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Balancing food and density-dependence in the spatial distribution of 
an interference-prone forager

Adriaan M. Dokter, E. Emiel van Loon, Cornelis Rappoldt, Kees Oosterbeek, Martin J. Baptist, 
Willem Bouten and Bruno J. Ens 

A. M. Dokter (a.m.dokter@uva.nl), E. E. van Loon, W. Bouten, Computational Geo-Ecology, Inst. for Biodiversity and Ecosystem Dynamics, 
Univ. of Amsterdam, Science Park 904, Amsterdam, the Netherlands. AMD also at: Centre for Avian Migration and Demography, Dept of 
Animal Ecology, Netherlands Inst. of Ecology (NIOO-KNAW), Wageningen, the Netherlands. – C. Rappoldt, Ecocurves, Haren, the 
Netherlands. – K. Oosterbeek and B. J. Ens, Sovon Dutch Centre for Field Ornithology, Coastal Ecology Team, Den Burg, Texel, the 
Netherlands. – M. J. Baptist, Wageningen University and Research, Wageningen Marine Research, Den Helder, the Netherlands. 

Foraging distributions are thought to be density-dependent, because animals not only select for a high availability and 
quality of resources, but also avoid conspecific interference. Since these processes are confounded, their relative importance 
in shaping foraging distributions remains poorly understood. Here we aimed to rank the contribution of density-dependent 
and density-independent effects on the spatio-temporal foraging patterns of eurasian oystercatchers. In our intertidal 
study area, tides caused continuous variation in oystercatcher density, providing an opportunity to disentangle conspecific 
interference and density-independent interactions with the food landscape. Spatial distributions were quantified using 
high-resolution individual tracking of foraging activity and location. In a model environment that included a realistic 
reconstruction of both the tides and the benthic food, we tested a family of behaviour-based optimality models against 
these tracking data. Density-independent interactions affected spatial distributions much more strongly than conspecific 
interference, even in an interference-prone species like oystercatchers. Spatial distributions were governed by avoidance 
of bill injury costs, selection for high interference-free intake rates and a decreasing availability of benthic bivalve prey 
after their exposure. These density-independent interactions outweighed interference competition in terms of effect size. 
We suggest that the bottleneck in our mechanistic understanding of foraging distributions may be primarily the role of 
density-independent prey attributes unrelated to intake rates, like damage costs in the case of oystercatchers foraging on 
perilous prey. At a landscape scale, above the finest inter-individual distances, effects of conspecific interaction on spatial 
distributions may have been overemphasised.

The notion that animals are expected to distribute so as to 
maximise their fitness rewards is at the heart of ecological 
theory on optimal habitat selection. Fretwell and Lucas 
(1969) were the first to formalise this idea in their definition 
of the ideal free distribution (IFD). In this model animals 
are “ideal” by being able to assess their full spatial landscape 
of fitness rewards, as well as “free” to move between habi-
tats without cost. In addition, animals are assumed to be 
identical, which under a constraint of fitness maximisation 
implies that all foragers achieve identical fitness rewards. In 
case of a standing stock of prey and in absence of mutual 
interference, the IFD predicts all foragers should concen-
trate in the single patch where the highest fitness gains can 
be realised (Lessells 1995, van der Meer and Ens 1997). 
Such behaviour is rarely observed at the landscape scale, i.e. 
the range of tens of metres to many square kilometers at 
which populations of foragers distribute within an ecosys-
tem (Turner 1989). Because foraging processes are usually 
dependent on the density of conspecifics, some foragers will 
move to other patches to avoid mutual interference, thereby 

increasing the overall fitness rewards. The IFD is therefore 
an inherently competitive distribution, based on the key 
ecological concepts of fitness maximisation and density 
dependent regulation.

Studies have varied greatly in their assumptions on the 
relative importance of density-dependence as a driver of 
landscape-scale distributional patterns. On the one extreme, 
mechanistic animal distribution models have treated den-
sity dependence as the main ‘repulsive force’ that spreads 
animals over multiple habitats and patches (Bautista et al. 
1995, van der Meer and Ens 1997, van Gils and Piersma 
2004). Because fitness rewards associated with foraging are 
difficult to express in terms of future reproductive success, 
many authors have assumed that foraging animals maxi-
mise instantaneous intake rate as a short-term fitness proxy 
(Holling 1959, Sutherland 1983, Kacelnik et al. 1992). A 
focus of mechanistic habitat selection studies has therefore 
been the characterisation of functional responses (Bautista 
et al. 1995, van Gils et al. 2004, Duijns et al. 2015), defined 
as the energetic intake rate as function of prey attributes, prey 
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density, and, in the case of generalised functional responses, 
competitor density (van der Meer and Ens 1997). Because 
interference competition generally reduces intake rates as a 
result of time lost in conspecific interactions and prey lost by 
kleptoparasitism, spatial distributions may be strongly regu-
lated by direct competitive interactions between individu-
als that affect intake rates (Sutherland 1983, Goss-Custard 
et al. 1995, van der Meer and Ens 1997, Folmer et al. 2012). 
Indeed, van der Meer and Ens (1997) showed that, at least 
theoretically, foraging distributions can be highly sensitive to 
how intake rates depend on conspecific density. Field tests 
of these ideas with free-living foragers in real ecosystems are 
however difficult, because the density of foragers is always 
directly confounded with the density (and quality) of the 
food.

On the other extreme, most phenomenological resource 
selection studies have neglected density-dependence alto-
gether (reviewed by McLoughlin et al. 2010). The main 
reason for discarding density-dependence has been primar-
ily computational efficiency and model simplicity, however 
the extent in which this simplification affects ecological 
inferences is unknown. To assess the relative importance of 
density dependence (both from a fundamental ecological and 
practical modelling perspective) we need to quantify the bal-
ance between density-dependent and density-independent 
effects on landscape-scale distributions in real ecosystems, 
which is the aim of this study.

