
UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

On instruction sets for Boolean registers in program algebra

Bergstra, J.A.; Middelburg, C.A.
DOI
10.7561/SACS.2016.1.1
Publication date
2016
Document Version
Final published version
Published in
Scientific Annals of Computer Science

Link to publication

Citation for published version (APA):
Bergstra, J. A., & Middelburg, C. A. (2016). On instruction sets for Boolean registers in
program algebra. Scientific Annals of Computer Science, 26(1), 1-26.
https://doi.org/10.7561/SACS.2016.1.1

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

Download date:26 Jul 2022

https://doi.org/10.7561/SACS.2016.1.1
https://dare.uva.nl/personal/pure/en/publications/on-instruction-sets-for-boolean-registers-in-program-algebra(16267b6c-d09f-41b9-a02b-f8820b4379b9).html
https://doi.org/10.7561/SACS.2016.1.1

Scientific Annals of Computer Science vol. 26 (1), 2016, pp. 1–26

doi: 10.7561/SACS.2016.1.1

On Instruction Sets for Boolean Registers
in Program Algebra

J.A. Bergstra1, C.A. Middelburg1

Abstract

In previous work carried out in the setting of program algebra,
including work in the area of instruction sequence size complexity, we
chose instruction sets for Boolean registers that contain only instruc-
tions of a few of the possible kinds. In the current paper, we study
instruction sequence size bounded functional completeness of all possi-
ble instruction sets for Boolean registers. We expect that the results
of this study will turn out to be useful to adequately assess results of
work that is concerned with lower bounds of instruction sequence size
complexity.

Keywords: Boolean register, instruction set, size-bounded functional
completeness, instruction sequence size, program algebra.

1 Introduction

In [5], we presented an approach to computational complexity in which
algorithmic problems are viewed as Boolean function families that consist of
one n-ary Boolean function for each natural number n and the complexity of
such problems is assessed in terms of the length of finite single-pass instruction
sequences acting on Boolean registers that compute the members of these
families. The instruction sequences concerned contain only instructions to
set and get the content of Boolean registers, forward jump instructions, and
a termination instruction. Moreover, each Boolean register used serves as
either input register, output register or auxiliary register.

1Informatics Institute, Faculty of Science, University of Amsterdam, Science Park 904,
1098 XH Amsterdam, the Netherlands, E-mail: {J.A.Bergstra,C.A.Middelburg}@uva.nl.

2 J.A. Bergstra, C.A. Middelburg

Auxiliary Boolean registers are not needed to compute Boolean functions.
The question whether shorter instruction sequences are possible with the use
of auxiliary Boolean registers was not answered in [5]. In [6], we showed that,
in the case of the parity functions, shorter instruction sequences are possible
with the use of an auxiliary Boolean register provided the instruction set is
extended with instructions to complement the content of auxiliary Boolean
registers. In the current paper, we consider all instructions for Boolean
registers that are possible in the setting in which the work presented in [5, 6]
has been carried out and investigate instruction sequence size bounded
functional completeness of instruction sets for Boolean registers.

Intuitively, a given instruction set for Boolean registers is n-size-bounded
functionally complete if the effects of each possible instruction for Boolean
registers can be obtained by an instruction sequence whose length is at
most n and that contains only instructions from the given instruction set for
Boolean registers, forward jump instructions, and a termination instruction.
A given instruction set for Boolean registers is functionally complete if it is
n-size-bounded functionally complete for some n.

We have identified one of the 256 smallest instruction sets for Boolean
registers that is 1-size-bounded functionally complete (Corollary 2), and we
have found that there is a large subset of this 1-size-bounded functionally
complete instruction set with the following properties: (i) each of its proper
subsets that does not include the instructions to complement the content of
Boolean registers, but includes the instructions to set and get the content
of Boolean registers, is 4-size-bounded functionally complete and not 3-
size-bounded functionally complete and (ii) each of its proper subsets that
includes the instructions to complement the content of Boolean registers is
3-size-bounded functionally complete and not 2-size-bounded functionally
complete (Corollary 3).

The use of a 1-size-bounded functionally complete instruction set, such
as the one referred to in the previous paragraph, gives rise to the smallest
instruction sequence sizes. However, the use of many instruction sets that are
not 1-size-bounded functionally complete, e.g. the ones referred to under (i)
above, gives rise to instruction sequence sizes that are at most 4 times larger.

The work presented in [6] triggered the work presented in this paper
because of the choice to use an extension of the instruction set used in [5].
Since the results from the latter paper, with the exception of one auxiliary
result, are concerned with upper bounds of instruction sequence size com-
plexity, these results go through if instruction sequences may also contain

On Instruction Sets for Boolean Registers in Program Algebra 3

instructions to complement the content of auxiliary Boolean registers. How-
ever, for the work presented in [6], the instruction set did matter in the
sense that we were not able to prove the main result of the paper, which is
concerned with a lower bound of instruction sequence size complexity, using
the instruction set used in [5]. We consider the work presented in the current
paper to be useful to adequately assess that result as it is. We expect that
it will turn out to be also useful to adequately assess results of future work
that is concerned with lower bounds of instruction sequence size complexity.

Like the work presented in [5, 6], the work presented in this paper is
carried out in the setting of PGA (ProGram Algebra). PGA is an algebraic
theory of single-pass instruction sequences that was taken as the basis
of the approach to the semantics of programming languages introduced
in [2]. As a continuation of the work presented in [2], (i) the notion of an
instruction sequence was subjected to systematic and precise analysis and
(ii) issues relating to diverse subjects in computer science and computer
engineering were rigorously investigated in the setting of PGA. The subjects
concerned include programming language expressiveness, computability,
computational complexity, algorithm efficiency, algorithmic equivalence of
programs, program verification, program compactness, micro-architecture,
and probabilistic programming. For a comprehensive survey of a large part
of this work, see [4]. An overview of all the work done to date in the setting
of PGA and open questions originating from this work can be found on [11].

This paper is organized as follows. First, we present the preliminaries
to the work presented in this paper (Sections 2 and 3) and introduce the
possible instructions for Boolean registers (Section 4). Next, we define an
equivalence relation on these instructions that identifies instructions that
have the same effects (Section 5) and study instruction sequence size bounded
functional completeness of instruction sets for Boolean registers (Section 6).
Finally, we make some concluding remarks (Section 7).

Some familiarity with the basic notions related to algebraic theories and
their models is assumed in this paper. The relevant notions are explained in
handbook chapters and books on the foundations of algebraic specification,
e.g. [8, 12, 13, 15].

The following should be mentioned in advance. The set B is a set with
two elements whose intended interpretations are the truth values false and
true. As is common practice, we represent the elements of B by the bits
0 and 1. In line with generally accepted conventions, we use terminology
based on identification of the elements of B with their representation where

4 J.A. Bergstra, C.A. Middelburg

appropriate. For example, where a better link up with commonly used
terminology is expected, the elements of B are loosely called bits and the
elements of Bn are loosely called bit strings of length n.

The preliminaries to the work presented in this paper (Sections 2 and 3)
are almost the same as the preliminaries to the work presented in [7] and
earlier papers. For this reason, there is some text overlap with those papers.
Apart from the preliminaries, the material in this paper is new.

