
UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

Ambiguity in Natural Language Software Requirements: A Case Study

de Bruijn, F.; Dekkers, H.L.
DOI
10.1007/978-3-642-14192-8_21
Publication date
2010
Document Version
Author accepted manuscript
Published in
Requirements Engineering: Foundation for Software Quality

Link to publication

Citation for published version (APA):
de Bruijn, F., & Dekkers, H. L. (2010). Ambiguity in Natural Language Software
Requirements: A Case Study. In R. Wieringa, & A. Persson (Eds.), Requirements
Engineering: Foundation for Software Quality: 16th international working conference, REFSQ
2010, Essen, Germany, June 30-July 2, 2010 : proceedings (pp. 233-247). (Lecture Notes in
Computer Science; Vol. 6182). Springer. https://doi.org/10.1007/978-3-642-14192-8_21

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

Download date:11 Nov 2022

https://doi.org/10.1007/978-3-642-14192-8_21
https://dare.uva.nl/personal/pure/en/publications/ambiguity-in-natural-language-software-requirements-a-case-study(6fbc2cc4-1ce5-4661-a0e2-21c10df8b1fa).html
https://doi.org/10.1007/978-3-642-14192-8_21


Ambiguity in Natural Language Software
Requirements: A Case Study

Fabian de Bruijn and Hans L. Dekkers

University of Amsterdam,The Netherlands

Abstract. [Context and motivation] Ambiguous requirements are often seen
as a cause for project failure, however there is little empirical data to support
this claim. [Question/problem] In this research we study the effect of a highly
ambiguous requirements document on project success. [Principal ideas/results]
The studied project was a complex data processing system that took about 21
man year to develop. First, we determined the level of ambiguity by three inde-
pendent tests. Next, we did a root cause analysis on a selection of the main issues
to establish if ambiguous requirements were a significant cause. Surprisingly, this
case study shows that only one of the examined failures was caused by ambigu-
ous requirements. Both the independent test team and the third party development
team found ways to cope with the high level of ambiguity. For the development
team this required a substantial investment to clarify requirements. [Contribu-
tion] The main contributions of this paper are the counterintuitive findings, the
collected empirical data and the method used to collect these data.

Keywords: Requirements specification, Ambiguity, Natural language,
Empirical.

1 Introduction

Requirement specifications serve as contract, a starting point for development, and a
focal point for quality control. It is generally considered to be vital that requirements are
unambiguous [2,4,9,12,15]. Formal languages serve this purpose, however, since formal
languages are not well understood by most stakeholders, natural language requirements
are the de facto standard. Berry et al.[4] make a strong case for writing unambiguous
natural language specifications and provide a handbook which describes a taxonomy of
different types of ambiguity and how to avoid them. Since natural language is inherently
ambiguous [3], avoiding ambiguity is by no means a trivial task.

We wonder just how important it is to minimize ambiguity and how much effort
should be invested. The agile movement puts the focus on communication and feed-
back. They stress that writing unambiguous requirements is an illusion[16] and that
even if requirements are unambiguous, problems of validity, volatility, and correct in-
terpretation remain. Still, the general practice of tenders and contracts for outsourced
projects demands a requirement specification. In this research we study the effect of a
highly ambiguous requirements document on project success.

R. Wieringa and A. Persson (Eds.): REFSQ 2010, LNCS 6182, pp. 233–247, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Hans Dekkers

Hans Dekkers

Hans Dekkers

Hans Dekkers

Hans Dekkers

Hans Dekkers

Hans Dekkers
This is the author's final version. The original publication is available at www.springerlink.com.



234 F. de Bruijn and H.L. Dekkers

1.1 Research Question

Our main research question is:

What is the effect of ambiguity in the requirement specification on project
success?

The initial step we have taken is to analyze a real life project:

1. How many requirement statements are ambiguous?
2. How many problems were caused by ambiguous requirements?

2 The Importance of Unambiguous Requirements

2.1 Communication in Requirements Engineering

Requirements engineering is the process in which stakeholder needs are elicited, gath-
ered, analyzed and in which decisions are made on the requirement set for the product
to be built. Requirements are an abstraction and a perception of the true needs of the
stakeholders. It is the result of a creative process where communication is crucial[17].
It is not evident that the requirement set as a whole is feasible, complete or correct.

In the context of this paper it is important to distinguish between the stakeholder
need, the requirement statement and the way it is understood[20]. We study the effect
of ambiguous requirement statements on the understanding of the developers. This un-
derstanding also depends on context information (goals, rationale, domain description),
domain knowledge and personal factors.

