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Consistent coupling of effective field theories with a quantum theory of gravity appears to require bounds
on the rank of the gauge group and the amount of matter. We consider landscapes of field theories
subject to such to boundedness constraints. We argue that appropriately “coarse-grained” aspects of the
randomly chosen field theory in such landscapes, such as the fraction of gauge groups with ranks in a
given range, can be statistically predictable. To illustrate our point we show how the uniform measures
on simple classes of N = 1 quiver gauge theories localize in the vicinity of theories with certain typical
structures. Generically, this approach would predict a high energy theory with very many gauge factors,
with the high rank factors largely decoupled from the low rank factors if we require asymptotic freedom
for the latter.

© 2009 Elsevier B.V. Open access under CC BY license. 
1. Introduction

It is commonly supposed that the huge numbers of vacua that
can arise from different compactifications of string theory [1,2]
imply a complete loss of predictability of low energy physics. If
this is the case, the stringiness simply constrains the possible dy-
namics rather than the precise complement of forces and matter.
Every string theory leads to some effective field theory at a high
scale Λ, taken to be, say, an order of magnitude below the string
scale. Predictions for low energy physics have to made in terms
of this effective field theory. Thus, the landscape of string theory
vacua leads to a landscape of effective field theories at the scale Λ.
Here we ask if constraints of finiteness imposed on this landscape
via its origin in string theory might be sufficient to lead to a de-
gree of predictability, at least in some statistical sense. Previous
authors have discussed how continuous parameters can scan in a
random landscape of effective field theories [3–9], and there has
been some study of the gauge groups and matter content attain-
able from specific string theoretic scenarios [10–15]. For example,
[14] and [15] discuss the distribution of gauge groups arising in
intersecting brane models on torus orientifolds.
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We will impose the weakest of the constraints arising from
string theory – namely that it should be possible to couple the ef-
fective field theory consistently to a quantum theory of gravity. It
has been argued [16–18] that such consistency with string theory
requires that the rank of the gauge group and the number of mat-
ter fields be bounded from above.1 Since we will not impose any
constraints based on rules arising from symmetry or dynamics on
the measure, we will call this an “anarchic” landscape, in recollec-
tion of the terminology in [6]. Thus we will study simple anarchic
landscapes of field theories bounded in this way, and illustrate
how statistics can lead to characteristic predictions for the low
energy physics. These predictions are strongest for appropriately
coarse-grained attributes of a theory that possess the property of
typicality in such landscapes – i.e. they are overwhelmingly likely
to lie close to certain typical values. An example of such a typi-
cal property will be the fraction of gauge groups with ranks lying
within some range. We will illustrate and develop our thinking us-
ing some simple examples.

2. The set of field theories

Quiver gauge theories provide a natural, large class to consider.
For simplicity, we will restrict attention to N = 1 supersymmetric

1 A possible bound on the number of matter species in theories containing gravity
was originally discussed by Bekenstein [19].

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/physletb
mailto:vijay@physics.upenn.edu
mailto:J.deBoer@uva.nl
mailto:a.naqvi@swansea.ac.uk
http://dx.doi.org/10.1016/j.physletb.2009.11.046
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/


V. Balasubramanian et al. / Physics Letters B 682 (2010) 476–483 477
theories with a gauge group G = ∏L
i=1 U (Ni), Aii hypermultiplets

in the adjoint of U (Ni), and Aij hypermultiplets in the (Ni, N̄ j)

of U (Ni) × U (N j). To specify the full gauge theory we also need
a Kähler potential for the hypermultiplets, gauge kinetic terms,
a superpotential and possibly Fayet–Iliopoulos terms. We will post-
pone discussion of these quantities and will discuss the matter and
gauge group content of the N = 1 theory.

Quiver gauge theories are ubiquitous in string theory because
bifundamental matter, arising from strings with two endpoints, is
common. In N = 1 quivers constructed by wrapping D6-branes
on 3-cycles inside a Calabi–Yau manifold the number of bifunda-
mentals is related to the intersection number of the 3-cycles. By
including orientifolds, one can engineer quiver theories with SO
and Sp gauge factors.

2.1. Interesting classes of quiver gauge theories

Three possible restricted sets of gauge theories are:

• Anomaly free theories. We must impose the absence of anoma-
lies: ∀i,

∑
j �=i(Aij − A ji)N j = 0. The left-hand side has zero

expectation in the unconstrained set of quiver gauge theories
with the uniform measure, as the measure is invariant under
Aij ↔ A ji . Therefore, “on average”, random quiver gauge theo-
ries are anomaly free, and one might be inclined to not worry
about anomalies anymore. However, from a physical point of
view one must not allow forbidden theories in an ensemble,
as properties of the set of anomaly free theories may not the
same as the full set of random quiver gauge theories. Hence
we will restrict to field theories which are anomaly free.

• Asymptotically free theories. Another natural constraint is as-
ymptotic freedom, which makes a theory well-defined in the
UV. Asymptotic freedom is less compelling than anomaly can-
cellation if we simply consider a set low-energy effective field
theories obtained e.g. in string theory. Gauge group factors
that are IR free and strongly coupled in the UV will typically
act as global symmetries at low energies and will not di-
rectly lead to contradictions. Asymptotic freedom occurs if ∀i,
Aii Ni + ∑

j �=i(Aij + A ji)N j < 3Ni . This constrains the Aij to be
of order unity.