Eurasian oystercatchers Haematopus ostralegus were 
used as a study species, because they are are known to be 
highly interference-prone (Ens and Goss-Custard 1984, 
Triplet et al. 1999) and have therefore become a model 
species for studying competitive distributions. We there-
fore hypothesised that density dependence by mutual 
interference between oystercatchers would strongly affect 
the landscape-scale aggregative response at our study site. 
Wintering oystercatchers forage primarily in intertidal 
areas (van de Pol et al. 2014), where patches are alternat-
ingly exposed and flooded by the tides. The tidal movements 
cause a natural modulation of the foragers’ density, to which 
density-dependent effects and density-independent effects 
will respond differently. Intertidal systems hereby provide 
an opportunity for disentangling the respective effects of 
density-dependent interference and density-independent 
predator–prey interactions.

We used high-resolution individual GPS tracking, which 
can quantify the dynamic distributional patterns of oyster-
catchers in intertidal ecosystems at high spatial detail (Bouten 
et al. 2013, Schwemmer et al. 2016). These tracking data not 
only provide information on habitat preferences, but also  
– important for our study – on the density of foragers: patches 
with a high forager density simply have a higher chance to 
be visited by the tracked cohort of individuals. We present 
a general Bayesian approach to quantify this information on 
density, and to rigorously compare the highly dynamic dis-
tributional patterns with model predictions from a family of 
density-dependent optimality models.

Many recent studies have shown that animals are not 
only selective for gross energetic intake rate, but consider 
other prey quality attributes as well, like digestibility (van 
Gils et al. 2005), toxicity (Oudman et al. 2014), parasite 
load (Hulscher 1982), specific nutrients (Graveland and 

Berends 1997), metabolic costs (Wood et al. 2013), or 
injury risks (Rutten et al. 2006). These effects change the 
central foraging currency of optimality models (Houston 
and McNamara 2014) into more complex functional forms 
that may be difficult to parametrise a priori (Brown and 
Kotler 2004). We will show how to include such parameter 
uncertainty into mechanistic distribution models, which is 
important for model comparison in order to focus on dif-
ferences in biological mechanisms rather than differences 
in exact parametrisations that may be poorly supported by 
observations.

Material and methods

Study site

Our study was performed at a 50 km2 tidal flat area called 
‘Balgzand’, in the westernmost part of the Dutch Wadden 
Sea (53°N, 5°E). The site is described in detail in earlier 
publications (Beukema 1974, Beukema and Cadée 1997, 
Dekker and Beukema 2012) and in the supplemental mate-
rial. Monthly counts of oystercatchers on Balgzand revealed 
that around 8000–15 000 individuals used this area in the 
winter 2011–2012 (Supplementary material section 1). 
Oystercatchers overwinter in the Dutch Wadden Sea mostly 
from Aug–Feb, when numbers are relatively constant around 
120 000 individuals (Hornman et al. 2013).

GPS tracking and accelerometer data

Analyses were carried out on tracking data of 10 individual 
oystercatchers (eight adults and two 2-year birds). These 
birds were tagged in the nights of 1–2 and 2–3 August  
2011 on a mudflat central in the study area (indicated 
by blue cross in Fig. 1), and equipped with GPS loggers 
(Bouten et al. 2013). The tags delivered a high resolution 
GPS fix every hour up to every 30 min when the battery 
was full and charging (typically during day-time). Following 
each GPS fix we took 1 s of tri-axial accelerometer data 
at 20 Hz (Shamoun-Baranes et al. 2012), from which we 
derived an activity status that indicated whether the bird 
was actively foraging, which shows by a higher dynamic 
body acceleration than when standing still or performing 
body care (Shamoun-Baranes et al. 2012). For distribu-
tion modelling we confined the data to a four week period  
(15 October–15 November 2011), which coincides  
with the sampling period of the benthic prey. Details on 
the GPS system, measurement schemes and accelerom-
eter analysis can be found in the Supplementary material 
section 2.

Tidal reconstruction

The semi-diurnal tides during the study period were spatially 
reconstructed by linearly interpolating between three per-
manent tidal stations and four tidal stations calibrated on 
the data of water pressure loggers fixed at the surface of 
the mudflats (indicated by blue and green crosses in Fig. 1, 
Supplementary material section 3). The permanent stations 
provided data every 10 min, and we used the same interval 
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for the interpolations. A bathymetric map of the area was 
provided by Rijkswaterstaat, Ministry of Infrastructure and 
the Environment (cycle 5 map at 20 m resolution, (Elias and 
Wang 2013)). Areas were considered accessible for foraging 
when they were exposed or flooded by 10 cm water or less 
(in cages a 15 cm upper limit was observed, but water there 
is clearer and flatter, making 10 cm more representative of 
the wild, Rutten et al. 2010a).

Available prey and geospatial interpolation of survey 
data

A benthos survey took place in the period from 26 October 
2011 to 11 November 2011. Sampling was limited to 17 
rectangular grids, which included the intensively used areas 
by the GPS-tracked individuals, as assessed from maps of 
GPS fixes acquired the month preceding the study period. 
Also little selected habitat was included, such that the sur-
vey had a high chance of encompassing both preferred 
and not preferred habitat (details protocol are given in the 
Supplementary material section 4.2–3).

The parallel long-term monitoring program of benthos 
at Balgzand identified cockles Cerastoderma edule, American 
razor clams Ensis directus and mussels Mytilus edulis as 
available bivalve prey for oystercatchers (Supplementary 
material section 4.1). Mussels were not considered in our 
sampling program because the contours of mussel beds in 

which this species aggregates were known. None of our  
GPS-tracked individuals visited these beds, and visual obser-
vations confirmed a low attendance by oystercatchers of 
these beds. The full sampling program was repeated from 23 
February 2012 to 20 March 2012 to assess changes in the 
food stock.

Spatial resolution of the surveys was chosen to match 
the characteristic spatial scale of the tracking data patterns 
observed up to the start of the sampling, which required 
high resolution sampling on a 50 m grid (Supplemen-
tary material section 4). Such high resolution sampling 
is only feasible over a limited area, therefore we restricted 
our sampling to 17 rectangular grids (Fig. 1). The survey 
included most of the intensively used areas by the GPS-
tracked individuals, taking care to include also little used 
habitats around the intensively used areas. We found that 
50.2% of the surveyed stations contained no prey, therefore 
both high and low quality feeding habitats were represented 
in the survey.

