant and few
indicators (but more than zero) have substantial DIF. The alignment
method also requires using a very conservative « level (e.g., o = .001),
although they do not recommend employing a Bonferroni correction
because large numbers of pairwise comparisons render tests too con-
servative.
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leading to incorrect p values and thus Type I error rates that are
inflated or deflated relative to the specified a level. Although in
practice the ¢ test is robust to moderate departures from normality,
the true shape of the statistic’s sampling distribution under H,, is
generally unknown for nonnormal populations. The sampling dis-
tribution can be empirically approximated using resampling meth-
ods such as Monte Carlo simulation, permutation, or bootstrapping
(Rodgers, 1999).

The logic of the permutation test is related to the use of random
assignment in experimental designs. Random assignment of sub-
jects to two groups will average out any between-groups differ-
ences, so that on average, group mean-differences would be zero,
resulting in two comparable groups before administering different
treatments. Due to sampling fluctuation, observed differences will
not be exactly zero after any single random assignment, but dif-
ferences will be zero on average across replications of random
assignment. Capitalizing on this effect of randomization, when a
set of observed outcome scores (Y) is randomly (re)assigned to the
two different observed groups (natural” or experimental), any
existing between-groups differences would be zero, on average.

To accomplish this, the grouping variable (G) can be resampled
without replacement and paired with values on the dependent
variable (Y). The resulting randomization is a single permutation
(reordering) of the data. Because H,: ., — p, = 0 is true (i.e., the
groups do not systematically differ in a permuted data set), the
calculated ¢ value is one observation from a theoretically infinite
population of ¢ statistics that could be calculated under the H,, of no
group mean difference. Repeating this process 100 times results in
a distribution of 100  statistics under H,, one ¢ value from each
permutation of the data. As the number of permutations increases,
the shape of the empirical distribution of the ¢ values will become
a closer approximation of the true, but unknown, sampling distri-
bution. Using the empirical approximation of the sampling distri-
bution under H,,, a researcher can calculate a good approximate p
value by determining the proportion of the permutation distribu-
tion that is more extreme than the 7 value calculated from the
original, unpermuted data.

The value of permutation methods lies in their flexibility. With
multiple groups, ANOVA'’s F statistic can be permuted to test the
omnibus H,,, and permutation can also be used to control the Type
I error rate for post hoc pairwise comparisons (see Higgins, 2004).
For example, if there are four groups, then there are six possible
pairwise comparisons to test whether the omnibus H,, is rejected.
Assuming H,, is true (i.e., a Type I error was made), then main-
taining a nominal Type I error rate in the follow-up tests would
entail choosing a critical value such that only the largest among the
six absolute differences would be rejected in (¢ X 100)% of
samples. This is the motivation behind Tukey’s honest significant
difference (HSD) post hoc procedure:® Instead of comparing a ¢
statistic for each mean difference to a ¢ distribution, each  statistic
is compared with a critical value from the studentized range
distribution, which takes into account how many ¢ statistics are
being tested simultaneously. Permutation methods can approxi-
mate a similar distribution by calculating all possible pairwise
mean-differences at each permutation, saving only the largest in
absolute value. Then p values can be calculated for each observed
mean-difference by calculating the proportion of the permutation
distribution that exceeds the absolute value of the observed mean-
difference.

JORGENSEN, KITE, CHEN, AND SHORT

Permutation methods have recently been developed in the con-
text of factor analysis and structural equation modeling (SEM).
These include testing the contribution of each variable to a solution
in principle components analysis (Linting, van Os, & Meulman,
2011), detecting switched latent-class labels in simulation studies
involving finite mixture models (Tueller, Drotar, & Lubke, 2011),
and testing residual correlations among adjacent questionnaire
items (Hildreth, Genschel, Lorenz, & Lesser, 2013). We propose a
permutation method for testing ME/I and detecting DIF, which are
simple extensions of the examples above.

Permutation tests of ME/I

Randomly permuting group assignment yields resampled data
for which the H, of group equivalence is true. The steps to test
configural ME/I are similar to the permutation test of means
described above:

1. Fit the hypothesized multiple-group model(s) to the orig-
inal data, and save the fit measure(s) of interest.

2. Sample N values without replacement from the observed
grouping-variable vector G. The new vector G g, ;, con-
tains the same values as G, but in a new randomly
determined order (i.e., Ge.m(;) 18 @ permutation of G).

3. Assign the nth row of the original data to the nth value
from the new group vector G- On average, group
differences are removed from this ith permuted data set.

4. Fit the same multiple-group model from Step 1 to the
permuted data, and save the same fit measure(s).

5. Repeat Steps 2—4 [ times, resulting in a vector of length
I for each fit measure.

6. Make an inference about the observed fit measure by
comparing it with the vector of permuted fit measures.

Step 6 can be accomplished in either of two ways, yielding the
same decision about H:

e Calculate the proportion of the vector of permuted fit

measures that is more extreme (i.e., indicates worse fit or

a greater decrement in fit) than the observed fit measure.

This is a one-tailed p value® that approximates the prob-

ability of obtaining a fit measure at least as poor as the

observed one, if the H, of ME/I for all groups holds true.
Reject Hy if p < a.

e Sort the vector of permuted fit measures in ascending

order for badness of fit measures like x%, SRMR, or

7 The exchangeability assumption might be violated for natural groups
(Hayes, 1996), which we bring up in the Discussion.

8 Also referred to as Tukey’s wholly significant difference (WSD)
procedure.

9 An exact p value could be calculated from all possible permutations of
group assignment; however, this would become computationally intracta-
ble as the sample size or number of groups increases. For example, with
only 50 people in each of two groups, the number of possible permutations
would be on the order of 3.07 X 10°® (not quite a googol, but pretty big).
However, the p value calculated from a large random sample of all possible
permutations is a good estimate of the exact p value.



n or one of its allied publishers.

ghted by the American Psychological Associa

This document is copyri

°r and is not to be disseminated broadly.

This article is intended solely for the personal use of the individua

PERMUTATION INVARIANCE 713

RMSEA; or sort in descending order for goodness of fit
indices like CFI or Mc. Use the [100 X (1 - a)]th percen-
tile as a critical value, and reject H,, if the observed fit
measure is more extreme than the critical value.

