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Finally! A Valid Test of Configural Invariance
Using Permutation in Multigroup CFA

Terrence D. Jorgensen, Benjamin A. Kite, Po-Yi Chen, and Stephen D. Short

Abstract In multigroup factor analysis, configural measurement invariance is
accepted as tenable when researchers either (a) fail to reject the null hypothesis
of exact fit using a ¦2 test or (b) conclude that a model fits approximately well
enough, according to one or more alternative fit indices (AFIs). These criteria
fail for two reasons. First, the test of perfect fit confounds model fit with group
equivalence, so rejecting the null hypothesis of perfect fit does not imply that the null
hypothesis of configural invariance should be rejected. Second, treating common
rules of thumb as critical values for judging approximate fit yields inconsistent
results across conditions because fixed cutoffs ignore sampling variability of AFIs.
As a solution, we propose replacing ¦2 and fixed AFI cutoffs with permutation tests.
Iterative permutation of group assignment yields an empirical distribution of any fit
measure under the null hypothesis of invariance. Simulations show the permutation
test of configural invariance controls Type I error rates better than ¦2 or AFIs when a
model has parsimony error (i.e., negligible misspecification) but the factor structure
is equivalent across groups (i.e., the null hypothesis is true).

Keywords Measurement equivalence • Configural invariance • Permutation •
Multiple group confirmatory factor analysis

1 Introduction

The assumption of measurement equivalence/invariance (ME/I) is required to
draw inferences about how latent constructs might differ across different contexts,
such as different occasions or populations. Configural ME/I, in particular, must
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be implicitly assumed before measurement parameters can be compared across
contexts, whose equality is required before comparing common-factor parameters
across contexts. Multigroup confirmatory factor analysis (CFA) is one of the most
common frameworks used to test ME/I across groups (Vandenberg and Lance 2000),
and multigroup models provided the only avenue for testing whether factor structure
is configured equivalently across groups.

We first describe the current recommended best practices for testing configural
invariance, as well as their limitations. We then propose a permutation randomiza-
tion test of configural invariance across groups. We present Monte Carlo simulation
studies to compare the power and Type I error rates of the permutation method to
other methods.

1.1 Assessing Configural Invariance

To test for configural invariance (i.e., the same form), researchers fit a model with
identical factor structure across groups, but allow all freely estimated measurement-
model parameters (factor loadings, intercepts, and residual variances) to differ
between groups (except scale-identification constraints). The likelihood ratio test
(LRT or ¦2 statistic of exact fit) is used to judge whether the configural invariance
model is an acceptable baseline model before constraining measurement parameters
(Byrne et al. 1989). If the test is not significant at the specified ’ level, the analyst
fails to reject the null hypothesis (H0) that the configural model fits well and
proceeds to test equality of item parameters (e.g., factor loadings, intercepts or
thresholds, residual variances) across groups.

The LRT confounds two sources of model misfit (Cudeck and Henly 1991;
MacCallum 2003): estimation discrepancy (due to sampling error) and approxi-
mation discrepancy (due to a lack of correspondence between the population and
analysis models). Because configural ME/I is assessed by testing the absolute
fit of the configural model, an LRT for a multigroup model further confounds
two sources of approximation discrepancy. The overall lack of correspondence
between the population and analysis models could theoretically be partitioned into
(a) differences among the groups’ true population models and (b) discrepancies
between each group’s population and analysis models. It is possible (perhaps even
probable) that an analysis model corresponds only approximately to the groups’
population models (Byrne et al. 1989), yet the analysis model may be equally
(in)appropriate for each group. Although overall model fit is certainly important to
assess in conjunction with tests of ME/I, the H0 of configural invariance is only
concerned with group equivalence, so the LRT does not truly provide a test of
configural invariance.