Requirement specifications are not standardized and many different types of require-
ments exist [1,12,17,15]. It is good practice to write requirements in the problem do-
main, leaving the design space open for the development team. This poses the inter-
esting problems of how to be specific and how to determine if a solution satisfies the
requirements. To illustrate this consider usability requirements. Usability can be mea-
sured by the number of tick and clicks and user errors. But how to set a norm: what is
an optimal solution, when is a suboptimal solution still acceptable?

2.2 Related Work

In software engineering literature there is no single definition of ambiguity. Several
authors have given different interpretations and different causes for ambiguity. For in-
stance, Davis[8] states that when a requirement can be interpreted in two or more ways
then this requirement is ambiguous. Schneider et al.[19] mention that ambiguity is
caused by an essential part in a software requirement that has been left undefined or
defined in a way that causes confusion among humans. Berry et al.[4] focus on ambi-
guities which are caused by expression inadequacies.

There is general consensus that requirements should be unambiguous or at least that
ambiguity should be recognized and intended. Much work has been done to achieve
quality in requirements [2,12,15,18] and reduce the ambiguity in natural language soft-
ware requirements. In [4,13,14] methods and rules are discussed to surface ambiguity
in natural language text including techniques like checklist and scenario based reading.



Ambiguity in Natural Language Software Requirements: A Case Study 235

Fabbrini et al. [10,9] present a tool to analyze the quality of natural language require-
ments written in English. The tool Alpino[5] can be used to automatically parse texts
written in Dutch, to find the most probable interpretation.

3 Research Method

To answer the research question "What is the effect of ambiguity of software require-
ments on project success?" we studied a real life project that failed. First we established
the level of ambiguity in the requirements specification. Next we established if ambi-
guity was a significant cause for the reported issues.

3.1 Case Study Project Information

The project started in December 2007 and was canceled in May 2009 after acceptance
tests by an independent test team found over 100 blocking issues. The contractor was
convinced that ambiguity was an important cause of many of the reported issues. The
case study is referred to as Project X. For reasons of confidentiality we cannot fully
disclose requirements. Project X was the development of an Oracle system that was
composed of a GIS component, a data processing component and a rule engine con-
nected by an enterprise service bus. Two of these components were existing systems
that were adapted for this project. Project X took well over 40.000 man hours, roughly
21 man year; a significant budget overrun given the initial estimation of 10.000 hours.
80 persons worked on the project.

The requirement specification was in Dutch. From the start the requirements were
considered to be unclear. To get more clarity workshops were organized and an elabo-
rate design was made, however, when asked, the customer did not formally agree with
the design. The independent test team based its findings on the initial requirements
document.

3.2 Establishing Ambiguity

We consider a requirement to be ambiguous when it has at least two different valid
interpretations. To establish ambiguity three independent tests were performed on a
sample set of the requirements:

– three professionals searched for differences in interpretations;
– a systematic review by two software engineers based on the taxonomy of [4];
– an automatic analysis by natural language analysis tool Alpino [5] .

3.2.1 Sample Data
The sample size was set to 1021from a total of 279 requirements. A stratified random
sample [6] was chosen from the requirement specification. All tests to detect ambiguity

1 After the first day of reviewing a sample of 100 requirements was considered feasible. To get
an even distribution over the requirement categories we took the % and rounded this. E.g. if a
requirements category consisted of 5.6% of the complete number of requirements, we took 6
requirements from this set. This resulted in a complete sample of 102.



236 F. de Bruijn and H.L. Dekkers

were performed on this sample. Table 1 lists the different requirements categories, % of
total is the total number of requirements in the category / total no. of requirements.

Table 1. Requirement categories

ID Category % of total sample size
1 Functionality A 19,00% 19
2 Functionality B 13,98% 14
3 Functionality C 8,96% 9
4 Functionality D 8,60% 9
5 Functionality E 7,53% 8
6 Infrastructure 6,81% 7
7 Maintainability 5,02% 5
8 Software features 5,02% 5
9 Functionality F 4,66% 5
10 Usability 4,30% 4
11 Security 3,94% 4
12 Data model 3,94% 4
13 Reliability 3,23% 3
14 Performance 2,51% 3
15 Functionality G 2,51% 3

3.2.2 Review Panel Interpretations
The requirement statements were re-
viewed by two requirement engineers
and one software engineer. The review-
ers were experienced professionals with
no prior knowledge of Project X and with
a similar domain knowledge as the devel-
opment team. During 2 1

2 days they stud-
ied each requirement and wrote down
the interpretation they thought was most
fit. To determine if interpretations dif-
fered, a joint session was organized by
the first author, taking half a day. Review-
ers shared their interpretations and could
judge if they had the same understanding.
To make sure that interpretations were
plausible and truly different the review-
ers had to present some form of argument
or example.

