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Abstract
We investigate the relation between speed and accuracy within problem solving in its sim-

plest non-trivial form. We consider tests with only two items and code the item responses in

two binary variables: one indicating the response accuracy, and one indicating the response

speed. Despite being a very basic setup, it enables us to study item pairs stemming from

a broad range of domains such as basic arithmetic, first language learning, intelligence-

related problems, and chess, with large numbers of observations for every pair of problems

under consideration. We carry out a survey over a large number of such item pairs and com-

pare three types of psychometric accuracy-response time models present in the literature:

two ‘one-process’models, the first of which models accuracy and response time as condi-

tionally independent and the second of which models accuracy and response time as

conditionally dependent, and a ‘two-process’model which models accuracy contingent on

response time. We find that the data clearly violates the restrictions imposed by both one-

process models and requires additional complexity which is parsimoniously provided by

the two-process model. We supplement our survey with an analysis of the erroneous

responses for an example item pair and demonstrate that there are very significant differ-

ences between the types of errors in fast and slow responses.

Introduction
Modeling the relationship between response time and accuracy in problem solving is a daunt-
ing task. However, the advent of computerized testing data becoming available on a large scale
allows for a detailed study of the interplay between speed and accuracy. We consider the prob-
lem in its simplest non-trivial form. That is, we confine our attention to the situation where
persons try to solve two problems only; their response time is coded as either fast or slow, and
we only register whether or not the response is correct. Although simplistic, our setting gives
us access to data from a large number of item pairs, spanning such diverse subject areas as

PLOSONE | DOI:10.1371/journal.pone.0155149 May 11, 2016 1 / 19

a11111

OPEN ACCESS

Citation: Coomans F, Hofman A, Brinkhuis M, van
der Maas HLJ, Maris G (2016) Distinguishing Fast
and Slow Processes in Accuracy - Response Time
Data. PLoS ONE 11(5): e0155149. doi:10.1371/
journal.pone.0155149

Editor: Kimmo Eriksson, Mälardalen University,
SWEDEN

Received: June 18, 2015

Accepted: April 25, 2016

Published: May 11, 2016

Copyright: © 2016 Coomans et al. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: All data and code are
available from https://osf.io/pbuvj/files/.

Funding: This work was supported by The
Netherlands Organisation for Scientific Research
(http://www.nwo.nl/), grant number 314-99-107. The
funders had no role in study design, data collection
and analysis, decision to publish, or preparation of
the manuscript.

Competing Interests: The authors have declared
that no competing interests exist.

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0155149&domain=pdf
http://creativecommons.org/licenses/by/4.0/
https://osf.io/pbuvj/files/
http://www.nwo.nl/


basic arithmetic, language learning, and intelligence-related problems, with large numbers of
independent observations per item pair.

As response time is coded as a binary variable, the response of a person to a single item can
be represented with two binary variables, xi and yi, as follows:

xi ¼
1 if the person solves item i correctly ;

0 otherwise
ð1Þ

(

and

yi ¼
1 if the person solves item i fast ;

0 otherwise :
ð2Þ

(

Thus, there are four possible ways to answer a single item: fast and incorrectly (xi = 0, yi = 1);
slowly and incorrectly (xi = 0, yi = 0); slowly and correctly (xi = 1, yi = 0); and fast and correctly
(xi = 1, yi = 1). Therefore, there are 16 possible ways to answer an item pair. The type of items
we consider are open-ended problems that are administered with the same time limit applying
to each of the problems. We choose, quite arbitrarily, to define fast responses as those responses
that are given before half of the time has expired and to call all other responses slow responses.
Although arbitrary, this choice suffices to show how many models for response time and accu-
racy fail to explain the observed relationships and points the way to the kind of model that
could successfully explain them.

As an example, we discuss the item pair that comprises the following two multiplication
problems: 100 × 3000 (item 1) and 80 × 2 (item 2). The answer patterns of 18744 subjects that
answered this pair of items within one day are summarized in the contingency table displayed
in Table 1. All observations, i.e. all response pairs (x1, y1; x2, y2), correspond to different sub-
jects, which guarantees that the observations are independent. These data are obtained from
Math Garden, a computerized adaptive practice environment in which children can practice
their mathematical abilities [1]. This framework and the way the data are extracted from it is
discussed in more detail in the first Methods subsection. The layout of Table 1 is in line with
what one expects when fast (in)correct responses reflect a (lower) higher proficiency than do
slow (in)correct responses, but for all purposes the layout is insignificant. Specifically, we infer
higher proficiency as we move from left to right, from top to bottom, and from the north-west
corner to the south-east corner of the table.

Table 1. Item pair contingency table for items 1 (100 × 3000) and 2 (80 × 2) constructed from 18744
response pairs.

(x2 = 0, y2 = 1) (x2 = 0, y2 = 0) (x2 = 1, y2 = 0) (x2 = 1, y2 = 1)

(x1 = 0, y1 = 1) 435 (1) 245 (2) 428 (3) 1668 (4)

(x1 = 0, y1 = 0) 256 (5) 229 (6) 487 (7) 1108 (8)

(x1 = 1, y1 = 0) 509 (9) 586 (10) 1382 (11) 2245 (12)

(x1 = 1, y1 = 1) 1227 (13) 786 (14) 1624 (15) 5529 (16)

The numbers between parentheses indicate the enumeration that is used throughout the text to indicate the

events in the item pair contingency table. The cells 1, 4, 13, and 16 constitute the events for which both

responses on the item pair are fast (fast-fast responses). The cells 6, 7, 10, and 11 constitute the events for

which both responses on the item pair are slow (slow-slow responses). All remaining cells constitute the

events for which the speed of both responses on the item pair differs.

doi:10.1371/journal.pone.0155149.t001
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In the psychometric literature, a range of models can be found that relate both response
time and accuracy to person as well as item characteristics. All these models are based on the
standard psychometric assumption of local independence: the responses (xi, yi) and (xj, yj) of a
single person on two distinct items i and j are conditionally independent given a set of latent
parametersO. This means that this set of parameters completely explains how the responses
are correlated:

Pðxi; yi; xj; yjjOÞ ¼ Pðxi; yijOÞPðxj; yjjOÞ : ð3Þ

Contingency tables such as the one displayed in Table 1 contain the responses of many persons
such that we can only observe the manifest probability distribution