We made interpolated maps of prey biomass density 
and prey size using ordinary kriging (implemented in the 
R package gstat, Pebesma 2004), based on a single vario-
gram per prey species for the entire study area (Supplemen-
tary material section 4) on a 25 m grid. We refer to these  
25  25 m grid cells as foraging patches.

Modelling oystercatcher foraging and distribution

Despite mixed findings on the empirical succes of the IFD 
(Kennedy and Gray 1993, Milinski 1994, Tregenza 1995),  
it remains highly influential in contemporary studies of 
animal distributions (van Gils et al. 2006, Quaintenne et al. 
2011). The IFD explains habitat selection as an emergent 
pattern of behaviour, and is founded in ecological theory, 
which is an advantage over purely phenomenological resource 
selection models (McLoughlin et al. 2010). We therefore use 
the IFD as a starting point. We start with a general roadmap 
of our modelling approach, followed by a detailed description 
of the model components.

Modelling approach

Goal of the modelling exercise is to rank established 1. 
mechanisms for our model species in terms of their 
contribution to spatial foraging patterns, in particu-
lar density-dependent effects (conspecific interference) 
versus density-independent effects.
Known functional insights into the individual-level 2. 
foraging process were incorporated into the spatial 
models as much as possible, i.e. functional responses were 
parametrised from the literature.
Other unknown (or poorly known) parameters were 3. 
included as free parameters. These model parameters 
were estimated against the tracking data and a recon-
struction of the environment (food landscape and tides), 
using Bayesian parameter estimation with Markov chain 
Monte Carlo (MCMC) methods.
We quantified the losses in model performance after 4. 
removing model components from the full model. This 
we used as a metric to quantify how important those 
components were in describing spatial patterns.

Cockle
Clam

0 20 40 60 80 100

0 1000 2000 3000 4000 5000 6000

Prey density (no. m–2)

Figure 1. Density of oystercatchers’ two main food resources in late 
October/early November 2011. Orange-red colors indicate the 
numerical density of cockles Cerastoderma edule. Blue colors indi-
cate numerical density of razor clam Ensis directus. Bathymetric 
relief is indicated in greyscale. The green and blue crosses indicate 
measurement stations for tidal height. Birds were captured at the 
blue cross.
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a wet weight to AFDM conversion factor of 0.16 (following 
Zwarts et al. 1996)).

Multiplication of the capture rate with the energetic  
value per prey item (cf. component 3 below) gives the 
interference-free intake rate.

Component 2. Prey response G
Several authors have suggested capture rates may be larger 
at the tide line (Duijns and Piersma 2014), which would be 
the mechanism underlying tide line following, as observed 
in several wader species (Recher 1966). Birds may be more 
successful at capturing prey when it is still submerged, or  
has recently been exposed at ebb tide. In the model we 
therefore included an active bivalve prey, in which the 
prey availability changes after being exposed. The effect is 
therefore modelled as a multiplicative factor Gj that acts on 
the capture rate, given by

G t t B B ej k j j
j

j

t tk

j( |, , )τ τ= +










−
−

1
1

Γ
 (3)

Here Bj is the relative increase of the functional response in 
the waterline and tk the time at which patch k got exposed 
(which is different for each exposing tide). The time con-
stant tj determines how quickly the effect disappears after 
exposure. The normalisation factor Gj follows from the 
boundary condition that the capure rate including the prey 
effect averaged over an ordinary low tide period of duration 
L  (within which functional responses are measured in the 
field) should be the same as the capture rate without the prey 
effect, that is
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We take L   6.2h, half the duration of an average tidal 
cycle. To model species-specific behaviour of the prey we 
may use different parameters tj and Bj for each prey species 
j, i.e. tcockle and Bcockle for cockles and tclam and Bclam for razor 
clams.

Component 3. Energetic value prey items b
To calculate intake rates we need to multiply the capture 
rate with the prey-size dependent ash-free dry mass per prey 
item bj(sjk). Following Honkoop and Beukema (1997) and 
Dekker and Beukema (2012), the ash-free dry mass can be 
written as a multiplication of a body mass index (BMI) of 
the prey times the cube of its average size sjk:

b s BMI sj jk j jk( )= 3  (5)

The BMI of bivalve prey is seasonally dependent and slowly 
decreases during winter (Honkoop and Beukema 1997). 
BMI values were taken from the long-term benthic survey 
program at our study site determined in the same season 
(Table 2, Supplementary material section 4.3), and kept  
constant for the limited period of our case study (15 October 
–15 November).

Component 4. Damage K
Oystercatchers have been shown to avoid foraging on 
perilous prey that may cause bill tip damage (Rutten et al. 
2006). Cockles are a key prey species for oystercatchers, but 

Structure and components of the oystercatcher foraging 
model
We assumed animals distributed over the available patches 
in the system such that the fitness gain rate is maximised for 
all individuals. We further assumed that a group of identical 
foragers with average behaviour could approximate the 
foraging process. In this case the maximisation constraint 
implies that at time t all foragers realise the same gain rate 
ct. For a foraging patch k containing prey items of type j we 
may write:

Gain rate in k = 



 ×capture rate f Prey effectGj
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Because within patches typically only a single prey type 
occurred in our study area, we further assumed that birds 
foraged only on the prey type with highest interference-free 
gain rate in that patch.

Model components can be removed by equating them 
with unity or by removing dependencies on prey type 
j. The common prey types in the study area were cockles 
Cerastoderma edule and spat of the American razor clam 
Ensis directus.

Component 1. Prey capture rate f
Field data on prey capture rates as a function of prey density 
were described with a Holling type II functional response 
(Holling 1959), also known as the disc equation:

f n s
A n

A n h sj jk jk
j jk

j jk j jk

( , )
( )

=
+1  (2)

with njk the numerical density and sjk the size of prey  
type j in patch k, Aj the attack rate and hj the handling 
time of the prey (not be confused with the terminology 
used in some resource selection studies, where functional 
response refers to a change in preference with overall habi-
tat availability, Mysterud and Ims 1998, Matthiopoulos 
et al. 2011).

The function describing the capture rate of cockles is 
based on a compilation of data from ten studies (Zwarts et al. 
1996), using a non-linear fit on the capture rates of Holling’s 
disc equation with size-dependent handling time. For Ensis 
directus spat no functional response was available in the 
literature, therefore a functional response for oystercatchers 
feeding on this prey was determined from intake rate 
observation on this prey in the study area (see Supplemental 
material section 5 and Fig. A9–A10 for details).