Testing metric, scalar, or strict ME/I entails the same steps, but
the nested (restricted and unrestricted) models are both fit at Steps
1 and 4, and differences in fit measures are saved (e.g., Ax*> =
Xrestricted — Xunrestricteds OF AAFT = AFTiciea = AFlunrequicted)-

Because permutation removes group differences (on average)
without altering the structure among the variables in any other
way, this method provides a simple framework to test configural
ME/T separately from overall model fit. Randomly reassigning
observations to groups results in samples whose patterns in their
covariance matrices (i.e., which variances are larger than others,
which variables are most or least strongly correlated, the direction
of correlations) are consistent across groups, on average. Irrespec-
tive of whether the hypothesized model can reproduce those ob-
served patterns perfectly, approximately well, or poorly, the model
is expected to fit equally well (or equally poorly) in all groups in
a permuted data set. Thus, the permutation distribution of a fit
measure (x> or any AFI) reflects the fit of the model to all groups,
on the assumption that all group structures are equivalent. If the H,,
of equivalent structures across groups is true, then the observed fit
measure would only rarely (defined by the specified a level) be
inconsistent with the values in the permutation distribution. How-
ever, if the groups’ structures substantially differ, then the ob-
served fit measure would be inconsistent with the values in the
permutation distribution of that fit measure. Naturally, the power
to detect the inconsistency between group structures would depend
on the degree of inconsistency, the sample size, and the test
criterion (defined by «).

Furthermore, permutation provides empirical sampling distribu-
tions of (A)AFIs, which generally have unknown sampling distribu-
tions. Researchers using permutation methods would not need to rely
on fixed cutoff criteria proposed from studies whose simulated con-
ditions might not closely resemble their own data and model(s), such
as ACFI < —.01 (Cheung & Rensvold, 2002), ACFI < —.005 (Chen,
2007), or ACFI < —.002 (Meade et al., 2008). As we demonstrate
using simulation studies, none of these fixed rules-of-thumb consis-
tently control Type I error rates. In contrast, permutation distributions
implicitly take into account the unique qualities of the data and
model(s) under consideration. Because model fit is unaffected by the
method of identifying the location and scale of the latent construct(s),
results of the permutation method are independent of whether a
researcher chooses to use a standardized metric, a marker/reference
variable, or effects-coding (Little, Slegers, & Card, 2006).

Permutation Tests of DIF

Assuming a well-fitting model and no evidence against the H,
of configural invariance, researchers may find evidence against the
H,, of more restrictive levels of ME/I in subsequent steps, which
would be evidence that not all measurement parameters are equiv-
alent across groups. For example, if adding the constraint of equal
factor loadings across groups causes fit to deteriorate enough for
Ax? to be significant, then that would constitute evidence against
the H, of metric ME/I. Researchers wishing to establish partial
ME/I must choose which indicator parameter to freely estimate
across groups before permuting groups again to compare, for

example, a partial metric invariance model to the configural
model. Because this typically entails looking at multiple modifi-
cation indices from the restricted model fit in Step 1, the same
indices can be saved for permuted data in Step 4, resulting in an
empirical distribution of each modification index under H,,. How-
ever, simultaneously testing multiple modification indices in-
creases the probability of committing a Type I error (falsely
concluding that DIF is present more often than a predetermined
acceptable error rate: o). Even under a false omnibus H,,, the error
rate would still be inflated for follow-up tests whenever there is
more than one true H, about individual parameters.'®

Although a Bonferroni-adjusted a level can be used to control
familywise Type I errors (French & Finch, 2008; Jak et al., 2010),
a method like Tukey’s HSD is likely to be more powerful when the
number of indicators or groups is large. Using the same logic
behind Tukey’s studentized range distribution, we desire a method
that behaves as follows. When the omnibus H,, is true, any mod-
ification index judged to be significant would constitute a Type I
error. In some samples, multiple modification indices (i.e., multi-
ple potential Type I errors) could be significant. In principal, in a
sample with at least one potential Type I error, the largest modi-
fication index must be among them, whereas in a sample with only
one potential Type I error, the largest modification index must be
the one that results in that error. This implies that if we were to use
a test criterion that only committed a Type I error in (100 X a)%
of samples (by detecting the largest modification index to be
significant under a true H,), then any smaller modification indices
would be detected as significant in no more (and probably fewer)
than (100 X a)% of samples. Such a test criterion would therefore
keep the familywise Type I error rate at the nominal « level.

Permutation again provides a simple framework to accomplish
this. At Step 4, instead of saving all modification indices of interest
from a permuted data set, save only the largest among that set (e.g.,
if the omnibus H,, of metric invariance is rejected, save the largest
modification index involving equality-constrained factor load-
ings). The resulting distribution of the largest modification index
observed under H,, provides a p value or critical value that implic-
itly adjusts for the number of indices tested, as described in the
previous paragraph.

Monte Carlo Simulations

To evaluate the permutation methods proposed in the previous
section, we present results from a series of small-scale simulation
studies. They are organized in an order that mimics the procedure
of testing ME/I in practice. The first two simulation studies in-
volved testing configural invariance when H,, is true (to ascertain
Type I error rates) and false (to estimate power). The next simu-
lations ascertained rejection rates (i.e., Type I error rates when H,
is true, power when H,, is false) of omnibus tests of metric and
scalar invariance. In cases when full metric or scalar invariance is
deemed untenable, partial invariance could be established by test-
ing individual indicators for DIF. Thus, the final simulation studies
investigated rejection rates for modification indices associated
with across-group constraints in factor loadings or intercepts.

' This is analogous to the failure of Fisher’s LSD post hoc test to
control Type I error rates following a significant omnibus F test in
ANOVA.
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We designed each simulation study to compare H, rejection
rates between permutation methods and currently recommended
practices under a variety of conditions. To demonstrate whether
permutation methods could supplant currently recommended cut-
offs for (A)AFIs, we chose conditions that partially replicated
those of Meade et al. (2008)."" We present all of our design factors
here, at least two of which are manipulated in each small-scale
study.

Monte Carlo Design Factors

We used R (R Core Team, 2016) to generate multivariate
normal data and the R package lavaan (version 0.5-20; Rosseel,
2012) to fit models to simulated data. The analysis models in-
cluded CFA models with varying levels of ME/I constraints (con-
figural, metric, and scalar), as well as an appropriate null model for
calculating CFI (see Widaman & Thompson, 2003). Using la-
vaan’s default settings, the scales of the latent factors were iden-
tified by fixing the first factor loading (which was always invariant
across groups in each condition) to one, and the latent means were
fixed to zero (except in the scalar model, in which Group 1’s latent
mean was fixed to zero, but Group 2’s latent mean was freely
estimated). Rather than using the default independence model (i.e.,
constrain all covariances to zero, but freely estimate all variances
and means separately in each group), we constrained variances and
means to equality across groups, so that the null model would be
nested within all CFA models.'?

Based on Meade et al. (2008), we varied sample size (N) in each
of two groups across five levels: 100, 200, 400, 800, and 1,600 per
group. We excluded Meade et al.’s asymptotic condition (N =
6,400 per group). We varied model complexity via number of
factors (two or four) and number of indicators per factor (four or
eight), using the same population values for factor loadings as
Meade et al. (see Table 1) so that overall scale reliability was
constant across conditions. Although the model has simple struc-
ture, Meade et al. sampled nonsalient cross-loadings (normal with
p = 0, o = 0.05) to include approximation discrepancy, the
presence of which prevents a traditional x> test or AFI from
assessing configural invariance independently from overall model
fit.'*> We fixed all intercepts to zero (except in DIF conditions,
discussed next), factor means to zero, factor variances to one,
factor correlations to 0.3, and residual variances to values that
would set total indicator variances to one (i.e., standard normal
variables) when DIF was absent.

