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In order to assess how the last sea level rise affected the Aegean archipelago, we quantified the magnitude and
rate of geographic change for the Aegean islands during the last sea-level-rise episode (21 kyr BP–present)
with a spatially explicit geophysical model. An island-specific Area-Distance-Change (ADC) typology was con-
structed, with higher ADC values representing a higher degree of change. The highest fragmentation rates of
the Aegean archipelago occurred in tandem with the largest rates of sea-level-rise occurring between 17 kyr
and 7 kyr ago. Sea-level rise resulted in an area loss for the Aegean archipelago of approximately 70%. Spatiotem-
poral differences in sea-level changes across the Aegean Sea and irregular bathymetry produced a variety of is-
land surface-area loss responses, with area losses ranging from 20% to N90% per island. In addition, sea-level
rise led to increased island isolation, increasing distances of islands to continents to N200% for some islands.
Wediscuss how rates of area contractions and distance increasesmay have affected biotas, their evolutionary his-
tory and genetics. Five testable hypotheses are proposed to guide future research. We hypothesize that islands
with higher ADC-values will exhibit higher degrees of community hyper-saturation, more local extinctions, larg-
er genetic bottlenecks, higher genetic diversity within species pools, more endemics and shared species on con-
tinental fragments and higher z-values of the power-law species-area relationship. The developed typology and
the quantified geographic response to sea-level rise of continental islands, as in the Aegean Sea, present an ideal
research framework to test biogeographic and evolutionary hypotheses assessing the role of rates of area and dis-
tance change affecting biota.

© 2017 Elsevier B.V. All rights reserved.
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1. Introduction

1.1. Sea-level rise

Since the Last Glacial Maximum (LGM; ca 21 kyr BP), global average
sea levels have risen by N120 m (Cutler et al., 2003; Lambeck et al.,
2014). During this period mean rates of sea-level rise was ca. 6 m per
1000 years. These higher limit values are comparable to the rates pre-
dicted bymodeled scenarios for present day and near future human-in-
duced sea-level change (Fig. 1a; IPCC, 2013). Vast areas were flooded,
s).
palaeo-islands and land bridges submerged, peninsulas transformed
into islands, and islands were fragmented into smaller entities. Sea-
level rise led to reductions in island areas and increases in distances to
the mainland, causing higher isolation (Rijsdijk et al., 2014). While it
is clear that the geographic changes resulting from sea-level rise must
have affected insular biotas, their biogeography, evolution, and gene
pools (Diamond, 1972; Wilcox, 1978; Heaney, 1986, 2000, 2007;
Louys et al., 2007; Whittaker et al., 2010; Fernández-Palacios et al.,
2011, 2015; Ali and Aitchison, 2014; Rijsdijk et al., 2014), the actual im-
pact is difficult to determine. Sea-level changes may explain discrepan-
cies between predicted and observed spatial patterns of species
diversity on islands as modeled by species-area relationships (e.g.
Simberloff, 1976; Rosenzweig, 1995; Whittaker, 1998; Connor and
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Fig. 1. a) Eustatic sea-level change during the last 35 kyr (Lambeck et al. 2014) b) Effects of
different area sizes and isolation on migration and extinction rates as a result of glacial
lowstands (indented lines) and interglacial high sealevel stands (solid lines)
(Fernández-Palacios et al., 2015). During interglacials when sea-levels are high,
equilibrium species richness (Sig) is lower due to smaller area size and higher isolation
than during glacials (Sg), when sea-levels are low.
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McCoy, 2000; Qian and Ricklefs, 2000; Triantis et al., 2008a; Whittaker
et al., 2008). Here, we use an explicit geophysical model to quantify
sea-level changes that account for glacial- and hydro-isostatic adjust-
ment (Spada and Stocchi, 2007). Accordingly, our topographic recon-
structions stem from regionally varying solid Earth deformations and
geoid variations that accompanied the melting of LGM continental ice
sheets. Furthermore,we present hypotheses in the light of biogeograph-
ic patterns for future research.

1.1.1. Sea-level rise and species richness
The species-area relationship (SAR) describes how the cumulative

number of species changes with an increase in the area studied
(Tjørve and Tjørve, 2017). SARs are used to forecast extinction from
habitat loss (Triantis et al., 2010), and should also predict changes in
species numbers caused by past and present sea-level rise. Many
models have been suggested to fit SARs (see e.g. Tjørve, 2003, 2009), al-
though both island (or isolated habitat patches) SARs and sample-area
(or mainland) SARs are commonly expected to be described by the
power law:

