
UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

Run-time resource allocation for embedded Multiprocessor System-on-Chip
using tree-based design space exploration

Sinaei, S.; Pimentel, A.D.; Fatemi, O.
DOI
10.1109/DTIS.2017.7929873
Publication date
2017
Document Version
Final published version
Published in
2017 12th IEEE International Conference on Design & Technology of Integrated
Systems in Nanoscale Era (DTIS)
License
Article 25fa Dutch Copyright Act

Link to publication

Citation for published version (APA):
Sinaei, S., Pimentel, A. D., & Fatemi, O. (2017). Run-time resource allocation for embedded
Multiprocessor System-on-Chip using tree-based design space exploration. In 2017 12th
IEEE International Conference on Design & Technology of Integrated Systems in Nanoscale
Era (DTIS): DTIS 2017 : proceedings : April 4th-6th 2017, Palma de Mallorca, Spain (pp. 14-
19). IEEE. https://doi.org/10.1109/DTIS.2017.7929873

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

Download date:26 Jul 2022

https://doi.org/10.1109/DTIS.2017.7929873
https://dare.uva.nl/personal/pure/en/publications/runtime-resource-allocation-for-embedded-multiprocessor-systemonchip-using-treebased-design-space-exploration(01b14f36-e56b-4d0d-a09b-ec54fa5ce242).html
https://doi.org/10.1109/DTIS.2017.7929873

2017 12th International Conference on Design & Technology of Integrated Systems in Nanoscale Era
(OTIS)

Run-time Resource Allocation for Embedded

Multiprocessor System-on-Chip using Tree-based

Design Space Exploration

Sima Sinaei
Electrical and Computer Department

University of Tehran
Tehran, Iran

simasinaei@ut.ac.ir

Andy D. Pimentel
Informatics Institute

University of Amsterdam
The Netherlands

a.d.pimentel@uva.nl

Omid Fatemi
Electrical and Computer Department

University of Tehran
Tehran, Iran

omid@Fatemi.net

Abstract- The dynamic nature of application workloads

in modern MPSoC-based embedded systems is growing. To cope

with the dynamism of application workloads at run time and to

improve the efficiency of the underlying system architecture, this

paper presents a novel run-time resource allocation algorithm for

multimedia applications with the objective of minimizing energy

consumption for predefined deadlines. This algorithm is based on

a novel tree-based design space exploration (DSE) method, which

is performed in two phases: design-time and run-time. During

design time, application clustering is combined with the tree­

based DSE, and after that, feature extraction and application

classification is performed during run-time based on well-known

machine learning techniques. We evaluated our algorithm using

a heterogeneous MPSoC system with several applications that

have different communication and computation behaviors. Our

experimental results revealed that during runtime, more than

91 % of the applications were classified correctly by our proposed

algorithm to select the best resources for allocation. Therefore

the results clearly confirm that our algorithm is effective.

Keywords-Run-time Mapping; Multi-processor System on Chip;
Embedded Systems; Dynamic workloads; Clustering;
Classification; Design Space Exploration;

I. INTRODUCTION

Modern embedded systems, which are based more and
more on Multiprocessor System on Chip (MPSoC)
architectures, often require supporting an increasing number of
applications and standards. In these systems, multiple
applications can run concurrently and are thus simultaneously
contending for system resources. For each single application,
there are often also different execution modes with different
requirements [19]. As a consequence, the behavior of
application workloads imposed on the embedded system can
change dramatically over time. Typically, the target MPSoC
architecture platforms are heterogeneous in nature, as such
systems are capable of providing better performance and
energy tradeoffs than their homogeneous counterparts [7].
Here, the process of application task mapping plays a crucial
role in exploiting the system properties in such a way that
applications can meet their often diverse demands for
performance and energy efficiency. To satisfy the system
demands, run-time mapping is required to optimize

978-1-5090-6377-2/17/$31.00 ©2017 IEEE

performance and energy consumption under dynamic
application workloads [1][2][3].

The topic of run-time, or on-the-fly, mapping has received
substantial research attention in recent years [4][5][6][7]. In
these methods, the assignment of newly arriving tasks to the
system resources is done by means of heuristics. The fact that
these approaches must be light-weight (as they are performed
at run-time), and therefore do not fully exploit the task
mapping choices of the target platform, leads to lower quality
mappings and schedulability problems.