• Purely chiral theories. Starting with effective field theories at a
high scale M , in the absence of other dimensionful parameters,
the most general superpotential will contain many mass terms
of O (M). Integrating these out at energies below M leaves
purely chiral theories with Aii = 0 and Aij = 0 or A ji = 0
for i �= j. These are a natural starting point for viewing ran-
dom quivers as low-energy effective field theories. Chiral the-
ories allow for general cubic superpotentials that are marginal.
Higher order terms are suppressed by a mass scale in the La-
grangian, although some quartic superpotentials can become
marginal in the infrared.

• Equal rank theories. For simplicity, we can take all gauge group
ranks to be fixed and equal. For such theories the anomaly
cancellation and asymptotic freedom constraints are easier to
implement. We do not have a physical motivation that would
select these theories, but they helpful for developing intuition.

2.2. Averages and typicality

Given a set of gauge theories with a suitable measure on them,
we can compute expectation values of quantities, such as rank of a
gauge group, the number of matter fields, etc. Though averages are
useful, they are especially interesting when they also represent the
typical value of a quantity. Typicality is a notion that exists in sit-
uations when a thermodynamic limit can be taken wherein some
parameter N , controlling the size of the ensemble, can be taken
to infinity. Then, a quantity enjoys the property of typicality if its
probability distribution is narrowly peaked around its expectation
value as N → ∞:

lim
N→∞

〈O2〉 − 〈O〉2

〈O〉2
= 0. (1)

“Typical” quantities equal their ensemble averages with probability
one as N → ∞.2

Familiar examples are pressure and free energy. Notice that for
a standard Boltzmann distribution, a particular occupation number
has

〈N〉 =
∑

k�0 ke−βk∑
k�0 e−βk

= e−β

1 − e−β
,

〈
N2〉 =

∑
k�0 k2e−βk∑

k�0 e−βk
= e−β(1 + e−β)

(1 − e−β)2
. (2)

Here the variance to mean squared ratio is eβ and hence is not
typical. Observables that achieve typicality are inevitably coarse-
grained – e.g. the number of Boltzmann particles with energies
between c/β and (c + ε)/β for constants c and ε will be typi-
cal. We are interested in typical “coarse-grained” structures in field
theory landscapes.

2.3. Choice of measure

To discuss statistics we need a measure on the space of quiver
gauge theories. Dynamics might gives a complicated measure –
e.g., the connection between quiver theories and D-brane moduli
spaces might give field theories a weight equal to the dimension,
or size, of the cohomology of their moduli spaces. Or dynamical ef-
fects might give matter fields an expectation value, breaking gauge
groups to U (1) – then an analysis of the distribution of gauge fac-
tors would be moot. However, in our N = 1 theories, the matter
potential typically develops isolated minima and the gauge group
is broken to a product of Abelian and non-Abelian factors (e.g.,
a cubic superpotential for an adjoint superfield classically breaks
U (N) → U (p) × U (N − p) for some p). Classically, in the context
of Calabi–Yau compactification, one imagines some set of distinct,
intersecting cycles and non-Abelian gauge factors arise from branes
wrapped on each cycle. Strong dynamics might break these gauge
factors further. Here we will ignore dynamics and use a uniform
measure subject to various constraints of boundedness. Since we
are ignoring possible rules arising dynamics, we will call our mea-
sures “anarchic”.

One might also associate Bayesian measures to field theory
landscapes. For example, to predict the UV field theory, given a
bound on the matter and gauge groups, we should condition our
measure on known facts about IR physics. Thus, we actually want
the uniform measure on a bounded space of gauge theories that,
when run to the infrared, contains the standard model as a sector.
Conditioning in this way is beyond our ability at present.

Directly computing averages and variances over bounded con-
figuration spaces can be difficult. To simplify, we can use a grand
canonical ensemble to constrain the total rank and the total num-
ber of matter fields. This involves summing over theories with
arbitrary ranks and amounts of matter while including in the mea-

2 This criterion is not very useful when 〈O〉 = 0. We should normalize the oper-
ator O in such a way that the range of values it can take is independent of N and
then require that the variance vanishes in the large N limit.
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sure a Boltzmann factor for the rank of the gauge group, and a
separate Boltzmann factor for the total number of matter fields

ρ ∼ exp

(
−β

∑
i

Ni − λ
∑

i j

Ai j Ni N j

)
. (3)

One could also include Boltzmann factors for, e.g., the total num-
ber of nodes, the total number of gauge bosons, etc., but for our
purposes (3) will be sufficient to illustrate the main ideas. Such
an approach only works if the ensemble of theories does not grow
exponentially fast in the total rank and number of matter fields.
If such exponential growth occurs, the Boltzmann weight does not
fall quickly enough for the microcanonical ensemble to be well ap-
proximated by the canonical ensemble.