S ¼ cAz; ð1Þ
where S is the number of species, A is area, c and z are parameters.
Preston (1962) proposed a canonical (universal) value for the z-param-
eter of 0.26, though fitting the power model to empirical data shows
that the z-value varies systematically (Rosenzweig, 1998) around this
figure. Although the generality of the SAR has proven valid, the precise
underlying biologicalmechanisms and the shape of this relationship, es-
pecially the variation in z, are still debated (Rosenzweig, 1995; Ricklefs
and Lovette, 1999; Triantis et al., 2003, 2012; Turner and Tjørve, 2005;
Whittaker and Fernández-Palacios, 2007). However, recent theories
propose a SAR with three distinct phases (i.e. triphasic) in log-log
space (e.g. Hubbell, 2001; McGill and Collins, 2003; Rosindell et al.,
2011). MacArthur and Wilson's (1963, 1967) equilibrium theory of is-
land biogeography (ETIB) explains the island SAR as a balance between
species immigration and extinction, where islands nearer to the main-
land (or other islands) have higher immigration rates than distant
ones, and smaller islands have higher extinction rates than larger
islands. Since the inception of the ETIB, a number of authors
(Simberloff, 1974; Heaney, 1986, 2000; Bush and Whittaker, 1993)
have argued that long term equilibria are rarely achieved on islands, be-
cause of the constantly changingphysical conditions (e.g. volcanic activ-
ity, climate change). For this, they advocated discussing a dynamic-
disequilibrium (Heaney, 2000), or more recently a General Dynamic
Model (Whittaker et al., 2008). Lately, the effects of sea-level change
on species richness have been addressed in a Glacial Sensitive Model
variant of the ETIB (Fernández-Palacios et al., 2015). In this Glacial Sen-
sitive Model (GSM), it is argued that species richness rarely reaches
equilibrium, as it is constantly in transition due to glacial – interglacial
sea-level cycles, with high species numbers during sea-level low stands,
when islands are largest and distances are shortest and vice versa (Fig.
1b). Although the premise of a disequilibrium is emphasized in the
GSM, it assumes equilibria are reached during and after the geographic
change occurred. A key question that arises is: how long does it take be-
fore equilibria are reached following sea-level fluctuations?

1.1.2. Sea-level rise and speciation
With increasing distances to continents the opportunity for allopat-

ric speciation increases through cladogenesis, and leads to high endemic
species richness, whereby colonizing species separated from their sister
species and evolved into new species, such as the Galapagos finches
(Heaney, 2000; Lomolino, 2001; Gillespie and Baldwin, 2009). Endemic
species-richness patterns are related to the age and evolution of islands
(e.g., Heaney, 2000; Lomolino, 2000; Johnson et al., 2000; Stuessy, 2007;
Whittaker et al., 2008; Chen and He, 2009; Rosindell and Phillimore,
2011; Steinbauer et al., 2013). Changes in island geography over mil-
lions of years affected evolutionary dynamics (e.g., Johnson et al.,
2000; Stuessy, 2007; Whittaker et al., 2008; Chen and He, 2009;
Rosindell and Phillimore, 2011). This realization led to the recent for-
mulation of the General Dynamic Model (GDM), which postulates that
endemic species-richness variation on islands mirrors a parabolic
trend related to size change of volcanic oceanic islands over millions
of years, reflecting their initial volcanic emergence, their maximum
size, and final submergence of islands at the end of their life cycle
(Whittaker and Fernández-Palacios, 2007; Whittaker et al., 2008,
2010). There is, however, evidence that evolutionary processes are
also influenced by geographic changes over shorter time spans,
encompassing sea-level cycles. Sea-level changes may affect coloniza-
tion, with alternating cycles of merging of species during sea-level low
stands and isolation of populations during high stands (Ali and
Aitchison, 2014; Rijsdijk et al., 2014; Weigelt et al., 2016). This geo-
graphicallymediated cyclic dynamic led to the idea of islands becoming
species pumps (Qian and Ricklefs, 2000; Price and Elliott-Fisk, 2004;
Gavrilets and Vose, 2005; Kisel and Barraclough, 2010; Papadopoulou
et al., 2011). Gene pools repeatedly broke up because of sea-level rises
(causing a higher degree of insularity and longer distances between
islands) and resulted in increases in the genetic variability of popula-
tions (Bidegaray-Batista et al., 2007; Ali and Aitchison, 2014). Thus,
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the isolation periods of gene pools during high interglacial sea levels
may have led to phylogenetic splits (Ali and Aitchison, 2014; Rijsdijk
et al., 2014; Fernández-Palacios et al., 2015). Given the repetitiveness
of glacial cycles and the fact that biota have endured ten glaciations dur-
ing the Quaternary, it may be argued that insular species, especially en-
demics, have become resilient to sea-level changes and their associated
range contractions and gene pool fragmentations (Rijsdijk et al., 2014;
Weigelt et al., 2016). While it seems obvious that sea-level-mediated
change on islandsmust affect biota, including their evolution and distri-
bution, it is still unclear when and how biota are affected by sea-level-
driven geographic change. This is mainly because the magnitude and
rates of change that islands underwent is poorly understood. Recently,
it has become possible to quantify rates of geographical changes in
islands generated by sea-level alteration in continental settings, taking
into account the geophysical complexity involved by modeling local
sea-level-rise curves (see below).