Pðxi; yi; xj; yjÞ ¼
Z

Pðxi; yijOÞPðxj; yjjOÞf ðOÞdO ; ð4Þ

where f ðOÞ denotes the joint distribution of the latent parameters inO in the population. Dif-
ferent types of latent structures result in different manifest distributions. Hence, despite the
fact that we cannot directly observe the latent structure, it is possible to draw some conclusions
about this structure by simply looking at the cumulative data in a contingency table. By dichot-
omizing response times as done in Eq (2) we enormously reduce the complexity of the models
that are eligible to describe the data. However, even in this much simplified form, the manifest
probabilities defined in Eq (4) still enable us to distinguish between three types of psychometric
accuracy-response time models available in the literature. These types of models are distin-
guished based on how the correlation between accuracy xi and response time yi of a single per-
son on a single item i is modeled:

1. Models in which xi and yi are conditionally independent. In these models xi and yi are
conditionally independent given the set of parametersO:

Pðxi; yijOÞ ¼ PðxijOÞPðyijOÞ : ð5Þ

Generically these models have two types of parameters: one type that governs the response
time (the ‘speed’) and one type that governs the accuracy (the ‘ability’). Correlations are
introduced only at the level of an external model, i.e. at the level of f ðOÞ, that characterizes
the distribution in the population of the latent parameters inO. Accuracy and response
time are correlated in the population only because the underlying latent parameters, speed
and ability, are correlated in the population. The correlation between accuracy and response
time is thus spurious and disappears when both latent parameters are kept fixed. Condition-
ally independent models are captured by van der Linden’s hierarchical framework [2]. From
now on we will indicate this conditionally independent type of model with CIM.

2. Models in which xi and yi are conditionally dependent. For these models, Pðxi; yijOÞ can-
not be factorized as in Eq (5). This means that the correlations between xi and yi are struc-
tural and cannot be ‘explained away’ by additional latent parameters. In more technical
terms, xi and yi are coupled in the sufficient statistics for the model parameters, i.e. the
model contains explicit interaction terms:

Pðxi; yijOÞ � exp xiyiOð Þ : ð6Þ

These models have only one type of parameter that governs both the speed and the accu-
racy. A prototype example of this type of model is the Signed Residual Time (SRT) scoring
rule model of [3]. In this model, the parameter that governs the probability to answer fast is
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the absolute value of the parameter that governs the probability to answer correctly. From
now on we will indicate this conditionally dependent type of model with CDM.

3. Models in which xi is contingent on yi. A third way to model the correlation between xi
and yi is by assuming that (xi|yi = 1) is governed by a different parameter than (xi|yi = 0).
This gives rise to a two-level branching model that explicitly distinguishes between fast and
slow responses. It has three types of parameters: one that governs the accuracy for fast
responses, one that governs the accuracy for slow responses and one that governs the mixing
of fast and slow responses. This two-process model was first introduced in [4] and is a spe-
cific example of a multinomial process tree model [5]. Since the two-level branching model
is saturated on the contingency table two different truncations of this two-process model,
labeled the 2P&3I truncation and the 3P&2I truncation, are used in the analyses. The 2P&3I
truncation is obtained from the two-level branching model by constraining the person
parameters that govern the accuracies for fast and slow responses to be equal such that the
truncated model only has two person parameters in addition to the three item parameters.
The 3P&2I truncation is obtained from the two-level branching model by constraining the
item parameters that govern the accuracies for fast and slow responses to be equal.

It is important to stress that these three model types are distinguished solely on the basis of
the different latent mechanisms they employ to produce the observed correlations between
speed and accuracy in the population. We do not make any assertions about the within-person
processes that lie at the basis of these latent structures.

All of these model types and their mutual relations will be discussed in more detail in the
Results and Methods section. We end this Introduction by giving a flavor of the type of analysis
that is used in the Results section: we compare all three model types on the basis of the observa-
tions of the example item pair displayed in Table 1. Based on the empirical data in Table 1, we
computed the estimated frequencies of the 16 answer patterns using the CIM, CDM and
2P&3I and 3P&2I truncations of the two-level branching model. The estimated frequencies of
these models are displayed in Table 2. The corresponding Pearson goodness-of-fit χ2-statistics
have values 365.24 (CIM), 1139.86 (CDM), 0.20 (2P&3I) and 47.19 (3P&2I). The data for the
example item pair clearly violates the restrictions imposed by both the CIM and the CDM on
the contingency table probabilities. Both two-level branching model truncations give a much
better description of the data than the CIM and CDM do. In the next section we demonstrate
that the conclusions reached for this example item pair generalize by discussing the results of a
survey in which we analyzed numerous different item pairs from different domains.

Results
We compared the fit on item pair contingency tables of the CIM and CDM with the fit of a
two-level branching model that explicitly distinguishes between fast and slow responses. The
relations between the models are discussed in the first subsection of this Results section. In the
second subsection we will discuss the results of a survey for which we estimated the CIM, the
CDM and two truncations of the two-level branching model on a large amount of item pairs
stemming from 4 basic arithmetic domains: multiplication, addition, subtraction and division.
In the third subsection we discuss the results of a different survey over item pairs from domains
outside basic arithmetic: first language learning, the game of Set and chess. In the fourth sub-
section we strengthen the support for the two-level branching model by analyzing the incorrect
responses in Table 1 and show that there are significant differences between the kind of errors
made when the response is fast and those made when the response is slow.
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How the three types of models relate
In this subsection we will discuss the relations between the different model types. We will start
with the two-level branching model and discuss two particular truncations of this model, the
2P&3I truncation and the 3P&2I truncation, that preserve the explicit distinction between fast
and slow responses. As such these truncations will still be labeled as two-process models. We
will also explain how the CIM and CDM can be considered as truncations of the two-level
branching model for which the explicit distinction between fast and slow responses disappears.
As such they are labeled as one-process models.

The two-level branching model of Partchev and De Boeck [4] has first-level branches that
differentiate between fast and slow and second-level branches that further differentiate between
correct and incorrect. The branching structure is displayed in Fig 1. The probability to go left
at node s 2 {1, 2, 3} is given by a Rasch model with parameters specified in the node in Fig 1:

Pðgo left at node sjyðsÞ; bðsÞi Þ ¼ exp xðsÞi
� �

1þ exp xðsÞi
� � ; ð7Þ

where xðsÞ
i ¼ yðsÞ � bðsÞi . This model explicitly distinguishes fast and slow responses and consid-

ers them as arising from two different processes: one governed by θ(2) and one governed by
θ(3). The mixing of both processes is governed by θ(1). The model has to be supplemented with
a multivariate distribution f(θ(1), θ(2), θ(3)) that describes the distribution of the three latent
parameters in the population.