3. Typicality in toy landscapes

3.1. Theories without matter: Coarse graining and typicality

As an example, consider a landscape of theories with no matter,
where the rank of the gauge group is equal to a large number N .
For simplicity, let the gauge group be a product of unitary factors
G = ∏L

i=1 U (Ni). Then the rank of G is
∑

i Ni = N; thus the Ni
form an integer partition of N . To study the distribution of gauge
factors in this landscape, we construct the canonical partition func-
tion

Z =
∑
{rk}

e−β
∑

k krk−α
∑

k rk =
∏

k

1

1 − e−βk−α
≡

∏
k

1

1 − uqk
. (4)

Here rk is the number of gauge factors of rank k, β is a Lagrange
multiplier constraining the total rank to be N , and α is a Lagrange
multiplier constraining the number of gauge factors; sometimes
it is more convenient to work with q = e−β and u = e−α in-
stead. This measure treats gauge factor ordering as irrelevant, e.g.,
U (2) × U (3) × U (2) ∼ U (3) × U (2) × U (2). Further the U (Ni) fac-
tors are not distinguished by parameters like gauge couplings. This
measure will be modified if the gauge theory is realized D-branes
on Calabi–Yau cycles because brane locations and cycle sizes will
distinguish many different configurations that giving same gauge
group. The present measure is interesting for simply counting field
theories.

To fix β and α we require that

N =
∞∑
j=1

juq j

1 − uq j
; L =

∑
j

uq j

1 − uq j
, (5)

where N is the total rank and L is the total number of gauge fac-
tors. We will take u ∼ O (1); β ∼ 1/

√
N , which, we will see later,

implies L ∼ √
N . Then from (4)

〈r j〉 = uq j

1 − uq j
; Var(r j) = uq j

(1 − uq j)2
= 〈r j〉

1 − uq j
. (6)

The variance to mean squared ratio is

Var(r j)

〈r j〉2
= 1

uq j
= eβ j+α � eα � O (1). (7)

To last inequality used α,β > 0. Thus, in such anarchic landscapes,
the number of gauge factors with rank j is not typical and cannot
be predicted with confidence.

Are any more coarse grained structures in such landscapes
which are more predictable? Consider the number of gauge fac-
tors with ranks between c
√

N and (c + ε)
√

N where c and ε are
O (1):

〈
R(c, ε)

〉 ≈
(c+ε)

√
N∫

c
√

N

dj 〈r j〉 = 1

β
ln

[
1 − ue−(c+ε)

√
Nβ

1 − ue−c
√

Nβ

]
, (8)

where we approximated the sum as an integral. The variance is

Var
(

R(c, ε)
) =

(c+ε)
√

N∫
c
√

N

dj Var(r j)

= u

β

[
e−c

√
Nβ − e−(c+ε)

√
Nβ

(1 − ue−c
√

Nβ)(1 − ue−(c+ε)
√

Nβ)

]
, (9)

using the statistical independence of r j . Thus, for β ∼ 1/
√

N ,〈
R(c, ε)

〉 ∼ O (
√

N );
Var

(
R(c, ε)

) ∼ O (
√

N ) ⇒ Var(R(c, ε))

〈R(c, ε)〉2
∼ O (1/

√
N ). (10)

The variance to mean squared ratio vanishes at large N limit – i.e.,
R(c, ε) is a typical variable and the number of gauge factors with
ranks between c

√
N and (c + ε)

√
N can be predicted with con-

fidence. Approximating the second equation in (5) as an integral,
the total number of gauge factors is

L = − ln(1 − u)

uβ
∼ O (

√
N ). (11)

This number is typical – thus, the total number of gauge factors
is predictable. These results follow because the unordered parti-
tions of a large integer enjoy a central limit theorem – repre-
senting partitions by Young diagrams, the boundaries of appropri-
ately rescaled diagrams approach a limit shape encoded by 〈r j〉 at
large N [20].

3.2. Cyclic, chiral quivers

We saw how coarse-grained structures in a randomly chosen
field theory in a bounded landscape might be statistically pre-
dictable. The next step is to add anomaly-free matter and imple-
menting anomaly-freedom is one of the main challenges. Thus, we
first study cyclic, chiral quiver gauge theories for which anomaly
freedom is easy.

In cyclic quivers, each gauge group is connected to the next
one by bifundamentals, with the circle being completed when the
last group connects to the first one. Taking the ith group around
the circle to be U (Ni), the constraint on the total rank will be∑

i Ni = N . So the Ni form a partition of N . Anomaly cancellation
requires equal fundamentals antifundamentals in each group. The
minimal solution is

Ai(i+1) = C−1 ·
∏

l �=i,(i+1)

Nl; C = GCD

({ ∏
l �=i,(i+1)

Nl

})
. (12)

All other solutions are integer multiples of (12). We will require
matter fields to satisfy (12) in such a way that the total number
of fields comes as close as possible to some bound K . Thus for
this setup the matter fields are uniquely chosen once the gauge
groups are selected. (More generally, we could consider an en-
semble where the number of matter fields in allowed to vary, in
which one would need to sum over multiples of Ai(i+i) subject to
a bound. This is difficult since the GCD of the products of integer
subsets appearing in the denominator of (12) is likely sporadic.)
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One key difference from the matter-free case, is that the or-
der of the gauge groups is important. Different orderings will lead
to different theories, except when the permutations are o symme-
tries of the quiver, e.g., the cyclic permutations nodes combined
with reflections. These are elements of the dihedral group of sym-
metries of the regular polygon with vertices on the quiver nodes.
Additional symmetries will arise if some Ni are equal and we will
treat the exchange of groups with identical ranks as giving the
same theory. This sort of measure would arise if we imagined our
field theory landscape as arising from D-branes on a Calabi–Yau in
which all the cycles give rise to gauge theories with the same cou-
pling, which could happen if, e.g., we resolved an Ak singularity so
that all two-cycles have equal size.