1.2. Study area - the submergence of the Aegean archipelago

The Mediterranean basin constitutes a major global-biodiversity
hotspot and hosts thousands of continental islands (Blondel and
Aronson, 1999). Specifically, the Aegean Sea consists of approximately
Fig. 2.Map of the Aegean Sea and bi
7800 islands, dominated by small islands, islets and rock pinnacles
smaller than 1 km2 (Triantis et al., 2008b; Triantis and Mylonas,
2009). The Aegean Islandsmay be divided into fivemajor biogeographic
regions, which responded differently to sea-level rise (Fig. 2). The first
region includes the Cyclades, a group of shelf islands off the eastern
coast ofmainland Greece. Theywere segregated from themainland tec-
tonically in theMiddle Pleistocene (Foufopoulos and Ives, 1999). During
the last ice age the currently N55 islands (larger than 1 km2) were
merged into what is called the “Mega-Cyclades palaeo-island”, which
fragmented into an archipelago of islands during the subsequent sea-
level rise at the end of the ice age (Kapsimalis et al., 2009). The second
region includes the East Aegean Islands (i.e., the Dodecanese), a group
of former palaeo-peninsular islands lying on the Anatolian shelf, off
western Turkey. There are some exceptions such as the island of
Astypalaia, which is palaeogeographically part of the Cyclades in the
Central Aegean (for further details see Kougioumoutzis et al., 2016).
These islands arose when landbridges drowned and peninsulas became
separated from Asia Minor by sea level rise b20 kyr BP (Van Andel and
Shackleton, 1982; Perissoratis and Conispoliatis, 2003). The third re-
gion, the South-Aegean Island Arc, is an insular chain extending from
south-east Peloponnese towards south-west Asia Minor (i.e., Crete,
Karpathos, Kythira, Rodos and their adjacent islets). This island arc
ogeographic regions (in italics).

Image of Fig. 2
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formed tectonically during the Pliocene, with many of its islands re-
maining isolated during sea-level change (Poulakakis et al., 2005). The
fourth region, theWest Aegean Islands (i.e., theNorthern Sporades), sit-
uated off east Greece, is a landmass that separated from the mainland
during the Pliocene (Dermitzakis, 1990). It includes former peninsulas
that were connected to Europe during the LGM and had become isolat-
ed by sea-level rise (see Foufopoulos and Ives, 1999). The North Aegean
Islands (i.e., Thasos, Samothraki) is the fifth group comprising the for-
mer palaeo-peninsular islands situated on the northern coast of Greece.
Despite their close geographical proximity, the North Aegean Islands
have very low affinities with the other Aegean Island groups and form
a distinctly different biogeographical region (Kougioumoutzis et al.,
2016). This could be attributed to the isolation of Thasos and
Samothraki from northern Greece during the latter phases of the LGM
(Kougioumoutzis et al., 2016; Sakellariou and Galanidou, 2016).

The Aegean archipelago has an extremely complex palaeogeographic
history and is environmentally heterogeneous, with a high geological
and biological diversity and endemism (e.g. Strid, 1996; Dennis et al.,
2000; Sfenthourakis and Legakis, 2001; Chatzimanolis et al., 2003;
Blondel et al., 2010), and therefore represents a natural laboratory for bio-
geographic studies (e.g. Lymberakis et al., 2007; Poulakakis et al., 2008;
Lymberakis and Poulakakis, 2010; Simaiakis et al., 2012a; Parmakelis et
al., 2013; Kougioumoutzis et al., 2014). Molecular studies have highlight-
ed and elucidated the role of geological dynamics influencing the bioge-
ography of species in the Aegean archipelago (e.g. Beerli et al., 1996;
Gantenbein and Largiadèr, 2002; Bittkau and Comes, 2009; Poulakakis
et al., 2005; Parmakelis et al., 2013; Douris et al., 2007; Lymberakis et
al., 2007; Comes et al., 2008; Simaiakis et al., 2012a). The present biodi-
versity of the Aegean archipelago reflects the submergence and re-emer-
gence of landmasses, due to tectonic, volcanic and marine sea-level
change events. The alternating cycles of submergence and emergence of
land bridges are considered a central driver in the evolutionary history
of the Aegean species through the isolation and re-connection of the insu-
lar populations (see Poulakakis et al., 2005, 2008). Due to the large varia-
tion of its submerged topography, geographically the Aegean archipelago
underwent a spatiotemporally differential response to sea-level change
(Triantis et al., 2008c; Triantis and Mylonas, 2009; Kapsimalis et al.,
2009). The sea-level rise since the LGM led to a complex and dramatic
change of continental-island areas and continental coastlines of the Aege-
an Sea (Pavlopoulos et al., 2012). Islands submerged or were reduced in
size and often fragmented, and peninsulas were disconnected from the
mainland (Pirazzoli et al., 1989; Dermitzakis, 1990; Beerli et al., 1996;
Foufopoulos and Ives, 1999; Lambeck and Purcell, 2005; Kapsimalis et
al., 2009).

Foufopoulos and Ives (1999) were among the first to identify statisti-
cal associations between life-history traits and extinction rates in the sub-
merged Aegean islands. They calculated the extinction rates of turtle and
squamate species across islands, using radiocarbon-date-validated sea-
level-rise reconstructions and detailed bathymetric maps. Although this
innovative study disclosed the potential of such quantification, the analy-
sis was based on partly outdated approaches. The process of quantifying
the geographic effects of sea-level rise for continental islands requires a
geophysically based model of sea-level change (Kendall et al., 2005,
Milne and Mitrovica, 2008). While the global eustatic sea-level rise
since 21 kyr BP averages 120 m, at a local scale, the rate and height of
sea-level change was affected locally by water-loading effects and crust
flexibility, gravitational effects of continental glaciations, and the flooded
surface's morphology (Lambeck and Purcell, 2005; Kendall et al., 2005;
Milne andMitrovica, 2008) (see Fig. S1 in Appendix A). These geographic
factors resulted in a complex local sea-level-rise pattern in the Aegean Sea
(Beerli et al., 1996; Lambeck, 1996; Geraga et al., 2010).