Traditional design-time mapping solutions, on the other
hand, usually yield mappings of higher quality compared to
those derived from run-time algorithms as the former allow for
exploring a larger design space for the underlying architecture.
But as these algorithms typically involve slow computational
methods [7] such as Integer Linear Programming (ILP), they
cannot be used during run time. Another drawback of static
mapping techniques is that they cannot cope with dynamic
application behavior in which different combinations of
applications that are contending for system resources could be
executing commands concurrently over time.

To alleviate the problems of pure run-time decision
making, new research directions are being investigated that
propose a mixed design-time and run-time approach. That is,
the compute intensive analysis is transferred to the design
phase in these approaches [8][9][10][11][12][13]. The analysis
results that have been obtained during design time can then be
used during run-time to accelerate and improve run-time
mapping. Such mapping approaches also facilitate the use of a
light-weight run-time platform manager, which is required in
modern embedded systems (e.g., smart phones and tablets).

A mapping problem can be divided into two important
steps: Allocation and Binding. In the allocation step, decisions
about the number and types of processors that should be
deployed in the MPSoC platform are made. In the binding step,
it is determined how these allocated resources should be used
for running application tasks, i.e. determining which task is
bound to which processor. In this paper, a mixed method,
which includes design-time and run-time phases, is proposed to
solve the run-time allocation problem for multimedia MPSoC-

Authorized licensed use limited to: Universiteit van Amsterdam. Downloaded on June 24,2021 at 10:45:30 UTC from IEEE Xplore. Restrictions apply.

based embedded systems. The objective of our proposed
technique is to minimize the workload energy consumption
while considering a deadline for execution time. This technique
allows the system to support the handling of new incoming
applications that were not known during design time.

Figure I. Clustering at design time and classification at run time.

During design time, a novel tree-based design space
exploration (DSE) algorithm is proposed to select the optimal
resource allocation. It indicates a path in the tree in addition to
specifying the number and types of processors to be allocated.
As will be explained, this path is used to cluster applications. In
Figure 1, the dots indicate several applications that have been
explored during design time and their optimal resource
allocation is determined by the proposed tree-based DSE
method. Application clusters are shown by the circles and the
resource allocations of each cluster are indicated by the squares
in Figure 1. During run time, resource allocations can then
quickly be determined for new incoming applications by means
of classification methods based on well-known machine
learning techniques.

The rest of this paper is organized as follows: Section II

discusses related works, Section III describes our approach for

the modeling of multimedia embedded systems and the

definition of the problem. Details of the proposed algorithms

are presented in Section IV. The experimental results are

presented in Section V, followed by the conclusions of the

paper in Section VI.

II. RELATED RESEARCH

The process of application mapping can be done during
design-time or during run time. Techniques that are used for
design-time mapping ([1][2][3][4][5]) are more appropriate for
scenarios in which the workload behavior is static (e.g., a
predefined set of applications to be mapped on a static
platform) as they cannot handle any application dynamism that
occurs over time.

Run-time mapping techniques should be able to efficiently
map the tasks of applications on the platform resources, and in
the meantime, have an accurate knowledge of resource
occupancy. The literature on run-time mapping can be

categorized into two main groups: on-the-tly mapping and
mapping using design-time DSE results.

In the on-the-fly mapping techniques, all the required
computations and decisions are performed when a new
application enters the system or the system condition changes.
Several works on on-the-tly mapping [6][7][8][9][10][11][12]
have been previously done with the aim of optimizing one or
more performance metrics (such as overall execution time and
energy consumption). These works employ different kinds of
heuristics and allocate tasks of incoming applications to the
system resources. The downside of these methods is their
limited on-line processing capability, which implies that on­
line decisions have to be made quickly and thus the process of
assigning tasks to resources may be performed poorly and so
may lead to low-quality mapping.

By using the results of design-time mapping exploration
(and storing these results such that they can be used for making
run-time mapping decisions), approaches such
as [13][14][15][16][17][18][19] obtain better results than on­
the-fly mapping. However, most of these approaches still suffer
from shortcomings regarding their adaptivity to cope with
application dynamism. For example, many approaches do not
support the handling of newly incoming applications that were
not known during design time. In this paper, we propose a
novel algorithm for run-time resource allocation - which is an
essential ingredient of the mapping process - based on
application clustering and classification that can handle newly
incoming applications.