3.2.3 Systematic Review
The review was carried out by the first
author and a software engineer with no
prior knowledge of Project X. A check-
list was used, based on the linguistic ambiguity taxonomy of Berry et al.[4]. The re-
viewers had no linguistic background. The review protocol was as follows.

1. Each reviewer individually determines the ambiguity types present in a requirement
statement.

2. The results are merged, showing the identified ambiguity types.
3. Each reviewer can adjust his findings based on the merged results.
4. Finally consensus was reached in a face to face meeting.

3.2.4 Automatic Analysis
To get an objective measure for ambiguity each requirement was parsed by the tool
Alpino2[5]. Alpino recognizes lexical and structural (or syntactical) ambiguity. The
output showed the possible parse trees. The number of possible parses was used as in-
dicator for ambiguity. Not all of these parses have a clear semantics or are semantically
different. The limit of parses was set to a maximum of 50.

2 Alpino version 14888 for the x86 Linux platform was used in this experiment.



Ambiguity in Natural Language Software Requirements: A Case Study 237

3.3 Relating Issues to Ambiguous Requirements

Table 2. Root cause conditions

Label Root cause condition

RCC1 The implementation satisfies the
requirement.

RCC2 The test team rejects this because
of a different but also valid
interpretation of the requirement.

RCC3 Test team respects the design
space of the contractor3.

RCC4 Disambiguation of the
requirement would have prevented
these differences in interpretation

To establish if ambiguity was a sig-
nificant cause for project failure, we
did a systematic root cause analysis
on a sample of issues found by an in-
dependent test team. The issue track-
ing system used by Project X was
JIRA. Issues have fields to describe
and reproduce the issue (e.g. descrip-
tion, version, component); to cap-
ture the status of the issue (e.g. type,
status, priority) and a chronological
log showing the comments on the is-
sues and steps to clarify and solve
these by the developers. Sometimes
attachments were presented contain-
ing snapshots of the system, or a specification of desired behavior by the test team.

In total 256 issues were reported, we focused on the 125 issues that were consid-
ered blocking or urgent. 16 of these were addressing problems like incomplete prod-
uct documentation and were excluded from our research. The 109 remaining issues
were related to the requirement categories. While reading the issues to relate them to
requirement categories, 5 issues surfaced that were likely to have been caused by am-
biguity. These issues were either labeled as such or there was a discussion about the
interpretation. A root cause analysis was performed on these five issues and on a ran-
dom selection of 35 issues. The issues were annotated by discussion threads of the
contractor which were also studied. All issues were analyzed by each of the reviewers
individually.

We consider ambiguity to be the cause of an issue if all conditions in table 2 are
satisfied.

4 Results

4.1 Measured Ambiguity

4.1.1 Review Panel Interpretations
The review panel of three different persons qualified 36 requirements as unambigu-
ous, 41 requirements had two different interpretations, and finally 25 requirements had
three different interpretations. Figure 1 shows for each requirement category how many
requirements were ambiguous and how many were unambiguous.

3 Many requirements are formulated in the problem domain, explicitly leaving the choice of
solution to the contractor. In some cases the test team prefers a solution different from the one
that is implemented while it is apparent that the requirement is interpreted in the same way as
the contractor. These issues are not considered to be caused by ambiguity.



238 F. de Bruijn and H.L. Dekkers

Fig. 1. x-axis: requirement categories, see table1. y-axis: % of requirements.

Table 3. Ambiguity types top 5 found in requirements sample

Ambiguity type # Requirements

Vagueness 58
Language error 32

Coordination Ambiguity 11
Scope Ambiguity 9

Attachment Ambiguity 8

Fig. 2. x-axis: requirement categories, see table1. y-axis: % of requirements.

Fig. 3. x-axis: requirements categories, see table 1. y-axis: average number of parse trees per
requirement.

4.1.2 Systematic Review
The systematic review found 20 of the requirements to be unambiguous. 82 requirements
were found to be ambiguous. In 36 of the requirements multiple types of ambiguity were



Ambiguity in Natural Language Software Requirements: A Case Study 239

discovered. Table 3 lists in how many requirement statements the most common ambigu-
ity types were found. Note that the number of ambiguities within one single requirement
statement is not counted. Figure 2 shows for each requirement category how many
requirements were ambiguous and how many were unambiguous.

