UvA-DARE (Digital Academic Repository)

To Know is to Know the Value of a Variable

Baltag, A.

Publication date
 2016

Document Version
Final published version
Published in
Advances in Modal Logic

Link to publication

Citation for published version (APA):

Baltag, A. (2016). To Know is to Know the Value of a Variable. In L. Beklemishev, S. Demri, \& A. Máté (Eds.), Advances in Modal Logic: AiML 11 (pp. 135-155). College Publications. http://www.aiml.net/volumes/volume11/Baltag.pdf

General rights

It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations

If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.

To Know is to Know the Value of a Variable

Alexandru Baltag ${ }^{1}$
ILLC, University of Amsterdam

Abstract

We develop an epistemic logic that can express knowledge of a dependency between variables (or complex terms). An epistemic dependency formula $K_{a}^{t_{1}, \ldots, t_{n}} t$ says that agent a knows the value of term t conditional on being given the values of terms t_{1}, \ldots, t_{n}. We add dynamic operators $\left[!t_{1}, \ldots, t_{n}\right] \phi$, capturing the effect of publicly (and simultaneously) announcing the values of terms t_{1}, \ldots, t_{n}. We prove completeness, decidability and finite model property.

Keywords: knowing what, knowledge de re, dynamic epistemic logic.

1 Introduction

In this paper we build on the work of Plaza [14,15], and Wang and Fan [24,25] on formalizing the notion of 'knowledge de re' (knowledge of an object, "knowledge what") over Kripke models ${ }^{2}$. We understand this as knowing the value of a variable. Here, a variable is what in first-order modal logic is called a "non-rigid designator" x, taking different values (in some fixed domain D) at different possible worlds. If we denote by $w(x)$ the value of variable x at world w, and we denote by \sim_{a} the epistemic accessibility relation of some agent a, then Plaza's semantics for 'knowledge de re' is given by putting ${ }^{3}$: $w \models K_{a} x$ iff $\forall v \sim_{a} w(v(x)=w(x))$. This is a natural analogue of the usual semantics of "knowledge that" in epistemic logic: an agent knows the value of x if that value is the same in all her epistemic alternatives. When the range D of possible values of x is finite, then this operator is obviously reduceable to the usual one, via a finite disjunction $\bigvee_{d \in D} K_{a}(x=d)$. But in general this is not possible. Plaza [15] had a very simple axiomatization of this operator (in combination with the usual epistemic operator $K_{a} \varphi$ for "knowing that"), and claimed its completeness, based on a reduction to standard epistemic logic. He also extended

[^0]this logic with public announcement operators ${ }^{4}[!\varphi] \psi$ (of which he is the main originator [14]), and used the resulting logic to treat the classical "Sum and Product" puzzle. But he could not prove completeness of this extended logic. Wang and Fan solved this problem by introducing a conditional version of the above operator $K_{a}^{\varphi} x$ ("conditionally knowing what"), with the intuitive meaning that agent a could find the value of x if given the additional information that φ was the case. The introduction of such a conditional operator allows one to "pre-encode" the dynamics of $[!\varphi] \psi$, following a strategy pioneered by van Benthem [20], obtaining Reduction Axioms that allow us to reduce any dynamic formula to a static one. Their completeness proof was very complex (in the multi-agent case), going via a detour through first-order intentional logic. A more natural type of announcement in this context is the action ! x of publicly announcing the value of x. In a recent talk (Univ. of Amsterdam 2015), Wang stated as an open question the problem of finding a complete axiomatization for a logic that combines the operators for "knowledge that" $K \phi$, "knowledge of a value" $K x$, propositional public announcements $[!\phi] \psi$ and public announcements of values $[!x] \psi$. This problem remained open until now, despite efforts in this direction by van Eijck, Gattinger and Wang. ${ }^{5}$

In this paper we solve this problem, by introducing another kind of conditional version of the above operator. An epistemic dependency formula
 on being given the values of variables x_{1}, \ldots, x_{n}. The semantics is the obvious generalization of the above clause: if we use the abbreviation $w(\vec{x})=v(\vec{x})$ for the conjunction $w\left(x_{1}\right)=v\left(x_{1}\right) \wedge \ldots w\left(x_{n}\right)=v\left(x_{n}\right)$, then we put

$$
w \models K_{a}^{x_{1}, \ldots, x_{n}} y \quad \text { iff } \quad \forall v \sim_{a} w(w(\vec{x})=v(\vec{x}) \Rightarrow v(y)=w(y)) .
$$

In words: an agent knows y given x_{1}, \ldots, x_{n} if the value of y is the same in all the epistemic alternatives that agree with the actual world on the values of x_{1}, \ldots, x_{n}. This operator has connections with Dependence Logic ${ }^{6}$ and allows us to "pre-encode" the dynamics of the value-announcement operator $[!x] \varphi$.