III. PREREQUISITES AND PROBLEM DEFINITION

In this section, we explain the necessary prerequisites for
this work and provide a detailed problem definition.

A. Application Model

In this paper, we target the multimedia application domain.
For this reason, we use the Kahn Process Network (KPN)
model of computation[20] to specify application behavior
since this model of computation fits well with the streaming
behavior of multimedia applications. In a KPN, an application
is described as a network of concurrent processes that are
interconnected via FIFO channels. Figure 2. illustrates a KPN
for a Motion-JPEG (MJPEG) encoder application.

Figure 2. KPN Model for an MJPEG encoder.

Authorized licensed use limited to: Universiteit van Amsterdam. Downloaded on June 24,2021 at 10:45:30 UTC from IEEE Xplore. Restrictions apply.

B. Architecture Model

The MPSoC hardware platform is also modelled as a graph
H = (C, F), where C is the set of processing elements used in
the architecture, F is a multiset of pairs Fif = (Ci'C) E CxC
represents a communication channel (like Bus, NOC, etc.)
between processors Ci and Cj.

C. Resource Allocation

Given the application and architecture models, the mapping
problem can be defined as assigning application processes to
architecture components in such a way that the overall energy
consumption required to execute the application is minimized
with regards to a pre-defined deadline for finishing the tasks.
As mentioned before, the mapping problem can be divided into
allocation and binding steps. In this paper, a mixed method is
proposed to solve the run-time allocation problem for
multimedia MPSoC-based embedded systems. That is, the
method makes decisions about the number and types of
processors that should be deployed in the MPSoC platform.

IV. PROPOSED RUN-TIME ALLOCATION METHOD

As shown in Figure 3, the entire workflow of our approach
can be divided into two phases: design time and run time. In
the design-time phase, application clustering is combined with
a tree-based DSE. The proposed tree-based DSE, which will be
explained in subsection A, is used for exploring the design
space of pre-known applications. In addition to exploring the
design space, this method clusters applications by specifying a
path within the resource selection tree, as will be explained in
subsection B. This clustering is based on the selected resource
types, number of each resource type and the resource selection
priority (i.e., the level of affinity of applications to a certain
type of resource). Applications that are placed in the same
cluster need similar resources to run optimally in terms of
energy consumption within the predefined deadline. After the

P.'e-Known

Application

T.'ee-Based Design Space

Exploration
+

Application Clustering

j -000
�OO §"P Type of Processors

�� ...

DSE step, features of each cluster are determined that will be
used as classification parameters. Information about the
application clustering and their allocation of resources is saved
in a system database, which will be used during the run-time
phase.

During run-time, when a new and possibly unknown
application enters the system, a fast decision about the resource
allocation for that application needs to be made and there is not
sufficient time to explore all or even a small traction of the
allocation possibilities. So with a fast profiling of the new
application, determining its features, and comparing them to
those in the system database, this new application can be
classified as belonging to one of the existing clusters.
Subsequently, the resource allocation specified for that cluster
will then be used to run the new application.

The following subsections will explain the application
clustering and classification methods in more detail. After the
resource allocation step, the application binding must be
performed. However, this binding step is not within the scope
of this paper.

A. Tree-based DSE for Clustering

Our proposed tree-based DSE method prunes and explores
the design space by gradually assessing the deployment of an
increasing number of processors in the heterogeneous MPSoC
platform. To this end, it tries to efficiently and effectively find
a resource allocation for the target application(s) on the
MPSoC system with the objective of minimizing energy
consumption within a predefmed deadline for completing the
application tasks. By using this method, it is also possible to
identify the priority for the selection of certain types of
resources (i.e. resource affinity) which is not feasible in, for
example, widely-used mapping methods based on
metaheuristics such as genetic algorithms.

Algorithm 1 shows the pseudo code for the tree-based DSE.