4.1.3 Alpino Tool Interpretations
For 94 of the requirements Alpino found more than one parse tree, meaning that these
are syntactical ambiguous. Seven requirements could not be parsed. Alpino calculated
an average of 33 different parse trees for each requirement4. The median was 47 and the
standard deviation was 19. Only one requirement had one parse tree. This requirement
was also understood in one way by the review panel members. Figure 3 shows the
average number of interpretations for each requirement category.

4.2 Issue Causes

40 issues were analyzed. The root cause of these issues is presented in table 4. We
found one issue to be caused by ambiguity. The issue was "Processing batch file takes
too long”. The corresponding ambiguous requirement was "The processing of the batch
programs should be completed within a reasonable time frame without affecting the
performance of the application and therefore without impeding the usual business." For
the contractor it was and still is not clear when the processing time is acceptable. The
performance was improved, the effort is discussed in section 5.

Table 4. Results issue root cause analysis

Root cause No. of issues Explanation

Ambiguity 1 Issue caused by ambiguity
Feature not found 3 Feature had been implemented, but the

implementation was not known to the test team.
Missing requirement 5 For these issues no requirement could be

identified.
New feature request 1 The reported issue is not required by the current

requirements.
Incorrect implementation 27 Acknowledgment by contractor that the issue

reports undesired behavior
Not reproducible 3 These issues could not be reproduced
Total no. issues 40 From 109 blocking or urgent issues

To make our reasoning process transparent we illustrate this in table 5. The pre-
sented issue was selected because it raised some discussion and gives good insight in
our analysis. Determining if the implementation satisfied the requirements was some-
times straightforward, sometimes it was hard to ascertain. The issue and requirements
were in Dutch and there is some risk that ambiguity is lost in translation. Also the issue
description and annotations are too large to be presented.

4 Calculations over the set of requirements that could be parsed.



240 F. de Bruijn and H.L. Dekkers

Table 5. Reasoning process details: issue I23

(a) Context information

Issue caption The application can not be controlled by the keyboard.
Note: the test team provides some examples of expected key controls.

Requirement The whole system has a consistent user interaction. The application can both
be controlled by keyboard and by mouse, based on a completely WEB
oriented graphical user interface.

(b) Reasoning process

RCC1 TRUE A consistent keyboard interface has been implemented. To use the
application the mouse is not required. The development team agrees that the
keyboard control can be improved upon, however this is considered to be a

new feature request.
RCC2 TRUE The test team provides some examples of keyboard controls that they had

expected to be implemented but were not.
RCC3 FALSE The comments and examples of the test team show that they interpret the

requirement identically to the development team. From the issue text it
becomes clear that the test team is not knowledgeable of the keyboard

controls that have been implemented. There is no indication if they find the
current implementation acceptable.

RCC4 FALSE The requirement is specific enough to judge the present implementation. The
vagueness in the requirement leads to misunderstanding. However this

vagueness is intended, so the contractor can choose the specific solution.
Conclusion Feature not found. For the test team it was not apparent how this requirement

was implemented. As they did not find this feature, they filed an issue report.
The issue specification is not required by the current set of requirements.

5 Evaluation

Research question: How many requirement statements are ambiguous?

Table 6 shows that the studied requirements sample of 102 requirements revealed a lot
of ambiguous requirements. Alpino considered all but 1 requirement to be ambiguous.
The systematic review considered 83 out of 102 requirements to be ambiguous. The
review panel considered 66 of the 102 requirements to be ambiguous. That the review
panel has a single reading for an ambiguous statement corresponds with the notion of
innocuous ambiguity[7].

Research question: How many problems were caused by ambiguous require-
ments?

Only one of the forty inspected issues was caused by ambiguity in the requirements.
This issue was not a costly one. From our study we cannot conclude that ambiguous
requirements caused the failure of this project.

How come there weren’t more issues caused by ambiguous requirements?