Based on Meade et al. (2008), we varied lack of invariance
(LOI) independently for configural, metric, and scalar models.
Like Meade et al. we simulated metric or scalar LOI by manipu-
lating the magnitude of DIF between 0 and 0.4 for both factor
loadings and intercepts.'* However, we used increments of 0.1
instead of 0.02, preferring to simulate more replications in fewer
conditions. In contrast to Meade et al.’s 500 replications per
condition, we simulated 2,000 replications to minimize Monte
Carlo sampling error of estimated rejection rates and critical val-
ues. In each DIF condition, the magnitude of DIF was subtracted
from Group 2’s loading or intercept of the first bolded indicator
per factor in Table 1, and the same magnitude of DIF was added
to Group 2’s second bolded indicator per factor in Table 1; thus,
the total number of differentially functioning indicators varied
with the number of factors, but the proportion of indicators with

DIF was constant (25%). Residual variances remained constant
across all conditions, so total variances of differentially function-
ing indicators could differ from 1.0 when DIF >0.

Whereas Meade et al. (2008) simulated configural LOI by
adding additional factors to Group 2’s population model (resulting
in dozens of different population models), we simply changed one,
two, three, or four of the zero (or nonsalient) parameters in Group
2’s population model. The first level of configural LOI was to
change factor loading A5, from 0.04 to 0.7. The second level was
to make the same change to A5, and to add a residual covariance
(65, = 0.2). The third level made the same additions and changed
N\, from —0.03 to 0.7, and the fourth level also added another
residual covariance (6g, = 0.2). These levels of configural LOI
were arbitrary, but they only needed to serve as a basis for
comparing the power of different methods to detect the same lack
of correspondence between the groups’ population models.

In all conditions, / = 200 permutations were used to calculate p
values associated with (A)AFIs, as well as their critical values at
a = .05. Although applied researchers should use at least 1,000
permutations to reduce Monte Carlo sampling error of an esti-
mated p value, we were concerned only with rejection rates across
2,000 replications, not with the precision of a single replication’s
approximate p value. We conducted a preliminary study (not
presented here) to verify that rejection rates were similar using p
values calculated from 200 permutations and 10,000 permutations.
We now present results of each small-scale simulation, preceded
by a description of the conditions of that study and the research
questions it was designed to answer.

Testing Configural Invariance

Our first simulation study was designed to demonstrate how
often the traditional x? (or AFI rule of thumb) would reject a true
H, of configural invariance under various conditions (see also
Jorgensen et al., 2017). Because the population models included
minor approximation discrepancy in the form of near-zero cross-
loadings, the configural model did not fit perfectly even to the
population data; thus, a traditional tests of configural invariance
would confound overall model fit with group equivalence. We fit
the configural model to population moments of both groups in
each condition, and we provide population-level fit measures in
Table 2 to verify that the approximation error was minor. The
expected power of x? (calculated using the method described in

' Although there were other studies available to partially replicate, we
did not choose Cheung and Rensvold’s (2002) design because they inves-
tigated only Type I error rates. Although Chen (2007) also investigated
power, she only manipulated the number of indicators, whereas Meade et
al. (2008) manipulated numbers of both indicators and factors. Meade et al.
also included approximation discrepancy (as did Cheung & Rensvold,
2002), whereas Chen (2007) did not, and this feature is required to
demonstrate the effectiveness of the permutation method for testing con-
figural invariance.

2 In practice, it would only be necessary to constrain variances across
groups if strict invariance were also tested, which we did not do in our
simulations.

'3 When the analysis model perfectly corresponds to the population
model, asymptotically nominal Type I error rates for the x* are well
documented. Furthermore, we consider perfect fit to be unrealistic in
practice, so we do not simulate data under that condition.

14 Meade et al. (2008) only varied LOI between 0 and 0.3 for intercepts.
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Table 2
Fit Measures for Configural Model Fit to Population Data When H,, Is True
2 Factors 4 Factors
Fit measure N per group 4 Indicators (df = 38) 8 Indicators (df = 206) 4 Indicators (df = 196) 8 Indicators (df = 916)
x? (power) 100 4.37 (13%) 6.34 (9%) 20.53 (26%) 29.64 (17%)
200 8.75 (25%) 12.67 (16%) 41.05 (61%) 59.28 (39%)
400 17.49 (54%) 25.34 (33%) 82.11 (97%) 118.57 (84%)
800 34.98 (92%) 50.69 (74%) 164.21 (100%) 237.14 (100%)
1,600 69.97 (100%) 101.38 (99%) 328.42 (100%) 474.27 (100%)
CFI =800 1 1 1 1
1,600 .996 1 991 1
Mc =800 =1 =] =1 =1
1,600 .995 =1 980 =1
RMSEA =800 0 0 0 0
1,600 .023 0 .021 0
SRMR =1,600 .023 .029 .020 .024
Note. CFI = comparative fit index; Mc = McDonald’s (1989) centrality index; RMSEA = Root mean square error of approximation; SRMR =

standardized root-mean-square residual. Power for x? calculated using method described in Satorra and Saris (1985).

Satorra & Saris, 1985) varied widely (9%-100%) depending on N
and model complexity, but all AFIs showed excellent approximate
fit according to Hu and Bentler’s (1999) criteria.

We used a 5 (N) X 2 (two or four factors) X 2 (four or eight
indicators per factor) design, holding LOI constant at zero. We
expected Type I error rates to be inflated beyond 5%, and for these
rates to increase with sample size. We had no specific hypotheses
using fixed cutoffs for AFIs, but because fixed cutoffs do not take
sampling variability or model complexity into account, we ex-
pected results to vary across Ns and model sizes. Because permu-

tation only removes group differences, we expected nominal Type
I error rates in all conditions for all fit measures, which would
indicate a valid test of configural invariance that is independent of
overall model fit.

Results. As expected, using the traditional x> test of exact
fit to test configural invariance resulted in extremely high Type
I error rates. Figure 1 confirms that even in the condition with
the smallest N and model, Type I errors were almost 20%,
approaching 100% as N increased. For larger Ns, rejection rates
matched the expected power using the Satorra and Saris (1985)
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Figure 1. Type I error rates for x* and permutation test of configural invariance, as well as expected power of

the x* using the Satorra and Saris (1985) method. The dotted gray line indicates the nominal error rate (5%).
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method, but rejection rates were inflated at smaller N, espe-
cially in larger models, consistent with previous research dem-
onstrating small-sample bias of x? (Nevitt & Hancock, 2004).
In contrast, the permutation method provided nominal Type I
error rates across conditions.

