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To Know is to Know the Value of a Variable

Alexandru Baltag 1

ILLC, University of Amsterdam

Abstract

We develop an epistemic logic that can express knowledge of a dependency between
variables (or complex terms). An epistemic dependency formula Kt1,...,tn

a t says that
agent a knows the value of term t conditional on being given the values of terms
t1, ..., tn. We add dynamic operators [!t1, . . . , tn]�, capturing the e↵ect of publicly
(and simultaneously) announcing the values of terms t1, . . . , tn. We prove complete-
ness, decidability and finite model property.

Keywords: knowing what, knowledge de re, dynamic epistemic logic.

1 Introduction
In this paper we build on the work of Plaza [14,15], and Wang and Fan [24,25]
on formalizing the notion of ‘knowledge de re’ (knowledge of an object, “knowl-
edge what”) over Kripke models 2 . We understand this as knowing the value
of a variable. Here, a variable is what in first-order modal logic is called a
“non-rigid designator” x, taking di↵erent values (in some fixed domain D) at
di↵erent possible worlds. If we denote by w(x) the value of variable x at world
w, and we denote by ⇠a the epistemic accessibility relation of some agent a,
then Plaza’s semantics for ‘knowledge de re’ is given by putting 3 : w |= Kax
i↵ 8v ⇠a w (v(x) = w(x)). This is a natural analogue of the usual semantics of
“knowledge that” in epistemic logic: an agent knows the value of x if that value
is the same in all her epistemic alternatives. When the range D of possible val-
ues of x is finite, then this operator is obviously reduceable to the usual one, via
a finite disjunction

W

d2D Ka(x = d). But in general this is not possible. Plaza
[15] had a very simple axiomatization of this operator (in combination with
the usual epistemic operator Ka' for “knowing that”), and claimed its com-
pleteness, based on a reduction to standard epistemic logic. He also extended

1 thealexandrubaltag@gmail.com
2 In its turn, the work of Wang and Fan builds on previous research in Security on knowledge
of keys and passwords, e.g. [9,11,23].
3 We use the the same symbol Ka for “knowledge what” as the usual epistemic operator for
“knowledge that”, and we use variables x, y, . . . to denote the non-rigid designators. Plaza,
and Wang and Fan, use a di↵erent notation Kva for “knowledge what”, and denote the
non-rigid designators by constants c. In our framework, doing this would be very confusing,
since we also have rigid designators, which are naturally denoted by constants.
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this logic with public announcement operators 4 [!'] (of which he is the main
originator [14]), and used the resulting logic to treat the classical “Sum and
Product” puzzle. But he could not prove completeness of this extended logic.
Wang and Fan solved this problem by introducing a conditional version of the
above operator K'

a x (“conditionally knowing what”), with the intuitive mean-
ing that agent a could find the value of x if given the additional information
that ' was the case. The introduction of such a conditional operator allows
one to “pre-encode” the dynamics of [!'] , following a strategy pioneered by
van Benthem [20], obtaining Reduction Axioms that allow us to reduce any
dynamic formula to a static one. Their completeness proof was very complex
(in the multi-agent case), going via a detour through first-order intentional
logic. A more natural type of announcement in this context is the action !x
of publicly announcing the value of x. In a recent talk (Univ. of Amsterdam
2015), Wang stated as an open question the problem of finding a complete
axiomatization for a logic that combines the operators for “knowledge that”
K�, “knowledge of a value” Kx, propositional public announcements [!�] and
public announcements of values [!x] . This problem remained open until now,
despite e↵orts in this direction by van Eijck, Gattinger and Wang. 5

In this paper we solve this problem, by introducing another kind of con-
ditional version of the above operator. An epistemic dependency formula
Kx1,...,xn

a y says that an agent knows the value of some variable y conditional
on being given the values of variables x1, ..., xn. The semantics is the obvious
generalization of the above clause: if we use the abbreviation w(�!x ) = v(�!x )
for the conjunction w(x1) = v(x1) ^ . . . w(xn) = v(xn), then we put

w |= Kx1,...,xn
a y i↵ 8v ⇠a w (w(�!x ) = v(�!x ) ) v(y) = w(y)) .

In words: an agent knows y given x1, . . . , xn if the value of y is the same in
all the epistemic alternatives that agree with the actual world on the values of
x1, . . . , xn. This operator has connections with Dependence Logic 6 and allows
us to “pre-encode” the dynamics of the value-announcement operator [!x]'.

Besides the epistemic dependency formulas and the dynamic public value-
announcement operator, we introduce a number of other formal innovations,
that are useful for both technical and conceptual purposes. One is that, in
addition to variables, we also allow constants (i.e. rigid designators) c, whose
value is the same in all possible worlds, as well as more complex terms t (built

4 We use the dynamic-logic style notation for this operator that is by now standard in
Dynamic Epistemic Logic, which we regard as natural: this is a dynamic modality, capturing
weakest precondition of an action exactly as in PDL, except that the action is the one of
publicly announcing '. Plaza uses the more opaque notation '+  .
5 After submitting the AiML abstract, we became aware of an unpublished draft by van
Eijck, Gattinger and Wang, containing work in progress on a partial solution to this problem.
The logic axiomatized there has knowledge de re operators Kx and value announcements
[!x] , but it cannot express the usual “knowledge that” K�, nor the usual (propositional)
public announcements [!�] , so it is not a complete solution to the above problem.
6 See Section 4.
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from variables and constants using functions). Moreover, we have relational
atoms R(t1, . . . , tn) expressing relationships between terms, and in particular
an equality predicate t = t0, which captures identity of values and plays an
essential role in our system. Although statements Kat cannot in general be
reduced to “knowledge that” statements Ka', formulas of the form x = c can
be used to provide “local reductions”: semantically, at each possible world w,
Kax is equivalent to Ka(x = c), where c is denotes the value w(x) of variable
x in world w. In our axiomatic system, this “local reduction” takes the shape
of our “Knowledge De Re” axiom, whose relevant instance in this case is the
validity

(x = c) ) (Kax , Ka(x = c)).

In words: when the value of x is c, then knowing the value of x is the same as
knowing that this value is c. Our Knowledge De Re axiom generalizes this to
epistemic dependency formulas. Combined with our “Existence of Value” Rule
(saying that variables always have a value), this allows us to prove complex
properties of epistemic dependence (e.g. the well-known Armstrong axioms
[2]) in a simple way, from basic epistemic axioms. It also allows us to provide a
rather simple completeness proof, based on a variation of the canonical model
construction, in which constants act as ‘witnesses’ for the values of variables.

Another technical innovation is that we include a special type of variables
?', storing the truth value of formula '. On the one hand, this introduces
another layer of (interesting) technical complexity, since terms of the form ?'
are even “more non-rigid” than the generic variables x, in that they can change
their value while this value is being learnt. Indeed, while x keeps its value when
that value is publicly announced, terms ?' corresponding to Moore sentences
' (such as “x = 0 but you don’t know it”) may change their values after
being learnt. On the other hand, the use of such “fluctuating variables” allow
us to simplify the syntax, by reducing the usual ‘knowledge that’ operator to
‘knowledge what’, via the equivalence Ka' , (' ^ Ka?'). This is in the
spirit of the Scha↵er quote above: to “know that” ' is to know the answer
to the question “what is the truth value of '?” So, unlike Plaza, and Wang
and Fan, we do not need two epistemic operators: there is only one kind of
knowledge, namely knowing the value of a variable. Similarly, propositional
announcements [!'] ) can be reduced to learning the value of variable ?'.

So one could say, without exaggerating too much, that all knowledge “is”, or
can at least be represented as, knowledge of the value of a variable. Hence, this
paper’s title: itself a paraphrase of Quine’s famous dictum. 7 This epistemic-
modeling variant seems less problematic than the original, ontological version!
And, in fact, our formalism suggests that the unary knowledge operator is just
a special case. The more general version of our motto is: to know is to know
the dependence between (values of) variables. This fits well with the popular
view of knowledge-acquisition as a process of learning correlations (with the
goal of eventually tracking causal relationships in the actual world).