Ambiguity in Natural Language Software Requirements: A Case Study 241

Table 6. Ambiguity of requirements according to review panel, systematic review, and Alpino

Review panel Systematic review Alpino Requirements (#)

Unambiguous Ambiguous Unambiguous 1
Unambiguous Unambiguous Ambiguous 9
Unambiguous Ambiguous Ambiguous 27
Ambiguous Unambiguous Ambiguous 10
Ambiguous Ambiguous Ambiguous 48
Ambiguous Ambiguous Parse Error 7

Although the requirements specification from project X was highly ambiguous most of
the examined issues could not be attributed to ambiguity. Project X used workshops
involving the customer to clarify the requirements. Yet, even workshops and discussion
don’t guarantee a good interpretation. Given the complexity of this project, the many
issues, and the lack of contact between test team and development team we were sur-
prised by this finding. This is in line with the observation of [11] that the biggest danger
is unconscious disambiguation. The software engineer interprets an ambiguous require-
ment differently then the customers intention, but is unaware of this. In this project the
contractor was from the start aware of the high level of ambiguity.

What is the cost of ambiguous requirements?

The issue that was caused by ambiguity is about performance, potentially a costly issue.
However the architecture of the application was set up to process vast amounts of data
in reasonable time. To get a reasonable performance took roughly 550 hours5. The issue
was considered to be resolved however from the issue annotations it was apparent that
still much was and is unclear about the real time scenarios (how much data in what time
slots) and what performance is considered to be acceptable.

The project suffered a major budget overrun of 30.000 hours. The 550 hours for
the issue caused by ambiguity is limited. The workshops to clarify ambiguity were
included in the budget (180 hours). The project data does not show what part of the
budget overrun is caused by ambiguity.

6 Threats to Validity

6.1 Validity of the Tests to Determine Ambiguous Requirements

Is the sample set of requirements representative?

Throughout the research project we have read and interpreted the complete set of re-
quirements intensively. The requirement sample was characteristic for the whole set of
requirements. For the different types of requirements the requirement statements follow
a similar pattern and use similar words. We found no occurrences of requirements that
were more specific than the ones studied in our sample. Since the different requirement
types are in different requirement categories, we consider our sample to be representa-
tive for the complete set of requirements.

5 According to the project manager one software engineer worked on the performance optimiza-
tion for three months.



242 F. de Bruijn and H.L. Dekkers

6.1.1 Threats to Validity of Ambiguity Tests

6.1.1.1 The Interpretations by the Review Panel. The good thing about this test is that
ambiguity that does not lead to misinterpretations will not be reported. However, the re-
viewers might have an invalid interpretation or a different interpretation from the actual
project team or customer. This test is not just an indicator of ambiguity, it also says some-
thing about the interpretation process of the reviewers. The final threat to validity is that
the review panel is under the impression they have a different interpretation, while they
actually share the same interpretation (false positive). This last threat could have been
avoided by making the interpreters formalize their interpretation as described in [13].

6.1.1.2 The Systematic Review. Detecting ambiguities by humans is a hard task. The
reviewers were no trained linguists and unconscious disambiguation makes it easy to
miss ambiguity types. We expect that the number of false negatives is rather high. The
ambiguities found complied with the taxonomy of [4] and the test protocol ensured that
the found ambiguities were analyzed well. We expect that the number of false positives
is rather low.

6.1.1.3 Alpino Scan. Alpino was used to get objective measures for ambiguity. When
a requirement has at least two parse trees then the requirement has structural or lexical
ambiguity. As described in [7] many of these ambiguities have a single reading by
humans and are innocuous. Alpino features a maximum-entropy based disambiguation
component to select the best parse for a given sentence. From our discussion with the
Alpino research group it became clear that there is not a clear threshold that can be used
to automatically determine which of the parse trees is a plausible interpretation. This
would have enabled us to automatically distinguish between nocuous and innocuous
ambiguity. Also to date Alpino has no feature to report the different types of ambiguity.
The parse trees of Alpino are used to detect false negatives.

6.1.2 False Positives of the Ambiguity Tests

6.1.2.1 Unambiguous by Review Panel and Ambiguous in Systematic Review. Since
the systematic review showed that 80% of the requirements were ambiguous it is es-
pecially interesting to learn about false positives. We did two checks. The first was to
assess if the reviewers had a correct understanding of vagueness. This was the ambi-
guity type that was most discovered (in 58 requirement statements, see table 3). The
analysis was done by the second author and a researcher with a linguistic background.
Three requirements were analyzed and we could conclude that the classification vague
was used according to the taxonomy presented in [4].

False positives are most likely to occur in the requirements where only one ambiguity
type was revealed and which the review panel found to be unambiguous. The second
author examined five of these requirements to see if the found ambiguity types were
according to the taxonomy presented in [4]. Fourteen requirements, see figure 4, met
this condition. Eleven of these had ambiguity type "vague", two were of type "language
error", one had the type "attachment".