Using AFIs to assess approximate fit of the configural model
only appeared to yield inflated Type I errors under small-N con-
ditions, but that depended heavily on the size of the model and on
which rule of thumb was used. Figure 2 shows that for the smallest
model, fixed cutoffs for CFI almost always resulted in no Type I
errors. With either additional factors or additional indicators, using
Hu and Bentler’s (1999) criterion inflated the Type I error rates
when N = 100 per group. For the largest model, even Bentler and
Bonett’s (1980) less stringent criterion resulted in over 80% Type
I errors at N = 100 per group. Similar results were found for other
AFI guidelines'®> (RMSEA, SRMR, and Mc). In contrast, permut-
ing CFI (or any AFI) maintained nominal Type I error rates across
all conditions.

Power Analysis

Having established that permutation provides more consistent
control of Type I error rates than x> or AFI rules of thumb
across a variety of conditions, we next investigated whether
power to detect LOI using permutation is comparable to using
x> or AFI cutoffs. We used a 5 (N) X 4 (LOI) design, holding
model complexity constant (four indicators for each of two
factors, the condition in which fixed cutoffs for CFI
showed =5% Type I errors). We expected permutation to have
lower power than x?, which already had high rejection rates
when H,, was true. Given that Type I error rates for AFI cutoffs
were typically close to zero for this particular population
model, we had no specific hypotheses about how their power
would compare to power using permutation, but we did expect
lower power with increasing N in conditions where population
AFIs (displayed in Table 3) met guidelines for acceptable fit.

Results of power analysis. Figure 3 confirms our expectation
that x> had the highest power to detect LOI, particularly at the
lowest level of LOI and the smallest N. But as Figure 1 shows, the
greater power came at the expense of high Type I errors because
x> tests overall model fit rather than configural invariance alone.
Hu and Bentler’s (1999) more stringent criterion (CFI > .95)
yielded power almost as high as x>, whereas Bentler and Bonett’s
(1980) less stringent criterion (CFI > .90) yielded lower power
that decreased as N increased in conditions where only one or two
salient population parameters differed between groups. This ap-
parent contradiction occurs because the population CFI > .90 in
those conditions (see Table 3), so less sampling variance resulted
in fewer model rejections (Marsh et al., 2004). The online supple-
mentary materials shows the same pattern of results for other AFIs
(RMSEA, SRMR, Mc).

Permutation yielded inadequate power to detect the smallest
amount of LOI (i.e., when a single parameter differs between
populations), unless N = 800 per group. Adequate power to detect
greater LOI was achieved at smaller N. The permuted x* tended to
have greater power than permuted CFI, but the discrepancy was
small when N and LOI were large. Permuted RMSEA and Mc
(depicted in online supplementary materials) had power similar to
the permuted x?, but permuted SRMR had consistently low power.

Testing Invariance of Sets of Model Parameters

To investigate Type I error rates when testing metric invariance,
we used a 5 (N) X 2 (two or four factors) X 2 (four or eight
indicators per factor) design, holding DIF constant at zero. We
expected nominal Type I error rates for the traditional and per-
muted Ax?, and we also expected permutation of AAFIs to main-
tain nominal Type I error rates. Because fixed critical values for
AAFIs do not take sampling error into account, we expected Type
I error rates to vary across Ns and model sizes. Our design and
hypotheses for scalar invariance were the same as for metric, but
results were so similar that we present scalar invariance results
only in the online supplemental materials.

Results. Figure 4 confirms that Type I error rates were well
controlled across conditions for the traditional (with some small-
sample bias apparent in the larger models) and for permuted Ax?.
As expected, Figure 5 shows that permuting ACFI also maintained
nominal Type I error rates, but fixed critical values did not provide
consistent Type I error rates. Cheung and Rensvold’s (2002)
critical value (ACFI = —.01) yielded Type I error rates =5% only
when N = 200 per group; Chen’s (2007) critical value
(ACFI = —.005) yielded Type I error rates =5% only when N =
400 per group; and Meade et al.’s (2008) critical value
(ACFI = —.002) yielded Type I error rates =5% only when N =
800 per group. It is noteworthy that Cheung and Rensvold (2002)
established critical value based only on controlling Type I error
rates,'® and theirs resulted in the fewest Type I errors. Chen (2007)
and Meade et al. (2008) in contrast, developed guidelines with the
intent of increasing power to detect LOI, and their guidelines
resulted in highly inflated error rates unless N was large.

To demonstrate why permutation maintains nominal error
rates across conditions, we plotted the observed 95th percentiles
from the Monte Carlo distribution in each condition (dashed
lines in Figure 6). Because the Monte Carlo distribution is an
approximation of the true sampling distribution of ACFI, these
critical values are the gold standard. For each replication, we
saved the 95th percentile of the permutation distribution, and
we calculated the average of these percentiles in each condition
(solid lines in Figure 6). The close correspondence of the black
lines in Figure 6 illustrate that permutation provides an unbi-
ased estimate of the “true” critical value in a particular condi-
tion, yielding nominal Type I error rates. The intersection of
each gray dotted line with the black lines indicates under which
condition that fixed critical value might yield nominal Type I
error rates in practice.

Cheung and Rensvold’s (2002) AMc critical value
(AMc = —.02) yielded similar Type I error rates in each
condition as their ACFI critical value. Meade et al. (2008)
provided variable AMc cutoffs across a range of models; their
guidelines for models in the current study were approximately
AMc > —.007, which yielded Type I error rates =<5% only
when N = 400 per group (see Figure 7). Permuting AMc
yielded nominal error rates across conditions. Chen’s (2007)

'3 Although not depicted here, supplementary figures are available in an
online appendix.

16 Cheung and Rensvold (2002) used 99th percentiles to choose cutoffs,
corresponding to & = 1%, so even 5% is an inflated Type I error rate by
that criterion.
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Figure 2. Type I error rates for CFI using fixed and permutation-based critical values. The dotted gray line

indicates the nominal error rate (5%).

guidelines for ASRMR and ARMSEA yielded Type I error rates
below 5% in all conditions (shown in online supplemental
materials), with the exception that ARMSEA yielded 10% Type
I errors when N = 100 per group in the two-factor, four-
indicator condition. Again, permuting ASRMR and ARMSEA
controlled Type I error rates well in all conditions.

Power Analysis

Having established that permutation provides more consistent
control of Type I error rates than Ax? or fixed critical values for
AAFIs across a variety of conditions, we investigated power to
detect DIF. We used a 5 (N) X 4 (DIF) design, holding model
complexity constant (four indicators for each of two factors, the
condition in which fixed cutoffs for ACFI and AMc showed the
least inflation of Type I errors). We expected Ax? to have similar
power as the permuted Ax? and permuted AAFIs, given their
similar rejection rates when H,, was true. We expected fixed AAFI
cutoffs to have low power when the population AAFI met criterion
for good fit (see Table 4), but to have higher power than per-
muted AAFTs in conditions where Type I error rates were high,
such as when N was small and Chen’s (2007) and Meade et al.’s
(2008) criteria were used. As with the investigation of Type I
error rates, we used the same design and held the same hypoth-
eses for scalar invariance as for metric, but we present only the
result for metric invariance because scalar results are so similar.
Results for scalar invariance are available in the online supple-
mental materials.