7 “To be is, purely and simply, to be the value of a variable” [16].
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2 The Logic of Epistemic Dependency
In the following, we assume given a finite set A of “agents”, and four countable
sets of symbols: a set P of propositional atoms; a set V ar of variables; a set C
of constants, among which there are two distinguished constants 0 and 1 (with
0 6= 1); a set F of functional symbols and a set R of relational symbols, together
with an arity map ar : F [R ! N⇤, associating to all symbols f 2 F,R 2 Rel
natural numbers ar(f), ar(R) 2 N⇤. R includes an equality symbol =, with
ar(=) = 2. Intuitively, the di↵erence between variables and constants is that
constants are rigid designators, while variables are non-rigid: so a variable can
take di↵erent values in di↵erent possible worlds, while a constant denotes the
same objects in all the worlds of a given model. We use letters p, q, . . . to denote
atoms in P , letters x, y, . . . to denote variables in V ar, and letters c, d, . . . to
denote constants in C. We denote by �!x finite strings �!x = (x1, . . . , xk) 2 V ar⇤

of variables (of any length k � 0), and similarly use �!c to denote finite strings
�!c = (c1, . . . , ck) 2 C⇤ of objects. We denote by � the empty string.

Syntax. The Logic of Epistemic Dependency (LED) has a twofold syntax,
consisting of a set L = L(P, V ar, C, F, ar) of propositional formulas ' and a
set T = T (P, V ar, C,F ,R, ar) of terms t, defined by double recursion:

' ::= p | R(
�!
t ) | '! ' | K

�!
t
a t

t ::= x | c | ?' | f(�!t )

where a 2 A are agents, x 2 V ar are variables, c 2 C are constants, t 2 T
are terms,

�!
t are finite tuples of terms and f 2 F , R 2 R are symbols of arity

equal to the length of
�!
t . We abbreviate = (t, t0) as t = t0.

Semantics. A model (for L and T ) is a structure

M = (W,D, [0], [1],⇠a, k • k, •(•), f ,R )a2A,f2F,R2R

where: W is a set of possible worlds ; D is a set of objects, containing at least
two designated objects [0] 6= [1]; ⇠a✓ W ⇥W are equivalence relations, called
epistemic indistinguishability relations; k • k is a valuation function mapping
each atomic sentence p 2 P to a set kpk ✓ W of possible worlds; •(•) :
W ⇥ (V ar [ C) ! D is a map associating to each world w 2 W and each
variable or constant ↵ 2 V ar [ C some object w(↵) 2 D, called the value of ↵
at world w, and satisfying the requirement that the value of each constant is
the same in all the worlds : i.e., w(c) = w0(c) for all c 2 C and all w,w0 2 W ;
and for all symbols f 2 F , R 2 R of arity ar(f) = n, we are given n-ary maps
f : Dn ! D and n-ary relations R ✓ Dn, with the standard interpretation of
equality = as the diagonal {(d, d) : d 2 D} of D.

For the semantics, we simultaneously define an extended valuation (the
“truth map”) k'kM for all formulas ', and an extended value map w(t)M
for all terms t and all worlds w 2 W . We will use the notation w(

�!
t ) :=

(w(t1), . . . , w(tk)) for the string of values corresponding to any given string of



Baltag 139

terms
�!
t = (t1, . . . , tk) 2 T ⇤. The truth map is given for propositional atoms

p 2 P by the valuation kpk, and extended to other formulas by recursively

putting: kR(
�!
t )k = {w 2 W |w(�!t ) 2 R}; k' !  k = (W \ k'k) [ k k;

kK
�!
t
a t0k = {w 2 W |8v 2 W (w ⇠a v ^ w(

�!
t ) = v(

�!
t ) ) w(t0) = v(t0))}. The

extended value map w(t0) is given by the value map w(↵) for variables and
constants ↵ 2 V ar [C, and extended to other terms by recursion: w(?') = [1]

i↵ w 2 k'k; w(?') = 0 i↵ w 62 k'k; w(f(�!t )) = f(w(
�!
t )).

Abbreviations. We put > := (1 = 1); ? := (1 = 0): ¬' := ' ! ?;
' _  := ¬' !  ; ' ^  := ¬(¬' _ ¬ ); ' $  := (' !  ) ^ ( ! ');

K
�!
t
a ' := ' ^K

�!
t
a ?'; hK

�!
t
a i' := ¬K

�!
t
a ¬'; Ka' := K�

a' (where � is the empty

string); hKai' := ¬Ka¬'; K'
a  := Ka(' !  ). We also put K

�!
t
a

�!
t0 :=

V

1ik K
�!
t
a t0i, and (

�!
t =

�!
t0 ) :=

V

1ik ti = t0i, where k is the length of
�!
t0 .

Ground Terms A ground term is a term that contains no variables and no
propositional formulas (hence, no ?); in other words, ground terms are built
only from constants c, d, . . . 2 C by recursively applying function symbols
f, g, . . .. Let us denote by T 0 the set of all ground terms.

Propositional Substitution: For atoms p 2 P and formulas ✓, the substi-
tution of p with ✓ is an operation mapping every formula ' 2 L into a new
formula '[p/✓] 2 L, and similarly mapping every tuple of term

�!
t 2 T into a

new tuple
�!
t [p/✓], obtained by uniformly substituting p with ✓ as usual. 8

Variable Substitution: For variables x 2 V ar and terms t 2 T , the substi-
tution of x with t is an operation mapping every formula ' 2 L into a new
formula '[x/t] 2 L, and mapping every term t0 2 T into a new term t0[x/t],
obtained by uniformly substituting x with t in the usual way. 9

Example 1. Alice and Bob have each a natural number written on their
foreheads. It is common knowledge that Alice’s number xa is the immediate
successor of Bob’s number xb. Both are blindfolded, so nobody can see the
numbers. The model has: V ar = {xa, xb}, D = C = N is the set of natu-
ral numbers; F = {+,⇥} and R = {=, >} contain the usual operations and
relations on N ; the set W of worlds consists of all functions w : V ar ! N ,
satisfying the given constraint w(xa) = w(xb) + 1; the epistemic relations are
given by the universal relations: ⇠a=⇠b= W ⇥ W . Note that the sentence
¬Kaxa ^ ¬Kbxb ^Ka(xa > xb) ^Kb(xa > xb) ^Kxb

a xa ^Kxa

b xb is true in all
worlds. So nobody knows his/her number, but both know that Alice’s number
is larger, and both could come to know the numbers if given only the other’s
number.

8 More precisely: p[p/✓] := ✓; q[p/✓] := q; (R(t1, . . . , tn))[p/✓] := R(t1[p/✓], . . . , tn[p/✓]);

(' !  )[p/✓] := '[p/✓] !  [p/✓]; Kt1,...,tn
a t[p/✓] := K

t1[p/✓],...,tn[p/✓]
a t[p/✓]; �[p/✓] := �;

c[p/✓] := c; x[p/✓] := x; ?'[p/✓] :=?'[p/✓]; f(t1, . . . , tn)[p/✓] := f(t1[p/✓], . . . , tn[p/✓]).
9 I.e., �[x/t] := �; c[x/t] := c; x[x/t] := t; y[x/t] := y; ?'[x/t] :=?'[x/t]; f(t1, . . . , tn)[x/t] :=
f(t1[x/t], . . . , tn[x/t]); p[x/t] := p; (R(t1, . . . , tn)[x/t] := R(t1[x/t], . . . , tn[x/t]); (' !
 )[x/t] := '[x/t] !  [x/t]; (Kt1,...,tn

a t0)[x/t] := K
t1[x/t],...,tn[x/t]
a t0[x/t].
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Proof system. The proof system LED consists of the following:

RULES:
• Propositional Substitution: From ', infer '[p/✓].
• Variable Substitution: From ', infer '[x/t].
• Modus Ponens Rule: From ' and '!  , infer  .
• Necessitation: From ', infer Ka'.
• Existence-of-Value Rule (EV R):

From x = c ! ' , infer ', provided that c does not occur in '.