2 Program Algebra and Basic Thread Algebra

In this section, we give a survey of PGA (ProGram Algebra) and BTA
(Basic Thread Algebra) and make precise in the setting of BTA which
behaviours are produced by the instruction sequences considered in PGA
under execution. The greater part of this section originates from [5]. A
comprehensive introduction to PGA and BTA, including examples, can
among other things be found in [4].

In PGA, it is assumed that there is a fixed but arbitrary set A of basic
instructions. The intuition is that the execution of a basic instruction may
modify a state and produces a reply at its completion. The possible replies
are 0 and 1. The actual reply is generally state-dependent. The set A is the
basis for the set of instructions that may occur in the instruction sequences
considered in PGA. The elements of the latter set are called primitive
instructions. There are five kinds of primitive instructions:

• for each a ∈ A, a plain basic instruction a;

• for each a ∈ A, a positive test instruction +a;

• for each a ∈ A, a negative test instruction −a;

• for each l ∈ N, a forward jump instruction #l;

• a termination instruction !.

We write I for the set of all primitive instructions.
On execution of an instruction sequence, these primitive instructions

have the following effects:

• the effect of a positive test instruction +a is that basic instruction a is
executed and execution proceeds with the next primitive instruction if
1 is produced and otherwise the next primitive instruction is skipped

On Instruction Sets for Boolean Registers in Program Algebra 5

and execution proceeds with the primitive instruction following the
skipped one — if there is no primitive instruction to proceed with,
inaction occurs;

• the effect of a negative test instruction −a is the same as the effect of
+a, but with the role of the value produced reversed;

• the effect of a plain basic instruction a is the same as the effect of +a,
but execution always proceeds as if 1 is produced;

• the effect of a forward jump instruction #l is that execution proceeds
with the lth next primitive instruction — if l equals 0 or there is no
primitive instruction to proceed with, inaction occurs;

• the effect of the termination instruction ! is that execution terminates.

PGA has one sort: the sort IS of instruction sequences. We make this
sort explicit to anticipate the need for many-sortedness later on. To build
terms of sort IS, PGA has the following constants and operators:

• for each u ∈ I, the instruction constant u :→ IS ;

• the binary concatenation operator ; : IS× IS→ IS ;

• the unary repetition operator ω : IS→ IS .

Terms of sort IS are built as usual in the one-sorted case. We assume that
there are infinitely many variables of sort IS, including X,Y, Z. We use infix
notation for concatenation and postfix notation for repetition.

A closed PGA term is considered to denote a non-empty, finite or even-
tually periodic infinite sequence of primitive instructions.2 The instruction
sequence denoted by a closed term of the form t ; t′ is the instruction se-
quence denoted by t concatenated with the instruction sequence denoted by
t′. The instruction sequence denoted by a closed term of the form tω is the
instruction sequence denoted by t concatenated infinitely many times with
itself.

Closed PGA terms are considered equal if they represent the same
instruction sequence. The axioms for instruction sequence equivalence are
given in Table 1. In this table, n stands for an arbitrary natural number

2An eventually periodic infinite sequence is an infinite sequence with only finitely many
distinct suffixes.

6 J.A. Bergstra, C.A. Middelburg

Table 1: Axioms of PGA
(X ; Y) ; Z = X ; (Y ; Z) PGA1

(Xn)ω = Xω PGA2

Xω ; Y = Xω PGA3

(X ; Y)ω = X ; (Y ;X)ω PGA4

from N1.
3 For each n ∈ N1, the term tn, where t is a PGA term, is defined

by induction on n as follows: t1 = t, and tn+1 = t ; tn.
A typical model of PGA is the model in which:

• the domain is the set of all finite and eventually periodic infinite
sequences over the set I of primitive instructions;

• the operation associated with ; is concatenation;

• the operation associated with ω is the operation ω defined as follows:

– if U is finite, then Uω is the unique infinite sequence U ′ such that
U concatenated n times with itself is a proper prefix of U ′ for
each n ∈ N;

– if U is infinite, then Uω is U .

It is immediately clear that this model has no proper subalgebra. Moreover,
we know from [2, Section 3.2.2] that the axioms of PGA are complete with
respect to satisfaction of equations between closed terms in this model.
Hence, this model is an initial model of PGA (see e.g. [12]).

We confine ourselves to this model of PGA for the interpretation of
PGA terms. In the sequel, we use the term PGA instruction sequence for
the elements of the domain of this model. Below, we will use BTA to make
precise which behaviours are produced by PGA instruction sequences under
execution.

In BTA, it is assumed that a fixed but arbitrary set A of basic actions
has been given. The objects considered in BTA are called threads. A
thread represents a behaviour which consists of performing basic actions in
a sequential fashion. Upon each basic action performed, a reply from an
execution environment determines how the thread proceeds. The possible
replies are the values 0 and 1.

3We write N1 for the set {n ∈ N | n ≥ 1} of positive natural numbers.

On Instruction Sets for Boolean Registers in Program Algebra 7

BTA has one sort: the sort T of threads. We make this sort explicit to
anticipate the need for many-sortedness later on. To build terms of sort T,
BTA has the following constants and operators:

• the inaction constant D :→T;

• the termination constant S :→T;

• for every a ∈ A, the binary postconditional composition operator
�a� : T×T→ T.

Terms of sort T are built as usual in the one-sorted case. We assume that
there are infinitely many variables of sort T, including x, y. We use infix
notation for postconditional composition. We introduce basic action prefixing
as an abbreviation: a ◦ t, where t is a BTA term, abbreviates t�a� t. We
identify expressions of the form a ◦ t with the BTA term they stand for.

The thread denoted by a closed term of the form t �a� t′ will first
perform a, and then proceed as the thread denoted by t if the reply from the
execution environment is 1 and proceed as the thread denoted by t′ if the
reply from the execution environment is 0. The thread denoted by S will do
no more than terminate and the thread denoted by D will become inactive.

Closed BTA terms are considered equal if they are syntactically the
same. Therefore, BTA has no axioms.

Each closed BTA term denotes a finite thread, i.e. a thread with a finite
upper bound to the number of basic actions that it can perform. Infinite
threads, i.e. threads without a finite upper bound to the number of basic
actions that it can perform, can be defined by means of a set of recursion
equations (see e.g. [3]). We are only interested in models of BTA in which
sets of recursion equations have unique solutions, such as the projective limit
model of BTA presented in [4].

We confine ourselves to this model of BTA, which has an initial model
of BTA as a submodel, for the interpretation of BTA terms. In the sequel,
we use the term BTA thread or simply thread for the elements of the domain
of this model.

Regular threads, i.e. finite or infinite threads that can only be in a
finite number of states, can be defined by means of a finite set of recursion
equations. Provided that the set A of basic instructions is identified with
the set A of basic actions, the behaviours produced by PGA instruction
sequences under execution are exactly the behaviours represented by regular
threads and the behaviours produced by finite PGA instruction sequences
are exactly the behaviours represented by finite threads.