Results of Power Analysis

Figure 8 shows that power is nearly identical for the tradi-
tional and permuted Ax?, as well as for any permuted AAFIL
Power to detect negligible DIF (0.1) is low when N = 100 per
group, but approaches 100% when N = 1,600 per group. For
small DIF (0.2), the power =80% when N = 400 per group.
Power to detect moderate (0.3) or large DIF (0.4) exceeds 80%
when N = 200 or 100 per group, respectively.

Using fixed cutoffs for AAFIs, on the other hand, only
provides a power advantage when sample sizes are small, which
is when those cutoffs also yield inflated Type I error rates.
Figure 9 shows that ACFI’s power does not increase apprecia-
bly with N, as one would expect from a test based on a sampling
distribution. As expected, Meade et al.’s (2008) criterion pro-
vides higher power to detect negligible DIF than permutation
when N = 400 per group, as does Chen’s (2007) criterion when
N = 100 per group. However, the power of fixed cutoffs
increases very little with N, so permutation provides greater
power than fixed cutoffs with larger N. For negligible DIF,
power actually decreases with N when using Cheung and Rens-
vold’s (2002) or Chen’s (2007) criteria; Cheung and Rensvold’s
(2002) criterion yields decreasing power even when DIF = 0.2.
For moderate and large DIF, power curves are similar using
permutation or fixed critical values.

We provide figures for additional AAFIs in the online supple-
mental materials, which show similar patterns when comparing the
power curves of permuted AMc to those of Cheung and Rens-
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Table 3
Fit Measures for Configural Model Fit to Population Data
When H,, Is False

Lack of invariance
(additional parameters in Group-2 model)

Fit measure N per group 1 2 3 4
Xir-38 100 40.50 50.11 70.30 80.93*
200 80.99  100.21 140.59 161.86
400 161.99  200.43 281.18 323.72
800 323.98  400.86 562.37 647.43
1,600 647.96  801.71 1124.74  1294.87
CFI 100 .995 976 941 924
200 .959 942 912 .896
400 .943 926 .899 .884
800 935 919 .893 .878
1,600 932 916 .890 875
Mc 100 .994 970 922 .898
200 948 925 .880 .857
400 925 903 .859 .836
800 915 .893 .849 .827
1,600 .909 .888 .844 .822
RMSEA 100 .026 .056 .092 .106
200 .075 .090 116 128
400 .090 .103 126 137
800 .097 .109 131 142
1,600 .100 112 134 .144
SRMR =1,600 .058 057 .061 .059

Note. CFI = comparative fit index; Mc = McDonald’s (1989) centrality
index; RMSEA = Root mean square error of approximation; SRMR =
standardized root-mean-square residual. Power for x> > 99%, unless
otherwise indicated.

2 Power for x> > 96%.

vold’s (2002) and Meade et al.’s (2008) criteria for AMc, as well
as between Chen’s (2007) ARMSEA criteria and permuted
ARMSEA. However, Chen’s (2007) ASRMR criteria always
yielded lower power than permuted ASRMR, even when N = 100

per group.

Testing Invariance of Individual Model Parameters

Upon rejecting the omnibus test of metric or scalar equivalence,
a researcher’s next step would be to test individual equality con-
straints. If releasing the across-group equality constraints for a
minority of indicators leads to similar fit between the restricted and
unrestricted model, then the researcher will have established par-
tial invariance. Given that the omnibus Ax? and permutation tests
yielded similar power to detect DIF in factor loadings and inter-
cepts, we next investigated the use of modification indices to
detect DIF.

Procedure. Following Yoon and Kim’s (2014) recommenda-
tion, we used a sequential procedure to search modification indices
for constraints to relax. For each simulated data set in conditions
with DIF, we used the traditional or permuted Ax* to test the
omnibus H,,. If we rejected the omnibus H,, we calculated modi-
fication indices associated with freeing equality constraints on
factor loadings. If the largest modification index was significant at
the o = .05 level, we specified a partial metric invariance model
without that constraint and fit it to the data. If we still rejected the
omnibus H, and the largest modification index from the less
restricted model was also significant, we freed that constraint in a
subsequent model. We repeated this process until the final model
had either a nonsignificant omnibus test or no significant modifi-

cation indices. We did this using each of three methods: Ax* with
unadjusted p values for modification indices, Ax* with Bonferroni-
adjusted p values for modification indices, and permuted Ax? with
permutation-based Tukey-adjusted p values for modification indi-
ces.

Unadjusted p values were compared to o = .05 at each iteration.
Bonferroni-adjusted p values were equal to the unadjusted p values
multiplied by the number of constraints tested at that iteration. For
example, if there were six freely estimated factor loadings con-
strained to equality across two groups, then six modification indi-
ces would be calculated, so the unadjusted p value would be
multiplied by six and then compared with o = .05. The Tukey-
adjusted p value for each constraint was calculated as the propor-
tion of permutations that yielded a maximum modification index
greater than the observed modification index, and Tukey-adjusted
p values were also compared to o = .05.

Analysis plan and hypotheses. For all models fit to each
simulated data set, if DIF was falsely detected at least once for an
indicator without DIF (e.g., any indicators loading on Factor 1),
that replication was flagged as a false positive when calculating
familywise Type I error rates. Likewise, if true DIF was detected
for at least one indicator (e.g., Indicator 6 or 7 loading on Factor
2; see Table 1), then that replication was flagged as a true positive
when calculating power. Multiple constraints could be freed for
each simulated data set, so a single replication could possibly be
flagged for both a false positive and a true DIF detection (or for
neither).

Consistent with past research, we expected modification indices
to have inflated familywise Type I error rates when using unad-
justed p values (i.e., at least one Type I error would occur in more
than 5% of replications when using o = .05). Bonferroni-adjusted
p values have been shown to adequately control Type I errors
(French & Finch, 2008; Jak et al., 2010), and we expect Tukey-
adjusted p values to control familywise Type I errors at least as
well. Because the Bonferroni adjustment becomes more conserva-
tive as the number of tests increases, we expect the permutation-
based Tukey adjustment to yield greater power, and for the dis-
crepancy between these adjustments to increase with the number
of tests.