AXIOMS:
• All the classical propositional tautologies.
• All the S5 axioms for Ka.
• Knowledge De Re:

(�!x = �!c ^ y = d ) !
⇣

K
�!x
a y $ K

�!x=�!c
a y = d)

⌘

• Equality Axioms:
x = x

x = y ! y = x

(x = y ^ y = z) ! x = z

�!x = �!y ! f(�!x ) = f(�!y )

(x = y ^R(�!z , x,�!w )) ! R(�!z , y,�!w )

• Characteristic Functions:
?' = 1 $ ',

?' = 0 $ ¬',
• Knowledge of Functions:

K
�!x
a f(�!x )

In fact, two of the axioms are redundant: symmetry and transitivity of =
follow from the other axioms, but we chose to include them for convenience. We
write `  if  is provable in the proof system LED. For any set of formulas
� and any formula  , we write � `  if there exist finitely many formulas
�1, . . . ,�n 2 � (for some n 2 N) such that ` (�1 ^ . . .�n) !  . We say that
� is logically closed if, for every formula  2 L, � `  implies  2 �. We
say that � is consistent if � 6` ?, and that a formula ' is consistent with � if
� [ {'} is consistent (equivalently: if � 6` ¬').

Lemma 2.1 For a set � of formulas, put K
�!
t
a � := {K

�!
t
a � : � 2 �}. Then we

have that:

• if � `  then K
�!
t
a � ` K

�!
t
a  .

• � [ { } ` ✓ i↵ � ` ( ! ✓).
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Proposition 2.2 Let ' be a formula and z be a variable that does not occur
in the scope of any Ka-operator in '. Then the following is provable in LED:

` (x = y ^ '[z/x]) ! '[z/y].

NOTE The unrestricted version of the above schema is not valid! A coun-
terexample is obtained by taking for instance ' to be the formula Ka(z = c).
This is related to the Phosphorus/Hesperus paradox.

Proposition 2.3 (Knowledge of Ground Terms and Ground Identities). For
all ground terms t, t0 2 T 0, all the instances of the following schema are
provable in LED:

` Kat;

` t = t0 ! Kat = t0.

Proof. We prove the first claim by induction on t: For the base step, let
t := c be a constant. From the Knowledge De Re axiom, we get ` x =
c ! (Kax $ Ka(x = c)). By substituting c for x and using the first
equality axiom, we get ` Kac $ Ka(c = c). But on the other hand, by
applying Necessitation to the first equality axiom, we have ` Ka(c = c),
and hence we obtain ` Kac. For the inductive step: consider a term of the
form f(

�!
t ), where

�!
t = (t1, . . . , tn) is a tuple of ground terms. By the in-

duction hypothesis, we can assume that ` Kati for all i = 1, n. Using this
and the Knowledge De Re axiom, we derive ` �!

t = �!c ! Ka
�!
t = �!c .

Combining this with ` Ka
�!
t = �!c ! Kaf(

�!
t ) = f(�!c ) (obtained by ap-

plying Necessitation, Kripke’s axiom and Modus Ponens to the fourth equal-
ity axiom), we obtain ` �!

t = �!c ! Kaf(
�!
t ) = f(�!c . Combining this

with the theorem `
⇣�!
t = c ^ f(�!c ) = d

⌘

! K
�!
t =�!c
a f(

�!
t ) = d (obtained

from the axiom ` K
�!
t
a f(

�!
t ) and the Knowledge De Re axiom), we get that

`
⇣�!
t = c ^ f(�!c ) = d

⌘

! Kaf(
�!
t ) = d. This, together with the obvious theo-

rem ` �!
t = c !

⇣

f(
�!
t ) = d ! (

�!
t = c ^ f(�!c ) = d)

⌘

(an obvious consequence

of the equality axioms), gives us ` �!
t = c !

⇣

f(
�!
t ) = d ! Kaf(

�!
t ) = d

⌘

.

Applying the the (EV R) rule, we get ` f(
�!
t ) = d ! Kaf(

�!
t ) = d, which by

the Knowledge De Re axiom, yields ` f(
�!
t ) = d ! Kaf(

�!
t ). Applying again

the (EV R) rule, we obtain ` Kaf(
�!
t ), as desired.

As for the second claim: given the first claim, we have ` Kat and ` Kat0.
This, together with (a suitable substitution instance of) the Knowledge De Re
axiom and the conjunctivity of knowledge, gives us ` (t = c^ t0 = c) ! Ka(t =
c ^ t0 = c), and hence (using equality axioms and the axioms of normal modal
logic) ` (t = c ^ t0 = c) ! Kat = t0. Together with ` t = c ! (t = t0 ! t0 = c)
(a consequence of the equality axioms), this yields ` t = c ! (t = t0 ! Kat =
t0). By the (EV R) rule, we obtain ` t = t0 ! Kat = t0, as desired. 2
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Proposition 2.4 All the following theorems are provable in LED:

` Kx1,...,xk
a y ! K

x⇡(1),...,x⇡(k)
a y, for every permutation ⇡ : {1, . . . , k} ! {1, . . . , k}

` (K
�!x
a
�!y ^K

�!x ,�!y
a

�!z ) ! K
�!x
a
�!z

` K
�!x
a
�!y ! K

�!x ,�!z
a

�!y

` K
�!x
a
�!y ! K

�!x
a f(�!y )

` �!x = �!c ! (K
�!x
a '! K

�!x=�!c
a ')

` K
�!x
a ('!  ) ! (K

�!x
a '! K

�!x
a  )

` K
�!x
a '! '

` K
�!x
a '! K

�!x
a K

�!x
a '

` ¬K�!x
a '! K

�!x
a ¬K�!x

a '

Proof. We only prove the first two formulas, the other proofs are similar. For
the first, we use the obvious propositional validity ` (x1 = c1 ^ . . . xk = ck) !
(x⇡(1) = c⇡(1)^ . . . x⇡(k) = c⇡(k)), together with two instances of Knowledge De
Re axiom: ` (x1 = c1^ . . . xk = ck) ! (Kx1,...,xk

a y $ Kx1=c1^...xk=ck
a y), and `

(x1 = c1 ^ . . . xk = ck) ! (K
x⇡(1),...,x⇡(k)
a y $ K

x⇡(1)=c⇡(1)^...x⇡(k)=c⇡(k)
a y). From

these we derive ` (x1 = c1 ^ . . . xk = ck) ! (Kx1,...,xk
a y ! K

x⇡(1),...,x⇡(k)
a y),

then apply repeatedly the (EV R) rule to obtain the desired conclusion.
For the second, we use three instances of Knowledge De Re axiom: ` (�!x =

�!c ^�!y =
�!
d ) ! (K

�!x
a
�!y $ K

�!x=�!c
a

�!y =
�!
d ), ` (�!x = �!c ^�!y =

�!
d ^�!x = �!e ) !

(K
�!x ,�!y
a

�!z $ K
�!x=�!c ^�!y =

�!
d

a
�!z = �!e ), and ` (�!x = �!c ^ �!z = �!e ) ! (K

�!x
a
�!z $

K
�!x=�!c
a

�!z = �!e ). From these, together with the usual properties of the normal
propositional operator Ka� (and the fact that K� is just an abbreviation for

Ka(�!  )), we obtain ` (�!x = �!c ^�!y =
�!
d ^ = �!e ) ! ((K

�!x
a
�!y ^K�!x ,�!y

a
�!z ) !

K
�!x
a
�!z ), then we apply the (EV R) rule. 2

One can also easily verify that:

Proposition 2.5 The following Necessitation-type rule for K
�!
t
a is derivable in

LED: if ` ' then ` K
�!
t
a '.

“Pseudo-modalities”: necessitation/possibility forms. For any finite

string s 2 (L [ (A ⇥ T ⇤))⇤, consisting of formulas � 2 L and/or pairs (a,
�!
t )

of agents a 2 A and strings
�!
t 2 T ⇤ of terms, we define “pseudo-modalities”

[s] and hsi, mapping any formula � 2 L to formulas [s]� 2 L (called a “ne-
cessity form”) and hsi� 2 L (called a “possibility form”). The definition is
by recursion, putting for necessity forms: [�]� := � for the empty string �;

[ , s]� :=  ! [s]�; and [(a,
�!
t ), s]� := K

�!
t
a [s]�. As for possibility forms, we

put hsi� := ¬[s]¬�.
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Lemma 2.6 For every necessity form [s] there exists some formula  2 L,
such that for all ✓ 2 L, we have:

` [s]✓ i↵ `  ! ✓.

Moreover, the same constants and variables occur in  as in s.