Alternatively, we may assume that because of digestive 
constraints, birds perceive patches equivalent when the 
intake rate exceeds the digestion rate rdigest, as hypothesised 
in digestive rate models (van Gils and Piersma 2004). This 
behaviour is easily simulated by replacing fj in Eq. 2 by 
fj

digest  min(fj,rdigest / bj), with bj the energetic content of the 
prey (see component 3) and rdigest the digestive rate for oys-
tercatchers determined by Kersten and Visser (1996) (0.263 
g wet weight min–1, converted to 0.7 mg AFDW s–1 using 
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GPS tracked individuals. This implicit density information 
can be compared with density predictions of behaviour-
based models, as derived explicitly in Appendix 3.

We assumed 5000 birds were foraging in the patches, 
which was estimated based on the surveyed area and the total 
number of birds wintering in the study area (8000–15 000, 
Supplementary material section 1), however the perfor-
mance of the models did not depend on this assumption 
(Appendix 2). We further assumed that the total number of 
birds present in the patches follows the same tidal pattern as 
the presence of GPS birds in the patches, as shown in Fig. 2 
(bars). The number of birds Nt released in the model at time 
step t therefore equals 5000 multiplied by the proportion in 
patches corresponding to the reference tide at that time.

The vector of free model parameters b was estimated using 
Bayesian inference with uninformative priors. The joint  
log-likelihood function ℓ is derived in Appendix 3 (Eq. 13). 
We used a random walk Metropolis algorithm to sample  
from ℓ using the function MCMCmetrop1R of the R-package 
MCMCpack. Proposal samples for b were drawn from a 
Gaussian jumping distribution without cross-correlation 
between the parameters. In order to achieve a well-mixed 
chain the jumping variances were manually adjusted to 
achieve a Metropolis acceptance rate of around 0.5, while 
keeping the degree of autocorrelation between subsequent 
samples similar for each parameter. We used 105 burn-in sam-
ples per chain. After this burn-in the chains had converged, 
as tested by Gelman and Rubin’s (1992) convergence diag-
nostic on two parallel chains with different starting values. 
On a converged chain we took 2000 samples for estimating 
the variance–covariance matrix of the model parameters b.

Model comparison

To make pairwise comparisons of model performance 
we compared joint log-likelihood values using Vuong’s 

bill tip damage occurs easily when foraging on its larger size 
classes (over 40% of animals hurt their bill tip on cockles of 
 30 mm, Rutten et al. 2006). Since in our study year, most 
cockles were relatively large, inclusion of damage effects in 
our model was required. The other prey common in our 
study area, razor clam spat, has a much thinner shell, which 
cannot close at the top. This prey can therefore be captured 
and consumed without a risk of bill damage. Component 
4 describes the energetic loss due to damage incurred while 
handling a prey item. We model the effect of damage as a 
perceived reduction in the energetic gains per prey item.
b s b s Kj j j( )= ( )  (6)
The cost of damage for foraging on razor clam spat is likely 
negligible compared to the cost of damage for foraging on 
cockles. We therefore set Kclam  1 (no bill damage) and 
include Kcockle(s)  Kcockle as a model parameter. In Appendix 
1 we show that the factor Kcockle is related to a rate of bill 
damage that is proportional to prey size s, such that larger 
prey items inflict more damage.

Component 5. Interference competition I
We model conspecific interference competition as a multi-
plicative exponential term to the functional response, i.e.
I ej

q pj k= −  (7)
with pk the predator density in patch k and qj the 
interference constant on prey j. We had no prior evi-
dence that inter-specific competition played a role at our 
site, which was therefore not considered. We used this 
interference model for two reasons. First, an exponential 
interference effect is expected on geometrical grounds 
for any interference mechanism that has a characteristic 
length scale, such as an attack range in the case of klep-
toparasitism or a disturbance distance in the case of prey 
depression (Rappoldt et al. 2010). In the case of oyster-
catchers, the interference effect in behaviour-based model 
simulations of kleptoparasitic behaviour was shown to be 
exponential, which is a major interference component in 
this species (Stillman et al. 2002, Rappoldt et al. 2010). 
Second, solutions to the IFD for this interference model 
are invariant to assumptions on the total number of birds 
N occurring in the study area, as shown in Appendix 2. 
This is a very useful property when the absolute number 
of birds that use the study area is not known exactly. To 
make the interference dependent on prey type we may 
use different parameters q for each prey species, i.e. qcockle 
for cockles and qclam for razor clam spat. According to 
field data (Triplet et al. 1999), experimental data (Rutten 
et al. 2010a, b), and an individual-based competition 
model (Stillman et al. 2002, Rappoldt et al. 2010), the 
interference constant for cockles is approximately 5–12 
m2, therefore we chose qcockle  8 m2 in our null model of 
intake rate maximization.

Fitting behaviour-based models on tracking data

Our approach is to use the GPS-tracked individuals as 
spatial probes of the true population distribution. Tracked 
individuals provide information on population density, 
because, on average, patches with a high forager density will 
also have the highest probability of being visited by one of the 
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Figure 2. Bars indicate the proportion of GPS fixes occurring in the 
sampled grids for the period 2011-10-15 to 2011-11-15 (bars/left 
axis), as a function of tide height measured at a reference location 
(blue cross in Fig. 1). The proportion of oystercatchers active (dot-
ted grey line) and the proportion active inside sampled grids (solid 
grey line) has been determined from accelerometer data. We calcu-
lated binomial proportion confidence intervals using the Wilson 
score interval, at a confidence level of 95%.
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using a spherical variogram model, Supplementary material  
Fig. A8). The variogram range for cockle size was much larger 
(420 m), suggesting that over larger areas cockles dated from 
the same spat fall and were of similar age. The adult cockle 
size was 35  4 mm (n  3014, mean  SD).