Design. Because metric and scalar results were practically
identically for the omnibus test, we restricted our investigation
of modification indices to detect differences in factor loadings.
The previous simulation studies showed that the omnibus Ax?
and permutation tests have nominal Type I error rates when
there is no DIF, so in this study we investigated familywise
Type I error rates only when there was metric LOI (i.e., falsely
detecting at least one valid equality constraint as invalid, when
other equality constraints were truly invalid). Because the om-
nibus tests had such similar power to detect LOI when DIF =
0.3 and 0.4, we simulated only three levels of DIF (0.1, 0.2, and
0.3). We used the same range of sample sizes as all previous
simulations, but we unlike other power analyses, we also ma-
nipulated model size to assess the effect of the number of tests
on the discrepancy in power between the Bonferroni and Tukey
adjustments. We used a 5 (N) X 3 (DIF) X 2 (four or eight
indicators per factor) X 3 (p value adjustment method) design,
holding the number of factors constant at two.

Results. The black lines in Figure 10 show only marginally
greater power for unadjusted p values than for either Bonferroni
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Figure 3. Power for x? (gray lines) and CFI (black lines) using theoretical (or fixed) versus permutation-based
critical values. The dotted gray line indicates 80% power.

or Tukey adjustments, but this came at the expense of inflated
familywise Type I error rates (solid gray line). As expected,
inflation with unadjusted p values became worse with more
indicators to test, whereas Bonferroni and Tukey adjustments
both yielded nominal familywise Type I error rates across
conditions.

Contrary to our expectations, Bonferroni and Tukey adjust-
ments yielded similar power to detect DIF for at least one
indicator, irrespective of the number of indicators to test. It is
difficult to distinguish between their dotted and dashed lines in
Figure 10 because their rejection rates only differed in the third
decimal place. Power was also nearly identical for both adjust-
ments when calculating power separately for each differentially
functioning indicator or power to detect all (rather than any)
differentially functioning indicators (supplementary figures
available in online supplemental materials). In general, adjusted
p values had greater power when there were fewer indicators to
test, which is not surprising given that both adjustments become
more conservative as the number of tests increase.

Applied Example
We now provide an illustration of the permutation procedure for
testing measurement equivalence using a real data set.
Method

The following example data are from Short and Hawley’s
(2015) investigation of college students’ change in attitudes to-

ward and knowledge of evolution across three different college
courses with varying amounts of evolution education provided
during the semester. Specifically, the Evolutionary Attitudes
and Literacy Survey (EALS; Hawley, Short, McCune, Osman,
& Little, 2011)—a multidimensional scale that consists of 16
subscales measuring an individual’s knowledge of and attitudes
toward evolution—was administered at the beginning and end
of the semester to students enrolled in either a political science
course that had no evolution education, a biology course that
introduced the theory of evolution during the semester, or an
evolutionary psychology course that consistently integrated the
theory of evolution with psychological theories of human be-
havior throughout the entire semester. Although these data were
longitudinal, we focused our illustration on just the first time
point to evaluate group differences at the beginning of the
semester. In addition, instead of examining DIF across all 104
indicators in the 16 subscales, we selected data from two
subscales: young-earth creationism (six indicators) and intelli-
gent design fallacies (six indicators; see Short & Hawley, 2012,
for the list of indicators and additional details about partici-
pants). Thus, the examined model contained two factors with
six indicators each and three groups: the political science course
(n = 261), the biology course (n = 228), and the evolutionary
psychology course (n = 63).

All models were estimated with maximum likelihood using
lavaan (version 0.5-20; Rosseel, 2012). Models were identified
with a standardized metric (i.e., latent variances fixed to one and
latent means fixed to zero), and an appropriate null model (means
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and variances constrained to equality across groups and all cova-
riances fixed to zero; see Widaman & Thompson, 2003) was used
for calculating CFI, which for simplicity is the only AFI we focus
on in this illustration. For each test of invariance (i.e., configural,
metric, and scalar), / = 1,000 permutations were used to calculate
p values associated with (A)x? and (A)CFI, using the R package
semTools (semTools Contributors, 2016).

Results and Discussion

The two-factor configural model did not fit perfectly to the three
groups, x*(159) = 443.93, p < .0001, but the approximate fit was
acceptable according to Bentler and Bonett (1980) CFI = .937,
although not according to Hu and Bentler (1999). Seeking ways to
improve the theoretical structure of the model is beyond the scope of
this illustration, but despite the lack of perfect model fit, permutation
tests using both x*(p = .54) and CFI (p = .70) supported configural
ME/ across the three groups.

The metric invariant model, x2(179) = 388.682, p < .001,
CFI = .928, fit significantly worse than the configural model,
Ax*(20) = 61.07, p < .001, permuted p = .001, and approximate
fit would only have been deemed similar to the configural
model wusing Cheung and Rensvold’s (2002) criterion
(ACFI = —.009). However, permutation of ACFI did not sup-
port scalar invariance (p = .001). Using Tukey-adjusted p
values based on the permutation distribution of the maximum
modification index, modification indices suggested two indica-
tors did not have equivalent factor loadings across all groups.
We also report the expected parameter change (EPC) in each
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Figure 4. Type 1 error rates for Ax* and permutation test of metric invariance. The dotted gray line indicates
the nominal error rate (5%). Note the y-axis ranges only from 0%—10%.

group; EPCs greater than 0.1 in absolute magnitude were
deemed substantial. First, the young-earth creationism indicator
“I read the bible literally” (A = 1.02, Ax*> = 9.93, p = .03)
appeared to have a lower factor loading in the evolutionary
psychology course (EPC = —0.38), a similar loading in the
political science course (EPC = —0.02), and a higher loading in
the biology course (EPC = 0.11). Second, the intelligent design
fallacies indicator “Evolution is a theory in crisis” (A = 0.84,
Ax? = 13.95, p = .003) appeared to have a lower factor loading
in the biology course (EPC = —0.167), a similar loading in the
political science course (EPC = .05), and a higher loading in
the evolutionary psychology course (EPC = 0.21). After free-
ing factor loadings for the first indicator, there was still indi-
cation of significant DIF in the second indicator, so those factor
loadings were freed as well.

The partial metric invariant model, with factor loadings for
these two indicators freely estimated, x*(175) = 475.53, p <
.001, CFI = .934, still fit significantly worse than the configural
model, Ax*(16) = 31.60, p = .01, permuted p = .03. Although
the approximate fit would be deemed similar to configural using
Cheung and Rensvold’s (2002) or Chen’s (2007) criteria
(ACFI = —.003), the permuted ACFI showed significantly
worse fit (p = .03). However, modification indices did not
suggest any further evidence of DIF using Tukey-adjusted p
values, so this partial metric invariance model was retained and
examined for scalar invariance.