The restrictions imposed by this model on item pair contingency tables are discussed in
detail in the second Methods subsection where it is concluded that this model is saturated on
such tables. This means that it has a parameter for every cell in the contingency table and thus

Table 2. Estimated frequencies computed from CIM, CDM, 2P&3I and 3P&2I.

(x2 = 0, y2 = 1) (x2 = 0, y2 = 0) (x2 = 1, y2 = 0) (x2 = 1, y2 = 1)

(x1 = 0, y1 = 1) 435 435.00 245 214.50 428 657.99 1668 1571.62

435.00 266.63 439.71 1191.26

435.00 245.00 423.88 1672.12

435.00 245.00 428.00 1572.26

(x1 = 0, y1 = 0) 256 286.50 229 229.00 487 582.50 1108 878.89

234.37 386.52 1047.15 1235.43

256.00 229.00 491.12 1103.88

256.00 229.00 582.74 1108.00

(x1 = 1, y1 = 0) 509 740.06 586 490.50 1382 1382.00 2245 2212.55

339.76 920.47 1085.97 2059.04

513.12 581.88 1382.00 2245.00

509.00 490.26 1382.00 2245.00

(x1 = 1, y1 = 1) 1227 1323.38 786 554.06 1624 1656.45 5529 5529.00

809.12 954.60 1809.96 5529.00

1222.88 790.12 1624.00 5529.00

1322.741 786.00 1624.00 5529.00

Estimates are obtained based on the data in Table 1. Every cell contains the observed frequency (in bold) together with 4 expected frequencies

corresponding to, respectively from top to bottom, the CIM, the CDM, the 2P&3I truncation and the 3P&2I truncation. The corresponding Pearson

goodness-of-fit χ2-statistics are w2
CIM ¼ 365:24 (20.52), w2

CDM ¼ 1139:86 (26.12), w22P&3I ¼ 0:20 (10.83) and w23P&2I ¼ 47:19 (10.83), where the numbers in

brackets denote the statistics’ bounds corresponding to p = 0.001 for the corresponding degrees of freedom.

doi:10.1371/journal.pone.0155149.t002
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will always give a perfect fit. Therefore we will look at parameter truncations of this model that
are not saturated on the item pair contingency table. Before considering these truncations, we
note that although the model is saturated on the item pair contingency table, we still consider it
very parsimonious. This is so because if we consider N> 2 items and look at N-item contin-
gency tables, the difference between the number of parameters of the saturated model and the
number of parameters of the two-level branching model increases exponentially with N. This is
illustrated in Fig 2.

Partchev and De Boeck [4] consider three parameter truncations of the two-level branching
model, two for which the explicit distinction between fast and slow processes is preserved (the
2P&3I truncation and the 3P&2I truncation) and one for which it disappears (the CIM). We
will discuss these truncations together with one additional truncation of the latter type (the
CDM).

Truncations that preserve the explicit distinction between fast and slow:

• The 2P&3I truncation: θ(2) = θ(3). Here, there is only one ability for fast and slow responses
but the item parameters differ.

• The 3P&2I truncation: bð2Þi ¼ bð3Þi . Here, there is only one set of difficulties for fast and slow
responses but the person parameters differ.

The manifest probabilities, which were generically defined in Eq (4), that correspond to
these models are discussed in detail in the second Methods subsection. Both the 2P&3I and

Fig 1. Schematic description of a two-level branchingmodel. The first level distinguishes fast (yi = 1) and
slow (yi = 0) responses, whereas the second level distinguishes correct (xi = 1) and incorrect (xi = 0)
responses. In the nodes, the person and item parameters of the corresponding Rasch models are displayed.
The left branch of the first node corresponds to the probability of answering fast, the left branch of the second
node corresponds to the probability of answering correctly given that the response is fast, and the left branch
of the third node corresponds to the probability of answering correctly given that the response is slow.

doi:10.1371/journal.pone.0155149.g001
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3P&2I truncations have 14 parameters on the item pair contingency tables.

Truncations that do not preserve the explicit distinction between fast and slow:

• The CIM: θ(2) = θ(3) and bð2Þi ¼ bð3Þi . Here, there is only one ability and one set of difficulties
for fast and slow responses.

• The CDM: θ(2) = θ(3) and bð2Þi ¼ bð3Þi and xð1Þi ¼ jyð2Þ � bð2Þi j. Here, there is only one ability
and one set of difficulties for fast and slow responses. Moreover, the response time is gov-

erned by the absolute value of the difference of these parameters jyð2Þ � bð2Þi j.
The manifest probabilities that correspond to these models are discussed in detail in the

third and fourth Methods subsection. The CIM has 10 parameters on the item pair contingency
tables and the CDM has 7 parameters on the item pair contingency tables.

To end this subsection we mention that for all these types of models we assume that the
parameters that govern the latent structures are fixed per observation in the contingency table.
That is, we do not allow within-person variability of the latent parameters and assume that
both responses that make up an observation were given by a subject with fixed latent parame-
ters. This stationarity assumption, which is standard in psychometric response-time modeling
[2, 6], is based on the following arguments:

Fig 2. Number of parameters vs. number of items. The left plot compares the log number of parameters of the two-level branching model
(solid) and the saturated model (dashed) on anN-item contingency table as function ofN. The right plot displays the ratio of the number of
parameters of the two-level branching model over the number of parameters of the saturated model (both on an N-item contingency table) as
function of N.

doi:10.1371/journal.pone.0155149.g002
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• Both items are administered under the same framework, the Math Garden framework, which
is described in the first Methods subsection.

• To exclude the impact of changing environment variables such as learning effects or the
increase of fatigue, we limit the observations to those that correspond to response pairs that
were given within the same day. Since most subjects only practice for a very limited time per
day, this effectively results in contingency tables where the majority of the observations cor-
responds to two responses that were given in a time interval of the order of minutes. For
example, for the data in Table 1 90% of the subjects answered both items within 10 minutes.

• There is no fixed order in which subjects answered both items. For example, for the data in
Table 1 51% of the subjects answered item 1 first.

In the next subsections we will determine the fit of these models on a large number of item
pairs stemming from a number of different domains.

Empirical comparison of the models (1): a survey of item pairs from basic
arithmetic domains
As alluded to above, the features observed in Tables 1 and 2 are not limited to the specific item
pair that we focused on in the Introduction. We found that these features are persistent over
different item pairs stemming from a diverse range of subject areas. We conducted a survey in
the Math Garden framework covering a number of basic arithmetic domains—addition, sub-
traction, multiplication, and division. For each domain, we extracted the item pair contingency
tables corresponding to all 435 possible pairs of the 30 most played items in that domain
(according to the period from 01-03-2012 to 01-07-2014). We estimated the CIM, the CDM
and the 2P&3I and 3P&2I truncations for each of these item pair contingency tables and com-
puted the corresponding χ2-statistics. These statistics have a χ2-distribution with the appropri-
ate number of degrees of freedom only if all of the following requirements are met [7]:

• The observations are independent.