3.2.1. The canonical ensemble breaks down
We will first try to analyze the statistics of cyclic, chiral quivers

in a canonical ensemble. All along, as motivated above, we will
assume that the gauge groups uniquely fix the matter content. Let
rk be the number of times the group U (k) appears. Then, the total
rank N , and the number gauge factors L, are

N =
∑

k

krk; L =
∑

k

rk. (13)

We want the partition function of this ensemble of ordered parti-
tions of N:

Z =
∑
{rk}

1

2

(∑
k

rk − 1

)
!e−β

∑
k krk−α

∑
k rk

∏
k

1

rk! . (14)

The combinatorial factor is the number of ways of choosing
r1, r2, . . . gauge factors out of

∑
k rk , divided by 2(

∑
k rk) to ac-

count for the cyclic and reflection symmetry of the quiver.3

Rewriting in terms of the Gamma function, and using �(z) =∫ ∞
0 dt tz−1e−t , we obtain

Z = 1

2

∞∫
0

dt
e−t

t
exp

(
te−αe−β

1 − e−β

)
. (15)

This integral is only convergent if

e−αe−β

1 − e−β
< 1 ⇒ e−β <

1

1 + e−α
≡ e−βH . (16)

This implies a limiting β above which the partition function is un-
defined, because the integrand diverges as t → ∞. There is also
always a divergence as t → 0 which can be regulated by recogniz-
ing that the divergence is a constant independent of α and β . To
show this, define γ = e−αe−β

1−e−β , and find dZ
dγ = ∫ ∞

0 dt e−(1−γ )t = 1
1−γ

which implies that, below the limiting temperature,

Z = − log(1 − γ ) = − log

(
1 − e−αe−β

1 − e−β

)

= − log

(
1 − uq

1 − q

)
, (17)

where u = e−α and q = e−β .
In order to achieve large rank, β must be tuned to close to its

limiting value βH (16). Then, if we put u = 1, the expectation value
of the total rank is

〈N〉 = q
∂

∂q
log Z ∼ −1

2ε log(4ε)
, (18)

3 This counting ignores accidental symmetries. For example, in a cyclic quiver in
which gauge groups U (N1) and U (N2) alternate, only one cyclic permutation gives
a different quiver configuration. The complete counting can be derived using Polya
theory – we are using the leading terms.
where we tuned q = qH − ε = 1
2 − ε to get a large rank. Similarly,

in this approximation

〈rk〉 ∼
(

1

2

)k+1 −1

2ε log(4ε)
∼

(
1

2

)k+1

〈N〉. (19)

This differs from the matter-free result for the typical partition:
for example, on average one quarter of the nodes will be Abelian.
However, we also find that

Var(rk) ∼
(

1

2

)2r+2 −1

(2ε)2 log(4ε)
∼ −(

1 + log(4ε)
)〈rk〉2. (20)

This is much larger (as ε → 0) then the expectation value squared.
In other words, the number of group factors with a given rank is
not typical in the sense of (1).

Would a more coarse-grained question have a more statistically
predictable answer? For example, how many gauge factors appear
within some range of ranks? The mean and variance can are sums
over (19), (20) because the rk are independent random variables.
In the central limit theorem, summing M identically distributed
random variables enhance both the mean and the variance by M;
thus the variance to mean squared ratio is reduced by M . In the
matter-free example, this happened because, although the rk were
not identically distributed, their dependence on k was sufficiently
weak. Here, the exponential dependence of (19), (20) on the rank k
means that this mechanism fails – the mean and the variance are
dominated by the smallest k in the sum. Thus, there is no simple
statistically predictable quantity in this landscape.

Here the canonical ensemble is breaking down and does not
approximate the microcanonical ensemble. The canonical ensem-
ble will reproduce the microcanonical ensemble when the growth
of configuration space with total rank is slow enough so that, mul-
tiplied by a Boltzmann factor, a localized measure results. Here the
Gamma function and the exponential in the measure compete on
equal footing, leading to a widely spread out measure in which
the rank of the gauge group fluctuates wildly over the ensemble.
This sort of behavior will occur generally in the statistics of quiv-
ers since the number of graphs increases rapidly with the number
of nodes. Thus we turn to the microcanonical ensemble.