Large sample sizes make the LRT sensitive even to minute differences in model
form, which would have little or no practical consequence on parameter estimates.
Many researchers would prefer to use an alternative fit index (AFI) to assess the
approximate fit of the configural model. Putnick and Bornstein (2016) found that
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only 17% of ME/I tests are decided by the LRT alone, whereas 46% also involve
at least one AFI, and 34% are decided using AFIs alone. The comparative fit index
(CFI) (Bentler 1990) was reported for 73.2% of ME/I tests, making it the most
popular AFI in this context. This chapter will focus mainly on CFI, but the root
mean square error of approximation (RMSEA) (Steiger and Lind 1980) is also very
popular. AFIs are functions of overall discrepancies between observed and model-
implied sample moments, so using them to assess configural invariance would
confound group equivalence with overall misfit, just like the LRT. However, we
discuss their additional limitations below.

Most AFIs do not have known sampling distributions,1 so evaluating the fit of a
configural model involves some subjective decisions (e.g., which fit indices to use,
what values indicate acceptable fit). Sometimes there are conflicting recommenda-
tions based on different criteria. For example, Bentler and Bonett (1980) suggested
CFI > 0.90 indicates good fit, yet Hu and Bentler (1999) recommended CFI > 0.95 as
a stricter criterion. Browne and Cudeck (1992) suggested RMSEA < 0.05 indicates
close fit, RMSEA < 0.08 indicates reasonable fit, and RMSEA > 0.10 indices poor
fit (RMSEA between 0.08 and 0.10 indicates mediocre fit) (MacCallum et al. 1996),
yet Hu and Bentler recommended RMSEA < 0.06 as a stricter criterion. According
to an October 2016 Google Scholar search, Hu and Bentler’s criteria seem to be
more widely applied (35,474 citations) than Bentler and Bonett’s (13,815 citations)
or Browne and Cudeck’s (2843 citations).

The problem with using fixed cutoffs, even as mere rules of thumb, is that they
ignore conditions specific to the study, such as sample size (and by implication,
sampling error), number of groups, sample size ratios, number (and pattern) of
indicators and factors, etc. Fixed cutoffs can also lead to the apparent paradox that
larger samples yield lower power, which occurs when the AFI cutoff is more extreme
than the population-level AFI2 (Marsh et al. 2004).

1.2 A Permutation Randomization Test of Configural
Invariance

When a theoretical distribution of a statistic is unavailable for null-hypothesis
significance testing, it is possible for researchers to use a resampling method to
create an empirical sampling distribution from their observed data. Rodgers (1999)
provided a useful taxonomy of resampling methods. One flexible method that
can be used to create an empirical approximation of a sampling distribution is
the permutation randomization test. If a method of resampling the data can be
conceived such that a H0 is known to be true (in the permutation distribution),

1A notable exception is RMSEA. See an excellent discussion by Kenny et al. (2015).
2Population-level AFIs can be obtained by fitting the analysis model to the population moments or
can be estimated from the average AFI across Monte Carlo samples.
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then reference distributions can be empirically approximated for statistics whose
sampling distributions are unknown or intractable.

The logic of the permutation test is related to the use of random assignment
in experimental designs. Random assignment of subjects to two (or more) groups
will average out any between-group differences, so that on average, group mean
differences would be zero, resulting in two (or more) comparable groups before
administering different treatments. Due to sampling fluctuation, observed differ-
ences will not be exactly zero after any single random assignment, but differences
will be zero on average across replications of random assignment. Capitalizing on
this effect of randomization, when a set of observed outcome scores (Y) is randomly
(re)assigned to the two different observed groups (natural3 or experimental), any
existing between-group differences would be zero, on average.