Ambiguity in Natural Language Software Requirements: A Case Study 243

Fig. 4. x-axis: the number of different ambiguity types. y-
axis: the number of requirements.

The requirements of type lan-
guage error contained two plu-
rals but both requirement state-
ments contained no verb. The
lack of a verb leaves it to the
reader to guess about it. De-
pending on the verb it could be
a language error or it could be a
scope ambiguity.

The requirement with ambi-
guity type attachment was of the
form "overview of old and new values with difference percentages". The difference per-
centages could indeed be attached to new values alone, or to old and new values and
to the difference between old and new values. It is also logical that the review panel
interpreted this unambiguously as the difference between old and new presented in %.
However we would expect that there is still some ambiguity not considered by the re-
view panel. One of the formalizations could be (new value - old value) / old value, now
it is easy to see what variations are allowed by this requirement: should we divide by
old value or by new value. Should we subtract the old value from the new value or vice
versa or take the absolute difference. Clearly an ambiguous statement. Also the two
vague requirements were true positives. That the review panel considered these to be
unambiguous can be explained that the vagueness was caused by IT terms which were
understood identically by the review panel because of their identical IT background.

This analysis revealed no false positives.
6.1.2.2 Ambiguous by Review Panel and Unambiguous in Systematic Review. False
positives are also likely to occur in the requirements that were considered to be am-
biguous by review panel and unambiguous by the systematic review. Ten requirements
met this condition; five of these requirements were analyzed. From the transcripts of
the review panel it was apparent that four of these five requirements were understood in
a different way and these can be considered to be true positives. In three of these cases
the requirement contained an ambiguity type that was unnoticed during the systematic
review (these were of types scope and coordination ambiguity). In the fourth case one of
the interpreters made a simplification of the requirement that left out important details.
This difference in interpretation was not caused by ambiguity.

The fifth case was a possible false positive. This concerned a requirement of the
form "Possibility to change the start and end date of a specific process". During the
analysis the reviewers were convinced that each of them had a different interpretation.
The transcript with their interpretations showed some differences in the sense that the
start date can be changed if and only if the end date is changed as well. However it is
hard to conceive that the reviewers would have constructed a truly different solution for
this requirement.

This analysis revealed one false positive.



244 F. de Bruijn and H.L. Dekkers

6.1.3 False Negatives of the Ambiguity Tests

6.1.3.1 Unambiguous by Review Panel and Unambiguous in Systematic Review. To
identify false negatives we analyzed requirements found to be unambiguous by both
the review panel and by systematic review. The second author examined these nine
occurrences using the checklist of the systematic review. This inspection found two
requirements to be ambiguous, both of type attachment. It was easy to see why these
were missed the first time; the semantics of the requirement only allowed one sensi-
ble interpretation. For four requirements for which the second author also could not
identify an ambiguity type the Alpino parses were analyzed. This revealed no new am-
biguous requirements. Alpino had multiple parse trees for compound words (finding
the right grouping), for words that in Dutch are sometimes used as verb and sometimes
as adjective and with the use of ":" as classifier. The different parse trees have the same
semantics, and are examples of innocuous ambiguity[7].

This analysis revealed no false negatives as the ambiguous requirements only had
one interpretation.

6.2 Validity of the Root Cause Analysis

Is the sample set of issues representative?

A first read of all blocking and urgent issues revealed five issues that were likely to have
been caused by ambiguity. Indeed all of these five issues sparked a lot of discussion.
Initially we extended this set of five with a random sample of 20 issues. When our first
analysis revealed that only 1 issue was caused by ambiguity, another 15 issues were
randomly selected and analyzed. The analysis showed that the new set of 15 issues had
similar causes as the initial set of 20 randomly selected issues. This strengthens our
belief that the sample was representative

6.2.1 Threats to Validity
Since few issues were found to be caused by ambiguity, there is limited danger of false
positives. To reduce the number of false negatives the root cause analysis followed a
formalized protocol and was carried out autonomously by both authors. The contro-
versial issues have been discussed in depth and clear reasons were found to eliminate
ambiguity as root cause.