3.2.2. Microcanonical analysis
Consider again a cyclic quiver and ignore accidental symme-

tries. The microcanonical partition function for cyclic gauge theo-
ries of rank N and L nodes is simply the number of such theories.
This is given by the coefficient of qN in

1

2L

[
q + q2 + q3 + · · ·]L

. (21)

The 1/2L divides out the cyclic permutations and reflections. We
find that ZL = (1/2L)(N − 1)!/((N − L)!(L − 1)!). Summing over L,
a partition function which is canonical in the number of nodes and
microcanonical in the total rank N is:

Z(u) =
N∑

L=1

uL ZL = (1 + u)N − 1

2N
. (22)

To get the unbiased landscape in which all theories of equal rank
have equal weight, we can set u = 1. The expectation value of L is

〈L〉 = u∂u log
(

Z(u)
) = u(1 + u)N−1

(1 + u)N − 1
N. (23)

When u = 1, we get 〈L〉 = N
2 in the large N limit. However, if

u ∼ 1√ , then 〈L〉 ∼ √
N , and if u ∼ 1 , then 〈L〉 ∼ O (1). In fact,
N N
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if u ∼ N−a , 〈L〉 ∼ N1−a . The canonical analysis gives the same ex-
pectation values. The microcanonical variance is

Var(L) =
(

1 − Nu

(1 + u)N − 1

)
1

1 + u
〈L〉. (24)

For the three scalings of u, i.e. u ∼ N−a , the variance in L is an or-
der 1 number times the mean value of L, independent of a. Thus,
when 〈L〉 is large, the variance to mean squared ratio is small, un-
like the canonical analysis. This means that in such landscapes the
number of gauge factors is typical predictable.

The expectation value for the number of Abelian factors is:

〈r1〉 = 1

Z

N∑
L=1

uL

L
L(N − 2L − 2) = u2(1 + u)N−2

(1 + u)N − 1
N. (25)

When u = 1, this is 〈r1〉 = 1/4N at large N . When u ∼ 1/
√

N ,
〈r1〉 ∼ O (1). And when u ∼ 1/N , 〈r1〉 → 0. In fact, for u ∼ N−a ,
〈r1〉 ∼ N1−2a . These expectations match the canonical ensemble,
but microcanonical variance in r1 is much smaller:

〈
r2

1

〉 = u2(1 + u)N−4(u(uN + 4) + 1)

(1 + u)N − 1
N. (26)

Therefore, the ratio of the variance to the mean squared is

〈r2
1〉 − 〈r1〉2

〈r1〉2
=

1 + u(4 − Nu
(1+u)N−1

)

(1 + u)2
× 1

〈r1〉 . (27)

The coefficient of 1/〈r1〉 in this expression is of O (1) for u ∼ N−a ,
with 0 � a � 1.

Pulling everything together, in the unbiased ensemble (u = 1),
the average number of gauge factors is N/2 and the number of
Abelian factors is N/4. These quantities are highly predictable in
this landscape without any coarse-graining. In a biased ensemble
with u ∼ 1/

√
N , the total number of gauge factors is O (

√
N ), and

the number of Abelian factors is O (1). Since variance is of the
same order as the mean, the number of gauge factors is thus pre-
dictable, but the number of Abelian factors is not. In this case, we
expect that a coarse-grained statistic, such the fraction of gauge
groups in a given range, would be more predictable as in the
matter-free case.

Higher ranks To find the expectation value of the occupation num-
ber of rank r, we can insert a “chemical potential” for that rank.
So

Z
(
u, {yk}

) =
N∑

L=1

uL

2L

[
N∑

k=1

qk yk

]L∣∣∣∣∣
qN

, (28)

where the left-hand side equals the coefficient of qN in the right-
hand side. The expectation value 〈rk〉 is given by

〈rk〉 = ∂yk log
(

Z
(
u, {yk}

))∣∣{yk}=1 = 1

Z [u]
N∑

L=1

uL
(

N − k − 1
L − 2

)

= u2(1 + u)N−k−1

(1 + u)N − 1
N. (29)

In the unbiased ensemble (u ∼ 1), 〈rk〉 ∼ (1/2)k+1 N canonically.
Similarly,

〈
r2

k

〉 = u2(1 + u)N−2r−2(2u + (N − 2r + 1)u2 + (1 + u)r+1)

(1 + u)N − 1
N.

(30)

So the ratio of the variance to the mean squared is
Var(rk)

〈rk〉2
= 1

(1 + u)k+1

{
(1 + u)k+1 + u

(
(1 − 2k)u + 2

)

− Nu2

(1 + u)N − 1

}
× 1

〈rk〉 . (31)

This is always O (1) times 1/〈rk〉, and hence the number of gauge
groups of a given rank is typical, and hence highly predictable, if
the average is large.

Lessons In an anarchic landscape of cyclic quiver gauge theories,
the number of gauge factors of a given rank is highly predictable.
The distribution of ranks is exponential and low rank populations
are predictable with high confidence. In a biased landscape in
which the measure favors a number of gauge factors that is suf-
ficiently smaller than the total rank, the number of factors with
a fixed rank in not typical in general although the total number
of factors can be. In this case, one could test whether a coarse
grained quantity, like the fraction of gauge groups with ranks in
some range, is more predictable.

4. Thinking about the general quiver

To extend our analysis to the general quiver gauge theory
we could try to compute a partition sum of the form Z =∑

L

∑
Ni ,Aij

exp(−β
∑

i Ni − λ
∑

i j Ai j Ni N j) where L is the number
of nodes of the quiver, Ni are the ranks of the gauge groups, and
Aij are the numbers of bifundamentals between nodes i and j.
One difficulty is that this partition sum is canonical and, as we
found, it may not implement the constraints on the total rank and
the amount of matter very well because of the rapid growth of the
space of theories. Secondly the sum should only be over anomaly
cancelled theories. Thirdly, there are discrete symmetries which
tend to lead to vanishing expectation values. In view of this, below
we will develop some approaches to dealing with the two latter
issues.