Proof. If s = �, then take  := >. Otherwise, [s]✓ is just a sequence of

symbols of the form  ! . . . and K
�!
t
a . . ., followed at the end by ✓. Starting

from the left, we can “eliminate” one by one each knowledge symbol K
�!
t
a . . .

by “pushing” it into the premise, using the fact 10 that: `  ! K
�!
t
a � holds i↵

` hK
�!
t
a i ! � holds. At the end of this process, we obtain a formula of the

form  ! ✓. It is easy to see that  depends only on s, not on ✓, and that
moreover  contains the same constants and variables as s. 2

Lemma 2.7 Given s 2 (L[ (A⇥T ⇤))⇤, t 2 T , ' 2 L, let c be a constant that
does not occur in s, t or '. Then the following rule is admissible in LED:

if ` [s](t = c ! ') then ` [s]'

Proof. Let  be the formula associated to s by the previous Lemma: so for
all ✓, ` [s]✓ i↵ `  ! ✓. Suppose now that we have ` [s](t = c ! '). Then we
also get `  ! (t = c ! '), and hence ` t = c ! ( ! '). Let x be a variable
not occurring in t, ' or s (and hence, by the previous Lemma, not occurring in
 either). Using (some substitution instance of one of) the Equality Axioms,
we obtain ` x = c ! (t = x ! ( ! ')). Since c does not to occur in s, t or
', by the previous Lemma it doesn’t occur in  either. By the (EV R) rule, we
obtain ` t = x ! ( ! '). Using the Variable Substitution Rule (where we
substitute t for x), we get ` t = t ! ( ! '). But we also have ` t = t (by
another of the Equality axioms), and hence `  ! '. Using again the previous
Lemma, we obtain ` [s]'. 2

Theorem 2.8 The proof system LED is sound and strongly complete (and
hence the logic LED is compact). Moreover, this logic has the strong finite
model property, and hence it is decidable.

The rest of this section is dedicating to the proof of this theorem. For any
countable set of constants C, let LC be the language of LED based only on
constants in C. A C-theory � is a consistent set of formulas in LC ; here, “con-
sistent” means consistent with respect to the proof system LED formulated for
the language LC . A maximal C-theory is a C-theory � that is maximal (w.r.t.
inclusion) among all C-theories. A C-witnessed theory is a C-theory � such
that, for every term t 2 TC , string s 2 (LC [ (A⇥ T ⇤

C ))⇤ and formula ' 2 LC ,
if � ` [s](t = c ! ') for all c 2 C, then � ` [s]'. Equivalently: if whenever
hsi' is consistent with �, then there exists some c 2 C s.t. hsi(t = c ^ ')

10This is an instance of the well-known fact that in the axiomatic system S5, a formula
 ! 2� is a theorem i↵ the formula 3 ! � is a theorem.
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is consistent with �. A maximal C-witnessed theory is a C-witnessed theory
which is not a proper subset of any other C-witnessed theory.

For the completeness proof, we make use of the following three easily veri-
fiable results:

Lemma 2.9 If � is a C-theory and � 6` ¬�, then � [ {�} is also a C-theory.
Moreover, if � is C-witnessed, then � [ {�} is C-witnessed.

Lemma 2.10 If �0 ✓ �1 ✓ . . . ✓ �n ✓ . . . is an increasing chain of C-
theories, then

S

n2N �n is a C-theory. Moreover, if all �n are C-witnessed
then

S

n2N �n is C-witnessed.

Lemma 2.11 A C-theory � is a C-witnessed maximal C-theory i↵ it is a
maximal C-witnessed theory.

The completeness proof goes now via the following steps:

Lemma 2.12 (Lindenbaum Lemma) Every C-witnessed theory � can be ex-
tended to a maximal C-witnessed theory T� ◆ �.

Proof. Let �0,�1, . . . ,�n, . . . be an enumeration of formulas in LC . We define
an increasing chain �0 ✓ �1 . . . ✓ �n ✓ . . . of C-witnessed theories: first,
put �0 := �; then, given the witnessed C-theory �n, put �n+1 := �n if
� ` ¬�n, and put �n+1 := �n [ {�n} otherwise (if �n 6` ¬�n). Finally, we put
T� :=

S

n2N �n. By Lemma 2.10, this is a C-witnessed theory. Moreover, it is
also a maximal C-theory (since every formula consistent with T� is in T�), so
it is a maximal C-witnessed theory. 2

Lemma 2.13 (Extension Lemma) Let C be a set of constants, and let C 0 =
{c0, c1, . . . , cn, . . .} be a countable set of “fresh” constants, i.e. s.t. C \C 0 = ;.
Put C̃ = C [ C 0. Then every C-theory � can be extended to a C̃-witnessed
theory �̃ ◆ �, and hence (by Lindenbaum Lemma) to a maximal C̃-witnessed
theory T� ◆ �.

Proof. Let �1, . . . , �n . . . be an enumeration of all the triplets of the form
�n = (sn, tn,�n) consisting of any necessity form sn 2 (LC̃ [ (A ⇥ T ⇤

C̃
))⇤, any

term tn 2 TC̃ and formula �n 2 LC̃ . For every such triplet �n = (sn, tn,�n),
put C 0(n) =: {c0 2 C 0 : c0 occurs in either sn or tn or �n}. Note that C 0(n) is
always finite.

We now construct an increasing chain �0 ✓ �1 . . . ✓ �n ✓ . . . of C̃-theories,
satisfying the following three properties: (1) �0 = �; (2) for every n 2 N , the
set C 0

n := {c0 2 C 0 : c0 occurs in �n} is finite; (3) for every triplet �n =
(sn, tn,�n) in the above enumeration, if �n 6` ¬hsni�n, then 9m 2 N s.t.
hsni(tn = c0m ^ �n) 2 �n+1. The construction is by recursion. For n = 0, we
put �0 := �, which takes care of condition (1) above. At step n+1, let �n be a
C̃-theory satisfying clause (1) above, and let �n = (sn, tn,�n) be the n-th triplet
in the above enumeration. We have two cases: (a) if we have �n ` [sn]¬�n, then
we put �n+1 := �n; (b) in case that we have �n 6` [sn]¬�n, then we choose m
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to be the least natural number bigger 11 than the indices of all the constants in
C 0(n)[C 0

n, and put �n+1 := �n[{hsni(tn = c0m^�n)}. To show that this gives
us a C-theory, notice that c0m doesn’t occur in sn, tn,�n or �n. If �n+1 were
inconsistent, then we’d have �n ` [sn](tn = c0m ! ¬�n), so 9✓1, . . . , ✓k 2 �n

s.t. ` ✓1 ! (✓n ! · · · [sn](tn = c0m ! ¬�n)) is a theorem in LED. But
c0m 62 C 0(n) [ C 0

n, so c0m doesn’t occur in sn, tn,�n, ✓1, . . . , ✓n (or in any other
formula of �n). By Lemma 2.7, we have that ` ✓1 ! (✓n ! · · · [sn]¬�n) is also
a theorem in LED, and hence that �n ` [s]¬�n, contrary to our assumption
(in case b). So in both cases �n+1 is a C̃-theory. It is also easy to see that it
satisfies condition (2): in case (a) we have C 0

n+1 = C 0
n (finite by the inductive

assumption); in case (b) we have C 0
n+1 = C 0

n[C 0(n)[{c0m} (still finite). Finally,
it is obvious that condition (3) is satisfied.

Given now this increasing sequence � = �0 ✓ · · · ✓ �n ✓ · · · of C̃-theories
satisfying (1)-(3) above, take �̃ :=

S

n2N �n. By Lemma 2.10, �̃ is a C̃-theory,

and it obviously includes � = �0. Condition (3) above implies that �̃ is C̃-
witnessed. 2

Together, the last three results imply that, in order to show completeness,
it is enough to show that, for any countable set C of constants, every maximal
C-witnessed theory has a model. We now proceed to prove this.

From now on, we fix the set of constants C, and we assume given a maximal
C-witnessed theory T0. For each term t 2 T = TC , we can define an equivalence
relation ⇠t on maximal C-witnessed theories T, T 0, by putting: T ⇠t T 0 i↵
8c 2 C((t = c) 2 T , (t = c) 2 T 0). Put ⇠ :=

T

t2T 0 ⇠t (where recall
that T 0 is the set of ground terms). It is obvious that ⇠ is also an equivalence
relation on maximal C-witnessed theories.