New Application

Classify

Application in

one cluster'

Detenuine

Resource Allocation

Figure 3. Workflow of proposed run-time mapping approach

Authorized licensed use limited to: Universiteit van Amsterdam. Downloaded on June 24,2021 at 10:45:30 UTC from IEEE Xplore. Restrictions apply.

The Processors Vector indicates the selected resources to run
the application and is formed by traversing the different levels
of the tree. The design space exploration is perfonned for
different tree levels (line 2) and also at each level for different
processors (line 3). The maximum number of levels in the tree
is equal to the number of tasks in the application, and the
number of nodes at each level is equal to the number of
processors in the architecture. The Resources variable (line 4)
is used to explore the architecture processing elements. In each
tree node, it is the summation of the selected resources of the
previous levels and the processor related to that node. If the
application size is small, DSE can be done exhaustively for the
selected Resources, considering the mapping of all application
tasks to these resources. This results in optimal resource
allocation at a specific tree level (lines 5 and 6). If the
application size is large, however, then the exploration at a
certain tree level will be done using a genetic algorithm (lines 7
and 8). If the energy consumption of the selected resource
allocation is better than the previous values, then the selected
processor will be added to the Processors Vector and its energy
consumption will be considered as the best one (lines 9, 10 and
11). At the end of the DSE at each level, the best resource
allocation and configuration is selected and Processors Vector
will be updated.

Algorithm 1: Proposed Tree-based Design Space Exploration

Input: Application Graph, Architecture Graph
Output: Best resource allocation, best energy consumption

1: Processors Vector {)
2: For S=I to Levels_oCTree // i,e" # of application tasks
3: For K=1 to Num of Processors
4: Resources = ProcessorsVector + K
5: If (application size is small)
6: Search exhaustively all mappings with determined

resources to find mapping with best energy
consumption within predefined deadline

7: If (application size is large)
8: Search design space to find the mapping with

best energy consumption within predefined deadline
using a genetic algorithm

9: If (energy consumption of best mapping is improved)
&& the deadline is not missed

10: Processors Vector [S] = K;
11: Set its energy as BestEnergyConsumption;
12: Return "BestEnergyConsumption "
13: Return " Processors V ector "

B. Application Clustering and Classification

[n the proposed methodology, application clustering is
combined with design space exploration during design time.
Using our tree-based DSE method, it is possible to identity the
priority for the selection of resources. Considering such
priorities for each application, a label can be assigned to it and
the applications can be clustered based on these labels
(resource demands). Actually, the best resource allocation for
each application will be detennined and applications with the
same resource demand (i.e. same label) will be assigned to the
same group/cluster. The number of clusters is equal to the
number of nodes in the tree (nnl-l, n: Number of processor
types and m: Number of tasks). The label of each cluster
reflects the resource demands for all applications placed in that
cluster and is represented by a vector.

During run time, when a new unknown application is
started in the system, a fast decision about resource allocation
must be taken so that the application can be executed. There is
not enough time for a full or even limited design space
exploration during run time. Therefore, we use a classification
by means of feature extraction of the new application in order
to fit it to one of the pre-determined application clusters. By
knowing to which application cluster the new application
belongs, the resource allocation belonging to that cluster (as
indicated by the cluster label) is selected for executing the new
application.

In this work, we deploy well-known methods for
classitying applications such as naive Bayes [27], support
vector machines[25], logistic regression [26], and decision
trees [24].

c. Feature Extraction

To classify an application, a clear learning goal must be
specified. It is often necessary to select a subset of relevant
features (variables, predictors) for use in model construction
(i.e., feature extraction and selection). Application
requirements can be divided into two categories: computational
requirements and communication requirements. TABLE I.
shows selected features of applications that are used for
classification.

V. EXPERIMENTAL RESULTS

For our experiments, we have used more than 500 KPN
models of synthetic applications with different numbers of
processes (tasks) and different computation and
communication requirements as well as operation types. The
target architecture that has been considered in our experiments
consists of a MPSoC platform with five heterogeneous
processors. These processors are connected via a bus to a
shared memory. The open-source Sesame system-level MPSoC
simulator has been used to evaluate the mappings. For all
experiments, a PC with a 2.9GHz [ntel Core i7 CPU has been
used.