• The corresponding contingency table has a sufficiently large number of observations.

• At least 80% of the cells has an expected frequency of at least 5 and none of the cells has an
expected frequency below 1.

The first requirement is met in our analysis since all observations in the contingency tables
correspond to different subjects. In order to meet the last two requirements we used the follow-
ing exclusion policy:

• If an item pair has a corresponding contingency table with less than 500 observations it is
excluded from the analyses of all 4 models.

• For a given item pair and under a given model, if more than 3 expected cell frequencies do
not exceed 5 or at least 1 expected cell frequency does not exceed 1, the item pair is excluded
from the analysis of that particular model.

The results of this survey are displayed in Table 3. As can be seen in this table, we find that
the majority of the item pairs in all the considered domains provide extensive evidence to
reject the CIM and CDMmodel descriptions and that overall the 2P&3I truncation fits best.
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Empirical comparison of the models (2): a survey of item pairs from
language learning, Set and chess
The simplicity of our setup, which makes use of only two items, allows us to extend it beyond
the basic arithmetic domains discussed above and apply it to a diverse number of subject areas
for which less data is available. As a demonstration, we add here a number of analyses concern-
ing item pairs from the card game ‘Set’, a language learning game called ‘Letter Chaos’, and
chess. We analyse the data by estimating the CIM, the CDM and the 2P&3I and 3P&2I trunca-
tions and show that this leads to similar conclusions as drawn in the previous subsection.

The Set game [8] is a card game that has been intensively studied because it is able to elicit a
whole range of complex cognitive processes with only a very simple setup [9]. Letter Chaos is a
language game, the aim of which is to recognize a word from a sequence of letters that are ran-
domly shuffled. Set is built into the Math Garden framework and Letter Chaos is built into the
computerized adaptive practice framework Language Sea, which is the language variant of the
Math Garden framework. Both Set and Letter Chaos games have items that are scored with the
SRT scoring rule Eq (9) with a 20 second deadline. In the same way as described in the first
Methods subsection, we extracted the item pair contingency tables corresponding to all 45 pos-
sible pairs of the 10 most played items in the Set and Letter Chaos domains (according to the
period from 01-03-2012 to 01-07-2014). We estimated the CIM, the CDM and the 2P&3I and
3P&2I truncations on these tables, and computed the corresponding χ2-test statistics. The
results are summarized in Table 4. We employed the same exclusion policy as described in the
previous subsection.

The chess data are obtained from the Amsterdam Chess Test I (part A) [10]: 259 partici-
pants all answered the same 40 items and the accuracies and response times were recorded.
Based on this information, we were able to build all 780 corresponding item pair contingency
tables. We estimated the CIM, the CDM and the 2P&3I and 3P&2I truncations on these tables
and computed the corresponding χ2-test statistics. The results are summarized in Table 4. We
employed the same exclusion policy as described in the previous subsection except for the
‘500-observations-requirement’ since all tables have a fixed number of 259 observations.

It is clear from Table 4 that the majority of the data violate the restrictions imposed by the
CIM and CDM and that it agrees much better with the 2P&3I and 3P&2I truncations.

Table 3. Survey of violations.

domain CIM χ2 > 20.52 CDM χ2 > 26.12 2P&3I χ2 > 10.83 3P&2I χ2 > 10.83

multiplication 96% (427) 100% (426) 0% (432) 31% (432)

division 95% (346) 100% (362) 1% (344) 21% (345)

addition 61% (339) 100% (347) 1% (343) 9% (340)

subtraction 60% (435) 100% (435) 0% (435) 20% (435)

For each Math Garden domain indicated in the left column, all 435 possible item pairs of the 30 most played items in the domain are considered. All item

pairs with less than 500 administrations are discarded. For each remaining item pair, an item pair contingency table is constructed for which the CIM,

CDM, 3P&2I and 2P&3I are estimated and the four corresponding χ2-test statistics are computed. Under a given model for a specific item pair, if one or

more of the expected cell frequencies is below 1 or if more than 3 cell frequencies are below 5, the item pair is excluded from the analysis of that specific

model. The total number of remaining item pairs per domain and per model is indicated in parentheses in the corresponding table entry. The boldface

number in every table entry indicates what percentage of this number of remaining item pairs has a χ2-value that exceeds the p = 0.001 threshold for the

corresponding number of degrees of freedom. This threshold is 20.52 for CIM (p = 0.001 for 15-10 degrees of freedom), 26.12 for CDM (p = 0.001 for 15-7

degrees of freedom), 10.83 for 2P&3I (p = 0.001 for 15-14 degrees of freedom) and 10.83 for 3P&2I (p = 0.001 for 15-14 degrees of freedom).

doi:10.1371/journal.pone.0155149.t003
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Collateral evidence: an analysis of fast and slow errors
To provide additional evidence for the two-process explanation of Table 1, we carried out an
analysis of the incorrect responses in the table and showed that there are significant differences
between the most common fast errors and the most common slow errors. We separately ana-
lyzed the 4856 incorrect responses for item 1 and the 4273 incorrect responses for item 2 and
focused on the 10 most common incorrect responses for each item. These responses are dis-
played in Table 5, together with their corresponding frequencies. These frequencies are split up
according to whether the response is fast or slow.