In addition, we can define another equivalence relation ⌘ on the set of
constants C by putting: c ⌘ c0 i↵ (c = c0) 2 T0. For any constant c 2 C, let us
denote by [c] := {c0 2 C : c ⌘ c0} the equivalence class of c modulo ⌘.

Canonical Model The canonical model for T0 is a model
M = (⌦, D, [0], [1],⇠a, k • k, •(•), f ,R )a2A,f2F,R2R for the lan-
guage LC , defined as follows: the state space is ⌦ := {T ✓ LC :
T maximal witnessed LC-theory with T ⇠ T0}; the set of objects is
D := {[c] : c 2 C}, where [c] is the equivalence class of c modulo ⌘,
and the equivalence classes [0] and [1] are the two designated objects; the
epistemic relations are: T ⇠a T 0 i↵ 8' 2 LC(Ka' 2 T ) ' 2 T 0). For f 2 F ,
we put f([c1], . . . , [cn]) := [c] for c1, . . . , cn, c 2 C with (f(c1, . . . , cn) = c) 20;
and for R 2 R, we put R := {([c1], . . . , [cn]) : R(c1, . . . , cn) 2 T0. The
valuation is kpk := {T 2 W : p 2 T}. The value T (↵) of ↵ 2 V ar [C at world
T 2 ⌦ is given by T (c) := [c] for c 2 C, and T (x) := [c], for x 2 V ar and c 2 C
with (x = c) 2 T . It is easy to check that these definitions are independent of
the choice of representatives, so M is indeed a well-defined model for LC .

11Such a number exists, due to the inductive assumption (2) above.
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Lemma 2.14 ( Intersection Lemma) For all agents a 2 A and finite strings of

terms
�!
t = (t1, . . . , tn), we have: ⇠

�!
t
a =⇠a \ ⇠t1 \ · · · ⇠tn .

Proof. The left-to-right inclusion: the LED-theorem ` K
�!x
a
�!y ! K

�!x ,�!z
a

�!y
(proven in Proposition 2.4) yields by substitution ` Ka' ! K

�!
t
a ' and `

Kti
a ' ! K

�!
t
a ', from which we obtain ⇠

�!
t
a ✓⇠a and ⇠

�!
t
a ✓⇠ti (for all i = 1, n).

For the converse inclusion: suppose T, S 2 ⌦ satisfy T ⇠a S and T ⇠ti S for

all i = 1, n. To show that T ⇠
�!
t
a S, let K

�!
t
a ' 2 T . We need to show that

' 2 S: for this, notice that, since T is C-witnessed (and , for each i = 1, n
there must exist constants ci 2 C such that T is consistent with ti = ci. Since
T is maximal, it follows that (ti = ci) 2 T , and moreover that (

�!
t = �!c ) 2 T .

By applying the theorem ` �!
t = �!c ! (K

�!
t
a ' ! K

�!
t =�!c
a '), we obtain that

K
�!
t =�!c
a ' 2 T , i.e. Ka(

�!
t = �!c ! ') 2 T . This together with T ⇠a S, gives us

that (
�!
t = �!c ! ') 2 S. But from (

�!
t = �!c ) 2 T and T ⇠ti S for all i = 1, n,

we derive that (
�!
t = �!c ) 2 T , and hence by closure of (the maximal theory T )

under modus ponens, we obtain that ' 2 T . 2

As a consequence of Lemma 2.14, all ⇠
�!
t
a are equivalence relations.

Lemma 2.15 (Diamond Lemma) Let T 2 ⌦, and let a,
�!
t ,' be such that

K
�!
t
a ' 62 T . Then there exists some theory S 2 ⌦ such that T ⇠

�!
t
a S but ' 62 S.

Proof. Let  := { : K
�!
t
a  2 T}. We will show the following

Claim: The set  [ {¬'} is a C-witnessed theory.

To prove this claim, we first need to show that this set is consistent. Suppose

not; then there exist  1, . . . , n 2  (hence, K
�!
t
a  i 2 T for all i = 1, n)

such that ` ( 1 ^ . . . n) ! ' is a theorem. But then we also have that

` (K
�!
t
a  1^. . .K

�!
t
a  n) ! K

�!
t
a ' and (K

�!
t
a  1^. . .K

�!
t
a  n) 2 T , henceK

�!
t
a ' 2 T ,

in contradiction with our assumption (that K
�!
t
a ' 62 T ).

Next, to show that  [ {¬'} is C-witnessed, suppose that, for some triple
(s0, t0,'0), we have  [ {¬'} ` [s0](t0 = c ! �0) for all c 2 C. By a previous
lemma, this gives that  ` (¬' ! [s0](t0 = c ! �0)) for all c, and by another

lemma we obtain that K
�!
t
a  ` K

�!
t
a (¬' ! [s0](t0 = c ! �0)) (where recall

that K
�!
t
a  = {K

�!
t
a  :  2  }). But note that Ka ✓ T , and hence we get

T ` K
�!
t
a (¬' ! [s0](t0 = c ! �0)) for all c 2 C. Since T 2 ⌦ is C-witnessed,

it follows (by applying the C-witnessing condition to the necessitation form

((a,
�!
t ),¬', s0)) that T ` K

�!
t
a (¬' ! [s0]�0), and hence by maximality that

K
�!
t
a (¬' ! [s0]�0) 2 T , hence (¬' ! [s0]�0) 2  . From this we obtain that

 [ {¬'} ` [s0]�0, thus proving our Claim above.

Given the Claim, we can now use the Extension Lemma (in combination
with Lindenbaum Lemma) to extend the set [{¬'} to a maximal C-witnessed
theory S. It is easy to see that we have S ⇠ T ⇠ T0, hence S 2 ⌦. We
obviously have (¬') 2 S, so by consistency ' 62 S. Finally,  ✓ S gives us

that T ⇠
�!
t
a S. 2
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Lemma 2.16 ( “Knowledge de Re” Lemma) Let T 2 ⌦, and let a,
�!
t , t0 be

such that K
�!
t
a t0 62 T . Then there exists some theory S 2 ⌦ such that T ⇠

�!
t
a S

but T 6⇠t0 S.

Proof. Since T is a maximal C-witnessed theory, there exist �!c 2 C⇤, c 2 C
such that

�!
t = �!c , t0 = c0 2 T . By using the theorem ` (

�!
t = �!c ^ t0 = c0) !

(K
�!
t
a t0 $ Ka(

�!
t = �!c ! t0 = c0)) (which is a substitution instance of the

Knowledge de Re axiom) and the assumption that K
�!
t
a t0 62 T , we obtain that

Ka(
�!
t = �!c ! t0 = c0) 62 T . By the Diamond Lemma, there exists some S 2 ⌦

such that T ⇠
�!
t
a S but (

�!
t = �!c ! t0 = c0) 62 S. By the maximality of S, we

get that (
�!
t = �!c ^ t0 6= c0) 2 S, and hence that T ⇠ti S for all i = 1, n but

T 6⇠t0 S. Using also T ⇠
�!
t
a S and the Intersection Lemma above, we conclude

that T ⇠
�!
t
a S (and T 6⇠t0 S), as desired. 2

Lemma 2.17 (Truth Lemma) Let M = (⌦, D,⇠a, k • k, •(•), f )a2A,f2F be
the canonical model for (some theory) T0. Then for every formula ' and every
term t, we have:

(1) T 2 k'kM i↵ ' 2 T , and

(2) T (t) = [c] i↵ (t = c) 2 T .