The scalar invariant model constrained all intercepts to equal-
ity, except for the intercepts of the two indicators whose load-
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ings were unconstrained, x*(191) = 514.88, CFI = .929. The
scalar model fit significantly worse than the partial metric
model, Ax*(16) = 39.36, p < .001, permuted p = .002. Ap-
proximate fit was only similar to the partial metric model
according to Cheung and Rensvold’s (2002) criterion
(ACFI = —.005), but the permutation of ACFI did not support
scalar invariance (p = .003). Modification indices using Tukey-
adjusted p values suggested the intercepts of two indicators of
intelligent design fallacies might differ across groups. First, the
indicator “there is scientific evidence that humans were created
by a supreme being or intelligent designer” (1 = 3.40, Ax> =
16.50, p = .003) appeared to have a lower indicator intercept
for the evolutionary psychology course (EPC = —0.34), a
similar  intercept for the political science course
(EPC = —0.09), and a higher intercept for the biology course
(EPC = 0.34). Second, the indicator “there are no transitional
fossils (remains of life forms that illustrate an evolutionary
transition)” (1 = 2.93, Ax?> = 10.24, p = .03) appeared to have
a lower indicator intercept for the biology course
(EPC = —0.18), but higher indicator intercepts for the political
science (EPC = 0.11) and evolutionary psychology (EPC =
0.13) courses.

Because both indicators were indicators of the same construct,
freeing one intercept across groups would likely change the esti-
mates of other intercepts. Thus, we fit a partial scalar invariance
model by freeing the intercepts across groups only for the first
indicator described, which had the larger modification index and
EPCs, leaving the equality constraint intact for the second indica-
tor, x*(189) = 495.57, p < .001, CFI = .932. This partial scalar

model did not fit significantly worse than the partial metric model,
Ax?(14) = 20.04, p = .15, permuted p = .13, and the approximate
fit was similar, ACFI = —.001 (permuted p = .14). This model
was therefore retained, and no further modifications were exam-
ined.

General Discussion

Summary of Empirical Results

We proposed a permutation randomization framework for
using multigroup CFA to test ME/I. We proposed this frame-
work to address some limitations of current best practices. First,
the x? test of exact (or equal) fit does not test the correct H, of
group equivalence for the configural model. Assessing overall
model fit confounds any group differences with overall model
misspecification. Irrespective of how well a model only approx-
imates a population process, the model may be equally well
specified for both groups, in which case the H, of group
equivalence should not be rejected. Our simulation studies
showed that current best practices can lead to highly inflated
Type I error rates, even for models with very good approximate
fit. Permutation, on the other hand, yields well controlled Type
I error rates even when the model does not fit perfectly, pro-
viding the only valid test of configural invariance across groups
that we are currently aware of.

Second, most researchers prefer (A)AFIs over (A)x? (Putnick &
Bornstein, 2016) because of the latter’s sensitivity to differences
that are negligible in practice, which could be thought of as
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Figure 6. Critical values for ACFI test of metric invariance, based on Monte Carlo 95th percentile in each
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previously suggested fixed critical values.

inflated Type I error rates when assessing approximate fit in large
samples. However, lack of known distributions for AAFITs leads to
reliance on rule-of-thumb cutoffs that, as we have shown, lead to
inflated Type I error rates in smaller (albeit still large) samples,
especially in larger models. Our simulations showed that regard-
less of which fit measure is preferred, permutation provides well
controlled Type I error rates, with power to detect true differences
that is comparable to Ax>.

The third limitation we proposed to address with permutation is that
after rejecting full ME/I, testing multiple indicators for DIF leads to
inflated familywise Type I error rates. Although a Bonferroni correc-
tion provides adequate Type I error control (French & Finch, 2008;
Jak et al., 2010), we conceived of a method similar to Tukey’s HSD,
which we anticipated would provide similar control but greater power
than a Bonferroni correction. However, our simulations showed that
the permutation-based Tukey method provided nearly identical power
as well as familywise Type I error rates, regardless of the number of
tests conducted.

Recommendations

We recommend that applied researchers interested in testing con-
figural invariance use the permutation method. If the overall fit of the
configural model is satisfactory, the permutation method provides a valid
test of the H,, of group equivalence in model form, and is currently the
only method to do so. Two situations illustrate why relying on absolute
measures of model fit can lead to an incorrect conclusion. It is possible
that the H,, of group equivalence is true even for a poorly fitting model,

in which case the model should be rejected because it is a poor
approximation of at least one group’s data-generating process, not
necessarily because of group differences. Another possibility is that
the group models substantially differ in functional form, but that a
simpler model fits each population well enough to result in
population-level AFIs that indicate acceptable approximate fit. In
such a case, the H, would actually be false, but there would be little
chance of detecting the lack of configural invariance (especially for
AFIs).

We do not recommend that researchers assessing more restrictive
levels of ME/I use fixed cutoffs for AAFIs because they lead to
inflated Type I error rates at smaller sample sizes. Even when sample
sizes are large enough to have low Type I errors, AAFIs have no power
advantage over permutation or Ax>. We recommend permutation or Ax>
because both have nominal Type I error rates and similar power
across conditions. When locating differentially functioning indicators
after rejecting full ME/I, we recommend using modification indices
only with a Bonferroni adjustment or, if already permuting, using the
permutation distribution of the maximum modification index to cal-
culate p values. These methods have similar power to an unadjusted
significant criterion, but they keep the familywise Type I error rate
nominal.

Software

The permutation method is implemented in the R package
semTools, using the function “permuteMeasEq” (semTools
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Contributors, 2016). Users can fit their multiple-Group CFA
models using the lavaan (Rosseel, 2012) software. Users can
then submit their lavaan models to the “permuteMeasEq” func-
tion and specify additional information, such as the number of

Table 4

permutations, which fit measure to permute, and which param-
eters are being tested for equality. Examples of using this
software can be found by accessing the help page for “permute-
MeasEq” within R. The supplementary online materials also

Difference in Fit Measures Between Metric and Configural Models Fit to Population Data When

H, Is False

DIF
Fit measure N per group .1 2 3 4
Axif:(, 100 1.23 (11%) 4.72 (32%) 10.08 (65%) 16.93 (89%)
(power) 200 2.46 (17%) 9.43 (61%) 20.16 (94%) 33.85 (100%)
400 4.93 (33%) 18.87 (92%) 40.32 (100%) 67.71 (100%)
800 9.86 (64%) 37.73 (100%) 80.64 (100%) 135.41 (100%)
1,600 19.72 (94%) 75.46 (100%) 161.27 (100%) 270.82 (100%)
ACFI 100 0 0 0 0
200 0 0 0 0
400 0 0 —.007 —.020
800 —.0002 —.007 —.018 —.031
1,600 —.002 —.008 —.019 —.032
AMc 100 .013 .003 —.011 —.029
200 .005 —.004 —.018 —.035
400 .001 —.008 —.021 —.038
800 —.001 —.010 —.023 —.040
1,600 —.002 —.011 —.024 —.040
ARMSEA 100 0 0 0 0
200 0 0 0 0
400 0 0 .028 .048
800 .005 .029 .045 .060
1,600 .003 015 .029 .042
ASRMR =1,600 .005 .016 .028 .041

Note. Power for Ax? calculated using method described in Satorra and Saris (1985).
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include the R syntax we used for the Applied Example sec-
tion."”