1.3. Aim

This study has three aims. Firstly to quantify the magnitude and
rates of geographic change during the last sea-level-rise episode
(21 kyr BP–present) for different parts of the Aegean archipelago. Sec-
ondly to develop an Area-Distance-Change (ADC) typology of islands
to distinguish islands that changed more and at a faster rate (in terms
of area and distance to mainland) from those that changed less and at
a slower rate. And thirdly to illustrate that both the detailed quantifica-
tion and the ADC typology can enhance our understanding of biogeo-
graphic patterns in the Aegean archipelago, we aim to discuss these
results to derive a set of hypotheses on the role of sea-level change
shaping and affecting the biogeography, species-richness patterns and
genetic makeup of biota in a continental setting.

2. Methods

2.1. Quantifying geographic changes resulting from sea-level fluctuations

The LGM was characterized by continental ice-sheets expansions
over North America and Eurasia. At the same time, Greenland and Ant-
arctic ice sheets were larger and thicker than today. If the world ocean
were to behave like a bathtub, as stated by the concept of “eustasy”
(Suess, 1906), the LGM sea level would be observed everywhere at
130–140m below presentmsl. However, geological sea-level indicators
from different sites in the World show that the post-LGM sea-level
change was regionally varying (Peltier, 2004; Khan et al., 2015;
Rovere et al., 2016). Ice-proximal locationswere characterized by sever-
al hundredmeters sea-level drop since the LGM,while far-field sites ex-
perienced a sea-level rise that closely resembles the hypothetical
eustatic curve (Khan et al., 2015). The spatial variability of sea-level
change is a consequence of Earth deformability under ice and water
load variations (Rovere et al., 2016). The latter, in fact, trigger solid
Earth and gravitational responses thatwork to restore the isostatic equi-
librium. Furthermore, continental ice sheets and oceans experience a
mutual gravitational pull. Therefore, when ice sheets melt, the pull van-
ishes and sea surface drops in the proximity of the former ice sheets,
while it rises and exceeds the eustatic value at the antipodes (Spada
and Stocchi, 2007; Rovere et al., 2016). The combination and interrela-
tion of solid Earth, gravitational as well as rotational processes that ac-
company and follow surface water-load readjustment is known as
glacial and hydro isostatic adjustment (hereafter GIA; Milne and
Mitrovica, 2008; Spada and Stocchi, 2007; Rovere et al., 2016). Accord-
ing to GIA, any ice-sheets-driven sea-level change that is recorded by
surface geological features should be addressed as local relative sea-
level change because it stems from the variation of the local mean sea
surface with respect to the local deforming solid Earth surface.

As a result of GIA, relative sea-levels in the Aegean Sea during the
LGM averaged 120 m lower than present but exceeded 140 m below
the present sea surface in the central Mediterranean (Beerli et al.,
1996; Lambeck and Purcell, 2005). Detailed geographical reconstruc-
tions were made of the post-LGM change in the Aegean and Eastern
Mediterranean islands, using GIA models (Lambeck, 1996). However,
in order to quantify the rates and the magnitude of geographic change
for (small) islands and peninsulas, we required at least a 10-fold higher
resolution (0.01°) grid, for both topography and bathymetry. We
modeled the Generalized sea-level equation (GSLE) by applying the nu-
merical scheme fromKendall et al. (2005, page 692) in a Fortran 90 pro-
gram. The open-source sea-level Equation solver SELEN 2.9 provided
useful routines for decomposing the global ice-sheet model and calcu-
lating the ice- and water-load-induced solid Earth and gravitational re-
sponse (Spada and Stocchi, 2007; Spada et al., 2012). It uses a pixelation
scheme by Tegmark (1996) and the library SHTOOLS to decompose and
synthesize spherical harmonic functions (Wieczorek, 2012). We
employed ICE-5G ice-sheet model on top of a Maxwell viscoelastic
Earth model (Spada and Stocchi, 2007) that is characterized by VM-2
mantle viscosity profile (Peltier, 2004). ICE-5G was created and im-
proved through time by changing ice thickness in space and time in
order to minimize the differences between predictive relative sea-
level curves and observations, using the aforementioned VM-2 profile
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(Peltier, 2004). The digital elevationmodel (DEM) usedwas DEMSRE3a
with a resolution of 1/120 arc degrees (approximate a resolution of
1 km2), with the WGS 84 geoid as datum (Hengl and Reuter, 2012).
This DEMwas based on a combination of the shuttle-radar-topography
mission (SRTM 30+; for further details see Becker et al., 2009) and the
1 arc-minute global-relief model ETOPO (Amante and Eakins, 2009).
The pixel sampling resolution was set at 306,252 pixels around the
Earth, the maximum spherical harmonic degree and order was set at
256. We calculated the palaeo-topography by adjusting the present
day DEMSRE3a for the calculated changes in relative sea-level for each
time step using the Quantum GIS 1.8.0 raster calculator (Quantum GIS
development group, 2012). This palaeo-topography was reclassified
into land (topography ≥ 0) and sea (topography b 0) using ‘reclassify
grid values’ from SAGA GIS (SAGA GIS development group, 2011). The
grid was polygonized using GDAL (Warmerdam, 2013), which allowed
for area calculations in Quantum GIS. The vectors were loaded in
PostGIS, and distance between vectors was queried using its built-in
shortest distance calculator (PostGIS Project Steering Committee,
2013). We assume the geophysical system was in isostatic equilibrium
during the LGM, which is not realistic given relaxation times and de-
layed responses ofmantle and crust. Furthermore, we assumed that tec-
tonic change and sedimentation since the last 21 kyr can be neglected,
as they modify b10% our relative sea-level-rise curve. Fortran 90 pro-
gram of Generalized sea-level equation (GSLE) was based on Kendall
et al. (2005, page 692). For help or information contact the authors.