The change in number of oystercatchers on the sampled 
mudflats is illustrated in Fig. 2, showing the proportion of 
oystercatchers (bars) and their accelerometer-derived activ-
ity (solid line) in the sampled grids, as well as their overall 
activity (dashed line, inside and outside the sampled grids 
combined). The figure shows that during high tide birds were 
mostly resting, but when present in the grids they were highly 
active ( 80% of the time), indicative of foraging behaviour 
(Shamoun-Baranes et al. 2012). We may therefore assume 
that the GPS fixes inside the sampled grids are primarily 
associated with actively foraging oystercatchers, which can 
thus be modelled as foraging distributions. Figure 1 shows 
how 10 individually tracked oystercatchers distributed over 
the resource landscape, showing one month of location data 
during falling tide, split out in panels by tidal stage. Several 
qualitative features are noteworthy. First, many oystercatcher 
positions occur relatively close to the tide line, suggesting the 
birds are continuously adjusting their position in response 
to the retreating water. Second, in the low tidal stages most 
oystercatcher positions are found in the deepest patches con-
taining razor clam spat (indicated in blue in Fig. 1). Intake 
rates were estimated by applying functional responses to the 
maps of prey size and numerical density. In the patches with 
razor clams intake rates were up to 1.0 mg AFDM s–1, which 

likelihood ratio test for non-nested models (Vuong 1989) 
available in the spatcounts package. This likelihood ratio test 
is specifically designed to compare models of very different 
structure, complexity and parameter numbers, as applies to 
our behaviour-based models. Before applying the test, the 
model likelihoods were adjusted by the Schwarz correction 
(Burnham and Anderson 2002) as in BIC, to penalise models 
with a higher number of free parameters.

Data deposition

Data available from the Dryad Digital Repository: < http://
dx.doi.org/10.5061/dryad.s8n05 > (Dokter et al. 2017).

Results

Food landscape and dynamic foraging distribution

Since the spatial distribution of food critically determines 
the distribution patterns of oystercatchers, we first describe 
the results of the benthic survey of the food stock. The staple 
food of oystercatcher included adult cockles (Fig. 1, indi-
cated in orange) and spat of the razor clam Ensis directus  
(Fig. 1, indicated in blue), the latter found only in deeper 
patches in the north of the study site (Dekker and Beukema 
2012). Figure 1 reveals a prominent fine-scale structuring 
of the benthic resources, as further evidenced by a short 
variogram range for cockle numerical density (150 m, 

Figure 3. Oystercatcher GPS positions (red dots) of 10 individuals in the period 2011-10-15 to 2011-11-15 split out in panels by tidal 
height (at the time and position of each GPS fix) during falling tide. Blue indicates areas where the bathymetric height is below the indi-
cated tidal height at each panel. Birds associate with the tide line and have a preference for the northerly deeper tidal zone, rich in Ensis 
directus prey.
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density, as found for oystercatchers foraging on cockles. We 
added the constraint that interference on razor clams should 
be weaker than the value for cockles, otherwise leaving qclam 
a free model parameter. We find that such an IFD model of 
intake rate maximising birds (model ‘null’) cannot describe 
the observational data. The model does not perform better 
than a model in which birds are distributed evenly over the 
available patches (model ‘random’).

It is clear that additional foraging mechanisms strongly 
affected the observed distribution patterns, which we 
explored by including additional mechanistic components 
to account for damage costs (term Kj), an active prey effect 
(term Gj), and by leaving both interference parameters (term 
Ij) to be optimised freely. Predictions of this full model,  
after Bayesian estimation of its free parameters, are shown 
in Fig. 4. To quantify the contribution of its mechanis-
tic components, we calculated the loss in BIC model 
performance when a mechanistic component was removed 
(Table 1, model 2–6). Removal of certain model components 

is considerably lower than in the patches with cockles, where 
oystercatchers reached up to 2.4 mg AFDM s–1. Resampling 
the food landscape in the next spring revealed all razor clam 
beds were fully depleted over the winter, while cockle beds 
were not.

Ranking distributional mechanisms

To determine which mechanisms explain the observed 
distribution patterns, six behaviour-based models of differ-
ent structural complexity were tested, as listed in Table 1. 
The gain rate formula indicates which model components, 
as introduced in methods section, were included. All model 
parameters are listed in Table 2. Parameter estimates by 
Bayesian MCMC methods are listed in Table 3.

We first tested the hypothesis of intake rate maximisation, 
which may be considered the traditional IFD null model. 
We assumed the value of the interference constant qcockle cor-
responded to the reduction in intake rate with conspecific 

Table 1. Comparison of foraging distribution models, based on GPS telemetry data of oystercatchers collected in the period 15 October–15 
November (sample size 10 individuals, in total M  2876 GPS observations in the sampled grids) and the reconstructed food landscape. 
Subscripts j indicate dependence on prey type (cockle or clam). f  capture rate, G  prey response, b  energetic content of the prey item, 
K  damage costs, I  density-dependence/interference, I0  density dependence of intake-rates only. D indicates the deviance, i.e.  2Δℓ 
with Δℓ the difference in maximum joint log-likelihood with the model with the best fit (model 1, ℓ   22242). n gives the number of free 
parameters in the model. BIC (Bayesian information criterion) penalises the number of model parameters according to  2Δℓ  n log(M), with 
ΔBIC the difference in BIC relative to model with lowest BIC (model 2). V indicates pairwise significant differences in BIC according to 
Vuong’s non-nested test at 95% confidence level. Model pairs labeled by different letters refer to significant differences. The test shows model 
1 and 2 are the two most parsimonious models, with equivalent BIC values. The total number of birds in the system equalled n  5000, with 
a proportion released on the foraging patches depending on the tidal phase (Fig. 2).

Model Description Gain rate formula D n ΔBIC V

1 full model fj  Gj  bj  Kj  Ij 0 8 2 a
2 no prey-variation in prey response fj  G  bj  Kj  Ij 14 6 0 a
3 no prey response fj  bj  Kj  Ij 110 4 80 b
4 no prey-var. in density-dependence fj  Gj  bj  Kj  I 168 7 162 b
5 digestive intake rate fjdigest  Gj  bj  Kj  Ij 332 8 334 c
6 no damage costs fj  Gj  bj  Ij 402 7 396 d
random evenly over exposed patches 1 3588 0 3526 e
null maximised intake rate fj  bj  I0 3588 2 3542 e

Table 2. Overview of model parameters and their source. First column refers to the numbering of model components in methods. †cockle 
size s in units of mm. §Polynomial re-fit on intake rate data of a compilation of 10 studies, given in Zwarts et al. (1996, Fig. 16). ‡Value taken 
for oystercatchers feeding on Macoma balthica. *Values for October/November 2011, long-term benthos monitoring programme Balgzand, 
in Supplementary material section 4.