TABLE L FEATURE TYPES

No Features

1 Number of tasks in application

2
Communication/Computation ratio

(in terms of energy)

3
Communication/Computation ratio

(in terms of performance)

4
Computation Ratio with neighbor processes

(in terms of energy)

5
Computation Ratio with neighbor processes

(in terms of performance)

In our work, the open-source Sesame system-level MPSoC
simulator [21] is deployed to evaluate mappings. The Sesame
modeling and simulation environment facilitates efficient
performance analysis of embedded (media) systems
architectures. [t recognizes separate definitions of application

Authorized licensed use limited to: Universiteit van Amsterdam. Downloaded on June 24,2021 at 10:45:30 UTC from IEEE Xplore. Restrictions apply.

and architecture models in which an application model
describes the functional behavior of an application and the
architecture model defines architecture resources and captures
their performance constraints. After explicitly mapping an
application model onto an architecture model, they are co­
simulated via trace-driven simulation. This allows for
evaluation of the system performance of a particular
application, its underlying architecture, and mapping.

A. Application Clustering by proposed Tree-based design
space exploration algorithm (design-time)

Our proposed tree-based exploration algorithm has been
used to explore the vast solution space and to find the (near)
optimal mapping with the objective of minimizing the energy
consumption with regard to the deadline for application tasks.
In the first experiment, we considered the KPN models of
several applications. For small applications, an exhaustive
search can be done at each level of the tree and the comparison
is done with non-tree-based exhaustive DSE. These
experiments were done for applications with 3 to 6 tasks and
the results are shown in TABLE II. For applications with more
tasks, the exploration of the design space cannot be performed
exhaustively anymore as the design space grows exponentially
with the number of tasks. In these cases, we used a genetic
search at each level of the tree and the comparison was made
with a traditional, non-tree-based DSE method using a NSGA­
II genetic algorithm (GA) [19]. The results are shown in
TABLE III.

TABLE II. COMP ARlSlON OF TREE-BASED DSE WITH EXHAUSTIVE DSE
(SMALL ApPLICATIONS)

#Application
#Simulations

#Simulations Average Mapping
(Exhaustive

tasks
DSE)

(Tree-based DSE) Accuracy

3 125 32 95%

4 625 134 97%

5 3125 642 94%

6 15625 3178 92%

TABLE III. COMPARISION OF TREE-BASED DSE WITH GA-BASED DSE
(LARGE APPLlCATlOS)

#Application NSGA-I! DSE Tree-based DSE Average Mapping

tasks Average Time Average Time Accuracy

10 135 min 65 min 94%

11 700 min 390 min 93%

12 3200 min 2000 min 91%

As shown in TABLE II. and TABLE III. , simulation
results show that our algorithm, on average, yields an accuracy
level of 91% or higher. Furthermore, significantly fewer
simulations are needed to achieve the best solution with this
level of accuracy. Actually, the design space was pruned by our
method and at each level, several unessential simulations were
eliminated.

For clustering applications, the design space was explored
using our tree-based method for applications with a varying
number of tasks, different communication and computation

ratios as well as diverse operations. Clustering was done at the
same time when the design space was searched and suitable
resources were determined to execute the applications;
applications with the same resource allocations were placed in
the same cluster.

TABLE IV. APPLICATION CLASS1F1CATIN AT RUN TIME

No Classifier Method
Correctly Classified

Instances

I Decision Tree 496(96%)

2 Support vector machine 470 (91 %)

3 Naive Bayes 463(90%)

4 Logistic Regression 491(95%)

B. Application Classification andfeature extraction (Run­
time)

During run-time, when a new unknown application enters
the system, a fast decision about resource allocation must be
taken to execute this application. With fast profiling, this new
application is classified to fit it to one of existing clusters. To
this end, the fast profiling extracts and uses of the application
features as listed in TABLE I.

To evaluate the application classification, we used Weka
[22] using cross validation with 10 folds. In k-fold cross­
validation, the original sample is randomly partitioned into k
subsamples. a single subsample is retained as the validation
data for testing the model, and the remaining k-j subsamples
are used as training data. The cross-validation process is then
repeated k times (the folds). The k results from the folds then
can be averaged (or otherwise combined) to produce a single
estimation. As explained before, for the actual classification,
we used well-known machine learning algorithms like decision
trees, support vector machines, Naive Bayes and logistic
regression. The results for the different classifiers are shown in
TABLE IV. The decision tree classifier has the most correctly
classified instances. The table shows that during run-time,
more than 96% of the applications were classified correctly by
our proposed algorithm to select the best resources for
allocation using this classifier.