2.2. Construction of Area-Distance Change (ADC) typology

With the SELEN geophysical based model for sea-level change over
the last 21 kyr (Kendall et al., 2005,Milne andMitrovica, 2008), we pro-
duced one time slice for each 1000 year interval since 21 kyr ago (see
Fig. S1 in Appendix A).We used these grids to calculate four geographic
change metrics per island for all islands N1 km2: (1) area contraction
(%), (2) distance increase (%), (3) the percentage rate of island-area de-
crease (%/kyr), and, (4) the percentage rate of distance-to-mainland in-
crease (%/kyr). Note that, for palaeo-peninsular islands, all
aforementioned valueswere calculated after the separation of the island
from the adjacentmainland. We used these calculations to plot for each
island howmuch and how fast area reduced and distance to continents
increased. For each category, we found the frequencies at which three
Table 1
a) Qualitative typology of islands based on four criteria related tomagnitude and rates of chang
percentage rate of area change (%/kyr), (3)DF: factor of distance change (DPr/DPa),where DPr is t
distance from the nearest mainland or island mass in km, (4) %rD: percentage rate of distance

(a) Type Magnitude and rate of changes

1 Islands with low changes in area and dista
2 Islands with low changes in area and dista
3 Islands with low changes in area and dista
4 Islands with intermediate changes in area
5 Islands with intermediate changes in area
6 Islands with intermediate changes in area
7 Islands with large changes in area and/or d
8 Islands with large changes in area and/or d
9 Islands with large changes in area and/or d

(b) Type %Area Condition %Distance

1 b60 and b158
2 b60 and b158
3 b60 and b158
4 60–95 and/or 158–500
5 60–95 and/or⁎ 158–500
6 60–95 and/or⁎ 158–500
7 N95 and/or N500
8 N95 and/or N500
9 N95 and/or N500

⁎ But neither are large.
⁎⁎ But neither are fast.
island types fell into 33 percentile classes of low, intermediate and
high change. The island types included those that had not fragmented,
but simply shrunk since the LGM (true islands), peninsulas that had be-
come islands (peninsular islands), and mega-islands that divided into
several smaller islands (fragmented islands). Based on the four geo-
graphic change metrics, we constructed nine island categories of Area-
Distance Change (ADC) (Table 1a). For each metric we applied the 33
percentiles to split the island into three classes: low, intermediate and
high change (Table 1b). In this typology the ADC-type 1 islands repre-
sent the least and slowest changes and ADC-type 9 islands represent
the greatest and fastest changes.

3. Results

3.1. Geographic changes in the Aegean archipelago

The model output confirms that after the LGM, because of geophys-
ical effects, the degree of sea-level change varied spatially along the Ae-
gean Sea (see Fig. S2 in Appendix A). During the LGM (21 kyr BP), the
sea level in the Aegean Sea ranged between−145m below the present
level near Crete ans −120 m at the Northern Aegean Sea coasts. At
16 kyr BP, sea levels had risen 20 m in the southern Aegean Sea and
up to 10 m near the northern Aegean coast. The consequences of
these spatially different changes were, however, relatively minor for
most islands, including the Cyclades. At 11 kyr BP the sea level had
risen by N85m in thewhole Aegean Sea, dramatically altering the geog-
raphy of the region. During the following period, towards 6 kyr BP, sea
level rose another 35 m. However, this barely affected the geography
of the area, although a few peninsulas became islands in the northern
and eastern Aegean.

The sea-level rise, from 21 kyr BP to present time, reduced the total
area of the islands by N70%, from 83,000 to 22,000 km2 (Fig. 3a). Frag-
mentation and isolation increased considerably, as did the number of
islands larger than 1 km2, caused by the splitting up of larger islands
and by islands detaching from peninsulas (when land bridges sub-
merged). The number of islands (larger than 1 km2) increased by ca.
44% (from ca. 125 to N180 - Fig. 3b). We reconstructed the chronology
of the fragmentation and timings of the onset of separation and trans-
gression events since the LGM (21 kyr BP) of the Aegean Sea (see
Table S1 in Appendix B). Most of the change (in the order of 90%)
es in area and distance to nearest continent: (1) %AL: total percentage of area loss, (2) %rA:
hepresent-daydistance from thenearestmainland or islandmass in km andDPa is the past
change (%/kyr). b) Quantitative criteria for the typology classes.

nce to the continent and slow rates of area and distance changes.
nce to the continent and moderate rates of area and/or distance changes.
nce to the continent and fast rates of area and/or distance changes.
and/or distance to the continent and slow rates of area and distance changes.
and/or distance to the continent and moderate rates of area and/or distance changes.
and/or distance to the continent and fast rates of area and/or distance changes.
istance to the continent and slow rates of area and distance changes.
istance to the continent and moderate rates of area and/or distance changes.
istance to the continent and fast rates of area and/or distance changes.