4.1. Implementing anomaly cancellation

A loop basis for anomaly free theories
If all the gauge groups have the same rank, the general anomaly

free theory can be constructed by making sure that the bifunda-
mental fields always form closed loops. One can always construct
such matter distributions by saying that each of the possible loops
in the quiver has ni fields running around it. Where loops overlap
the matter content will either add or subtract depending on the
orientation of the loops (again here we are supposing that non-
chiral doublets decouple; in addition, we identify negative Aij with
a positive A ji and vice versa). Any loop in the quiver can be con-
structed by summation of a basis of independent 3-loops and it
can be shown that this basis will have

NL = (L − 1)(L − 2)

2
(32)

elements. For example, consider the case with L = 6 nodes, i.e.
there are six gauge groups that we label from 1 to 6. Then, the fol-
lowing three loops form a basis for all loops: (123), (124), (125),
(126), (234), (235), (236), (345), (346), (456). The basis has 10 ele-
ments which is equal to N6 = (6 − 1)(6 − 2)/2. We can check that
the NL loops provide enough free parameters to parameterize the
space of anomaly free theories. To see this, note that the solutions
to the anomaly cancellation equations form a vector space of di-
mension
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Fig. 1. The five vertices from which all anomaly-free, chiral, asymptotically free,
equal rank theories are constructed.

L(L − 1)

2
− (L − 1) = (L − 1)(L − 2)

2
= NL, (33)

where L(L − 1)/2 is the number of parameters Aij from which we
have subtracted the (L − 1) anomaly cancellation conditions on L
groups.

Even when the ranks are unequal, anomaly free theories can
be constructed from a basis of 3-loops because (32) and (33) are
equal. However, the links of any given 3-loop will have to be pop-
ulated with a different number of fields in a way related to the
GCDs of the three groups appearing in it. For example, suppose
one has the three gauge groups SU(r1 · g) × SU(r2 · g) × SU(r3 · g)

where ri are a triple of positive integers that do not share a com-
mon factor and g is any another positive integer. Then if we take
number of chiral bifundamentals between gauge group i and j to
be Aij = ε i jkrk , we get an anomaly free theory.4

This suggests that one way to do the statistics of anomaly free
theories is to select a basis of anomaly free 3-loops and then do
the statistics of populations of these loops given a bound on the
total number of loops.

Anomaly free, asymptotically free, chiral, equal rank gauge theories
This set of theories is very easy to analyze, as there are can

be only five different types of vertices in such quivers (see Fig. 1).
Therefore the most general quiver arises by combining these five
vertices in various combinations. Superficially, the second vertex
with two separate lines coming in and two separate lines going out
allows for the largest amount of combinatorial freedom and will
quite likely dominate this set of theories. It would be interesting to
explore this class further. Possibly it can be mapped to an existing
solvable lattice model in statistical mechanics.

Anomaly cancellation for a general quiver by using an extra node
If we drop the constraint of asymptotic freedom, the set of

anomaly free, chiral, and equal rank theories is easy to parametrize.
It is not difficult to see that if we take any set of edges S such that
the edges together form a connected tree which contain all vertices
of the quiver, then the anomaly equations uniquely determine the
Aij, A ji with (i j) ∈ S in terms of the Aij, A ji with (i j) /∈ S . Thus
we can simply take an arbitrary set of chiral matter fields for all
edges not in S , after which anomaly cancellation uniquely fixes
the remaining links.

An example of S is the star-shaped tree consisting of all edges
(1i), i = 2 . . . , L. That is, if we remove one vertex and all its edges,
and arbitrarily specify the chiral matter content in the remaining
quiver with L − 1 vertices, this uniquely determines an anomaly
free, chiral, equal rank quiver gauge theory with L gauge groups. To
illustrate, consider a four-node quiver. Take A12 = a, A32 = b and

4 E.g., consider a 4-node quiver with gauge group SU(3)1 × SU(5)2 × SU(7)3 ×
SU(8)4. We can get an anomaly free theory by making a loop of four with A12 =
7 · 8, A23 = 3 · 8, A34 = 3 · 5, A41 = 7 · 5. This is a sum of two 3 loops: (124) + (234).
The loop (123) corresponds to an SU(3)a × SU(5)b × SU(8)c with Aab = 8, Abc = 3,
Aca = 5 while the loop (234) corresponds to SU(5)i × SU(7) j × SU(8)k with Aij = 8,
A jk = 5, Aki = 7. To get the four loop (1234), we must cancel the (24) link which
means that need to add 7 · (124) + 3 · (234). Another anomaly free theory could be
generated by adding (124) to (234). In this case, the fields along link (24) will not
cancel, but the number of fields going entering each gauge group will cancel.
A13 = c.5 Then anomaly cancellation uniquely fixes A24 = a + b,
A41 = a + c, A43 = b − c.