6.2.2 False Negatives
The category least discussed is the category in which the contractor clearly acknowl-
edges that the implementation is not conform the requirements. This was also the
biggest category with 27 of the 40 researched issues. Thirteen of these issues were
inspected further. To our surprise for 9 of the 13 cases no requirements were found.
The contractor was given a lot of freedom in choosing the design. The issues could
be seen as improvements or comments on the design choices made. Even though the



Ambiguity in Natural Language Software Requirements: A Case Study 245

improvements and comments were not specified by the requirements, the contractor felt
that the improvements and comments were reasonable and without much discussion
qualified each issue as bug. Most issues had been resolved at the time of the research.
Our analysis would classify these 9 issues as "new feature request". This analysis of 13
issues revealed no false negatives.

7 Other Observations

Is the number of words an indicator for ambiguity?

We were curious about the effect of length of a requirement statement on ambiguity.
The longer the requirements the more prone it is to syntactical ambiguity. However
the length could also indicate that extra information was presented that would help to
interpret the requirement. For this analysis the requirements were partitioned by re-
quirement size in 8 groups ranging from 6 to 45 words. Each group has a span of 5
words. Figure 5 shows that the more words were used the more interpretations were
given by the review panel. The average word count for unambiguous requirements was
11, the average word count for ambiguous requirements with two interpretations was
20. It is tempting to say that requirements should be written as short as possible, but
it could very well be that the requirements were so lengthy because the message being
expressed was complicated. What we can learn is that lengthy requirements demand
extra attention.

Will disambiguation decrease the different interpretations among stakehold-
ers?

Five randomly selected requirements were rewritten with the help of the rules described
in Berry et al.[4]. The selected requirements were found to be ambiguous by both the
review panel and by the systematic review. Furthermore, the average word count of
these requirements was 25. Rewriting these five requirements took about half a day,
however this did not include a check that the new description expressed the intention of
the customer. The rewritten requirements were reviewed again by the same protocol as
specified in subsection 3.2.2.

Fig. 5. x-axis: requirements with no. of words. y-axis: % ambiguous vs unambiguous.



246 F. de Bruijn and H.L. Dekkers

This test found that four of the five requirements were unambiguous. The fifth re-
quirement was still ambiguous, caused by a vague word. Disambiguating required man-
dating a specific solution, limiting the design space more than the customer required.

The rewritten requirements contained more words than the original requirements. In
fact, the average word count was 46 for the rewritten requirements, the requirements
contained more and shorter sentences. The review panel members mentioned they had
no problems in comprehending the rewritten requirements. This shows that length is
not the most important indicator for ambiguities.

8 Conclusion

In this research we studied the effect of a highly ambiguous requirements document on
project success. The studied project was the development of a complex system that took
about 21 man years to develop and was canceled after an independent test team found
over 100 blocking issues. The perception of the contractor was that many of these issues
were caused by ambiguity in the requirements. Independent tests by humans showed
that 91% of the requirements were ambiguous. An automated test revealed that 92%
of the requirements were ambiguous. A root cause analysis on 40 of the main issues
showed that only one of the examined issues was caused by ambiguous requirements.
This issue was resolved and explained 2% of the budget overrun.

In this project, ambiguous requirements were not the main cause of the issues found
by the external test team, and cannot explain the failure of the project. Both the inde-
pendent test team and the third party development team found ways to cope with the
high level of ambiguity.

We can only speculate to the reason why the project was canceled. As a fixed price
project it wasn’t because of the budget overrun. Studying the bug reports we saw that
the number of open defects and newly found defects remained high throughout the
acceptance test. This resulted in a loss of confidence in the product by the customer. A
possible explanation for most of the issues is that due to schedule pressure not enough
care was given to implementation details. Also, as Brooks already knew, adding people
to a project that is already late is usually not effective.

9 Future Work

We speculate that a requirements document that is perceived to be of low quality trig-
gers a process of better understanding requirements. It would be interesting to see
what the effect is of ambiguity in a requirements document that is perceived to be
of high quality. This might result in false confidence that all requirements are cor-
rect. The development team will be less inclined to question these requirements and
the problems have a bigger chance to go unnoticed. It would be interesting to re-
peat this research for such projects. It is also interesting to repeat this research in
projects where communication is challenged by organizational, structural and politi-
cal factors. In these cases we speculate that ambiguous requirements will have a bigger
impact.