VI. CONCLUSION

In this paper, we have proposed a run-time resource
allocation methodology for MPSoC-based embedded systems
in order to improve their energy consumption for a predefined
deadline. This is done by capturing the dynamism of the
application workloads, executing on the system and supporting
new, unknown applications. This algorithm is performed in two
phases: design time and run time. In the design-time phase,
using a novel tree-based algorithm, the design space is
explored and Selected Processors Vectors are extracted.
Subsequently, applications can be clustered based on this
vector as their resource demands. In the run-time phase, when a
new application enters the system, application features are
extracted and based on these features, the application can be
classified in order to fit it to one of the pre-determined
application clusters. Using the Selected Processors Vector of
the identified cluster, a suitable resource allocation for
executing the new application can then be selected.

Authorized licensed use limited to: Universiteit van Amsterdam. Downloaded on June 24,2021 at 10:45:30 UTC from IEEE Xplore. Restrictions apply.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[S]

[9]

[10]

[II]

[12]

[13]

REFERENCES

M. Ruggiero, A Guerri, D. Bertozzi, F. Poletti, and M. Milano,
"Communication-aware allocation and scheduling framework for
streamoriented multi-processor systems-on-chip," in Proceedings of
IEEE Conference on Design, Automation and Test in Europe (DATE),
2006, pp. 3-S.

S. Murali, M. Coenen, A Radulescu, K. Goossens, and G. De Micheli,
"A methodology for mapping multiple use-cases onto networks on
chips," in Proceedings of IEEE Conference on Design, Automation and
Test in Europe (DATE), pp. 11S-123, 2006.

G. Chen, F. Li, S. Son, and M. Kandemir, "Application mapping for
chip multiprocessors," in Proceedings of ACM Design Automation
Conference (DAC), pp. 620-625, 200S.

C. Marcon, E. Moreno, N. Calazans, and F. Moraes, "Comparison of
network-on-chip mapping algorithms targeting low energy
consumption," lET Computers Digital Techniques, pp. 471 -4S2, 200S.

H. Javaid and S. Parameswaran, "A design flow for application specific
heterogeneous pipelined multiprocessor systems," in Proceedings of
ACM Design Automation Conference (DAC), pp. 250-253, 2009.

E. 1. d. S. Carvalho, N. 1. V. Calazans, and F. G. Moraes, "Dynamic
task mapping for MPSoCs," IEEE Des. Test of Comp., vol. 27, no. 5 ,
pp. 26-35, 2010.

A K. Singh, T. Srikanthan, A Kumar, and W. Jigang,
"Communicationaware heuristics for run-time task mapping on NoC­
based MPSoC platforms," Elsevier Journal of Systems Architecture
(JSA), vol. 56, pp. 242-255,2010.

V. Nollet, P. Avasare, H. Eeckhaut, D. Verkest, and H. Corporaal,
"Runtime management of a MPSoC containing FPGA fabric tiles,"
IEEE Transactions on Very Large Scale Integration Systems (TVLSI),
vol. 16 , pp. 24-33, 200S.

O. Moreira, 1. 1.-D. Mol, and M. Bekooij, "Online resource management
in a multiprocessor with a network-on-chip," in Proceedings of ACM
Symposium on Applied Computing (SAC), pp. 1557-1564,2007.

L. Chen, T. Marconi, and T. Mitra, "Online scheduling for multi-core
shared reconfigurable fabric," in Proceedings of IEEE Conference on
Design, Automation and Test in Europe (DATE), pp. 5S2 -5S5, 2012.

J. Huang, A Raabe, C. Buckl, and A Knoll, "A workflow for runtime
adaptive task allocation on heterogeneous MPSoCs," in Proceedings of
IEEE Conference on Design, Automation and Test in Europe (DATE),
pp. I -6,2011.

F. Wang, Y. Chen, C. Nicopoulos, X. Wu, Y. Xie, and N. Vtiaykrishnan,
"Variation-aware task and communication mapping for mpsoc
architecture," IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems (TCAD), no. 2, pp. 295 -307, 2011.