Applying a χ2-test to both tables leads to the following test statistics (the χ2-threshold for a
p = 0.001 significance level and 10 degrees of freedom is 29.59):

item 1 : w2 ¼ 248:11 ; item 2 : w2 ¼ 147:13 ; ð8Þ

Table 4. Survey of violations (2).

domain CIM χ2 > 20.52 CDM χ2 > 26.12 2P&3I χ2 > 10.83 3P&2I χ2 > 10.83

Set 100% (24) 100% (45) 0% (22) 0% (24)

Letter Chaos 15% (39) 100% (45) 0% (39) 0% (39)

Chess 90% (348) 97% (401) 0% (153) 39% (227)

For Set and Letter Chaos, all 45 possible item pairs of the 10 most played items are considered. All item

pairs with less than 500 administrations are discarded. The analysis of the remaining item pairs in these

domains is equivalent to that described below Table 3. For chess, 780 item pairs of 40 items in the

Amsterdam Chess Test I are considered. Each item pair has a fixed number of 259 observations and thus

we do not employ the ‘500-observations-requirement’ here. The rest of the analysis is equivalent to that

described below Table 3. However, it has to be noted that 310 of the 627 item pairs that were excluded

from the analysis of the 2P&3I model have sparse contingency tables for which the corresponding set of

2P&3I maximum likelihood equations, given in Eq (16), has no solution.

doi:10.1371/journal.pone.0155149.t004

Table 5. Error contingency table.

item 1 errors fast slow item 2 errors fast slow

30000 1326 717 1600 366 192

100000 458 287 140 208 174

3000000 299 249 120 203 87

3000 133 82 800 186 95

400000 50 126 40 154 40

1300000 17 66 802 101 89

4000 45 32 180 95 75

10000 49 26 600 65 103

30 42 14 16 86 60

9000 18 36 200 80 50

residual 339 445 residual 883 881

For items 100 × 3000 (item 1) and 80 × 2 (item 2) the 10 most common incorrect responses are displayed together with their corresponding frequencies

and are split up based on the speed of the response. This data is obtained from the Math Garden framework for the period from 01-03-2012 to 01-07-

2014. Note that we left out the response 0 from the analysis because it was set as the default answer in the Math Garden framework for some time. Note

that the sum of the frequencies of the fast and slow errors of, respectively, the first (second) item equal the sum of the first and second rows (columns) in

Table 1, as they should.

doi:10.1371/journal.pone.0155149.t005
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indicating that there are very significant differences between the types of fast errors and the
types of slow errors on this particular item pair.

Discussion
The results discussed in the previous section clearly demonstrate that the standard psychomet-
ric one-process models, the CIM and CDM, are not consistent with the data. Table 3 summa-
rizes the results for the basic arithmetic pairs under consideration. For the CDM each of the
item pairs that were analyzed provides enough evidence to reject that model at the p = 0.001
level. The evidence for rejecting the CIM at the p = 0.001 level is slightly more nuanced but still
very convincing. Similar conclusions can be drawn from the Letter Chaos, Set and chess data,
the analysis of which is summarized in Table 4. Overall, we conclude that the observed fre-
quency distributions on item pair contingency tables extracted from this diverse range of
domains require more complexity than the simple CIM and CDM one-process models can
offer.

The two-level branching model introduced in Eq (7) and Fig 1 introduces extra complexity
in a very parsimonious manner. The model can be considered parsimonious since the differ-
ence of the number of parameters of the saturated model and the two-level branching model
on an N-item contingency table increases exponentially with N as can be seen in Fig 2. We
focused on two particular truncations of the two-level branching model, the 2P&3I truncation
and the 3P&2I truncation, that preserve the explicit distinction between fast and slow
responses and thus can still be labeled two-process models. Table 3 shows that the vast majority
of the basic arithmetic item pairs that we investigated agree with the 2P&3I truncation. On the
Letter Chaos, Set and chess data the model performs equally well: all of the item pairs in these
domains that we investigated agree with the 2P&3I model. It has to be noted that the number
of chess item pairs analyzed under this model is much lower than the number of chess item
pairs that were analyzed under the other models. As mentioned already under the Table 4 this
is mainly due to the fact that many of the chess item pair contingency tables contain many cells
with frequency zero which causes the corresponding system of maximum likelihood Eq (16) to
have no solution. The 3P&2I truncation does not agree as well with the data as the 2P&3I
model does. Table 3 shows that substantial fractions of the analyzed basic arithmetic item pairs
reject the model at the p = 0.001 level. As can be seen from Table 4 the model performs much
better on Letter Chaos and Set item pairs but again performs less good in the chess domain.
Additional evidence for an explicit distinction between fast and slow responses is given by our
analysis of fast and slow errors, which is displayed in Table 5 and which indicates that there is a
significant difference between the types of slow and fast errors.

Our results are in agreement with the findings of [4]. There, the authors investigated the
performance of the two-level branching model, the 2P&3I truncation, the 3P&2I truncation
and the 2P&2I truncation (which is equivalent with our CIM) on data from a Raven-like matri-
ces test and a verbal analogies test. They concluded that the full model fits best but that the abil-
ities governing the fast and slow accuracies (θ(2) and θ(3)) are rather strongly correlated. In our
case, the full model is saturated on the item pair contingency table but we find that the model
in which θ(2) = θ(3) perfectly agrees with the data. The question remains if this strict equality
survives when N-item contingency tables with N> 2 are considered. However, it is hard to
find such contingency tables that are non-sparse since the adaptivity of the Math Garden
framework makes that the sparsity of these tables quickly increases with N.

The findings discussed above seem to fit into the broader research framework of dual-pro-
cess modeling. Dual-process theories assume that there are two qualitatively different modes of
processing that underlie such ‘higher order’ cognitive phenomena as reasoning, judgment, and
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decision making. The first type of processes is generally assumed to be fast, automatic, and
unconscious, whereas the second type is slow, effortful, and conscious. A concise overview and
analysis of the premises and conclusions of these theories and a response to different argu-
ments against dual-process models is given in [11] and [12]. It is important to mention that
there is no evidence for one single generic dual-process model underlying all cognitive func-
tions but merely that there is an empirical basis for a dual-process distinction when studying
cognitive functions separately.

The dual-process modeling framework has been very successful in the fields of cognitive
and social psychology; think about the influential research program on heuristics and biases of
Kahneman and Tversky [13], the use of counting versus retrieval strategies in mental arithme-
tics [14–16], the study of the development of automaticity in cognitive tasks [17–19], or the
automatic processing of social information in stereotyping [20]. In the field of psychometrics,
however, dual-process models never really seem to have gained a foothold. The psychometrics
literature has always been somewhat decoupled from that of cognitive psychology. Over the
last 30 years, psychometrics and cognitive psychology have evolved separately into two
research domains that rarely communicate. The majority of psychometric models deal with
one particular process governed by one (or more) latent variables that leads to an observed
response behavior. Our findings show that there is a clear need for reconciliation between psy-
chometric and cognitive modeling. A similar conclusion was reached in [4]. Their two-level
branching model, which we also use in this paper, is a prototypical example of a psychometric
latent trait model that is partly inspired by cognitive modeling and that makes a clear distinc-
tion between ‘fast’ and ‘slow’ intelligence. This idea, once established, can have far-reaching
consequences for psychometrics and encourages a closer collaboration between the fields of
psychometrics and cognitive psychology.