Comp. Parameter Symbol Value Unit Source

1 attack rate cockle Acockle 0.000860 m–2 s–1 Zwarts et al. 1996§

1 attack rate clam Aclam 0.000625 m–2 s–1 Hiddink 2003‡

1 handling time cockle hcockle 0.2205s1.7921† s Zwarts et al. 1996§

1 handling time clam hclam 13.4 s suppl. 5.2, this study
1 digestion rate shellfish rdigest 0.7 Mg s–1 Kersten and Visser 1996
2 prey response cockle Bcockle free – Eq. 3, this study
2 prey response clam Bclam free – Eq. 3, this study
2 decay prey resp. cockle tcockle free h Eq. 3, this study
2 decay prey resp. clam tclam free h Eq. 3, this study
2 mean low tide L 6.2 h Eq. 4, this study
3 body mass index cockle BMIcockle 9 mg cm–3 R. Dekker pers. comm.*
3 body mass index clam BMIclam 0.48 mg cm–3 R. Dekker pers. comm.*
4 damage factor cockle Kcockle free – Eq. 6, this study
4 damage factor clam Kclam 1 – Eq. 6, this study
5 interference cockle qcockle 0.08 or free 10–2 ha Rappoldt et al. 2010
5 interference clam qclam free 10–2 ha Eq. 7, this study

random fraction frandom free – Eq. 14, this study
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Compared to the former two direct predator–prey 
effects, the density-dependent effect of prey-differences in 
interference was considerably smaller (see model 4 ‘no varia-
tion in density-dependence’ versus full model). For both 
prey types the magnitude of the exponential interference 
constants exceeded 1 ha, suggesting that density dependent 
regulation of bird distributions already played a role at densi-
ties of a few birds ha–1. The optimised interference constants 
were higher for cockles than for razor clams (cf. Table 3).

There was also evidence for an active prey response (see 
model 3 ‘no prey response’ versus full model), which was 
found to be very short-lived (less than 10 min, cf. Table 3). 
We found no evidence that the prey response varied with prey 
type, because model 2 ‘no prey variation in prey response’ 
performed as well as the full model.

came at a much higher performance loss than others, allow-
ing a ranking of which mechanisms were the most important 
drivers of the distributional patterns.

The direct predator–prey effect of bill damage avoidance 
had the largest effect size in explaining foraging distribu-
tions (see model 6 ‘no damage costs’ versus model 1 ‘full 
model’). The importance of intake rate selection was evalu-
ated by a model in which interference-free intakes rate above 
the digestion rate rdigest were perceived as equivalent by the 
model birds, similar to a digestive rate model (van Gils and 
Piersma 2004). This removed most of the selectivity for 
intake rates, because around half of the patches in our system 
had an interference-free intake rate above rdigest. Selection for 
intake rates had the second largest effect size (see model 5 
‘digestive intake rate’ versus model 1 ‘full model’).

Table 3. Parameters for the models in Table 1 that were estimated on a combination of benthic survey data and tracking data (10 individual 
birds, M  2876 gps observations in the sampled grids). Values in parenthesis are standard errors. * or ** indicates this model component 
was removed from the model by fixing the parameter value to 0 or 1, respectively. ‡frandom indicates the proportion of animals distributed 
randomly over the available area; Eq. 13 Appendix 2. †value calculated according to the relation q DA= πα 2 , parametrised following the 
observational and modelling data of Stillman et al. (2002), i.e. DA  3.3 and a  0.241 (Rappoldt et al. 2010, Table 1).

Damage K
Kcockle

Prey response G Interference I

Model frandom
‡ tcockle [h] tclam[h] Bcockle Bclam qcockle [10–2 ha] qclam [10–2 ha]

1 0.28 (0.01) 0.17 (0.01) 0.07 (0.03) 0.04 (0.01) 1.8 (0.1) 0.6 (0.1) 16.2 (0.6) 1.70 (0.07)
2 0.33 (0.01) 0.17 (0.01) 0.02 (0.07) tcockle 0.7 (0.1) Bcockle 11.5 (0.4) 1.75 (0.05)
3 0.33 (0.01) 0.09 (0.01) * * * * 13 (1) 1.85 (0.07)
4 0.34 (0.00) 0.10 (0.00) 0.05 (0.01) 0.01 (0.01) 0.31 (0.08) 2.1 (0.2) 3.25 (0.06) qcockle

5 0.33 (0.01) 0.49 (0.01) 0.10 (0.01) 0.02 (0.01) 0.14 (0.03) 0.54 (0.06) 2.2 (0.1) 1.04 (0.03)
6 0.15 (0.00) ** 0.21 (0.03) 0.02 (0.01) 7.1 (0.1) 0.03 (0.02) 71 (1) 1.2 (0.1)
random ** ** * * * * * *
null 0.99 (0.00) ** * * * * 0.08† 0.04 (0.03)

Figure 4. Predicted bird densities by model 1 on 2011-10-29 10:50, 11:10, 12:00, 12:50, 13:40, 15:10 UTC, corresponding to tidal 
heights at the reference point of 28, 15, -18, -46, -69, -99 cm MSL, respectively. For other models see Supplementary material section 6.
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The extent to which interference determines land-scape 
scale distributions always depends on the prey stock and 
the susceptibility to interference of available prey types. 
Especially when food is concentrated in small areas, forc-
ing animals to forage closely together, it is conceivable that 
interference gains importance in regulating landscape-scale 
distributions. In the case of oystercatchers, this may apply to 
food lanscapes dominated by dense stable mussel beds with 
only small stocks of alternative foods, like in the estuary of 
the Exe, where kleptoparasitism was found to be common 
and mortality density-dependent (Ens and Goss-Custard 
1984, Goss-Custard et al. 2001). Such sites will be par-
ticularly informative to further test the role of conspecific 
interference on the aspect of spatial distribution.