A simple example of a permutation test is to compare two group means. The
grouping variable (G) can be resampled without replacement and paired with values
on the dependent variable (Y). The resulting randomization is a single permutation
(reordering) of the data. Because H0: �1–�2 D 0 is true (i.e., the groups do not
systematically differ in a permuted data set), the calculated t value is one observation
from a theoretically infinite population of t statistics that could be calculated under
the H0 of no group mean difference. Repeating this process 100 times results in
a distribution of 100 t statistics under H0, one t value from each permutation of
the data. As the number of permutations increases, the shape of the empirical
distribution of the t values will become a closer approximation of the true, but
unknown, sampling distribution. Using the empirical approximation of the sampling
distribution under H0, a researcher can calculate a good approximate p value by
determining the proportion of the permutation distribution that is more extreme than
the t value calculated from the original, unpermuted data.

We propose a permutation method for testing configural invariance. Randomly
permuting group assignment yields resampled data for which the H0 of group
equivalence in model fit is true, even if the model does not fit perfectly. The steps to
test configural ME/I are:

1. Fit the hypothesized multiple-group model to the original data, and save the fit
measure(s) of interest.

2. Sample N values without replacement from the observed grouping-variable
vector G. The new vector Gperm(i) contains the same values as G, but in a new
randomly determined order (i.e., Gperm(i) is a permutation of G).

3. Assign the nth row of original data to the nth permuted value from Gperm(i). On
average, group differences are removed from this ith permuted data set.

4. Fit the same multiple-group model from step 1 to the permuted data, and save
the same fit measure(s).

3The exchangeability assumption might be violated for natural groups (Hayes 1996), which we
bring up in the Discussion.
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5. Repeat steps 2–4 I times, resulting in a vector of length I for each fit measure.
6. Make an inference about the observed fit measure by comparing it to the vector

of permuted fit measures.

Step 6 can test H0 in either of two ways, yielding the same decision:

• Calculate the proportion of the vector of permuted fit measures that is more
extreme (i.e., worse fit) than the observed fit measure. This is a one-tailed p value
that approximates the probability of obtaining a fit measure at least as poor as the
observed one, if the H0 of ME/I for all groups holds true. Reject H0 if p < ’.

• Sort the vector of permuted fit measures in ascending order for badness of fit
measures like ¦2 or RMSEA or sort in descending order for goodness of fit
indices like CFI. Use the [100 � (1 � ’)]th percentile as a critical value, and
reject H0 if the observed fit measure is more extreme than the critical value.

Because permutation removes group differences (on average) without altering
the structure among the variables in any other way, this method provides a simple
framework to test configural ME/I separately from overall model fit. Furthermore,
permutation provides empirical sampling distributions of AFIs, which generally
have unknown sampling distributions. Researchers using permutation methods
would not need to rely on fixed cutoff criteria based on intuition or studies whose
simulated conditions might not closely resemble their own data and model(s), such
as CFI > 0.90 (Bentler and Bonett 1980) or CFI > 0.95 (Hu and Bentler 1999). As
we demonstrate using simulation studies, none of these fixed rules-of-thumb con-
sistently control Type I error rates. In contrast, permutation distributions implicitly
take into account the unique qualities of the data and model under consideration.

2 Monte Carlo Simulations

To evaluate the permutation methods proposed in the previous section, we present
results from two simulation studies. The first evaluated Type I error rates when H0

is true and second evaluated power when H0 is false. In each study, we compared H0

rejection rates between permutation methods and currently recommended practices
under a variety of sample-size and model-size conditions.

We chose conditions based on Meade et al. (2008) ME/I study, which included
approximation error in the form of near-zero cross-loadings in the population
models that were fixed to zero in the analysis models (i.e., simple structure was only
approximately true; see Table 1). When fitting simple structure CFA models to the
model-implied population moments, AFIs indicated good model fit using standard
conventions (e.g., CFI > 0.98, RMSEA < 0.03).