8 J.A. Bergstra, C.A. Middelburg

Table 2: Axioms for the thread extraction operator

|a| = a ◦ D
|a ;X| = a ◦ |X|
|+a| = a ◦ D
|+a ;X| = |X|�a� |#2 ;X|
|−a| = a ◦ D
|−a ;X| = |#2 ;X|�a� |X|

|#l| = D

|#0 ;X| = D

|#1 ;X| = |X|
|#l + 2 ; u| = D

|#l + 2 ; u ;X| = |#l + 1 ;X|
|!| = S

|! ;X| = S

Henceforth, we will identify A with A. Intuitively, this means that we
will not distinguish the basic action that takes place when a basic instruction
is executed from that basic instruction.

We combine PGA with BTA, identifying A with A, and extend the
combination with the thread extraction operator | | : IS → T, the axioms
given in Table 2, and the rule that |X| = D if X has an infinite chain of
forward jumps beginning at its first primitive instruction.4 In Table 2, a
stands for an arbitrary basic instruction from A, u stands for an arbitrary
primitive instruction from I, and l stands for an arbitrary natural number
from N. For each closed PGA term t, |t| denotes the behaviour produced by
the instruction sequence denoted by t under execution.

3 Interaction of Threads with Services

Services are objects that represent the behaviours exhibited by components of
execution environments of instruction sequences at a high level of abstraction.
A service is able to process certain methods. For the purpose of the extension
of BTA that will be presented in this section, it is sufficient to know the
following about methods: (i) the processing of a method by a service may
involve a change of the service and (ii) at completion of the processing of a
method by a service, the service produces a reply value. The possible reply
values are 0 and 1. Execution environments are considered to provide a
family of uniquely-named services.

A thread may interact with the named services from the service family
provided by an execution environment. That is, a thread may perform a

4This rule, which can be formalized using an auxiliary structural congruence predicate
(see e.g. [4]), is unnecessary when considering only finite PGA instruction sequences.

On Instruction Sets for Boolean Registers in Program Algebra 9

basic action for the purpose of requesting a named service to process a
method and to return a reply value at completion of the processing of the
method. In this section, we give a survey of the extension of BTA with
services, service families, a composition operator for service families, and
operators that are concerned with this kind of interaction. This section
originates from [3]. A comprehensive introduction to the presented extension
of BTA, including examples, can among other things be found in [4].

First, we introduce an algebraic theory of service families called SFA
(Service Family Algebra). In SFA, it is assumed that a fixed but arbitrary
set M of methods has been given. Moreover, the following is assumed with
respect to services:

• a signature ΣS has been given that includes the following sorts:

– the sort S of services;

– the sort R of replies;

and the following constants and operators:

– the empty service constant δ :→ S;

– the reply constants 0, 1, ∗ :→R;

– for each m ∈M, the derived service operator ∂
∂m : S→ S;

– for each m ∈M, the service reply operator %m : S→ R;

• a ΣS -algebra S that has no proper subalgebra has been given in which
the following holds:

– 0 6= 1, 1 6= ∗, ∗ 6= 0;

– for each m ∈M, ∂
∂m(z) = δ ⇔ %m(z) = ∗.

The intuition concerning ∂
∂m and %m is that on a request to service s

to process method m:

• if %m(s) 6= ∗, s processes m, produces the reply %m(s), and then
proceeds as ∂

∂m(s);

• if %m(s) = ∗, s is not able to process method m and proceeds as δ.

The empty service δ itself is unable to process any method.
It is also assumed that a fixed but arbitrary set F of foci has been

given. Foci play the role of names of services in a service family.
SFA has the sorts, constants and operators from ΣS and in addition

the sort SF of service families and the following constant and operators:

10 J.A. Bergstra, C.A. Middelburg

Table 3: Axioms of SFA
u⊕ ∅ = u SFC1

u⊕ v = v ⊕ u SFC2

(u⊕ v)⊕ w = u⊕ (v ⊕ w) SFC3

f.z ⊕ f.z′ = f.δ SFC4

∂F (∅) = ∅ SFE1

∂F (f.z) = ∅ if f ∈ F SFE2

∂F (f.z) = f.z if f /∈ F SFE3

∂F (u⊕ v) = ∂F (u)⊕ ∂F (v) SFE4

• the empty service family constant ∅ :→ SF;

• for each f ∈ F , the unary singleton service family operator f. :
S→ SF;

• the binary service family composition operator ⊕ : SF× SF→ SF;

• for each F ⊆ F , the unary encapsulation operator ∂F : SF→ SF.

We assume that there are infinitely many variables of sort S, including z,
and infinitely many variables of sort SF, including u, v, w. Terms are built as
usual in the many-sorted case (see e.g. [13]). We use prefix notation for the
singleton service family operators and infix notation for the service family
composition operator. We write ⊕n

i=1 ti, where t1, . . . , tn are terms of sort
SF, for the term t1 ⊕ . . .⊕ tn.

The service family denoted by ∅ is the empty service family. The service
family denoted by a closed term of the form f.t consists of one named service
only, the service concerned is the service denoted by t, and it is named f .
The service family denoted by a closed term of the form t ⊕ t′ consists of
all named services that belong to either the service family denoted by t or
the service family denoted by t′. In the case where a named service from
the service family denoted by t and a named service from the service family
denoted by t′ have the same name, they collapse to an empty service with
the name concerned. The service family denoted by a closed term of the
form ∂F (t) consists of all named services with a name not in F that belong
to the service family denoted by t.

The axioms of SFA are given in Table 3. In this table, f stands for an
arbitrary focus from F and F stands for an arbitrary subset of F . These
axioms simply formalize the informal explanation given above.

For the set A of basic actions, we now take {f.m | f ∈ F ,m ∈ M}.
Performing a basic action f.m is taken as making a request to the service
named f to process method m.

On Instruction Sets for Boolean Registers in Program Algebra 11

Table 4: Axioms for the abstracting use operator

S // u = S AU1

D // u = D AU2

(x� f.m� y) // ∂{f}(u) = (x // ∂{f}(u)) � f.m� (y // ∂{f}(u)) AU3

(x� f.m� y) // (f.t⊕ ∂{f}(u)) = x // (f. ∂
∂m t⊕ ∂{f}(u)) if %m(t) = 1 AU4

(x� f.m� y) // (f.t⊕ ∂{f}(u)) = y // (f. ∂
∂m t⊕ ∂{f}(u)) if %m(t) = 0 AU5

(x� f.m� y) // (f.t⊕ ∂{f}(u)) = D if %m(t) = ∗ AU6

Table 5: Axioms for the apply operator

S • u = u A1

D • u = ∅ A2

(x� f.m� y) • ∂{f}(u) = ∅ A3

(x� f.m� y) • (f.t⊕ ∂{f}(u)) = x • (f. ∂
∂m t⊕ ∂{f}(u)) if %m(t) = 1 A4

(x� f.m� y) • (f.t⊕ ∂{f}(u)) = y • (f. ∂
∂m t⊕ ∂{f}(u)) if %m(t) = 0 A5

(x� f.m� y) • (f.t⊕ ∂{f}(u)) = ∅ if %m(t) = ∗ A6

We combine BTA with SFA and extend the combination with the
following operators:

• the binary abstracting use operator // : T× SF→ T;

• the binary apply operator • : T× SF→ SF;

and the axioms given in Tables 4 and 5. In these tables, f stands for an
arbitrary focus from F , m stands for an arbitrary method from M, and t
stands for an arbitrary term of sort S. The axioms formalize the informal
explanation given below and in addition stipulate what is the result of
abstracting use and apply if inappropriate foci or methods are involved. We
use infix notation for the abstracting use and apply operators.