Rate %Area change Condition %Distance change

Slow b11 and b11
Moderate 11–18 and/or⁎⁎ 11–18
Fast N18 and/or N18
Slow b11 and b11
Moderate 11–18 and/or⁎⁎ 11–18
Fast N18 and/or N18
Slow b11 and b11
Moderate 11–18 and/or⁎⁎ 11–18
Fast N18 and/or N18
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occurred within the period of 16 to 11 kyr BP, when we also find the
fastest change, with a sea-level rise of 12 m/kyr (Fig. 1a). The submer-
gence and fragmentation of the Mega-Cyclades was a major event in
the Aegean Sea. The total area reduction for the Mega-Cyclades was
75% (the total area of this palaeo-island was reduced from 10,750 km2

to 3250 km2 - Fig. 3c), while the number of islands N1 km2 increased
from 32 to 55. The period when most of the new islands were created,
lies between 17 and 6 kyr BP (Fig. 3d).

3.1.1. Area change
Individual islands show widely different spatiotemporal responses

to sea-level rise (Fig. 4). The Aegean islands reduced considerably in
size, from 20% to N90%, as a result of the sea-level rise since 21 kyr BP.
Fragmented palaeo-islands dominate the class of highest area reduc-
tions and are underrepresented in the classes of lowest area change.
True islands are never found within the highest class (Fig. 4a). The du-
ration of the fastest area loss varied, but occurred mainly between 11
and 2 yr. The rates of area loss varied across the Aegean islands, with
islands larger than 20 km2 changing between 11%/kyr to 22%/kyr, and
smaller islands, mainly fragments, from N22% up to 90% (Fig. 4b).
Most true and fragmented islands fell into the category with low area-
change rates. Only a few of the peninsular islands fell into this low
area-change class, and few true islands fell in the class with highest
rates of change (Fig. 4b).

3.1.2. Distance change
The increase in distance to themainland varied greatly, ranging from

9% to N50%, and occurred mainly in the same time periods as area
changes (Fig. 4c). The island types (more or less) distribute evenly be-
tween the three distance-increase classes, except that the proportion
of true islands was somewhat lower in the class with the highest dis-
tance increase. Distance-increase rates varied between 10%/kyr and
40%/kyr for the larger islands (N20 km2), whereas the smallest islands,
usually fragments, had the fastest rates of change (N40–45%/kyr) (Fig.
4d). All island types occurred in all distance-change-rate classes, but
fragmented islands dominated the group of relative slow change rates.
In general, true and fragmented islands exhibit lower distance-change
rates than peninsular islands, which are underrepresented in the class
with the lowest area-reduction rates. True islands, however, are under-
represented in the class with the highest area-reduction rates (Fig. 4d).

3.2. ADC-typology

The ADC-typology classification scheme reveals large spatial varia-
tions between islands (Fig. 4e). The frequency distribution of islands
points towards the intermediate ADC-type 5 and at the highest ADC-
type classes 8 and 9. True islands show the lowest variability between
ADC-classes, dominating type 5, although they are also represented in
the lower classes. Fragmented islands, show the largest variability, but
are dominating the high ADC-types 8 and 9. Palaeo-peninsulas are rep-
resented both in the lowest and highest ADC-type classes.

4. Discussion

4.1. Geographic changes in the Aegean archipelago

The results from this study (see Figs. 2 to 4) provide a quantification
of themagnitude and rate of geographic change in the Aegean Sea.Most
of the sea-level rise induced large-scale change in the Aegean, and in
particular in theMega-Cyclades island complex. The durations of largest
area and distance changes differ greatly between the islands, ranging
from 11 kyr to 2 kyr. This variation is mainly caused by the variation
in sea-floor topography (bathymetry) and relative sea-level rise. Our re-
construction of the fragmentation of theMega-Cyclades coincides large-
ly with an earlier reconstruction (Kapsimalis et al., 2009), but differs in
the details concerning the timing of fragmentation and the duration of
change. The differences are largely due to the application of an updated
GSLEmodel, which incorporates the effects of horizontal coastlines var-
iations (Milne andMitrovica, 2008), to a different mantle viscosity pro-
file and to ICE-5G ice-sheets chronology (Peltier, 2004).

The response of organisms to geographic changemay be species spe-
cific, depending on dispersal traits, physiology and body size, and is thus
species and scale dependent. Impact on island communities is expected
when the rates of area or distance change exceed their adaptive poten-
tial. For elephants, for example, area reductions associated with major
habitat reductions directly reduce the carrying capacity for their popu-
lations (Van der Geer et al., 2014), whereas the same effects for inverte-
brates may be ignorable. Whether distance increase affects species
diversity depends on species' range expansion abilities (Dennis et al.,
2000; Panitsa et al., 2010; Kougioumoutzis and Tiniakou, 2014;
Papadopoulou et al., 2009).While changes in distances to the continent
may be critical to maintain gene flow for terrestrial landlocked or habi-
tat-specialist species, they would probably not greatly affect species
with flight abilities (Claramunt et al., 2012). Soil invertebrates, typically
with limited range-expansion abilities, may however be affected by rel-
atively small distance changes. Biota may also differ in their responses
to rates of change. For some species, the changes may be sufficiently
slow to allow for adaptations, successfully re-equilibrating to smaller
areas or larger distances, whereas other species may become extinct
under the same conditions. Lastly, one may speculate that most insular
endemics are better adapted to frequent area losses and isolation in-
creases than native species which originate from the continent
(Comes et al., 2008; Kisel and Barraclough, 2010; Rijsdijk et al., 2014;
Weigelt et al., 2016). Therefore, extinction rates may have been lower
for insular endemic species than for native species. Continental species
stranded on islands, especially former peninsulas, may have been less
resilient to area reduction. This is especially so when combined with
distance increase, which impeded gene flow from the continent
(Hoelzel et al., 2002; Losos and Ricklefs, 2010). It may, therefore, be im-
portant to discern between native and endemic species when assessing
the responses of different species to sea-level changes, especially when
addressing why certain species are missing from the central Aegean ar-
chipelago (Rechinger, 1950).
4.2. Hypotheses for future evaluation