Based on Meade et al. (2008), we varied sample size (N) in each of two groups
across five levels, 100, 200, 400, 800, and 1600 per group. We varied model
complexity via number of factors (2 or 4) and number of items per factor (4 or
8), using the same population values for factor loadings as Meade et al. (2008) (see
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Table 1 Population factor loadings (ƒ matrix)

Item Factor 1 Factor 2 Factor 3 Factor 4

1 0.68 (0.54) �0.03 �0.02 �0.11
2 0.76 (0.62) 0.02 �0.03 �0.03
3 0.74 (0.60) �0.04 �0.03 0.00
4 0.75 (0.61) 0.00 �0.01 0.08
5 0.04 0.76 (0.61) 0.07 0.00
6 �0.06 0.56 (0.41) �0.03 0.04
7 �0.08 0.75 (0.60) 0.07 0.06
8 �0.02 0.72 (0.57) 0.05 �0.03
9 0.07 �0.01 0.80 (0.65) 0.00
10 �0.01 �0.03 0.58 (0.43) �0.02
11 �0.04 0.06 0.80 (0.65) 0.03
12 0.04 0.00 0.39 (0.24) 0.05
13 �0.02 �0.02 �0.01 0.65 (0.51)
14 0.00 �0.13 �0.03 0.67 (0.53)
15 0.00 0.03 �0.01 0.59 (0.45)
16 0.00 0.03 0.02 0.67 (0.53)

Note. For conditions with eight indicators per factor, œs in parentheses were used as population
parameters, and œs for items 17–32 were identical to œs for items 1–16. Cells with only one value
(near zero) are minor discrepancies from simple structure (approximation error)

Table 1). In the population models, we fixed all intercepts to zero, discussed next),
factor means to zero, factor variances to one, factor correlations to 0.3, and residual
variances to values that would set total item variances to one (i.e., standard normal
variables). We simulated 2000 replications in each condition and used I D 200
permutations to calculate p values associated with fit measures.

Whereas Meade et al. (2008) simulated configural lack of invariance (LOI) by
adding additional factors to group two’s population model (resulting in dozens of
different population models), we simply changed one, two, three, or four of the
zero (or nonsalient) parameters in group two’s population model. The first level of
configural LOI was to change factor loading œ51 from 0.04 to 0.7. The second level
was to make the same change to œ51 and to add a residual covariance (™72 D 0.2).
The third level made the same additions and changed œ12 from �0.03 to 0.7, and
the fourth level also added another residual covariance (™84 D 0.2). These arbitrary
levels of configural LOI served to compare the power of different methods to detect
the same lack of correspondence between the groups’ population models.

We used R (R Core Team 2016) to generate multivariate normal data and the
R package lavaan (version 0.5–20; Rosseel 2012) to fit models to simulated data.
Using lavaan’s default settings, the scales of the latent factors were identified by
fixing the first factor loading to one, and the latent means were fixed to zero.
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3 Results

We first used a 5 (N) � 2 (2 or 4 factors) � 2 (4 or 8 items per factor) design, holding
LOI constant at zero. Because the population models included minor approximation
discrepancy in the form of near-zero cross-loadings, we expected Type I error rates
to exceed 5% and for these rates to increase with N. Because fixed cutoffs do not
take sampling variability or model complexity into account, we expected results to
vary across Ns and model sizes. We expected permutation to yield nominal Type I
error rates in all conditions for all fit measures, which would indicate a valid test of
configural invariance.

As expected, using the traditional LRT resulted in extremely high Type I error
rates. Figure 1 confirms that even in the condition with the smallest N and model,
Type I errors were almost 20%, approaching 100% as N increased. For larger Ns,
rejection rates matched the expected power using the Satorra and Saris (1985)
method, but rejection rates were inflated at smaller N, especially in larger models,
due to the small-sample bias of the LRT (Nevitt and Hancock 2004). In contrast,
permutation provided nominal Type I error rates across conditions.

Fig. 1 Observed Type I error rates for LRT, CFI rules of thumb, and permutation tests of configural
invariance, as well as expected power of LRT using the Satorra and Saris (1985) method
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Using AFIs to assess approximate fit of the configural model only appeared to
yield inflated Type I errors under small-N conditions, but that depended heavily
on the size of the model and on which rule of thumb was used. Figure 1 shows
that larger models yielded more errors at smaller N. Similar results were found for
RMSEA guidelines. In contrast, permuting CFI (or any AFI) maintained nominal
Type I error rates across all conditions.