Users who prefer to use other dedicated SEM software could
still benefit from R (or other software such as Fortran, C++, or
Python), such as using R’s “sample” function to permute group
assignment, saving a large set of permuted data sets to be analyzed
outside of R. Syntax files for the SEM software would still have to
be written to analyze each of the permuted data sets, at which point
R could also be used to aggregate results from the resulting output
files. The supplementary online materials include R syntax dem-
onstrating how to implement the permutation method using Mplus
(Muthén & Muthén, 2012), which is facilitated greatly by the R
package MplusAutomation (Hallquist & Wiley, 2016), as well as
by the MONTECARLO feature in Mplus.

Limitations and Future Directions

Although proposed cutoffs for (A)AFIs were only meant to be
rules of thumb (Cheung & Rensvold, 2002; Hu & Bentler, 1999),
applied researchers may be inclined to treat cutoffs as critical
values (Chen, 2007; Putnick & Bornstein, 2016), effectively treat-
ing a descriptive index of (change in) model fit as though it were
a test statistic. Our goal was not to argue how AFIs should be
treated, but rather to provide researchers who want to treat (A)AFIs
as test statistics with a method that yields nominal Type I error
rates. We recognize that researchers who prefer (A)AFIs use them
in lieu of (A)x? precisely because of the test statistic’s sensitivity
to smaller (perhaps negligible) DIF in larger samples. Permuting
(A)AFIs does not solve this problem because they are just as
sensitive as (A)x>, so other solutions must be considered.

For example, Oberski (2014) advocated addressing ME/I by
focusing not on the equivalence of measurement parameters but on
the research questions that assume ME/IL. In our applied example
using Short and Hawley’s (2015) data, the ultimate goal was to
compare latent means across groups, which would require at least
partial scalar ME/I. When we found evidence against full metric
and scalar ME/I, we considered EPCs in tandem with modification
indices (Whittaker, 2012) to estimate how much a differentially
functioning indicator’s parameter estimates would change if the
same estimates were freed. We could also have considered effect
sizes as proposed by Millsap and Olivera-Aguilar (2012).'® But
because the latent-mean comparisons were of primary interest, we
could instead have used the EPC-interest (Oberski, 2014) to esti-
mate the expected change in latent mean estimates if an indicator’s
intercepts were freed. Substantial expected latent-mean changes
could be used to flag the particular indicator whose constraints
should be freed. This method might benefit from permutation,
which could be used to estimate a distribution of the maximum
EPC-interest under the H,, thus controlling familywise Type I

7 We do not provide the original data, but we do provide a simulated
data set that resembles the real data we analyzed. Therefore, running the
syntax from the online supplemental materials will not yield the exact same
results as reported.

'8 Millsap and Olivera-Aguilar (2012) discussed effect sizes in terms of
continuous indicators, for example, expressing the proportion of group
mean differences in observed indicators that is due to differences in
intercepts rather than differences in common-factor means. With respect to
categorical indicators, Meade (2010) provided a taxonomy of various effect
size measures for DIF in the IRT context.
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Figure 9. Power for ACFI test of metric invariance using permutation and fixed cutoffs. The dotted gray line

indicates the power = 80%.

errors. The “permuteMeasEq” function allows users to estimate the
permutation distribution of any statistic of interest, which should
facilitate future research on this topic.

Consistent with the Meade et al. (2008) study on which our
simulations were largely based, we used a reference indicator
without DIF in our analysis models. Thus, our omnibus H,, results
would be identical if we had identified the models by fixing all
factor variances to one in the configural model, and freeing the
factor variances in the second group when we constrained loadings
to equality. In practice, we recommend researchers fix factor
variances instead of factor loadings, so that they need not assume
any particular variable functions equivalently across groups with-
out testing that assumption. However, when multiple indicators
have DIF, freeing one indicator at a time to establish partial ME/I
can inflate Type I error rates because misspecification can bias
other measurement parameters (French & Finch, 2008; Woods,
2009'?). Due to Meade et al.’s (2008) study design, we found no
inflation because each indicator with DIF had a corresponding
indicator within the same factor that had the same magnitude of
DIF, but in the opposite direction. Because permutation eliminates
group differences in all indicators, it might advantageously free us
from the assumption that all other indicators are invariant when
testing any one indicator; however, our use of Meade et al.’s
(2008) study design prevented us from testing this in the current
study. We encourage further investigation.

Given the additional computation time needed to permute the
data, there is no apparent justification for permuting instead of
using Ax? when testing any level of ME/I other than configural.
However, we simulated rather ideal circumstances: complete data,

balanced group sizes, group differences only in measurement
parameters, multivariate normality. There are certain conditions in
which x? yields inflated Type I error rates, such as using full-
information maximum likelihood estimation on small multivariate
normal samples with missing data (Savalei & Bentler, 2009) or
using weighted least squares estimation with ordinal indicators
(Sass, Schmitt, & Marsh, 2014), particularly when thresholds are
asymmetric (Bandalos, 2014). In these situations (similar to the
case of configural ME/I when the model does not fit perfectly), any
noncentrality in the x? distribution should be preserved in the
permuted data, so the permutation distribution under the H,, of
group equivalence should maintain nominal Type I error rates
better than a test statistic whose sampling distribution is not
adequately characterized by the central x? distribution. Further
research will be needed to establish whether this hypothesis is
supported.

Permutation methods might also be expected to perform poorly
under certain conditions. Although the permutation test may not
assume a specific distribution of the data, it does assume ex-
changeability of observations (Hayes, 1996). When data are not
randomized across groups, exchangeability requires that each
group’s distribution is the same shape. If common or unique factor
variances are heteroscedastic across groups, permuting the groups
would create a mixture of distributions with different variances,
probably affecting covariance-structure estimates such as factor

19 French and Finch (2008) and Woods (2009) also discuss and evaluate
empirical methods to select sets of invariant indicators.
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Figure 10. Familywise Type I error rates (gray lines) and power (black lines) of modification indices to detect
metric LOI, using unadjusted (solid), Bonferroni-adjusted (dotted), and permutation-based Tukey-adjusted
(dashed) p values. Thin dotted reference lines are provided at 5% and 80% probability of rejecting H,,.

loadings. The permutation method proposed here is based on
model fit measures rather than parameter estimates, so it may be
robust to the exchangeability assumption. Future research should
investigate this robustness issue.

Conclusion

Permutation randomization is a potentially valuable method for
testing ME/I across groups. It provides a valid test of configural
invariance, and provides well controlled Type I error rates across
a variety of conditions, regardless of a researcher’s preferred fit
measure. Permutation may be particularly valuable in conditions
with inflated error rates, such as missing or categorical data, but its
utility may be limited by the exchangeability assumption. We
encourage further investigation of permutation methods for testing
group equivalence, not only using multigroup CFA but also IRT
and multiple-indicator multiple-cause (MIMIC) models.
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