To extend to theories with unequal ranks, first consider an ar-
bitrary chiral, quiver with L − 1 nodes. Let the rank of the group
at the ith node be Ni . For anomaly cancellation, the net number of
fundamentals minus antifundamentals at each node must be zero.
Let Ki be the net excess matter (number of fundamentals minus
antifundamentals) at each node. We can add an additional U (1)

gauge group with Ni Ki bifundamental fields under this U (1) and
the U (Ni) of the ith node. This will give an anomaly free theory.
This extra node can be non-Abelian, but its rank is restricted to
be a divisor of the set {Ni Ki}. In this way, the statistics of general
anomaly free quivers on L nodes can be studied by first construct-
ing arbitrary L − 1 node quivers and then adding a extra node
according to the above algorithm.

4.2. Dealing with discrete quiver symmetries: An example

From above, the set of anomaly free, chiral and equal rank
theories with four nodes is parametrized by the rank N of the
gauge groups and three integers a, b, c. The measure (3) becomes
ρ = exp(−4βN − λN2(|a| + |b| + |c| + |a + b| + |a + c| + |b − c|)).
In the remainder, we will fix the value of N and look only at the
distribution of a, b, c.

By symmetry, the expectation values of a, b, c are all zero. This
happens because there are a number of discrete symmetries of
the quiver due to which averages vanish. For example, for every
chiral quiver there is the anti-chiral quiver in which the orienta-
tions of all fields are reversed. Averaging these two will formally
give a = b = c = 0. Similar phenomena will always happen when-
ever we consider sets of quivers with symmetries. More structure
appears once we break the symmetries and look at the average
quiver in an ensemble with some symmetry breaking conditions
imposed. Suppose for example that we impose a > 0. This leaves
a Z2 symmetry that exchanges vertices 3 and 4. Therefore, the ex-
pectation value of A34 will be zero. Symmetry considerations fur-
ther show that 〈 1

2 A12〉 = 〈A23〉 = 〈A24〉 = 〈A31〉 = 〈A41〉. Further-
more, each of these expectation values is proportional to 1/λN2.

A boundary condition that completely breaks the symmetry is
to impose that a � b � 0. We can always achieve this up to a
permutation of the vertices so there is no loss of generality. The
analysis of the expectation values of the number of matter fields
in this ensemble is more tedious but can still be done explicitly.
To leading order in ε = λN2 we obtain6 〈A12〉 = 47

84ε , 〈A32〉 = 4
21ε ,

〈A31〉 = 61
588ε , 〈A24〉 = 3

4ε , 〈A41〉 = 67
147ε , 〈A43〉 = 173

588ε . Thus we see
that after modding out the Z2 symmetries of the quiver we are
able find an interesting average quiver. Of course, since there are
only four nodes here, we do not expect any notion of statistical
typicality. To study whether general large quivers have some typi-
cal structure, we will have to proceed as above, by parameterizing
the space of anomaly cancelled theories and then imposing sym-
metry breaking conditions.

4.3. Towards dynamics

While we have been focusing on the structure of those field
theories in which anomalies cancel, we should also be paying at-
tention to dynamics. Since we are dealing with N = 1 field theo-
ries, if N f > 3Nc for any gauge group then it will be infrared free.
If N f < 3Nc it will be asymptotically free. If N f = 3Nc the one-

5 If we say A12 = a, then we mean that A12 = a for a � 0 and A21 = −a for a � 0.
This will guarantee that the theory is chiral.

6 Here, by 〈Aij〉 we really mean 〈Aij − A ji〉.



482 V. Balasubramanian et al. / Physics Letters B 682 (2010) 476–483
Fig. 2. Examples of RG flows in asymptotically free, four-node quiver theories with equal rank groups. The trivial tree level superpotential is assumed. (a) Flow to a Coulomb
branch at low energies. (b) Flow to a CFT at low energies. (c) Assuming a higher scale for the groups with N flavors, this flows to a pair of confined groups, with the massless
mesons of the two groups participating in an interacting CFT. (d) Assume that the group that confines has a higher dynamical scale than the other groups, and that the
confinement is on the baryonic branch. The massless mesons of this confining factor drive a flow to an interacting CFT.
loop Beta function vanishes. If we distribute fields into a quiver,
the bound of the total number of fields will tend to cause the low
rank gauge groups to contain more fields. Thus they will tend to
be infrared free. What is more, because, as we have seen above,
anomaly cancellation including high rank gauge groups tends to
require lots of fields, if a high rank group is connected to the
rest of the quiver it would tend to push groups in the quiver to-
wards infrared freedom. In general, studying RG flow requires us to
know the superpotential or at least to scan statistically over them.
Minimally, we should include all cubic and quartic terms in the su-
perpotential with O (1) coefficients multiplied by the appropriate
scale. (The cubic terms are classically marginal, and some quartic
terms are known to become marginal under RG flow.) Doing such
a dynamical analysis of general quiver gauge theories is beyond
the scope of this Letter, but as an initial step to gain some experi-
ence with how this works we will study some examples without a
superpotential.