The thread denoted by a closed term of the form t // t′ and the service
family denoted by a closed term of the form t • t′ are the thread and service
family, respectively, that result from processing the method of each basic
action performed by the thread denoted by t by the service in the service
family denoted by t′ with the focus of the basic action as its name if such a
service exists. When the method of a basic action performed by a thread is
processed by a service, the service changes in accordance with the method

12 J.A. Bergstra, C.A. Middelburg

concerned and the thread reduces to one of the two threads that it can
possibly proceed with dependent on the reply value produced by the service.

The projective limit model of the extension of the combination of BTA
and SFA with the abstracting use operator, the apply operator, and the
axioms for these operators is a reduct of the projective limit model presented
in [4, Section 3.1.9]. The reduct of this model to the constants and operators
of BTA is the projective limit model of BTA.

4 Instructions for Boolean Registers

The primitive instructions that concern us in the remainder of this paper
are primitive instructions for Boolean registers. We introduce in this section
the possible primitive instructions for Boolean registers.

It is assumed that, for each p, q : B→ B, p/q ∈M. These methods can
be explained as follows:

when p/q is processed by a Boolean register service whose register
content is b, the reply is p(b) and the register content becomes
q(b).

We writeMbr for the set {p/q | p, q :B→ B}. Every method that a Boolean
register service could possibly process is a method from Mbr.

For ΣS , we take the signature that consists of the sorts, constants and
operators that are mentioned in the assumptions with respect to services
made in Section 3 and a constant BRM

b for each M ⊆ Mbr and b ∈ B.
Informally, BRM

b denotes the Boolean register service with register content
b that is able to process precisely all methods from M .

For S, we take the ΣS -algebra that has no proper subalgebra and that
satisfies the conditions that are mentioned in the assumptions with respect
to services made in Section 3 and the following conditions for each M ⊆Mbr

and b ∈ B:

∂
∂p/q (BRM

b) = BRM
q(b) if p/q ∈M ,

%p/q(BRM
b) = p(b) if p/q ∈M ,

∂
∂m(BRM

b) = δ if m /∈M ,

%m(BRM
b) = ∗ if m /∈M .

B→ B, the set of all unary Boolean functions, consists of the following
four functions:

• the function 0, satisfying 0(0) = 0 and 0(1) = 0;

On Instruction Sets for Boolean Registers in Program Algebra 13

• the function 1, satisfying 1(0) = 1 and 1(1) = 1;

• the function i , satisfying i(0) = 0 and i(1) = 1;

• the function c, satisfying c(0) = 1 and c(1) = 0.

In [5], we actually used the methods 0/0, 1/1, and i/ i , but denoted them
by set:0, set:1 and get, respectively. In [6], we actually used, in addition to
these methods, the method c/c, but denoted it by com.

We define, for each M ⊆Mbr, the following sets:

Abr(M) = {f.m | f ∈ F ∧m ∈M} ,

Ibr(M) = Abr(M) ∪ {+a | a ∈ Abr(M)} ∪ {−a | a ∈ Abr(M)} .

Abr(Mbr) consists of 16 basic actions per focus and Ibr(Mbr) consists of 48
primitive instructions per focus.

For Boolean registers that serve as input register, we used in [5, 6]
only primitive instructions from Ibr({ i/ i}). For Boolean registers that
serve as output register, we used in [5, 6] only primitive instructions from
Ibr({0/0, 1/1}). For Boolean registers that serve as auxiliary register, we
used in [5] only primitive instructions from Ibr({0/0, 1/1, i/ i}) and in [6]
only primitive instructions from Ibr({0/0, 1/1, i/ i , c/c}). However, in the
case of auxiliary registers, other possible instruction sets are eligible. In Sec-
tion 6, we study instruction sequence size-bounded functional completeness
of instruction sets for Boolean registers. We expect that the results of that
study will turn out to be useful to adequately assess results of work that
is concerned with lower bounds of instruction sequence size complexity in
cases where auxiliary Boolean registers may be used.

We write ISbr(M), where M ⊆ Mbr, for the set of all finite PGA
instruction sequences in the case where Abr(M) is taken for the set A of
basic instructions.

5 Equivalence of Instructions for Boolean Regis-
ters

There exists a model of the extension of the combination of PGA, BTA, and
SFA with the thread extraction operator, the abstracting use operator, the
apply operator, and the axioms for these operators such that the initial model

14 J.A. Bergstra, C.A. Middelburg

of PGA is its reduct to the signature of PGA and the projective limit model
of the extension of the combination of BTA and SFA with the abstracting
use operator, the apply operator, and the axioms for these operators is its
reduct to the signature of this theory. This follows from the disjointness
of the signatures concerned by the amalgamation result about expansions
presented as Theorem 6.1.1 in [9] (adapted to the many-sorted case).

Henceforth, we work in the model just mentioned, and denote the
interpretations of constants and operators in it by the constants and operators
themselves. However, we could work in any model for which the axioms are
complete with respect to satisfaction of equations between closed terms.

On execution of an instruction sequence, different primitive instructions
from Ibr(Mbr) do not always have different effects. We define an equivalence
on Ibr(Mbr) that identifies primitive instructions if they have the same
effects.

Let u, v ∈ Ibr(Mbr). Then u and v are effectually equivalent, written
u ∼e v, if there exists an f ∈ F such that, for each b ∈ B and n ∈ {1, 2}:

|u ; !n| // f.BRMbr
b = |v ; !n| // f.BRMbr

b ,

|u ; !n| • f.BRMbr
b = |v ; !n| • f.BRMbr

b .

Let u, v ∈ Ibr(Mbr) be such that u 6= v, and let f ∈ F be such that, for
some m ∈ Mbr, v ≡ f.m or v ≡ +f.m or v ≡ −f.m. Then u ∼e v only if
|u ; !n|//f.BRMbr

b = |v ; !n|//f.BRMbr
b and |u ; !n|•f.BRMbr

b = |v ; !n|•f.BRMbr
b

for each b ∈ B and n ∈ {1, 2}. From this and the definition of ∼e, it follows
immediately that ∼e is transitive. Moreover, it follows immediately from
the definition of ∼e that ∼e is reflexive and symmetric. Hence, ∼e is an
equivalence relation indeed.

Replacement of primitive instructions in an instruction sequence by
effectually equivalent ones does not change the functionality of the instruction
sequence on execution.

Let X,Y ∈ ISbr(Mbr). Then X and Y are functionally equivalent,
written X ∼f Y , if, for some n ∈ N1, there exist f1, . . . , fn ∈ F such that,
for each b1, . . . , bn ∈ B:

|X| //⊕n
i=1 fi.BRMbr

bi
= S or |X| //⊕n

i=1 fi.BRMbr
bi

= D,

|X| //⊕n
i=1 fi.BRMbr

bi
= |Y | //⊕n

i=1 fi.BRMbr
bi

,

|X| •⊕n
i=1 fi.BRMbr

bi
= |Y | •⊕n

i=1 fi.BRMbr
bi

.