4.2.1. Island-area reduction hypotheses
According to the Glacial Sensitive Model, rising sea levels led to is-

land-area reductions and distance increases, causing increased extinc-
tion rates and reduced migration rates. Ultimately, this resulted in
lowered species equilibria and induced community relaxations, thus
rendering insular populations more prone to extinction (Whittaker
and Fernández-Palacios, 2007; Fernández-Palacios et al., 2015). If a
community has not equilibrated to the new situation, the community
is considered in extinction debt, meaning that the new smaller area pro-
vides insufficient resources for all species in the community to persist,
predicting future extinctions. We expect native populations on high
ADC-islands, with the greatest area reductions (ADC-types 7–9), to
have suffered the proportionally highest number of extinctions and
also having the highest extinction debts. For example, the lower species
diversity of the Cyclades, compared to the other island phytogeographic
areas of the Aegean (Kougioumoutzis and Tiniakou, 2014), could be at-
tributed to ADC-type 7–9 islands of the Cyclades. Also genetic bottle-
necks (Comes et al., 2008) and lower genetic fitness (Abdelkrim et al.,
2005) indicate that these islands do not host a relaxed flora
(Kougioumoutzis et al., 2014).

We expect that more extinctions occurred on high ADC-islands,
which abruptly reduced significantly in size. Species on lowADC-islands
with smaller area reductions are expected to have suffered fewer ex-
tinctions and to show smaller genetic bottlenecks. On slow changing
islands (over more than N10 kyr) there may be more time for native



Fig. 3. a) Decrease in emerged area in km2 and b) increase in the number of islands due to the sea-level rise since 21 kyr for thewhole Aegean archipelago. c) Decrease in emerged area in
km2 and b) increase in the number of islands due to sea-level rise since 21 kyr for the Mega-Cyclades.
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species to adapt, resulting in fewer extinctions than on islands where
change occurred relatively rapidly (b3 kyr).

In terms of speciation, cyclic island-area increases during sea-level
low stands may also have promoted speciation through adaptive radia-
tions, as more niche space became available (Price and Elliott-Fisk,
2004; Gavrilets and Vose, 2005; Kisel and Barraclough, 2010;
Papadopoulou et al., 2011). This leads to the hypothesis that islands
whichwere larger in thepast should contain disproportionallymore en-
demics or subspecies than islands that remain close to the same size
(Weigelt et al., 2016).

4.2.2. Distance increase hypotheses
It is likely that with relatively small distance changes in islands far

from the coast (e.g. Crete), and/or with absolute small distance changes
altogether (e.g. Rodos), effects on colonization probabilities areminimal
for many native species. On the other hand, given an exponential or lo-
gistic distance-decay of the probability of a successful air-over-sea dis-
persal (e.g. pollen, seeds, beetles), just a doubling of a small distance
may have negative effects on gene-flow rates, which over time may af-
fect insular populations (Papadopoulou et al., 2009). Therefore, we ex-
pect high ADC-islands, where distances to other islands or continents
have increased the most (N20%), to have fewer native species than
islands with lower distance increases. Distance increase should affect
Fig. 4. Left hand side panels: Maps of change per island in the Aegean Sea; Right hand side panel
reduction by sea-level rise since the Late GlacialMaximum(21 kyr BP) b)Distance increase by se
e) Area-Distance Change (ADC-) Typology showing the relative degree of change of area and di
of ADC-change and dark green islands in the lowest (1) ADC-class.
good dispersers less, for example, birds or wind dispersed plants
(Whittaker and Fernández-Palacios, 2007). Moreover, we expect
islands that experienced fast distance increases to have lower species
richness (because of increased extinction rates) than islands where
the distances to continents increased slowly.

4.2.3. Palaeo-peninsular hypotheses
Palaeo-peninsular islands are generally considered supersaturated

with species, showing higher ratios of island-to-mainland species num-
bers than expected from their areas alone (Newmark, 1987). Studies in-
dicate that the degree of hyper-saturation is negatively correlated with
time since isolation, which points to successful relaxation into new
equilibria (Wilcox, 1978). Continental species absent from palaeo-pen-
insular islands are generally regarded as having become extinct after
separation from the continent (Diamond, 1972; Foufopoulos and Ives,
1999). We hypothesize, therefore, that the highest extinction rates for
native continental species occurred on Aegean palaeo-peninsular
islands that were rapidly separated (b2 kyr) from the continent. Con-
versely, palaeo-peninsular islands that took longer to isolate (N5 kyr)
may have shown lower extinction rates. The slower separation rates
may have aided stranded continental species to adapt to insular condi-
tions; for instance, by morphological changes, as in the Nigella arvensis
complex (Comes et al., 2008). Palaeo-peninsular islands that were
s: island frequency bar diagrams showing 33% quantiles of islands per change class. a) Area
a-level rise c) Rates of percentage area change per kyr d) Rates of distance increase per kyr.
stance to the continent per island in the Aegean Sea. Red islands are in the highest class (9)