Density-dependent analysis of oystercatcher 
prey preferences

In this study we focussed on disentangling the relative 
contributions of well-established factors thought to be of 
overall importance to foraging oystercatchers. More subtle 
individual differences in dominance, bill condition or age 
were not accounted for, as this would require very high 
sample sizes of tracked individuals. Patterns in tracking data 
were similar between individuals, showing strong selection 
of razor clams during the lowest tides. This pattern was con-
firmed by supporting field observations, when thousands of 
birds were observed foraging on the razor clam beds as soon 
as these deep areas were exposed. These observations sup-
port our assumption that the cohort of tracked individuals 
sampled the population-average foraging behaviour.

Our model analysis showed preference for razor clams 
over cockles, which may involve both density-dependent 
and density-independent responses to this prey. The prefer-
ence could not be explained from considerations of intake 
rates, because intake rates on razor clams were relatively low, 
and higher intake rates could be realised on cockles. It could 
neither be explained from a relatively high capture probabil-
ity of clams directly after exposure. Tracking data showed 
that foraging oystercatchers were often found close to the 
tide line, indicating a high prey availability at the tide line, 
which gave rise to a significant prey response G. Birds thus 
exploited a temporary window of opportunity directly after 
exposure (possibly prey quickly takes protective measures to 
avoid predation, such that prey availability decreases after 
exposure). However, we found no evidence that this active 
prey effect differed between prey types, and it therefore could 
not explain differences in preference for razor clams versus 
cockles.

This leaves interference Ij, accounting for prey differences 
that were density-dependent, and damage costs Kj, account-
ing for prey differences that were density-independent. 
Cockles are difficult to open (Rutten et al. 2006) but have 
a high flesh content (Zwarts et al. 1996). Because of a long 
handling time, foraging on cockles is sensitive to interference 
by kleptoparasitism. This is different for the razor clam spat, 
which are buried vertically into the top layer of the sediment. 
Spat cannot hide very deeply in the sediment yet (like adult 
razor clams), and remain accessible to oystercatchers. Since 
their shells are thin and do not close at the top, they can 
be easily and quickly captured and consumed (Dekker and 

Discussion

Balance of density-dependent and  
density-independent mechanisms

According to our ranking of established foraging mecha-
nisms of the oystercatcher (Table 1), spatial distribu-
tions were primarily explained by density-independent 
effects. Interference effects, and spatial variations in den-
sity dependence in general, played only a secondary role in 
explaining oystercatchers space use, in spite of oystercatch-
ers being interference-prone and a model for competitive 
distributions.

Although landscape-scale distributions were dominated 
by density-independent interactions, this does not imply 
that conspecifics had no effect on each other. It is well estab-
lished that short-range interactions can affect the finest 
inter-individual positions (Moody and Thompson 1997). 
Also, mortality rates of oystercatchers can become density-
dependent in certain periods (Le V Dit Durell et al. 2000). 
In our case the razor clam beds became fully depleted over 
the winter, suggesting that competition through depletion 
may have played a role.

Importantly, however, although competitive interac-
tions may affect foragers, in our density-dependent analysis 
these interactions turned out less important for explaining 
the aspect of landscape-scale distribution. Complex density-
independent tradeoffs, such as the negotiation of energetic 
gains and body damage, were more of a bottleneck in our 
understanding of spatial distributions of this interference-
prone species.

A striking feature of the better models is a high value 
of the optimised interference constants (cf. Table 3, up to 
1620 m2). These magnitudes suggest that density-dependent 
regulation operated over long distances already at low bird 
densities (by Eq. 7, gain rate decreased by a factor 1/e 
already at 6 birds ha–1). Intake rates are known to decrease 
by interference only at densities above 50–100 birds ha–1 
(Triplet et al. 1999), corresponding to much lower interfer-
ence constants (5–12 m2, cf. Stillman et al. 2002, Rappoldt 
et al. 2010, Rutten et al. 2010a). The high interference 
constants thus contradict our initial hypothesis that den-
sity-dependent regulation occurs primarily through short-
range mutual interactions affecting intake, like conflicts 
over food.

Larger interference constants can be explained from birds 
pre-emptively avoiding each other over longer distances 
(Moody and Thompson 1997, Rutten et al. 2010a, Gyimesi 
et al. 2010), such that less notice of competitors is required. 
Avoidance also increases the chance of exploring regions 
where competitors have not yet depleted easily accessible 
prey items, and where prey is not yet depressed (Charnov 
et al. 1976).

When suitable prey is cryptic or hard to find, explorative 
behaviour is generally an important strategy to increase forag-
ing success, and will spread out animals further compared to 
an IFD (van Gils 2010, Matsumura et al. 2010). The resul-
tant increase in mean inter-individual distances may also have 
reduced effects of short-range mutual interactions on landscape-
scale spatial distributions, and contributed to higher apparent 
interference constants, as both observed in this study.
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information theoretic techniques, in which model compari-
son and parametrisation are intimately linked (Burnham and 
Anderson 2002).

The advantage of a Bayesian approach is that uncertainty 
and prior knowledge on model parameters can be incorpo-
rated in a natural way as priors, or parameter values with 
high uncertainties can be left unspecified when comparing 
candidate models. In the case of oystercatchers, bill injury 
avoidance, tidal changes in prey availability and conspecific 
interference are processes that are difficult to accurately 
parametrise beforehand on the basis of available literature 
or independent experiments (van der Meer and Ens 1997, 
Rutten et al. 2006, 2010a), which is why these parameters 
were freely optimized on the tracking data. Subsequent 
model comparisons were therefore less dependent of subjec-
tive (and possibly inaccurate) a priori parametrisations, by 
which we aimed to steer comparisons towards the candidate 
mechanisms the models represent, which are of primary 
interest.      
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Supplementary material (available online as Appendix oik-
04139 at < www.oikosjournal.org/appendix/oik-04139 >). 
Balancing food and density-dependence in the spatial distri-
bution of an interference-prone forager.