The proof that ∼f is an equivalence relation goes along similar lines
as the proof that ∼e is an equivalence relation. Here, X ∼f Y only if the

On Instruction Sets for Boolean Registers in Program Algebra 15

Table 6: Axioms for effectual equivalence

+f.0/p ∼e −f.1/p
+f.1/p ∼e −f.0/p
+f. i/p ∼e −f.c/p
+f.c/p ∼e −f. i/p

+f.1/p ∼e f.q/p u ∼e u

u ∼e v ⇒ v ∼e u

u ∼e v ∧ v ∼e w ⇒ u ∼e w

equations from the definition hold in the case where we take the foci of
primitive instructions from Ibr(Mbr) that occur in Y for f1, . . . , fn.

Proposition 1 Let u, v ∈ Ibr(Mbr), and let X,Y ∈ ISbr(Mbr) be such that
Y is X with every occurrence of u replaced by v. Then u ∼e v implies
X ∼f Y .

Proof: It is easily proved by induction on the length of X that u ∼e v
implies, for each l, n ∈ N, #l ; X ; !n ∼f #l ; Y ; !n.5 From this, it follows
immediately that u ∼e v implies X ∼f Y . 2

Axioms for effectual equivalence are given in Table 6. In this table, f
stands for an arbitrary focus from F , p and q stand for arbitrary functions
from B→ B, and u, v, and w stand for arbitrary primitive instructions from
Ibr(Mbr). Moreover, we use ∼e in this table as a predicate symbol (and not
as the symbol that denotes the effectual equivalence relation on Ibr(Mbr)
defined above).

Theorem 1 The axioms in Table 6 are sound and complete for the effectual
equivalence relation on Ibr(Mbr) defined above.

Proof: The soundness of the axioms follows immediately from the
definition of effectual equivalence, using the conditions on S laid down in
Section 4.

The following conclusions can be drawn from the definition of effectual
equivalence:

(a) +f.p/q ∼e f.p
′/q′ ⇒ p = 1 ∧ q = q′ ;

(b) −f.p/q ∼e f.p
′/q′ ⇒ p = 0 ∧ q = q′ ;

(c) +f.p/q ∼e −f.p′/q′ ⇒ p = C(p′) ∧ q = q′ ,

where C(0) = 1, C(1) = 0, C(i) = c, C(c) = i .

5We use the convention that t′ ; t0 stands for t′.

16 J.A. Bergstra, C.A. Middelburg

The completeness of the axioms follows easily by case distinction between
the different forms that a formula u ∼e v can take, making use of (a), (b),
and (c). 2

The equivalence classes of Ibr(Mbr) with respect to ∼e are the following
for each f ∈ F :

{+f.0/0,−f.1/0} ,

{+f.0/1,−f.1/1} ,

{+f.0/ i ,−f.1/ i} ,

{+f.0/c,−f.1/c} ,

{+f.1/0,−f.0/0, f.0/0, f.1/0, f. i/0, f.c/0} ,

{+f.1/1,−f.0/1, f.0/1, f.1/1, f. i/1, f.c/1} ,

{+f.1/ i ,−f.0/ i , f.0/ i , f.1/ i , f. i/ i , f.c/ i} ,

{+f.1/c,−f.0/c, f.0/c, f.1/c, f. i/c, f.c/c} ,

{+f. i/0,−f.c/0} ,

{+f. i/1,−f.c/1} ,

{+f. i/ i ,−f.c/ i} ,

{+f. i/c,−f.c/c} ,

{+f.c/0,−f. i/0} ,

{+f.c/1,−f. i/1} ,

{+f.c/ i ,−f. i/ i} ,

{+f.c/c,−f. i/c} .

We have underlined one representative of each equivalence class in order to
refer to them easily in the proof of the following theorem.

Theorem 2

(1) The set {0/0, 1/1, i/ i , c/c, i/0, i/1, 1/ i , 1/c} is a minimal M ⊆Mbr

such that Ibr(M) contains at least one representative from each of the
equivalence classes of Ibr(Mbr) with respect to ∼e.

(2) Each minimal M ⊆Mbr such that Ibr(M) contains at least one repre-
sentative from each of the equivalence classes of Ibr(Mbr) with respect
to ∼e consists of 8 methods.

On Instruction Sets for Boolean Registers in Program Algebra 17

Proof: By uniformity, it is sufficient to look at the equivalence classes of
Ibr(Mbr) for an arbitrary focus from F .

(1) Let M ′ = {0/0, 1/1, i/ i , c/c, i/0, i/1, 1/ i , 1/c}. Then the representa-
tives of the different equivalence classes of Ibr(Mbr) that are underlined
above belong to the set Ibr(M ′). Moreover, each method from M ′

occurs in a primitive instruction from Ibr(Mbr) that belongs to an
equivalence class of Ibr(Mbr) that contains only one other primitive in-
struction, but the method that occurs in this other primitive instruction
is not from M ′. Hence M ′ is minimal.

(2) First, we consider the first and last four equivalence classes above.
Each of them consists of two primitive instructions. Each method that
occurs in the primitive instructions from one of them does not occur in
the primitive instructions from another of them. Consequently, exactly
eight methods are needed for representatives from these equivalence
classes. Next, we consider the remaining eight equivalence classes. For
each of them, the methods that occur in the primitive instructions from
it include the methods that occur in the primitive instructions from one
of the equivalence classes that we considered first. Consequently, no
additional methods are needed for representatives from the remaining
equivalence classes. Hence, exactly eight methods are needed for
representatives from all equivalence classes.

2

Theorem 2 tells us that each primitive instruction from Ibr(Mbr) has the
same effects as one with a method from {0/0, 1/1, i/ i , c/c, i/0, i/1, 1/ i , 1/c}
and that there does not exist a smaller set with this property. The methods
that we used in [5, 6] are included in this set.

We have the following corollary of the proof of part (2) of Theorem 2.

Corollary 1 There exist 256 minimal M ⊆Mbr such that Ibr(M) contains
at least one representative from each of the equivalence classes of Ibr(Mbr)
with respect to ∼e.

6 Bounded Functional Completeness of Instruc-
tion Sets

Not all methods from the minimal set mentioned in Theorem 2 are needed
to obtain the effects of each primitive instruction from Ibr(Mbr) in the case

18 J.A. Bergstra, C.A. Middelburg

where instruction sequences instead of instructions are used to obtain the
effects. In this section, we look at the case where instruction sequences
are used. We begin by defining the notion of k-size-bounded functional
completeness.

Let M ⊆ Mbr and k ∈ N1. Then the instruction set Ibr(M) is k-
size-bounded functionally complete if there exists a function ψ : Ibr(Mbr)→
ISbr(M) such that, for each u ∈ Ibr(Mbr), len(ψ(u)) ≤ k and there exists
an f ∈ F such that, for each b ∈ B and n ∈ N:

|u ; !n| // f.BRMbr
b = |ψ(u) ; !n| // f.BRMbr

b ,

|u ; !n| • f.BRMbr
b = |ψ(u) ; !n| • f.BRMbr

b .