Proof. We prove both claims by simultaneous induction on the complexity 12

of formulas ' and terms t:
To prove (1): for atomic formulas p 2 P , (1) is trivial. For relational

atoms R(
�!
t ), let

�!
[c] 2 D⇤ be s.t. T (

�!
t ) =

�!
[c], so by the induction hypothesis

for (2) we have (
�!
t = �!c ) 2 T . Then we have the following sequence of

equivalencies: T 2 kR(
�!
t )kM i↵ T (

�!
t ) 2 R i↵

�!
[c] 2 R i↵ R(

�!
[c]) 2 T0 i↵

(using T ⇠ T0) R(
�!
[c]) 2 T i↵ R(

�!
[t]) 2 T (where at the last step we used

the fact that (
�!
t = �!c ) 2 T and the equality axioms). For implicational

formulas �!  , this goes as usual, using the properties of maximally consistent

theories. For epistemic formulas K
�!
t
a t0, with

�!
t = (t1, . . . , tn): to prove the

left-to-right implication, suppose that T 2 kK
�!
t
a t0kM but (K

�!
t
a t0) 62 T . By the

Knowledge de Re Lemma, there exists some S 2 ⌦ such that T ⇠
�!
t
a S but

T 6⇠t0 S. By the Intersection Lemma, we obtain that T ⇠a S and T ⇠ti S
for all i 2 {1, . . . , n}; i.e. for every c 2 C and i 2 {1, . . . , n}, we have that:
(ti = c) 2 T , (ti = c) 2 S. By the induction hypothesis for claim (2), this

implies that T (
�!
t ) = S(

�!
t ). From this, together with T ⇠a S and the fact that

T 2 kK
�!
t
a t0kM (as well as the semantic clause for knowledge de re), we obtain

that T (t0) = S(t0). Applying again the induction hypothesis for (2), we get that

12Our notion of complexity is a function comp : LC [ TC ! N , defined recur-
sively by putting: comp(p) = comp(c) = comp(x) = 0, comp(R(t1, . . . , tn)) =
1 + max(comp(t1), . . . , comp(tn)), comp(� !  ) = 1 + max(comp(�), comp( )),
comp(Kt1,...,tn

a t0) = 1 + max(comp(t1), . . . , comp(tn), comp(t0)), comp(?�) = 1 + comp(�),
comp(f(t1, . . . , tn)) = 1 +max(comp(t1), . . . , comp(tn)).
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(t0 = c) 2 T , (t0 = c) 2 S holds for all c 2 C, i.e. T ⇠t0 S contrary to our

assumption above. To show the converse: suppose that (K
�!
t
a t0) 2 T . Since T is

C-witnessed there must exist �!c 2 C⇤, c0 2 C such that (
�!
t = �!c ), (t0 = c0) 2 T .

By the induction hypothesis for (2), we have T (ti) = [ci] for all i 2 {1, . . . , n},
and also T (t0) = [c0]. To prove now that T 2 k'kM , let S 2 ⌦ be such that

T ⇠a S and T (
�!
t ) = S(

�!
t ). It is enough to prove that T (t0) = S(t0). Using

the Knowledge de Re axiom, and the fact that (K
�!
t
a t0) 2 T , we obtain that

(K
�!
t =�!c
a t0 = c0) 2 T , i.e. Ka(

�!
t = �!c ! t0 = c0) 2 T . Since T ⇠a S, we must

have (
�!
t = �!c ! t0 = c0) 2 S. From T (

�!
t ) = S(

�!
t ) and T (ti) = [ci] for all i,

we get that S(ti) = [ci] for all i, and so by the induction hypothesis for (2) we

have (
�!
t = �!c ) 2 S. This, together with (

�!
t = �!c ! t0 = c0) 2 S, gives us that

(t0 = c0) 2 S. Applying again the induction hypothesis for the second claim,
we obtain that S(t0) = [c0] = T (t0), as desired.

To show (2): it is trivially true for variables x 2 V ar and constants c0 2 C.
For terms of the form ?': we know that by definition T (?') = [1] holds i↵
T 2 k'kM holds, i.e. (by the induction hypothesis for (1)) i↵ ' 2 T i↵
(?' $ 1) 2 T (by the Characteristic Functions Axiom). A similar argument
shows that T (?') = [0] i↵ (?' $ 0) 2 T . Since [0] and [1] are the only
possible values of T (?'), we obtain the desired conclusion. For terms of the
form f(t1, . . . , tn), let c1, . . . , cn 2 C be s. t. T (t1) = [c1], . . . , T (tn) = [cn], i.e.
(t1 = c1), . . . , (tn = cn) 2 T . (By the definition of the canonical value function,
such constants must exist.) We have T (f(t1, . . . , tn) = f(T (t1), . . . , T (tn)) =
f([c1], . . . , [cn]) = [f(c1, . . . , cn)]. Hence we have that: T (f(t1, . . . , tn) = [c]
holds i↵ f(c1, . . . , cn)] = [c] holds, i.e. i↵ (f(c1, . . . , cn) = c) 2 T . 2

In particular, T0 is satisfied at world T0 in M : this finishes our proof of
strong completeness.

The decidability proof goes via the following two steps:

STEP 1: Reduction of LED validities to validities in a less expressive
language. Let LED0 be the language with the following syntax

' ::= p | R(
�!
t ) | '! ' | Ka'

t ::= x | c | f(
�!
t )

In other words: we only allow terms that do not contain characteristic functions
?� and we only allow the usual (propositional) modalities. The semantics is the
obvious one, with all constructs interpreted as in GK and with the epistemic
modalities interpreted in the usual way (using the relations ⇠a).

In fact, for technical reasons it is convenient to also look at the extended
language LED1 obtained by adding the usual epistemic modalities to LED:

' ::= p | R(
�!
t ) | '! ' | K

�!
t
a t | Ka'

t ::= x | c | ?' | f(�!t )
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(Once again, the semantics is the obvious one).
It is clear that LED1 and LED0 are co-expressive, since Ka' is equivalent

to ' ^K�
a ?'. In contrast, LED0 is a less expressive language than LED (and

hence than LED1):
Counterexample. We show that the formula Kax is not equivalent to any
formula in LED0. Suppose, towards a contradiction that Kax is equivalent
to some formula �0 in LED0. Let C0 be the finite set of constants occurring
in �0, and C1 := C0 [ {0, 1}. Take a model M1 with two distinct worlds
W1 = {w,w0}, four distinct objects D = {[0], [1], d, d0}, f(•) = [0] for all
functions and arguments, ⇠a= W1 ⇥ W1, kpk = ; for all p, and w(x) = d,
w0(x) = d0 for all variables x. Take another model M2 with only one world
W2 = {w00}, same D, f and kpk as for M1, but with ⇠a= W2 ⇥ W2 and
w00(x) = d for all variables x. It is easy to see that the worlds w,w0 and
w00 satisfy exactly the same formulas in the language of LED0 based only on
constants in C0. Hence, these three worlds are equivalent wrt the truth value of
�0. However, Kax is true at w00, while being false at w and w0. This contradicts
the equivalence between Kax and �0.

So the modalities for knowledge of a value really increase the expressivity of
our language. Nevertheless, we can prove that every validity of LED1 “trans-
lates” to a validity of LED0:

Proposition 2.18 (“Validity Reduction”) There exists a computable map ⌧
from the language LED1 to the language LED0, such that, for every formula
' of LED1, we have:

' is valid i↵ ⌧(') is valid.

Proof. The proof is by induction, using another notion of complexity � that
counts only the number of nested de re modalities and nested ? symbols. 13 Note
that every term t of LED1 can be rewritten as t = t0[x1/?�1 , . . . , xn/?�n ],
for some term t0 of LED0 as well as some variables x1, . . . , xn and formu-
las �1, . . . ,�n (in LED1), with �(�i) < �(t). For �!c 2 {0, 1}n, we intro-

duce the notations t0[
�!c ] := t0[x1/c1, . . . , xn/cn], and

�!c (�!� ) :=
V

i=1,n ci(�i),
where c(�) := � for c = 1, and c(�) = ¬� for c = 0. Now for any

tuple of terms
�!
t = (t1, . . . , tm) of LKG1, let ti0 (with i 2 {1, . . . ,m})

be the corresponding terms in LED0, with variables xi
1, . . . , x

i
ni

and for-
mulas �i1, . . . ,�

i
ni

(for i 2 {1, . . . ,m}), s.t. ti = ti0[x
i
1/?�i

1
, . . . , xi

ni
/?�i

ni
]

holds for all i 2 {1, . . . ,m}. Then we put (R(t1, . . . , tm)0 :=
W

�!c 12{0,1}n1 . . .
W

�!c m2{0,1}nm

⇣

V

i2{1,...,m}
�!c i(

�!
� i) ^R(t10[

�!c 1], . . . , tm0 [�!c m])
⌘

.

Claim A: R(
�!
t ) is logically equivalent to (R(

�!
t ))0.

(The proof is an easy verification.)