Image of Fig. 3
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Fig. 4 (continued).
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separated early during sea-level rise (N15 kyr) may be relatively richer
in endemic species than islands separatedmore recently due to extirpa-
tions of native species on the latter (b5 kyr). In addition, species on the
former island type may have been better adapted to insular conditions.
We should also expect palaeo-peninsular islands that were separated
more recently (b5 kyr) to contain larger numbers of recent invasive
species. Finally, we expect that species diversity on smaller islands is
relaxing proportionally more and faster than on larger islands. We pro-
pose that this must be a consequence of increasing minimum-area ef-
fects (see Tjørve and Turner, 2009) on smaller islands. Therefore,
small palaeo-peninsular islands should have close to the same species
richness as other small islands of similar size, whereas larger palaeo-
peninsular islands should have considerably more species than true
islands of similar size.
4.2.4. z-value hypotheses
The geographically diverse effects of sea-level rise should be expect-

ed to be reflected in differences in the exponent (z-value) of the power-
law species-area relationship. For SARs of palaeo-peninsular islands we
expect the species increase to level off more slowly with area (i.e. have
lower z-values) than for other islands in theAegean Sea (Simaiakis et al.,
2012b, c; Tjørve and Tjørve, 2008), even if present-day's isolation pat-
terns are more or less the same for both types of islands. Higher ADC-
islands with larger area reductions are also expected to exhibit higher
z-values, as compared to lower ADC-islands with lower area reductions.
In addition, higher z-values should be observed in higher ADC-islands,
which have experienced longer distance increases than lower ADC-
islands. These three hypotheses rest on the assumption that present
day species diversities have not already achieved equilibrium.

4.2.5. Fragmented island hypotheses
Island complexes like the Mega-Cyclades represent a special case,

because they are classified as high ADC-islands, although their area re-
duction is generated by island-fragments separated from larger areas
(Fig. 5). Like the separation of palaeo-peninsular islands from themain-
land, the fragmentation of larger islands occurred within a few thou-
sand years and led to very rapid and large area reductions.

Populations were broken up with the fragmentation of the palaeo-
islands. This clearly affected species distribution on these islands, caus-
ing higher species nestedness (e.g., Kougioumoutzis et al., 2014), more
sub-species populations and higher degrees ofmultiple island endemics
(Rijsdijk et al., 2014) in fragmented islands compared to non-
fragmented islands. The combined effects of area reductions and dis-
tance increases impact individual populations on every island fragment
but differ greatly between them. The timing of separation events also
differ between islands, leading to a fragmentation chronology paralleled
by responses from fragmented species pools (Foufopoulos and Ives,
1999). In this way the fragmentation sequence of the islands may be
reflected in the phylogenies.

Fragmentation cycles may have also promoted allopatric speciation,
by splitting gene pools into subpopulations which promotes genetic di-
versification (Qian and Ricklefs, 2000).

5. Conclusions

Recently, there has been a call for a more comprehensive theory in
biogeography that includes spatiotemporal dynamics on shorter time-
scales (b100 kyr) driven by environmental change, including climate
and sea-level change, affecting habitats and distances to source pools
(Heaney, 2000; Whittaker et al., 2008; Fernández-Palacios et al., 2015;
Weigelt et al., 2016). The Glacial-Sensitive Equilibrium model predicts
a dynamic species richness and a genetic response to the dynamic
changes in geography associated with sea-level change (Fernández-
Palacios et al., 2015). Central questions following from this model are
related to the extent towhich insular species are sensitive to themagni-
tude and rates of area and isolation change, as well as the thresholds of
change are that affect species richness and their genetic makeup. To
provide the framework for future works we designed a geo-physical
basedworkflow to assess themagnitude and rates of geographic change
over the last sea-level-rise episode (21 kyr BP–present), involving
120 m of rise over 10 kyr within the Aegean archipelago. We noted
that the geographic change in the Aegean occurred in tandem with
the largest magnitude and rates of sea-level rise between 16 and
8 kyr BP (Figs. 3 & 4). The total area loss for the whole archipelago
was 80%, and for the Cyclades the surface loss was 75%. Our island anal-
yses of single islands indicate a large and varied spatiotemporal re-
sponse in geographic change, with area losses ranging from 20% to
N90% and distance to mainland increasing from 9% to 30% for each.
We have constructed an Area-Distance Change (ADC) island specific ty-
pology (Table 1). This may be used in future studies to test how rates of
area contraction, distance increase and increased isolation affected spe-
cies richness, their distribution, and their genetic makeup (Fig. 5). The
biogeographic and genetic effects of sea-level-mediated geographic
change on biota vary between biota, depending on their traits. We pre-
dict stronger effects on islands with higher ADC, including higher ex-
tinction debts, stronger bottlenecks, more genetic variety within
species pools, moremultiple endemics and shared species on fragments
and higher z-values in the power-law species-area relationship. The
widely varying spatiotemporal response to sea-level rise on islands in
the Aegean Sea makes for an ideal research area where we may test
whether species actually equilibrated and evolved under natural speci-
ation rates relative to the magnitude of geographic change caused by
sea-level rise.



Fig. 5. Visual abstract of our model.
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