Ambiguity in Natural Language Software Requirements: A Case Study 247

References

1. Abran, A., Moore, J.W., Bourque, P., Dupuis, R.: SWEBOK: Guide to the software engineer-
ing Body of Knowledge. IEEE Computer Society, Los Alamitos (2004)

2. Alexander, I.F., Stevens, R.: Writing better requirements. Addison-Wesley, Reading (2002)
3. Berry, D.M.: Ambiguity in Natural Language Requirements Documents. In: Paech, B.,

Martell, C. (eds.) Monterey Workshop 2007. LNCS, vol. 5320, pp. 1–7. Springer, Heidel-
berg (2008)

4. Berry, D.M., Kamsties, E., Krieger, M.M.: From contract drafting to software specification:
Linguistic sources of ambiguity. Univ. of Waterloo Technical Report (2003)

5. Bouma, G., Van Noord, G., Malouf, R.: Alpino: Wide-coverage computational analysis of
Dutch. In: Computational Linguistics in the Netherlands 2000. Selected Papers from the
11th CLIN Meeting (2001)

6. Campbell, M.J., TDV Swinscow: Statistics at square one. John Wiley & Sons, Chichester
(2002)

7. Chantree, F., Nuseibeh, B., de Roeck, A., Willis, A.: Identifying nocuous ambiguities in
natural language requirements. In: 14th IEEE International Conference Requirements Engi-
neering, pp. 59–68 (2006)

8. Davis, A., et al.: Identifying and measuring quality in a software requirementsspecification.
In: Proceedings of First International Software Metrics Symposium, pp. 141–152 (1993)

9. Fabbrini, F., Fusani, M., Gervasi, V., Gnesi, S., Ruggieri, S.: Achieving quality in natural
language requirements. In: Proceedings of the 11 th International Software Quality Week
(1998)

10. Fabbrini, F., Fusani, M., Gnesi, S., Lami, G.: An automatic quality evaluation for natural lan-
guage requirements. In: Proceedings of the Seventh International Workshop on Requirements
Engineering: Foundation for Software Quality REFSQ, vol. 1, pp. 4–5 (2001)

11. Gause, D.C.: User DRIVEN design - The luxury that has become a necessity. In: A Workshop
in Full Life-Cycle Requirements Management. ICRE (2000)

12. Hull, E., Jackson, K., Dick, J.: Requirements engineering. Springer, Heidelberg (2005)
13. Kamsties, E.: Surfacing ambiguity in natural language requirements. PhD thesis, Fachbereich

Informatik, Universitat Kaiserslautern, Kaiserslautern, Germany (2001)
14. Kamsties, E., Berry, D.M., Paech, B.: Detecting ambiguities in requirements documents us-

ing inspections. In: Proceedings of the first Workshop on Inspection in Software Engineering
(WISE 2001), pp. 68–80 (2001)

15. Lauesen, S.: Software requirements: styles and techniques. Addison-Wesley, Reading (2002)
16. Mullery, G.: The perfect requirement myth. Requirements Engineering 1(2), 132–134 (1996)
17. Nuseibeh, B., Easterbrook, S.: Requirements engineering: a roadmap. In: ICSE 2000: Pro-

ceedings of the Conference on The Future of Software Engineering, pp. 35–46. ACM, New
York (2000)

18. Robertson, S., Robertson, J.: Mastering the requirements process. Addison-Wesley Profes-
sional, Reading (2006)

19. Schneider, G.M., Martin, J., Tsai, W.T.: An experimental study of fault detection in user
requirements documents. ACM Transactions on Software Engineering and Methodology
(TOSEM) 1(2), 188–204 (1992)

20. Schramm, W.: How communication works, p. 51. Mass Media & Society (1997)


	Ambiguity in Natural Language Software Requirements: A Case Study
	Introduction
	Research Question

	The Importance of Unambiguous Requirements
	Communication in Requirements Engineering
	Related Work 

	Research Method
	Case Study Project Information
	Establishing Ambiguity
	Sample Data
	Review Panel Interpretations
	Systematic Review
	Automatic Analysis

	Relating Issues to Ambiguous Requirements

	Results
	Measured Ambiguity
	Review Panel Interpretations
	Systematic Review
	Alpino Tool Interpretations

	Issue Causes

	Evaluation
	Threats to Validity
	Validity of the Tests to Determine Ambiguous Requirements
	Threats to Validity of Ambiguity Tests
	The Interpretations by the Review Panel.
	The Systematic Review.
	Alpino Scan.

	False Positives of the Ambiguity Tests
	Unambiguous by Review Panel and Ambiguous in Systematic Review.
	Ambiguous by Review Panel and Unambiguous in Systematic Review.

	False Negatives of the Ambiguity Tests
	Unambiguous by Review Panel and Unambiguous in Systematic Review.


	Validity of the Root Cause Analysis
	Threats to Validity
	False Negatives


	Other Observations
	Conclusion
	Future Work
	References