Ibr(M) is called strictly k-size-bounded functionally complete if Ibr(M) is
k-size-bounded functionally complete and there does not exist a k′ < k such
that Ibr(M) is k′-size-bounded functionally complete.

The following proposition illustrates the relevance of the notion of
k-size-bounded functionally completeness.

Proposition 2 Let M ⊆Mbr and k ∈ N1. Let ψ : Ibr(Mbr)→ ISbr(M) be
as in the definition of k-size-bounded functional completeness given above.
Let ψ′ : ISbr(Mbr) → ISbr(M) be such that ψ′(u1 ; . . . ; un) = u′1 ; . . . ; u′n,
where

u′i ≡ ! if ui ≡ !;

u′i ≡ #l′

with l′ = l +
∑

j∈{i,...,i+l−1} s.t. uj∈Ibr(Mbr)
(len(ψ(uj))− 1) if ui ≡ #l;

u′i ≡ ψ(ui) otherwise.

Assume that ψ restricted to ISbr(M) is the identity function on ISbr(M).
Then, for each X ∈ ISbr(Mbr), ψ

′(X) ∼f X and len(ψ′(X)) ≤ len(X) +
(k − 1) · p, where p is the number of occurrences of primitive instructions
from Ibr(Mbr) \ Ibr(M) in X.

Proof: It is easily proved by induction on the length of X that, for each
l, n ∈ N, #l ; ψ′(X) ; !n ∼f #l ;X ; !n. From this, it follows immediately that
ψ′(X) ∼f X.

Suppose that X = u1 ; . . . ; un. Let p be the number of occurrences of
primitive instructions from Ibr(Mbr) \ Ibr(M) in X. Then

On Instruction Sets for Boolean Registers in Program Algebra 19

∑
i∈{1,...,n} s.t. ui /∈Ibr(Mbr)\Ibr(M) len(ui) = len(X)− p ;∑
i∈{1,...,n} s.t. ui∈Ibr(Mbr)\Ibr(M) len(ψ(ui)) ≤ k · p .

Hence, len(ψ′(X)) ≤ len(X)− p+ k · p = len(X) + (k − 1) · p. 2

We have the following corollary of part (1) of Theorem 2 and the
definition of k-size-bounded functional completeness.

Corollary 2 Ibr({0/0, 1/1, i/ i , c/c, i/0, i/1, 1/ i , 1/c}) is 1-size-bounded
functionally complete.

The following theorem concerns the k-size-bounded functional completeness
of a few subsets of this 1-size-bounded functionally complete instruction set,
including the ones that we used in [5, 6].

Theorem 3

(1) Ibr({0/0, 1/1, i/ i , c/c, i/0, i/1}) is strictly 2-size-bounded funct. compl.

(2) Ibr({0/0, 1/1, i/ i , c/c}) is strictly 3-size-bounded funct. compl.

(3) Ibr({0/0, 1/1, i/ i}) is strictly 4-size-bounded funct. compl.

(4) Ibr({c/c}) is strictly 3-size-bounded funct. compl.

(5) Ibr({ i/0, i/1}) is strictly 4-size-bounded funct. compl.

Proof: We assume that, for each M ⊆Mbr and k ∈ N1, the restriction to
Ibr(M) of a function ψ that witnesses k-size-bounded functional completeness
of Ibr(M) is the identify function on Ibr(M) and the restriction to Ibr(Mbr)\
Ibr(M) has the same instruction sequence from ISbr(M) as value for primitive
instruction from the same equivalence class of Ibr(Mbr). It is clear that this
assumption can be made without loss of generality.

Below, for each individual part of the theorem, first a function ψ that
witnesses the stated size-bounded functional completeness is uniquely char-
acterized by giving the instruction sequences for the primitive instructions
for Boolean registers that are not covered by the assumption and then the
strictness of the stated size-bounded functional completeness is established by
checking for one of the primitive instructions concerned for which the given
instruction sequence was of the greatest length that the given instruction
sequence cannot be replaced by a shorter one.

We say that a u ∈ Ibr(Mbr) cannot be replaced by a jump instruction
if there exists a b ∈ B and n ∈ N1 such that, for each v ∈ {#l | l ∈ N},
|u ; !n| // f.BRMbr

b 6= |v ; !n| // f.BRMbr
b .

20 J.A. Bergstra, C.A. Middelburg

(1) Let M = {0/0, 1/1, i/ i , c/c, i/0, i/1}. Then instruction sequences
from ISbr(M) are needed for −f.1/ i and −f.1/c. Take ψ such that

(a) ψ(−f.1/ i) = #2,

(b) ψ(−f.1/c) = f.c/c ; #2.

Then ψ witnesses the 2-size-bounded functional completeness of Ibr(M).
Because −f.1/c cannot be replaced by a jump instruction and there ex-
ists no u ∈ Ibr(M) such that u ∼e −f.1/c, Ibr(M) is not 1-size-bounded
functionally complete. Hence, Ibr(M) is strictly 2-size-bounded func-
tionally complete.

(2) Let M = {0/0, 1/1, i/ i , c/c}. Then instruction sequences from
ISbr(M) are needed for −f.1/ i , −f.1/c, +f. i/0, −f. i/0, +f. i/1,
and −f. i/1. Take ψ such that (a), (b), and

(c1) ψ(+f. i/0) = +f. i/ i ; +f.0/0 ; +f.0/0 or

(c2) ψ(+f. i/0) = −f.c/c ; +f.0/0 ; +f.0/0 or

(c3) ψ(+f. i/0) = +f. i/ i ; +f.c/c ; #2 or

(c4) ψ(+f. i/0) = −f.c/c ; #2 ; +f.c/c,

(d1) ψ(−f. i/0) = −f. i/ i ; +f.0/0 ; +f.0/0 or

(d2) ψ(−f. i/0) = +f.c/c ; +f.0/0 ; +f.0/0 or

(d3) ψ(−f. i/0) = −f. i/ i ; #2 ; +f.c/c or

(d4) ψ(−f. i/0) = +f.c/c ; +f.c/c ; #2,

(e1) ψ(+f. i/1) = +f. i/ i ;−f.1/1 ;−f.1/1 or

(e2) ψ(+f. i/1) = −f.c/c ;−f.1/1 ;−f.1/1 or

(e3) ψ(+f. i/1) = +f. i/ i ; #2 ;−f.c/c or

(e4) ψ(+f. i/1) = −f.c/c ;−f.c/c ; #2,

(f1) ψ(−f. i/1) = −f. i/ i ;−f.1/1 ;−f.1/1 or

(f2) ψ(−f. i/1) = +f.c/c ;−f.1/1 ;−f.1/1 or

(f3) ψ(−f. i/1) = −f. i/ i ;−f.c/c ; #2 or

(f4) ψ(−f. i/1) = +f.c/c ; #2 ;−f.c/c.6

6For several instruction sequences that start with a test instruction, there is a coun-
terpart with the same methods in the same numbers that starts with the opposite test
instruction. We refrain from mentioning these counterparts as alternatives.