13More precisely, we recursively put: �(p) = �(x) = �(c) = 0, �('!  ) = max(�('), �( )),
�(Ka') = �(¬') = �('), �(Kt1,...,tn

a t) = 1 +max(�(t1), . . . , �(tn), �(t)), �(?') = 1 + �('),
�(R(t1, . . . , tn)) = �(f(t1, . . . , fn)) = max(�(t1), . . . , �(tn)).
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Given this claim, let ' be any formula in LED1. We can obviously bring
it to conjunctive normal form, i.e. establish a validity |= ' ,

V

i

W

j �
ij ,

where the formulas �ij are of one the following “basic” forms p, ¬p, R(
�!
t ),

¬R(
�!
t ), K

�!
t
a t0, ¬K

�!
t
a t0, Ka , or ¬Ka . Let T' be the set of all terms occurring

in this normal form, and let F be an injective map that associates to each
term t 2 T' some “fresh” constant F (t) 2 C \ T' (such that F (t) 6= F (t0)
for t 6= t0). For any string

�!
t = (t1, . . . , tn) of terms in T', put F (

�!
t ) :=

(F (t1), . . . , F (tn)). We now associate to each of the above “basic” formulas
�ij some corresponding formulas �ij0 , as follows: �ij0 := �ij if �ij is the form

p or Ka ; �
ij
0 := (R(

�!
t ))0 (as defined above) if �ij is of the form R(

�!
t );

�ij0 := Ka

⇣�!
t = F (

�!
t ) ) t0 = F (t0)

⌘

if �ij is of the form K
�!
t
a t0; and finally

(�ij)0 := ¬ 0, if �ij = ¬ with  of one of the forms p, R(
�!
t ), Ka' or K

�!
t
a t0.

We associate now to our formula ' above a new formula '0 of lower �-
complexity, by putting

'0 :=

0

@

^

t2T�

t = F (t)

1

A )
^

i

_

j

�ij0 .

It is now easy to verify the following:

Claim B: If ' is not in LED0, then �('0) < �(').
Finally, we can prove the key step of our “Validity Reduction”:

Claim C: ' is valid i↵ '0 is valid.

Proof of Claim C: Note the validity |=
⇣

V

t2T�
t = F (t)

⌘

) (�ij , �ij0 ).

(This is obvious when �ij is of the form p, ¬p, Ka or ¬Ka ; it follows from

Claim A when �ij is of the form R(
�!
t ) or ¬R(

�!
t ); and it follows from the

Knowledge de Re Axiom when �ij is of the form K
�!
t
a t0 or ¬K

�!
t
a t0.) Using the

normal form of ', we obtain the following validity:

(⇤) |=

0

@

^

t2T'

t = F (t)

1

A ) (',
^

i

_

j

�ij0 ).

To prove now one direction of Claim C, assume that ' is valid. Using (*),

it follows that
⇣

V

t2T�
t = F (t)

⌘

)
V

i

W

j �
ij
0 is valid, i.e. '0 is valid. For

the other direction: assume that '0 is valid, and let M = (W,D, [0], [1],⇠a, k •
k, •(•), f ,R )a2A,f2F,R2R be a model and w0 2 W be any world. We can change
this to a di↵erent model M 0 = (W,D, [0], [1],⇠a, k•k, •(•)0, f ,R )a2A,f2F,R2R,
where we changed only the value map (and only at w0) by putting w0(c)0 =
w0(t) whenever F (t) = c with t 2 T', and w(c)0 = w(c) in rest. Since F is
injective, this gives us a well-defined value map. The change doesn’t a↵ect the
values of the terms t 2 T' (since they don’t contain any of the fresh constants
whose value was changed), so we have w0(t)0 = w0(t) = w0(F (t))0 for all these
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terms, hence w0 2 |
V

t2T�
t = F (t)|M 0 . Using (*) and the fact that '0 is valid,

it follows that w0 2 |'kM 0 . But ' contains none of the constants whose values
were changed, so its truth value was not a↵ected by the change, i.e. we also
have w0 2 |'kM . Since M and w0 are arbitrary, we conclude that ' is valid.

Applying repeatedly the last two Claims, we get an immediate proof of
Proposition 2.18, by induction on �('). 2

Thus, we have reduced the problem of proving FMP for LED to the corre-
sponding problem for the simpler language LED0.

STEP 2: Finite Model Property for LED0

Proposition 2.19 The logic LED0 has (strong) finite model property: every
satisfiable formula '0 is satisfiable in a finite model.

Proof. Let '0 be a satisfiable formula in a language L = L(P, V ar, C,F ,R, ar)
for LED0, and let M = (W,D, [0], [1],⇠a, k • k, •(•), f ,R )a2A,f2F,R2R be a
model and w0 2 W be a world such that w0 2 k'0kM . Take ⌃ ✓ L[ T be the
smallest set of formulas and terms in LED0 that contains '0, 0 and 1, and is
closed under subterms and subformulas. 14 It is easy to see that ⌃ is finite.

Let us put T⌃ := T \ ⌃, L⌃ := L \ ⌃, P⌃ := P \ ⌃, V ar⌃ := V ar \ ⌃,
C⌃ := C \ ⌃. We now define an equivalence relation ⇠= on W by putting:
w ⇠= v i↵ 8' 2 ⌃(w 2 k'kM , v 2 k'kM ). For any w 2 W we denote by
|w| := {v 2 W : w ⇠= v} the ⇠=-equivalence class of w, and we put W⌃ :=
{|w| : w 2 W} for the set of all ⇠=-equivalence classes. Note that W⌃ is finite.
Fix now some arbitrary well-ordering < of W . For every class w 2 W⌃, we
denote by w0 the first element of the class |w| (wrt <). Let D0 := {w(t) : |w| 2
W⌃, t 2 T⌃} [ {[0], [1]}. Note that D0 is finite. If D \ D0 6= ;, then choose
some d0 2 D \D0, and put D⌃ := D0 [ {d0}. If however D \D0 = ;, then put
D⌃ := D0 = D. Note that in both cases D⌃ is a finite subset of D.

We now define a “filtrated” model

M⌃ = (W⌃, D⌃, [0]⌃, [1]⌃,⇠⌃
a , k • k⌃, •(•), f⌃,R⌃ )a2A,f2F,R2R.

by taking W⌃ and D⌃ as above, and putting [0]⌃ := [0]; [1]⌃ := [1]; w ⇠⌃
a v

i↵ 8Ka� 2 ⌃ (w 2 kKa�kM , v 2 kKa�kM ); kpk⌃ := {|w| : w 2 kpkM} for
p 2 P⌃, and kpk⌃ := ; for p 2 P \ P⌃; |w|(↵) := w(↵) for ↵ 2 V ar⌃ [C⌃, and
|w|(↵) := d0 for ↵ 2 (V ar[⌃) \ (V ar⌃ [C⌃); f⌃(d1, . . . , dn) := f(d1, . . . , dn) if
there exists a term f(t1, . . . , tn) 2 ⌃ and a world |w| 2 W⌃ s.t. |w|(ti) = di for
all i 2 {1, . . . , n}; and f⌃(d1, . . . , dn) := d0 otherwise; finally, R⌃ := R\ (D⌃⇥
D⌃). Note that f⌃ : D⌃ ! D⌃ is a well-defined function, =⌃ is the diagonal
{(d, d) : d 2 D⌃}, and M⌃ is indeed a finite model.

Claim D (“Term Lemma”): For every term t 2 T⌃ and w 2 W , we have
|w|(t)⌃ = w(t).

14More precisely, ⌃ has to satisfy the following closure conditions: (1) if (' !  ) 2 ⌃ then
', 2 ⌃; (2) if Ka' 2 ⌃ then ' 2 ⌃; (3) if f(t1, . . . , tn) 2 ⌃ then t1, . . . , tn 2 ⌃; (4) if
R(t1, . . . , tn) 2 ⌃ then t1, . . . , tn 2 ⌃.
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Proof of Claim D: Proof by induction: the base case is by defini-
tion; for the inductive step: |w|(f(t1, . . . , tn) = f⌃(|w|(t1), . . . , |w|(tn)) =
f⌃(w(t1), . . . , w(tn)) = f(w(t1), . . . , w(tn)) = w(f(t1, . . . , tn)), where we used
the induction hypothesis, the definition of f⌃ and f(t1, . . . , tn) 2 T⌃.
Claim E (“Filtration Lemma”) For all formulas � 2 ⌃, we have:

|w| 2 k�kM⌃ i↵ w 2 k�kM , for every w 2 W.