Methods

Ethics statement
Participants, either their parents or their schools, agreed to the use of the anonymized data for
scientific research when they subscribed to the Math Garden or Language Sea systems. The
research described in this paper is approved by the ethics committee of the Faculty of Social
and Behavioral Sciences of the University of Amsterdam (Lab Ethics Review Board). Project
number: 2016-PML-6535.

The Math Garden computerized adaptive practice framework
Math Garden [1] is a computerized adaptive learning environment in which children can prac-
tice their mathematical abilities. The Math Garden environment comprises over 20 different
domains in which children can practice a specific mathematical skill. Domains range from
basic arithmetic, such as addition or multiplication, to more involved tasks, such as the Set
game or other IQ tasks. Each domain comprises several hundreds of items of varying difficulty.
Most of the domains that are dealt with in this paper consist of open-ended items. The addition
and subtraction domain consist of multiple choice items with 6 alternatives. Children can log
in to the system and select a domain in which they want to practice. A game consists of 15 dif-
ferent items of the selected domain. For each item, a time limit of 20 seconds is imposed and
the item is scored with the so-called Signed Residual Time (SRT) scoring rule. This scoring rule
was introduced in [3] and has the following form:

Si ¼ ð2xi � 1Þð1� tiÞ ; ð9Þ
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where Si denotes the score earned after answering item i and xi 2 {1, 0} and ti 2 [0, 1] denote
the accuracy and the response time (with the time limit scaled to 1), respectively. Instead of
responding to the item, people also have the possibility to use the ‘question mark button’, in
which case they earn a score of zero. The particular form of the scoring rule discourages guess-
ing and imposes an explicit speed-accuracy trade-off. After every administration, the person’s
ability (i.e., the ability corresponding to the selected domain) and the item’s difficulty are
updated via an Elo rating algorithm [1]. Items are selected by the system such that the probabil-
ity to answer an item correctly is about 0.75. Every administration (person, item, accuracy,
response time, ratings, date) is saved in a database.

In our item pair study, which is summarized in Tables 3 and 4 and from which Table 1
describes a particular example item pair, we focus on a large collection of item pairs in the
period between 01-03-2012 and 01-07-2014. For each item pair, we look for people who
answered both items on the same day and extract their respective accuracies and response
times from the Math Garden database, which are then used to build the contingency tables.
We restrict ourselves to these people because a person’s ability can change substantially over
time. By restricting ourselves to people who answered the item pair in one day, the assumption
that their ability is fixed remains (approximately) valid. Responses that were given after the
deadline or that were produced using the question mark button are not taken into account.
The response 0 is not taken into account for multiplication items because this response was set
as the default response for these items for some time. If an item is answered multiple times by
the same person during the same day, only the first administration is used. In all studied con-
tingency tables all observed response pairs are given by different persons.

Restrictions imposed on item pair contingency tables by the two-level
branching model and its truncations
We will derive the restrictions imposed on item pair contingency tables by the two-level
branching model which is defined in Eq (7) and Fig 1. It is not hard to see that the joint distri-
bution for xi and yi has the following form:

Pðxi; yijθ; biÞ ¼

1þ expxð3Þ
i

1þ expxð2Þ
i

 !yi

exp yix
ð1Þ
i þ xiyix

ð2Þ
i þ xið1� yiÞxð3Þi

� �
ð1þ expxð1Þi Þð1þ expxð3Þi Þ ;

ð10Þ

where boldface symbols denote vectors in the index s 2 {1, 2, 3}, where s refers to one of the
nodes of the tree displayed in Fig 1. Consider a pair of items i and j with difficulties bi and bj.
According to the two-level branching model, the probability P(xi, yi, xj, yj|θ) to respond (xi, yi)
and (xj, yj) conditional on ability θ, is given by the following expression:

Pðxi; yi; xj; yjjθÞ ¼ Pðxi; yijθ;biÞPðxj; yjjθ;bjÞ ; ð11Þ

where P(xi, yi|θ, bi) is defined in Eq (10). The probabilities Eq (11) are written out in Table 6, in
which the following definition is used

Zð1sÞð1s0Þ
ij ¼ ð1þ expðxð1Þi ÞÞð1þ expðxðsÞi ÞÞð1þ expðxð1Þj ÞÞð1þ expðxðs0Þj ÞÞ : ð12Þ

Remember that xðsÞi ¼ yðsÞ � bðsÞi . To compare these expressions with the empirical findings (of
Table 1, for example), we have to integrate out the θ(1), θ(2) and θ(3) parameters:

Pðxi; yi; xj; yjÞ ¼
Z

Pðxi; yi; xj; yjjθÞf ðθÞdyð1Þdyð2Þdyð3Þ ; ð13Þ
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where f(θ) is the (unknown) distribution of θ(1), θ(2), and θ(3) in the population. By writing out
this expression for all 16 response patterns in the contingency table it is easy to demonstrate
that this model is saturated on the item pair contingency table: it has a parameter for every cell.
We therefore look at two particular truncations of the model that are not saturated on the con-

tingency table: the 2P&3I (θ(2) = θ(3)) and 3P&2I (bð2Þi ¼ bð3Þi ) truncations.
The 2P&3I truncation leads to the parametrization of the contingency table probabilities as

displayed in Table 7. As can be seen from this table, these probabilities are completely deter-
mined by 14 independent parameters:

• 12 ‘score’ parameters {φ(1), . . ., φ(12)} of which only 11 are independent because of the constraint

X12
k¼1

φðkÞ ¼ 1 ; and ð14Þ

• 3 ‘item’ parameters α1, α2 and α3.

The 3P&2I truncation leads to the parametrization of the contingency table probabilities as
displayed in Table 8. As can be seen from this table, these probabilities are completely deter-
mined by 14 independent parameters:

• 14 ‘score’ parameters {φ(1), . . ., φ(14)} of which only 13 are independent because of the constraint

X14
k¼1

φðkÞ ¼ 1 ; and ð15Þ

Table 7. Manifest 2P&3I probabilities.

(xi = 0, yi = 1) (xi = 0, yi = 0) (xi = 1, yi = 0) (xi = 1, yi = 1)

(xj = 0, yj = 1) φ(1) φ(7) φð8Þ 1
1þa3

φð2Þ 1
1þa1

(xj = 0, yj = 0) φ(10) φ(4) φð5Þ 1
1þa2

φð11Þ a3
a1a2þa3

(xj = 1, yj = 0) φð11Þ a1a2
a1a2þa3

φð5Þ a2
1þa2

φ(6) φ(12)

(xj = 1, yj = 1) φð2Þ a1
1þa1

φð8Þ a3
1þa3

φ(9) φ(3)

Parametrization of the contingency table as implied by the the 2P&3I truncation of the two-level branching

model. The parameters φ(k) are subject to the constraint Eq (14).

doi:10.1371/journal.pone.0155149.t007

Table 6. Two-process model probabilities conditional on the latent variables θ(1), θ(2) and θ(3).