On Instruction Sets for Boolean Registers in Program Algebra 21

Then ψ witnesses the 3-size-bounded functional completeness of Ibr(M).
To obtain the effects of +f. i/0, an instruction sequence from ISbr(M)
is needed that contains a test instruction from Ibr(M) with i/ i or c/c
as method and a primitive instruction from Ibr(M) with 0/0 or c/c as
method. Because there does not exist such an instruction sequence of
length 2 with the right effects, Ibr(M) is not 2-size-bounded function-
ally complete. Hence, Ibr(M) is strictly 3-size-bounded functionally
complete.

(3) Let M = {0/0, 1/1, i/ i}. Then instruction sequences from ISbr(M)
are needed for−f.1/ i , +f. i/0, −f. i/0, +f. i/1, −f. i/1, f.c/c, +f.c/c,
−f.c/c, and −f.1/c. Take ψ such that (a), (c1) or (c3), (d1) or (d3),
(e1) or (e3), (f1) or (f3), and

(g) ψ(f.c/c) = +f. i/ i ; +f.0/0 ; f.1/1,

(h) ψ(+f.c/c) = −f. i/ i ;−f.1/1 ; +f.0/0,

(i) ψ(−f.c/c) = +f. i/ i ; +f.0/0 ;−f.1/1,

(j) ψ(−f.1/c) = +f. i/ i ; +f.0/0 ; f.1/1 ; #2.

Then ψ witnesses the 4-size-bounded functional completeness of Ibr(M).
To obtain the effects of −f.1/c, an instruction sequence from ISbr(M)
is needed that contains a test instruction from Ibr(M) with i/ i as
method, a primitive instruction from Ibr(M) with 0/0 as method, and
a primitive instruction from Ibr(M) with 1/1 as method. Because
there does not exist such an instruction sequence of length 3 with
the right effects, Ibr(M) is not 3-size-bounded functionally complete.
Hence, Ibr(M) is strictly 4-size-bounded functionally complete.

(4) Let M = {c/c}. Then instruction sequences from ISbr(M) are needed
for −f.1/ i , −f.1/c, +f. i/0, −f. i/0, +f. i/1, −f. i/1, f.0/0, +f.0/0,
f.1/1, −f.1/1, f. i/ i , +f. i/ i , and −f. i/ i . Take ψ such that (a), (b),
(c4), (d4), (e4), (f4), and

(k) ψ(f.0/0) = +f.c/c ; f.c/c,

(l) ψ(+f.0/0) = +f.c/c ; f.c/c ; #2,

(m) ψ(f.1/1) = −f.c/c ; f.c/c,

(n) ψ(−f.1/1) = −f.c/c ; f.c/c ; #2,

22 J.A. Bergstra, C.A. Middelburg

(o) ψ(f. i/ i) = f.c/c ; f.c/c,

(p) ψ(+f. i/ i) = f.c/c ; +f.c/c,

(q) ψ(−f. i/ i) = f.c/c ;−f.c/c.

Then ψ witnesses the 3-size-bounded functional completeness of Ibr(M).
To obtain the effects of +f.0/0, an instruction sequence from ISbr(M)
is needed. Because there does not exist such an instruction sequence of
length 2 with the right effects, Ibr(M) is not 2-size-bounded function-
ally complete. Hence, Ibr(M) is strictly 3-size-bounded functionally
complete.

(5) Let M = { i/0, i/1}. Then instruction sequences from ISbr(M)
are needed for −f.1/ i , f.0/0, +f.0/0, f.1/1, −f.1/1, f. i/ i , +f. i/ i ,
−f. i/ i , f.c/c, +f.c/c, −f.c/c, and −f.1/c. Take ψ such that (a) and

(r) ψ(f.0/0) = f. i/0,

(s) ψ(+f.0/0) = f. i/0 ; #2,

(t) ψ(f.1/1) = f. i/1,

(u) ψ(−f.1/1) = f. i/1 ; #2,

(v1) ψ(f. i/ i) = +f. i/0 ; +f. i/1 ;−f. i/0 or

(v2) ψ(f. i/ i) = +f. i/1 ;−f. i/1 ; +f. i/0 or

(v3) ψ(f. i/ i) = +f. i/0 ; +f. i/1 ; #1 or

(v4) ψ(f. i/ i) = +f. i/1 ; #2 ; +f. i/0,

(w1) ψ(+f. i/ i) = +f. i/0 ; +f. i/1 ; +f. i/0 or

(w2) ψ(+f. i/ i) = +f. i/1 ;−f. i/1 ;−f. i/0 or

(w3) ψ(+f. i/ i) = +f. i/0 ; +f. i/1 ; #2 or

(w4) ψ(+f. i/ i) = +f. i/1 ; #2 ;−f. i/0,

(x1) ψ(−f. i/ i) = −f. i/0 ; +f. i/0 ; +f. i/1 or

(x2) ψ(−f. i/ i) = −f. i/1 ;−f. i/0 ;−f. i/1 or

(x3) ψ(−f. i/ i) = −f. i/0 ; #2 ; +f. i/1 or

(x4) ψ(−f. i/ i) = −f. i/1 ;−f. i/0 ; #2,

(y1) ψ(f.c/c) = +f. i/0 ; +f. i/0 ;−f. i/1 or

(y2) ψ(f.c/c) = +f. i/1 ;−f. i/0 ; +f. i/1 or

On Instruction Sets for Boolean Registers in Program Algebra 23

(y3) ψ(f.c/c) = +f. i/0 ; #2 ;−f. i/1 or

(y4) ψ(f.c/c) = +f. i/1 ;−f. i/0 ; #1,

(z1) ψ(+f.c/c) = −f. i/0 ; +f. i/1 ; +f. i/0 or

(z2) ψ(+f.c/c) = −f. i/1 ;−f. i/1 ;−f. i/0 or

(z3) ψ(+f.c/c) = −f. i/0 ; +f. i/1 ; #2 or

(z4) ψ(+f.c/c) = −f. i/1 ; #2 ;−f. i/0,

(aa1) ψ(−f.c/c) = +f. i/0 ; +f. i/0 ; +f. i/1 or

(aa2) ψ(−f.c/c) = +f. i/1 ;−f. i/0 ;−f. i/1 or

(aa3) ψ(−f.c/c) = +f. i/0 ; #2 ; +f. i/1 or

(aa4) ψ(−f.c/c) = +f. i/1 ;−f. i/0 ; #2,

(ab1) ψ(−f.1/c) = +f. i/0 ; +f. i/0 ;−f. i/1 ; #2 or

(ab2) ψ(−f.1/c) = +f. i/1 ;−f. i/0 ; +f. i/1 ; #2 or

(ab3) ψ(−f.1/c) = +f. i/0 ; #2 ;−f. i/1 ; #2 or

(ab4) ψ(−f.1/c) = +f. i/1 ;−f. i/0 ; #1 ; #2.

Then ψ witnesses the 4-size-bounded functional completeness of Ibr(M).
To obtain the effects of −f.1/c, an instruction sequence from ISbr(M)
is needed. Because there does not exist such an instruction sequence of
length 3 with the right effects, Ibr(M) is not 3-size-bounded function-
ally complete. Hence, Ibr(M) is strictly 4-size-bounded functionally
complete.