A Schranzhofer, J.-J. Chen, and 1. Thiele, "Dynamic Power-Aware
Mapping of Applications onto Heterogeneous MPSoC Platforms," IEEE
Transactions on Industrial Informatics, vol. 6, no. 4, pp. 692 -707,
2010.

[14] C. Ykman-Couvreur, P. A Hartmann, G. Palermo, F. Colas-Bigey, and
1. San, "Run-time resource management based on design space

[15]

[16]

[17]

[IS]

[19]

[20]

[21]

[22]

exploration," in Proceedings of IEEEIACMIIFlP Conference on
Hardware/Software Codesign and System Synthesis (ISSS+CODES), pp.
557-566,2012.

P. Yang, P. Marchal, C. Wong, S. Himpe, F. Catthoor, P. David, J.
Vounckx, and R. Lauwereins, "Managing dynamic concurrent tasks in
embedded real-time multimedia systems," in Proceedings of
IEEEIACMIIFIP Conference on Hardware/Software Codesign and
System Synthesis (ISSS+CODES), pp. 112-119,2002.

c.-L. Chou and R. Marculescu, "Designing heterogeneous embedded
network-on-chip platforms with users in mind," IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems (TCAD),
vol. 29, no. 9, pp. 1301-1314,2010.

A K. Singh, A Kumar, and T. Srikanthan, "Accelerating
throughputaware runtime mapping for heterogeneous MPSoCs," ACM
Transactions on Design Automation of Electronic Systems (TODAES),
vol. IS, no. I ,pp. 9:1-9:29,2013.

C. Lee, S. Kim, and S. Ha, "Efficient Run-time Resource Management
of a Manycore Accelerator for Stream-based Applications," in
Proceedings of IEEEIACMIIFlP Workshop on Embedded Systems for
Real-Time Multimedia (EST/Media), pp. 51-60,2013.

W. Quan, , A D. Pimentel. "A Hybrid Task Mapping Algorithm for
Heterogeneous MPSoCs." ACM Transactions on Embedded Computing
Systems (TECS) vol. 14, no. I, 2015.

H. Orsila, E. Salminen, and T. Hamalainen, "Parameterizing simulated
annealing for distributing Kahn Process Networks on multiprocessor
SoCs," In Proc. of International Symposium on System-on-Chip (SOC),
pp. 19-26,2009.

AD. Pimentel, M. Thompson, S. Polstra, and C. Erbas, "Calibration of
abstract performance models for system-level design space exploration,"
Journal of Signal Processing Systems, vol. 50, no. 2, pp. 99-114, 200S.

Witten, LH., Frank, E., Trigg, L., Hall, M., Holmes, G. & Cunningham,
S.J. Weka: Practical machine learning tools and techniques with Java
implementations. (Working paper 99/11), University of Waikato,
Department of Computer Science, Hamilton, New Zealand, 1999.

[23] W. Quan, A D. Pimentel, "Exploring Task Mappings on Heterogeneous
MPSoCs using a Bias-Elitist Genetic Algorithm," in Euromicro
Conference on Parallel, Distributed and Network-Based Processing
(DSD), pp. 655-65S, 2014.

[24] S.R. Safavian, D. Landgrebe, "A Survey of Decision Tree Classifier
Methodology," IEEE Transactions on Systems Man and Cybernetics,
vol. 21, no. 3, pp. 660- 674,1991.

[25] A K. Suykens, and J. Vandewalle. "Least squares support vector
machine classifiers." Neural processing letters vol. 9, no. 3, pp. 293-
300, 1999.

[26] D. W. Hosmer, and S. Lemeshow, "Introduction to the logistic regression
model," Applied Logistic Regression, Second Edition, pp.I-30, 2000.

[27] 1. Rish, "An empirical study of the naive Bayes classifier." In IJCAI
workshop on empirical methods in artifiCial intelligence, vol. 3, no. 22,
pp. 41-46, IBM New York, 2001.

Authorized licensed use limited to: Universiteit van Amsterdam. Downloaded on June 24,2021 at 10:45:30 UTC from IEEE Xplore. Restrictions apply.