(xi = 0, yi = 1) (xi = 0, yi = 0) (xi = 1, yi = 0) (xi = 1, yi = 1)

(xj = 0, yj = 1) expðxð1Þ
i

þxð1Þ
j

Þ
Zð12Þð12Þ
ij

expðxð1Þ
j

Þ
Zð13Þð12Þ
ij

expðxð3Þ
i

þxð1Þ
j

Þ
Zð13Þð12Þ
ij

expðxð1Þ
i

þxð2Þ
i

þxð1Þ
j

Þ
Zð12Þð12Þ
ij

(xj = 0, yj = 0) expðxð1Þ
i

Þ
Zð12Þð13Þ
ij

1

Zð13Þð13Þ
ij

expðxð3Þ
i

Þ
Zð13Þð13Þ
ij

expðxð1Þ
i

þxð2Þ
i

Þ
Zð12Þð13Þ
ij

(xj = 1, yj = 0) expðxð1Þ
i

þxð3Þ
j

Þ
Zð12Þð13Þ
ij

expðxð3Þ
j

Þ
Zð13Þð13Þ
ij

expðxð3Þ
i

þxð3Þ
j

Þ
Zð13Þð13Þ
ij

expðxð1Þ
i

þxð2Þ
i

þxð3Þ
j

Þ
Zð12Þð13Þ
ij

(xj = 1, yj = 1) expðxð1Þ
i

þxð1Þ
j

þxð2Þ
j

Þ
Zð12Þð12Þ
ij

expðxð1Þ
j

þxð2Þ
j

Þ
Zð13Þð12Þ
ij

expðxð3Þ
i

þxð1Þ
j

þxð2Þ
j

Þ
Zð13Þð12Þ
ij

expðxð1Þ
i

þxð2Þ
i

þxð1Þ
j

þxð2Þ
j

Þ
Zð12Þð12Þ
ij

The objects Zð1sÞð1s0 Þ
ij are defined in Eq (12).

doi:10.1371/journal.pone.0155149.t006
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• 1 ‘item’ parameter α.

Model estimation. It is not very hard to compute maximum likelihood estimates of the
parameters of the 2P&3I and 3P&2I truncations on an item-pair contingency table. For both
truncations it is straightforward to determine the score parameters φ(k) because they are equal
to the proportion of responses in the corresponding cells. For example, for the 2P&3I trunca-
tion φ(8) can be estimated by computing the proportion of the observations in cells 3 and 14
(for the cell enumeration, see Table 1) over the total number of observations and for the 3P&2I
truncation φ(8) can be estimated by computing the proportion of the observations in cell 3 over
the total number of observations. For the 2P&3I truncation, the maximum likelihood estimates
for α1, α2 and α3 can be determined by solving the following system of maximum likelihood
equations:

n9 þ n13

a1

� n4 þ n13

1þ a1
� ðn8 þ n9Þa2

a1a2 þ a3

¼ 0 ;

n9 þ n10

a2

� n7 þ n10

1þ a2
� ðn8 þ n9Þa1

a1a2 þ a3

¼ 0 ;

n8 þ n14

a3
� n3 þ n14

1þ a3
� n8 þ n9

a1a2 þ a3
¼ 0 ;

ð16Þ

where the nk indicate the number of observations in cell k. For the 3P&2I truncation, the maxi-
mum likelihood estimate for α is given by the following expression:

a ¼ n10 þ n13

n4 þ n7

: ð17Þ

Restrictions imposed on item pair contingency tables by a CIM
A generic CIM has the following expression for the joint probability distribution of xi and yi:

Pðxi; yijθ; biÞ ¼
exp xix

ð1Þ
i þ yix

ð2Þ
i

� �
1þ expxð1Þi þ expxð2Þi þ exp xð1Þi þ xð2Þi

� � ; ð18Þ

where

xðsÞi ¼ yðsÞ � bðsÞi ; ð19Þ

with s 2 {1, 2}. Boldface symbols denote vectors in the s index, that is θ = (θ(1), θ(2)) and

Table 8. Manifest 3P&2I probabilities.

(xi = 0, yi = 1) (xi = 0, yi = 0) (xi = 1, yi = 0) (xi = 1, yi = 1)

(xj = 0, yj = 1) φ(1) φ(7) φ(8) φð2Þ 1
1þa

(xj = 0, yj = 0) φ(11) φ(4) φð5Þ 1
1þa

φ(12)

(xj = 1, yj = 0) φ(13) φð5Þ a
1þa

φ(6) φ(14)

(xj = 1, yj = 1) φð2Þ a
1þa

φ(9) φ(10) φ(3)

Parametrization of the contingency table as implied by the the 3P&2I truncation of the two-level branching

model. The parameters φ(k) are subject to the constraint Eq (15).

doi:10.1371/journal.pone.0155149.t008
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bi ¼ ðbð1Þi ; bð2Þi Þ. The first type of parameters ðyð1Þ; bð1Þi Þ govern the accuracy, whereas the sec-

ond type of parameters ðyð2Þ; bð2Þi Þ govern the response time. Correlations between accuracy
and response time are introduced by a second-level model f(θ) that governs the correlations
between θ(1) and θ(2).

Let us derive the restrictions imposed by this model on item pair contingency tables. Con-
sider a pair of items i and j with difficulties bi and bj. According to the CIM, the probability
P(xi, yi, xj, yj|θ) to respond (xi, yi) and (xj, yj) conditional on ability θ, is given by the following
expression:

Pðxi; yi; xj; yjjθÞ ¼ Pðxi; yijθ; biÞPðxj; yjjθ; bjÞ ; ð20Þ

where P(xi, yi|θ, bi) is defined in Eq (18). To compare these expressions with the empirical find-
ings (of Table 1, for example), we have to integrate out the θ(1) and θ(2) parameters:

Pðxi; yi; xj; yjÞ ¼
Z

Pðxi; yi; xj; yjjθÞf ðθÞdyð1Þdyð2Þ ; ð21Þ

where f(θ) is the (unknown) distribution of θ(1) and θ(2) in the population. By writing out this
expression for all 16 response patterns in the contingency table it is easy to demonstrate that
this model leads to the parametrization of the contingency table probabilities as displayed in
Table 9. As can be seen from this table, these probabilities are completely determined by 10
independent parameters:

• 9 ‘score’ parameters {φ(1), . . ., φ(9)} of which only 8 are independent because of the constraint

X9
k¼1

φðkÞ ¼ 1 ; and ð22Þ

• 2 ‘item’ parameters α1 and α2.