2

Theorem 3 tells us among other things that the instruction sets Ibr({c/c})
and Ibr({0/0, 1/1, i/ i , c/c}) are both strictly 3-size-bounded functionally
complete. However, the latter instruction set often gives rise to shorter
instruction sequences than the former instruction set because the effects
of a primitive instruction from the set Ibr({0/0, 1/1, i/ i}) do not have to
be obtained by means of two or three primitive instructions from the set
Ibr({c/c}).

We have the following corollary of the proof of Theorem 3.

Corollary 3 Let M ⊂ {0/0, 1/1, i/ i , c/c, i/0, i/1}. Then:

(1) Ibr(M) is strictly 4-size-bounded functionally complete if c/c /∈M and
either {0/0, 1/1, i/ i} ⊆M or { i/0, i/1} ⊆M ;

24 J.A. Bergstra, C.A. Middelburg

(2) Ibr(M) is strictly 3-size-bounded functionally complete if c/c ∈M .

7 Concluding Remarks

We have investigated instruction sequence size bounded functional com-
pleteness of instruction sets for Boolean registers. Our main results are
Corollaries 2 and 3. The latter corollary covers 44 instruction sets. The cov-
ered instruction sets include the instruction sets that we used earlier in [5, 6]
and many other relatively obvious instruction sets. The covered instruction
sets belong to the 255 instruction sets that are non-empty subsets of one
of the 256 instruction sets with the property that each possible instruction
has the same effects as one from the set (see Corollary 1). It is still an open
question what is the smallest k such that each of these 255 instruction sets
is k-size-bounded functionally complete if it is k′-size-bounded functionally
complete for some k′.

In our work on instruction sequence size complexity presented in [5],
we have established several connections between instruction sequence based
complexity theory and classical complexity theory. For example, we have
introduced instruction sequence based counterparts of the complexity classes
P/poly and NP/poly and we have formulated an instruction sequence
based counterpart of the well-known complexity-theoretic conjecture that
NP 6⊆ P/poly.7 However, for many a question that arises naturally with the
approach to complexity based on instruction sequence size, it is far from
obvious whether a comparable question can be raised in classical complexity
theory based on Turing machines or Boolean circuits. In particular, this
is far from obvious for questions concerning instruction sets for Boolean
registers.

Acknowledgements

We thank three anonymous referees for their helpful suggestions.

7The non-uniform complexity classes P/poly and NP/poly, as well as the conjecture
that NP 6⊆ P/poly, are treated in many textbooks on classical complexity theory (see
e.g. [1, 10, 14]).

On Instruction Sets for Boolean Registers in Program Algebra 25

References

[1] S. Arora and B. Barak. Computational Complexity: A Modern Approach.
Cambridge University Press, Cambridge, 2009.

[2] J. A. Bergstra and M. E. Loots. Program algebra for sequential code.
Journal of Logic and Algebraic Programming, 51(2):125–156, 2002. doi:
10.1016/S1567-8326(02)00018-8.

[3] J. A. Bergstra and C. A. Middelburg. Instruction sequence process-
ing operators. Acta Informatica, 49(3):139–172, 2012. doi:10.1007/

s00236-012-0154-2.

[4] J. A. Bergstra and C. A. Middelburg. Instruction Sequences for Com-
puter Science, volume 2 of Atlantis Studies in Computing. Atlantis
Press, Amsterdam, 2012. doi:10.2991/978-94-91216-65-7.

[5] J. A. Bergstra and C. A. Middelburg. Instruction sequence based non-
uniform complexity classes. Scientific Annals of Computer Science,
24(1):47–89, 2014. doi:10.7561/SACS.2014.1.47.

[6] J. A. Bergstra and C. A. Middelburg. Instruction sequence size com-
plexity of parity. arXiv:1412.6787v2 [cs.CC], 2014. To appear in
Fundamenta Informaticae.

[7] J. A. Bergstra and C. A. Middelburg. On algorithmic equivalence of
instruction sequences for computing bit string functions. Fundamenta
Informaticae, 138(4):411–434, 2015.doi:10.3233/FI-2015-1219.

[8] H. Ehrig and B. Mahr. Fundamentals of Algebraic Specification I:
Equations and Initial Semantics, volume 6 of EATCS Monographs.
Springer-Verlag, Berlin, 1985. doi:10.1007/978-3-642-69962-7.

[9] W. A. Hodges. Model Theory, volume 42 of Encyclopedia of Mathematics
and Its Applications. Cambridge University Press, Cambridge, 1993.

[10] S. Homer and A. L. Selman. Computability and Complexity The-
ory. Springer-Verlag, Berlin, second edition, 2011. doi:10.1007/

978-1-4614-0682-2.

[11] C. A. Middelburg. Instruction sequences as a theme in computer science.
https://instructionsequence.wordpress.com/, 2015.

http://dx.doi.org/10.1016/S1567-8326(02)00018-8
http://dx.doi.org/10.1016/S1567-8326(02)00018-8
http://dx.doi.org/10.1007/s00236-012-0154-2
http://dx.doi.org/10.1007/s00236-012-0154-2
http://dx.doi.org/10.2991/978-94-91216-65-7
http://dx.doi.org/10.7561/SACS.2014.1.47
http://dx.doi.org/10.3233/FI-2015-1219
http://dx.doi.org/10.1007/978-3-642-69962-7
http://dx.doi.org/10.1007/978-1-4614-0682-2
http://dx.doi.org/10.1007/978-1-4614-0682-2

26 J.A. Bergstra, C.A. Middelburg

[12] D. Sannella and A. Tarlecki. Algebraic preliminaries. In E. Astesiano,
H.-J. Kreowski, and B. Krieg-Brückner, editors, Algebraic Foundations
of Systems Specification, pages 13–30. Springer-Verlag, Berlin, 1999.
doi:10.1007/978-3-642-59851-7_2.

[13] D. Sannella and A. Tarlecki. Foundations of Algebraic Specification and
Formal Software Development. Monographs in Theoretical Computer
Science, An EATCS Series. Springer-Verlag, Berlin, 2012. doi:10.

1007/978-3-642-17336-3.

[14] I. Wegener. Complexity Theory – Exploring the Limits of Efficient Algo-
rithms. Springer-Verlag, Berlin, 2005. doi:10.1007/3-540-27477-4.

[15] M. Wirsing. Algebraic specification. In J. van Leeuwen, editor, Handbook
of Theoretical Computer Science, volume B, pages 675–788. Elsevier,
Amsterdam, 1990.

c© Scientific Annals of Computer Science 2016

http://dx.doi.org/10.1007/978-3-642-59851-7_2
http://dx.doi.org/10.1007/978-3-642-17336-3
http://dx.doi.org/10.1007/978-3-642-17336-3
http://dx.doi.org/10.1007/3-540-27477-4

	Introduction
	Program Algebra and Basic Thread Algebra
	Interaction of Threads with Services
	Instructions for Boolean Registers
	Equivalence of Instructions for Boolean Registers
	Bounded Functional Completeness of Instruction Sets
	Concluding Remarks