4.3.1. Four-node, asymptotically free quivers
Recall that SU(N) gauge theory with N flavors confines at ener-

gies below its dynamical scale, while SU(N) theory with 2N flavors
flows to an interacting conformal fixed point. We will assume that
the confining SU(N) theory is on the baryonic branch. We can then
naively take a quiver and simply allow individual gauge factors
to confine, Seiberg dualize [21], etc., as their dynamics becomes
strong. A cursory analysis of four-node, asymptotically free quivers
(see some examples with equal ranks N in Fig. 2, constructed from
the vertices in Fig. 1) suggests that one will tend to get interact-
ing conformal field theories in which the mesons of the confining
factors participate. This suggests that unparticles [22] might be
generic in these settings.

4.3.2. General quiver with unequal gauge groups
First consider the case of a loop of three gauge groups,

SU(N1) × SU(N2) × SU(N3) which cancels anomalies by itself. This
can happen if the 3-loop is isolated within a larger quiver. Such
primitive 3-loops can be used to generate larger anomaly free
quiver gauge theories. To cancel anomalies, the (12), (23), (31)
links will generically contain N3, N1, N2 bifundamentals, respec-
tively.7 Thus for group i to be asymptotically free, 3Ni > N j Nk ,
i �= j �= k. Taking all Ni > 3 and N1 < N2 < N3, SU(N3) is the
only gauge group that can be being asymptotically free. So, for
any anomaly-free, chiral connected quiver with three nodes with

7 The minimal solution to the anomaly cancellation equations will actually be
that the number of bifundamentals connecting i and j is Nk/GCD({Ni , N j , Nk}) as
in (12). Generically the GCD = 1.
ranks � 3, either all three groups are IR free, or only the largest
one is asymptotically free if it has sufficiently large rank.

This argument fails for connected quivers with more than three
gauge groups, but generically high rank gauge groups with links to
smaller rank gauge groups have a chance to be asymptotically free,
whereas low rank gauge groups connected to higher rank gauge
groups tend to be IR free. Consider cases for quiver dynamics with
unequal gauge groups. (i) The number of fields K is very large. If
so, it is likely that in a randomly chosen field theory all possible
links in the quiver will be populated with some multiplicity, al-
though the links between low rank groups will be enhanced. Then
our arguments suggests that the entire theory will be infrared free.
(ii) The number of fields K is small. The lowest rank gauge groups
will tend to have matter and the quiver will typically consist of
several disconnected smaller clusters that each form a connected
quiver gauge theory. The high rank gauge groups with little matter
would confine at their dynamical scales. (iii) For an intermediate
number of fields the clusters will percolate and we expect an in-
teresting phase structure.

5. Conclusion

It is unsettling to make statistical predictions for the structure
of the theory describing nature because, ever since Galileo, we
have been fortunate that observations and symmetries have con-
strained possibilities sufficiently to essentially give a unique theory.
But we are trying to make predictions for the fundamental the-
ory up to the Planck scale given observations below the TeV scale,
subject to only very general constraints such as consistent cou-
pling to quantum gravity. In such a situation, the best one can do
is to predict the likelihood of possible high energy theories, condi-
tioned on the known facts, known constraints, and our best guess
regarding the measure on the space of theories. This is literally all
that we can know. While this sort of Bayesian approach is unfamil-
iar in particle physics, it is much less unusual in cosmology where
one does conceive of ensembles of possible universes or ensembles
of domains with different low-energy physics in a single universe.
Of course, consistency requirements plus experimental input might
eventually yield a unique theory – we are merely entertaining the
possibility that this will turn out otherwise.

We have used the uniform measure on specific effective field
theory landscapes, but it could be dynamics can play a role in
determining the appropriate measure because there can be tran-
sitions between vacua with different properties. Also, renormal-
ization group flows can modify the measure in the infrared as
theories flow towards their fixed points. Given the correct mea-
sure, our analysis could be repeated to find typical predictions.
However, because the uniform measure leads to typicality for some
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coarse-grained properties, an alternative measure would have to
concentrate on an exponentially sparse part of the configuration
space in order to change the typical predictions of the uniform
measure.

These considerations do not suggest the usual desert with a
high scale GUT. Instead one statistically expects a plethora of gauge
factors leading to interesting structures at all scales up to the
string scale. Some gauge factors will have high ranks and others
will have low ranks. With a bound on the total number of matter
fields, statistically, higher rank groups will tend to have fewer fun-
damentals (since this eats up matter). Thus they will tend towards
confinement at a relatively high dynamical scale if all couplings are
unified at the string scale. On the other hand if too much matter in
any group will lead to infrared triviality. Thus low rank groups, to
have IR dynamics, will tend to be largely decoupled from the high
rank groups. Thus if we study the statistics of anarchic landscapes
of field theories, conditioned on having interesting low energy dy-
namics, we will tend towards a structure with dynamical low rank
groups largely decoupled from a complex, interacting higher rank
sector.

The explicit examples that we studied do not much dynamics.
The matter-free case confines. The ring quivers are generically in-
frared free since anomaly cancellation imposes the need for lots of
matter unless individual gauge group ranks conspire to make the
GCD in (12) large. Thus, conditioning on having interesting low
energy dynamics, along with anomaly cancellation, will be a major
constraint, and will modify the measure on the space of theories.
Number theoretic properties like the appearance of large GCDs
might need more weight. The results in [14,15] also suggest mea-
sures that weigh rank k gauge group factors with an extra factor
of 1/k2.
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