Model estimation. It is not very hard to compute maximum likelihood estimates of the
parameters on an item-pair contingency table. It is straightforward to determine the score
parameters φ(k) because they are equal to the proportion of responses in the corresponding
cells. For example φ(2) can be estimated by computing the proportion of the observations in
cells 2 and 5 (for the cell enumeration, see Table 1) over the total number of observations and
φ(4) can be estimated by computing the proportion of the observations in cells 3, 8, 9 and 14
over the total number of observations. The maximum likelihood estimates for the α1 and α2

Table 9. Manifest CIM probabilities.

(xi = 0, yi = 1) (xi = 0, yi = 0) (xi = 1, yi = 0) (xi = 1, yi = 1)

(xj = 0, yj = 1) φ(1) φð2Þ 1
1þa2

φð4Þ a1
1þa1þa2þa1a2

φð6Þ a1
1þa1

(xj = 0, yj = 0) φð2Þ a2
1þa2

φ(3) φð5Þ a1
1þa1

φð4Þ a1a2
1þa1þa2þa1a2

(xj = 1, yj = 0) φð4Þ a2
1þa1þa2þa1a2

φð5Þ 1
1þa1

φ(7) φð8Þ a2
1þa2

(xj = 1, yj = 1) φð6Þ 1
1þa1

φð4Þ 1
1þa1þa2þa1a2

φð8Þ 1
1þa2

φ(9)

Parametrization of the contingency table as implied by the CIM Eq (21). The parameters φ(k) are subject to

the constraint Eq (22).

doi:10.1371/journal.pone.0155149.t009
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parameters can be determined by solving the following pair of maximum likelihood equations:

φð5Þ a1
1þa1

þ φð4Þ a1 þ a1a2
1þa1þa2þa1a2

þ φð6Þ a1
1þa1

þ φð7Þ þ φð8Þ þ φð9Þ ¼ OðxiÞ ;

φð2Þ a2
1þa2

þ φð4Þ a2 þ a1a2
1þa1þa2þa1a2

þ φð8Þ a2
1þa2

þ φð1Þ þ φð6Þ þ φð9Þ ¼ OðyiÞ ;
ð23Þ

where O(xi) and O(yi) denote, respectively, the observed mean value of xi and yi.

Restrictions imposed on item pair contingency tables by a CDM
The SRT model of [3] is the prototypical example of a CDM. The joint probability distribution
of xi and yi in the discretized (because the time variable is discrete) SRT model is given by

Pðxi; yijy; biÞ ¼
exp ~Sixi
� �

ð1þ exp xið ÞÞð1þ exp xi=2ð ÞÞ ; ð24Þ

where

xi ¼ y� bi ð25Þ

and the collapsed SRT score ~Si is defined as

~Si ¼ xiyi þ 1
2
ðxi � yiÞ þ 1

2
: ð26Þ

Notice that ~Si contains an explicit coupling of accuracy and response time xi yi, which makes
the model a CDM.

Let us derive the restrictions imposed by this model on item pair contingency tables. Con-
sider a pair of items i and j with difficulties bi and bj. According to the discretized SRT model,
the probability P(xi, yi, xj, yj|θ) to respond (xi, yi) and (xj, yj) conditional on ability θ, is given by
the following equation:

Pðxi; yi; xj; yjjyÞ ¼ Pðxi; yijy; biÞPðxj; yjjy; bjÞ ; ð27Þ

where P(xi, yi|θ, bi) is defined in Eq (24). To compare these probabilities with the empirical
findings, we have to integrate out the θ parameter:

Pðxi; yi; xj; yjÞ ¼
Z

Pðxi; yi; xj; yjjyÞf ðyÞdy ; ð28Þ

where f(θ) is the distribution of θ in the population. By writing out this expression for all 16
response patterns in the contingency table it is easy to demonstrate that this model leads to the
parametrization of the contingency table probabilities as displayed in Table 10. As can be seen
from this table, these probabilities are completely determined by 7 independent parameters:

Table 10. Manifest CDM probabilities.

(xi = 0, yi = 1) (xi = 0, yi = 0) (xi = 1, yi = 0) (xi = 1, yi = 1)

(xj = 0, yj = 1) φ(1) φð2Þ a
1þa φð3Þ a2

1þaþa2 φð4Þ a3

1þaþa2þa3

(xj = 0, yj = 0) φð2Þ 1
1þa φð3Þ a

1þaþa2 φð4Þ a2

1þaþa2þa3 φð5Þ a2

1þaþa2

(xj = 1, yj = 0) φð3Þ 1
1þaþa2 φð4Þ a

1þaþa2þa3 φð5Þ a
1þaþa2 φð6Þ a

1þa

(xj = 1, yj = 1) φð4Þ 1
1þaþa2þa3 φð5Þ 1

1þaþa2 φð6Þ 1
1þa

φ(7)

Discretized SRT model probabilities Eq (28) written out for all possible answer patterns. The score

parameters φ(k) are subject to the constraint Eq (29).

doi:10.1371/journal.pone.0155149.t010
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• 7 ‘score’ parameters {φ(1), . . ., φ(7)} of which only 6 are independent because of the constraint

X7
k¼1

φðkÞ ¼ 1 and ð29Þ

• 1 ‘item’ parameter α.

Model estimation. It is not very hard to compute maximum likelihood estimates of the
parameters on an item-pair contingency table. It is straightforward to determine the score
parameters φ(k) because they are equal to the proportion of responses in the corresponding
cells. For example φ(2) can be estimated by computing the proportion of the observations in
cells 2 and 5 (for the cell enumeration, see Table 1) over the total number of observations and
φ(4) can be estimated by computing the proportion of the observations in cells 4, 7, 10 and 13
over the total number of observations. The maximum likelihood estimate for the α parameter
can be determined by solving the following maximum likelihood equation:

φð2Þa=2
1þa þ φð3Þa=2þ a2

1þaþa2 þ φð4Þa=2þ a2 þ 3a3=2
1þaþa2þa3 þ

φð5Þ1=2þ aþ 3a2=2
1þaþa2 þ φð6Þ1þ 3a=2

1þa þ φð7Þp3 ¼ Oð~SiÞ ;
ð30Þ

where Oð~SiÞ denotes the observed mean value of ~Si.
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