Appendix 1. Expressing Kj into a damage 
rate

To account for the negative effects of body damage, we need 
a common currency by which we may titrate between such 
costs of body damage and the benefits of food intake (Brown 
and Kotler 2004). Following Houston and McNamara 
(2014) we define V(x,y) to be the expected future lifetime 
reproductive success of an animal with energy reserves x and 
condition y (of body or bill). The rate at which the animal 
increases energy reserves x is given by the capture rate times 
bj. Let us further assume that condition y is lost at a rate kj(s) 
when foraging on prey type j of size s as a result of damage. 
If we assume bill damage only occurs while handling prey, 
which takes a time hj(s) for a prey item of type j and size s, 
the energetic gain per prey item including the cost of damage 
bj
  can be written as

bj
 s b s K s K s s

h s

b s
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Here the term (∂V/∂y)/(∂V/∂x) is the marginal rate of sub-
stitution of the value of condition to the value of energy 
(Houston and McNamara 2014). Because the cost of dam-
age for foraging on razor clam spat is negligible compared 
to the cost of damage for foraging on cockles, we may set 
kclam  0 (i.e. Kclam(s)  1). Kcockle(s)  Kcockle we retain as the 
only model parameter. Because the handling time hcockle(s) 
is approximately proportional to s2 (Zwarts et al. 1996) and 
the biomass bcockle(s) to s3, a parameter Kcockle independent of 

s amounts to the assumption that the damage rate kcockle(s) is 
proportional to cockle size s, such that larger cockles inflict 
more damage.

Appendix 2. Solution of the IFD model

We define the interference-free gain rate in patch k at time 
t as F f G b Kkt j j j j= × × × . Equation 1 and 7 may be rear-
ranged to obtain the bird density at patch k at time t, also 
known as the numerical or aggregative response:

p t p t q B
log F c q F c
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kt t kt t
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,
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( ) >
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|

0
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where we defined b  [q,t,B] the vector of parameters of the 
ideal-free model (in this example a model with three free 
parameters, assuming parameters for interference and prey 
effect do not differ between prey types). The maximised gain 
rate ct is found by requiring that the sum over the available 
patches of bird density pk times patch area ak equals the total 
number of birds Nt in the system, which by Eq. 10 amounts 
to the boundary condition

k S
F c

k kt t

tt

kt t

a log F c
qN∈

>

∑ ( )
=

/
1  (11)

where St is the set of exposed patches available to the ani-
mal at time t (the foragers’ choice set, Manly et al. 2002). 
This solution to the IFD contains the interference constant 
q and the total number of birds N as multiplicative pairs. 
This implies that the (normalised) foraging distribution will 
be invariant to the total number of birds in the system, when 



1196

the interference constant is optimised as a free model param-
eter: doubling the number of model birds will simply pro-
duce an optimised interference constant that is twice as low, 
resulting in a model with the same proportional distribu-
tion and likelihood. This is a very useful property when the 
absolute number of birds in a limited study area is difficult 
to assess.

Solving the IFD given a parameter vector b involves find-
ing the maximised gain rate ct, which was implemented in 
a C module callable from R (< www.r-project.org >) using 
Brent’s root finding method (Galassi et al. 2009).

Appendix 3. Likelihood of an IFD model 
given a set of location observations

To assess how well an IFD model describes distributional 
patterns obtained with individual tracking, we need to com-
pare

A set of animal location observations i (GPS fixes), each  •
characterised by a location or selected patch ki and a  
time ti.
A candidate animal distribution model p • k(t|b), which 
predicts in each patch k of the system at any time t 
the animal density, conditional on its vector of model 
parameters b and the total number of animals Nt.

Quantitatively comparing these patterns becomes chal-
lenging especially when patterns are spatially complex and 
dynamic. Starting from the simple idea that the probabil-
ity that a GPS location i is recorded in a patch ki, should 
be directly proportional to forager density and size of that 
patch, we can write:

 i
k

ti
k i i

i

a
N

p t probability of finding

GPSfix i in patch k at t

i= ( )∝|β

iime ti
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with ℓi the proportion of animals in patch ki at time ti, ak i
 

the area of the patch and Nt i
 the total number of animals 

in the system at time ti. If the distribution model closely 
approximates reality, we expect most GPS fixes are found 
in patches with a high ℓi, that is, a good model maximises 
the overall ℓi values. Along these lines we can formulate a 
joint likelihood function that gives the overall likelihood 
of a model for the full set of M location observations, by 

multiplying the individual likelihoods ℓi of the GPS fixes. 
Taking the logarithm of this function gives us the joint log-
likelihood function:
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= =

∏ ∑log w log w
a

N
p t p

i

M

i i
i

M

i
i

t
i i

i1 1
0|   (13)

Here wi is a weighting of GPS fixes for balancing sampling 
(we require Si wi  M). We require that sampling is balanced 
over all tidal stages (i.e. sea level heights encountered during 
both falling and rising tide), which is realised by inversely 
weighing each fix with the proportion of oystercatchers 
present in the system at the corresponding tidal stage (as 
given by the bars in Fig. 2). In this equation we also included 
an offset bird density p0, given by:

p f N arandom t
k S

ki

ti

0 =
∈
∑/  (14)

St i
 equals the set of exposed available patches available to the 

animal at time ti. frandom is the proportion of animals which 
is distributed uniformly over the available area. This value 
represents the fraction of animals that is not actively forag-
ing or that is unassociated with the food landscape, and at 
the same time prevents the model log-likelihood to become 
∞ (which would happen in an IFD model when GPS fixes 
occur in patches without resources).

This joint log-likelihood provides a metric to rank mod-
els according to the accuracy by which observed animal 
locations are predicted, i.e. it applies multi-model infer-
ence to the realm of behaviour-based modelling of tracking 
data, an approach that has rarely been taken so far (but see 
Martínez et al. 2011, Bartlam-Brooks et al. 2013). To com-
pute Eq. 13 for a given b, we determined for each time ti 
of each GPS fix i which grid points were exposed (and since 
when), and which proportion of birds was present in the 
system (following Fig. 2). This information, together with 
the spatial prey maps, was fed into the routines calculating a 
bird distribution for each time ti according to Eq. 10. From 
these predicted distributions we obtained the predicted bird 
density at the location of each GPS fix, p ti i( | )β . These 
values were combined into a single joint log-likelihood value 
using Eq. 13. To calculate one joint log-likelihood value for 
a parameter vector b on the basis of M GPS fixes, we thus 
need to numerically solve M bird distributions (one at the 
instant of each GPS fix), which makes these calculations 
computationally expensive. 