Proof of Claim E: Proof by induction on �. All steps go as in the classical
proof of the Filtration Lemma (for the logic S5), except for the relational atoms
R(t1, . . . , tn) 2 ⌃, for which we have t1, . . . , tn 2 T⌃, and thus Claim D can be
applied. So we have the sequence of equivalencies: |w| 2 kR(t1, . . . , tnkM⌃ i↵
(|w|(t1), . . . , |w|(tn)) 2 R⌃ i↵ (by definition of R⌃) (|w|(t1), . . . , |w|(tn)) 2 R
i↵ (by Claim D) (w(t1), . . . , w(tn)) 2 R i↵ w 2 kR(t1, . . . , tn)kM .

This finishes our proof that LED0 has FMP. 2

Putting together Step 1 and Step 2, we conclude that LED also has FMP,
and thus (being also axiomatizable) it is decidable.

3 Learning the Value of a Variable

We now extend LED with public value-announcement operators h!�!t i for every
tuple

�!
t 2 T ⇤. These operators act on both formulas and terms. The syntax

of Public Announcement Logic of Epistemic Dependency (PALED) is given by:

' ::= p | R(
�!
t ) | '! ' | K

�!
t
a t | h!�!t i'

t ::= x | c | ?' | f(�!t ) | h!�!t it
where x are variables, c are constants, t are term in T ,

�!
t are finite tuples of

terms, and f and R are symbols of arity equal to the length of
�!
t .

The operations of propositional substitution and variable substitution can
be extended in the obvious way to the new formulas and terms. 15

Semantics. Our notion of model is the same as for LED. For every model
M , we define an extended valuation (truth map) k'k, an extended value map

w(t)M , and the update M
�!
t of model M with any finite string of terms

�!
t 2 T ⇤.

The truth map and the extended value map are defined as for LED, except
that we add the clauses:

k h!�!t i' kM = k'kM�!
t , and w(h!�!t it0)M = w(t0)M�!

t .

For the update M
�!
t := (W,⇠a

M
�!
t
, k•k, •(•), f ,R ), we leave all the components

the same, except for changing the epistemic relations as follows:

⇠a
M

�!
t
= {(w, s) 2 W ⇥W |w ⇠a s, w(

�!
t )M = s(

�!
t )M}.

15 Formally, we put: (h!t1, . . . , tni')[p/✓] := h!t1[p/✓], . . . , tn[p/✓]i('[p/✓]);
(h!t1, . . . , tnit0)[p/✓] := h!t1[p/✓], . . . , tn[p/✓]i(t0[p/✓]); (h!t1, . . . , tni')[x/t] :=
h!t1[x/t], . . . , tn[x/t]i('[x/t]); (h!t1, . . . , tnit0)[x/t] := h!t1[x/t], . . . , tn[x/t]i(t0[x/t]).
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So all agents jointly learn the values of
�!
t , and nothing else changes.

Example 2 The formula h!xai(Kaxb ^ Kbxb) is true in (all worlds of) the
model from Example 1 above. This can be verified by performing an update
!xa, which removes epistemic arrows between worlds having di↵erent values for
xa and checking that Kaxb ^Kbxb holds in the updated model. So, after the
value of Alice’s number is announced, everybody will know Bob’s number.

Propositional Public Announcements. The standard (propositional) pub-
lic announcement formulas from PAL can be defined as abbreviations in our
syntax, by putting: h!�i := � ^ h!(?�)i , and [!�] := �! h!(?�)i .
Proof system. We obtain a complete system for PALED by restricting
the Substitution Rules to static contexts, and adding a Necessitation Rule for
announcements, as well as Reduction Axioms. More precisely:

(i) Restricted Propositional Substitution: From ', infer '[p/✓], provided that
p doesn’t occur in the scope of any dynamic operator in '.

(ii) Restricted Variable Substitution: From ', infer '[x/t], provided that x
doesn’t occur in the scope of any dynamic operator in '.

(iii) All the other axioms and rules of the system LED.

(iv) Necessitation Rule for Announcements: From ` ' infer ` h!�!t i'.
(v) Propositional Reduction Axioms 16 :

h!�!t ip $ p

h!�!t iR(t1, . . . , tn) $ R(h!�!t it1, . . . , h!
�!
t itn)

h!�!t i('!  ) $
⇣

h!�!t i'! h!�!t i 
⌘

h!�!t iKt1,...,tn
a t0 $ K

�!
t ,h!�!t it1,...,h!�!t itn
a h!�!t it0

(vi) Term Reduction Axioms:

h!�!t ic = c

h!�!t ix = x

h!�!t i?' = ?h!�!t i'

h!�!t if(t1, . . . , tn) = f(h!�!t it1, . . . h!
�!
t itn)

Applying the Reduction Axiom iteratively, we can eliminate all dynamic
operators in the usual way, and thus prove:

16Note that the third reduction axiom is the axiom K for announcements. This is usually
stated for universal modalities [↵] , but these coincide with the existential ones in our case,
since value announcements are deterministic actions (whose transition relations are func-
tions). Combining this axiom with the Necessitation Rule for announcements, one can show
that formulas obtained by prefixing provably equivalent formulas with dynamic operators are
provably equivalent. This is needed to apply Reduction Axioms repeatedly in order to grad-
ually reduce (and eventually eliminate) nested announcement operators, e.g. h�!t 1ih�!t 2i .
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Theorem 3.1 The proof system PALED is sound and weakly complete for
the logic PALED. Moreover, PALED has the same expressivity as LED.

4 Comparison with other work
Our epistemic dependency formulas are closely connected to Dependency Logic
[18,19]. Note thatKx1,...,xn

a y expresses only a “local” dependency (at the actual
world): this is reflected in the fact that this attitude is not introspective (i.e.
Kx1,...,xn

a y does not imply KaKx1,...,xn
a y). However, its “introspective version”

KaKx1,...,xn
a y gives a more “global” dependency (across all the epistemically-

possible worlds), thus capturing knowledge of the dependency. It is easy to
see that w |= KaKx1,...,xn

a y is equivalent to the assertion that the dependence
atom = (x1, . . . , xn, y) holds at the “team” {v : w ⇠a v} comprising the set of
(variable assignments associated to all) epistemic alternatives of w. But note
that LED is decidable, in contrast to most variants of Dependence Logic!

Our logic has also interesting relations with the so-called ‘erotetic logics’
[8,12,26], including inquisitive logics [10]. First, as Hintikka [13], Scha↵er [17],
Aloni and others [1] argued, all types of knowledge (knowing that, knowing
what, knowing who, knowing how, knowing whether, knowing which) are spe-
cial cases of knowing the answer to a question: “All knowledge involves a ques-
tion. To know is to know the answer” ([17]: 401). Second, every “variable”
(mapping worlds to a set D of values) induces a partition of the state space;
so variables could be used to represent any partitional question. Knowing the
answer to a question is the same as knowing the value of the corresponding
map. 17 Our epistemic dependency formulas capture an ‘epistemic’ version of
interrogative implication, as studied in inquisitive logics. But the variable rep-
resentation gives us more information: if we identify the values in D with ab-
stract “answers”, then we can compare answers for di↵erent questions, and thus
formalize phenomena such as “knowing the answer without knowing the ques-
tion”, that cannot be dealt with in standard inquisitive semantics. We believe
that an account of questions as functions from worlds to (sets of) “answers”
gives a better model for interrogatives then the usual inquisitive representation.

In contrast to both Inquisitive Logic and Dependency Logic, our approach
preserves the “classicality” of propositional calculus, and re-interprets the non-
classical features in terms of modal-epistemic operators. As in Dynamic Epis-
temic Logic [14,7,5,22,20], and its most natural interrogative versions [3,21,6,4],
our semantics is “modal” in the usual sense, with formulas evaluated at worlds,
rather than at sets of worlds. We think of this as an advantage of our approach,
suggesting that questions (and variable dependency) can be understood with-
out denying the classical logical principles. To know is to know the answer.
But the logic of Aristotle, Boole and Frege is not dead just yet.

17As for the “non-partitional” questions (having non-unique complete answers), as considered
in Inquisitive Semantics, they could be represented in our framework as functions from worlds
to sets of answers in P(D). It would be interesting to study the epistemic logic of “knowing
an answer” (rather than ‘the’ answer) in this generalized framework.
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