We next used a 5 (N) � 4 (LOI) design, holding model complexity constant
(4 items for each of 2 factors, the condition in which fixed cutoffs for CFI showed
�5% Type I errors). We expected permutation to have lower power than the LRT,
which already had high rejection rates when H0 was true. Given that Type I error
rates for AFI cutoffs were typically close to zero for this particular population
model, we had no specific hypotheses about how their power would compare to
power using permutation, but we did expect lower power with increasing N in
conditions where population AFIs met guidelines for acceptable fit.

Figure 2 confirms our expectation that the LRT had the highest power to detect
LOI, particularly at the lowest level of LOI and the smallest N. But as Fig. 1 shows,
the greater power came at the expense of high Type I errors because the LRT tests
overall model fit rather than configural invariance alone. Hu and Bentler’s (1999)
more stringent criterion (CFI > 0.95) yielded power almost as high as the LRT,

Fig. 2 Power for LRT (gray lines) and CFI (black lines) using theoretical (or fixed) vs.
permutation-based critical values. The dotted gray line indicates 80% power



Configural Permutation Test 101

whereas Bentler and Bonett’s (1980) less stringent criterion (CFI > 0.90) yielded
lower power that decreased as N increased in conditions where only one or two
salient population parameters differed between groups. We found the same pattern
of results for RMSEA.

Permutation yielded inadequate power when only a single parameter differed
between populations, unless N � 800 per group. Adequate power to detect greater
LOI was achieved at smaller N. The permuted LRT tended to have greater power
than permuted CFI, but the discrepancy was small when N and LOI were large.
Permuted RMSEA had power similar to the permuted LRT.

4 Discussion

We proposed a permutation randomization framework for using multigroup CFA
to test ME/I. We proposed this framework to address some limitations of current
best practices. First, the LRT of exact (or equal) fit does not test the correct H0 of
group equivalence for the configural model. Assessing overall model fit confounds
any group differences with overall model misspecification. Irrespective of how well
a model only approximates a population process, the model may be equally well
specified for both groups, in which case the H0 of group equivalence should not
be rejected. Our simulation studies showed that current best practices can lead to
highly inflated Type I error rates, even for models with very good approximate fit.
Permutation, on the other hand, yields well-controlled Type I error rates even when
the model does not fit perfectly, providing the only valid test of configural invariance
across groups that we are currently aware of.

Second, most researchers prefer AFIs over the LRT (Putnick and Bornstein 2016)
because of the latter’s sensitivity to differences that are negligible in practice, which
could be thought of as inflated Type I error rates when assessing approximate fit
in large samples. However, lack of known distributions for �AFIs leads to reliance
on rule-of-thumb cutoffs that, as we have shown, lead to inflated Type I error rates
in smaller (albeit still large) samples, especially in larger models. Our simulations
showed that regardless of which fit measure is preferred, permutation provides well
controlled Type I error rates, with power to detect true differences that is comparable
to the LRT.

We recommend that applied researchers interested in testing configural invari-
ance use the permutation method, which is implemented in a function called
“permuteMeasEq()” in the R package semTools (semTools Contributors
2016). If the overall fit of the configural model is satisfactory, the permutation
method provides a valid test of the H0 of group equivalence in model form and
is currently the only method to do so. Permutation may be particularly valuable
in conditions with inflated error rates, such as missing or categorical data, but its
utility may be limited by the exchangeability assumption. We encourage further
investigation of permutation methods for testing group equivalence, particularly
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for developing guidelines for modifying individual group models (when configural
invariance does not hold) versus making modifications to poorly fitting models
simultaneously across groups (when configural invariance does hold).
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