Besides the epistemic dependency formulas and the dynamic public valueannouncement operator, we introduce a number of other formal innovations, that are useful for both technical and conceptual purposes. One is that, in addition to variables, we also allow constants (i.e. rigid designators) c, whose value is the same in all possible worlds, as well as more complex terms t (built

[^1]from variables and constants using functions). Moreover, we have relational atoms $R\left(t_{1}, \ldots, t_{n}\right)$ expressing relationships between terms, and in particular an equality predicate $t=t^{\prime}$, which captures identity of values and plays an essential role in our system. Although statements $K_{a} t$ cannot in general be reduced to "knowledge that" statements $K_{a} \varphi$, formulas of the form $x=c$ can be used to provide "local reductions": semantically, at each possible world w, $K_{a} x$ is equivalent to $K_{a}(x=c)$, where c is denotes the value $w(x)$ of variable x in world w. In our axiomatic system, this "local reduction" takes the shape of our "Knowledge De Re" axiom, whose relevant instance in this case is the validity
$$
(x=c) \Rightarrow\left(K_{a} x \Leftrightarrow K_{a}(x=c)\right) .
$$

In words: when the value of x is c, then knowing the value of x is the same as knowing that this value is c. Our Knowledge De Re axiom generalizes this to epistemic dependency formulas. Combined with our "Existence of Value" Rule (saying that variables always have a value), this allows us to prove complex properties of epistemic dependence (e.g. the well-known Armstrong axioms [2]) in a simple way, from basic epistemic axioms. It also allows us to provide a rather simple completeness proof, based on a variation of the canonical model construction, in which constants act as 'witnesses' for the values of variables.

Another technical innovation is that we include a special type of variables $?_{\varphi}$, storing the truth value of formula φ. On the one hand, this introduces another layer of (interesting) technical complexity, since terms of the form ? ${ }_{\varphi}$ are even "more non-rigid" than the generic variables x, in that they can change their value while this value is being learnt. Indeed, while x keeps its value when that value is publicly announced, terms ? ${ }_{\varphi}$ corresponding to Moore sentences φ (such as " $x=0$ but you don't know it") may change their values after being learnt. On the other hand, the use of such "fluctuating variables" allow us to simplify the syntax, by reducing the usual 'knowledge that' operator to 'knowledge what', via the equivalence $K_{a} \varphi \Leftrightarrow\left(\varphi \wedge K_{a} ? \varphi\right)$. This is in the spirit of the Schaffer quote above: to "know that" φ is to know the answer to the question "what is the truth value of φ ?" So, unlike Plaza, and Wang and Fan, we do not need two epistemic operators: there is only one kind of knowledge, namely knowing the value of a variable. Similarly, propositional announcements $[!\varphi] \psi)$ can be reduced to learning the value of variable $?_{\varphi}$.

So one could say, without exaggerating too much, that all knowledge "is", or can at least be represented as, knowledge of the value of a variable. Hence, this paper's title: itself a paraphrase of Quine's famous dictum. ${ }^{7}$ This epistemicmodeling variant seems less problematic than the original, ontological version! And, in fact, our formalism suggests that the unary knowledge operator is just a special case. The more general version of our motto is: to know is to know the dependence between (values of) variables. This fits well with the popular view of knowledge-acquisition as a process of learning correlations (with the goal of eventually tracking causal relationships in the actual world).

[^2]
2 The Logic of Epistemic Dependency

In the following, we assume given a finite set \mathcal{A} of "agents", and four countable sets of symbols: a set P of propositional atoms; a set Var of variables; a set C of constants, among which there are two distinguished constants 0 and 1 (with $0 \neq 1)$; a set \mathcal{F} of functional symbols and a set \mathcal{R} of relational symbols, together with an arity map ar $: \mathcal{F} \cup \mathcal{R} \rightarrow N^{*}$, associating to all symbols $f \in F, R \in$ Rel natural numbers $\operatorname{ar}(f), \operatorname{ar}(R) \in N^{*}$. \mathcal{R} includes an equality symbol $=$, with $\operatorname{ar}(=)=2$. Intuitively, the difference between variables and constants is that constants are rigid designators, while variables are non-rigid: so a variable can take different values in different possible worlds, while a constant denotes the same objects in all the worlds of a given model. We use letters p, q, \ldots to denote atoms in P, letters x, y, \ldots to denote variables in Var, and letters c, d, \ldots to denote constants in C. We denote by \vec{x} finite strings $\vec{x}=\left(x_{1}, \ldots, x_{k}\right) \in V a r^{*}$ of variables (of any length $k \geq 0$), and similarly use \vec{c} to denote finite strings $\vec{c}=\left(c_{1}, \ldots, c_{k}\right) \in C^{*}$ of objects. We denote by λ the empty string.
Syntax. The Logic of Epistemic Dependency (LED) has a twofold syntax, consisting of a set $\mathcal{L}=\mathcal{L}(P, V a r, C, F$, ar $)$ of propositional formulas φ and a set $\mathcal{T}=\mathcal{T}(P, \operatorname{Var}, C, \mathcal{F}, \mathcal{R}, a r)$ of terms t, defined by double recursion:

$$
\begin{aligned}
& \varphi::=p|R(\vec{t})| \varphi \rightarrow \varphi \mid K_{a}^{\vec{t}} t \\
& t::=x|c| l l l l
\end{aligned}
$$

where $a \in \underset{\rightarrow}{\mathcal{A}}$ are agents, $x \in \operatorname{Var}$ are variables, $c \in C$ are constants, $t \in \mathcal{T}$ are terms, \vec{t} are finite tuples of terms and $f \in \mathcal{F}, R \in \mathcal{R}$ are symbols of arity equal to the length of \vec{t}. We abbreviate $=\left(t, t^{\prime}\right)$ as $t=t^{\prime}$.
Semantics. A model (for \mathcal{L} and \mathcal{T}) is a structure

$$
M=\left(W, D,[0],[1], \sim_{a},\|\bullet\|, \bullet(\bullet), \mathbf{f}, \mathbf{R}\right)_{a \in \mathcal{A}, f \in \mathcal{F}, R \in \mathcal{R}}
$$

where: W is a set of possible worlds; D is a set of objects, containing at least two designated objects $[0] \neq[1] ; \sim_{a} \subseteq W \times W$ are equivalence relations, called epistemic indistinguishability relations; $\|\bullet\|$ is a valuation function mapping each atomic sentence $p \in P$ to a set $\|p\| \subseteq W$ of possible worlds; •(•) : $W \times(\operatorname{Var} \cup C) \rightarrow D$ is a map associating to each world $w \in W$ and each variable or constant $\alpha \in \operatorname{Var} \cup C$ some object $w(\alpha) \in D$, called the value of α at world w, and satisfying the requirement that the value of each constant is the same in all the worlds: i.e., $w(c)=w^{\prime}(c)$ for all $c \in C$ and all $w, w^{\prime} \in W$; and for all symbols $f \in \mathcal{F}, R \in \mathcal{R}$ of arity $\operatorname{ar}(f)=n$, we are given n-ary maps $\mathbf{f}: D^{n} \rightarrow D$ and n-ary relations $\mathbf{R} \subseteq D^{n}$, with the standard interpretation of equality $=$ as the diagonal $\{(d, d): d \in D\}$ of D.

For the semantics, we simultaneously define an extended valuation (the "truth map") $\|\varphi\|_{M}$ for all formulas φ, and an extended value map $w(t)_{M}$ for all terms t and all worlds $w \in W$. We will use the notation $w(\vec{t}):=$ $\left(w\left(t_{1}\right), \ldots, w\left(t_{k}\right)\right)$ for the string of values corresponding to any given string of
terms $\vec{t}=\left(t_{1}, \ldots, t_{k}\right) \in \mathcal{T}^{*}$. The truth map is given for propositional atoms $p \in P$ by the valuation $\|p\|$, and extended to other formulas by recursively putting: $\|R(\vec{t})\|=\{w \in W \mid w(\vec{t}) \in \mathbf{R}\} ;\|\varphi \rightarrow \psi\|=(W \backslash\|\varphi\|) \cup\|\psi\|$; $\left\|K_{a}^{\vec{t}} t^{\prime}\right\|=\left\{w \in W \mid \forall v \in W\left(w \sim_{a} v \wedge w(\vec{t})=v(\vec{t}) \Rightarrow w\left(t^{\prime}\right)=v\left(t^{\prime}\right)\right)\right\}$. The extended value map $w\left(t^{\prime}\right)$ is given by the value map $w(\alpha)$ for variables and constants $\alpha \in \operatorname{Var} \cup C$, and extended to other terms by recursion: $w\left(?_{\varphi}\right)=[1]$ iff $w \in\|\varphi\| ; w\left(?_{\varphi}\right)=0$ iff $w \notin\|\varphi\| ; w(f(\vec{t}))=\mathbf{f}(w(\vec{t}))$.
Abbreviations. We put $\top:=(1=1) ; \perp:=(1=0): \neg \varphi:=\varphi \rightarrow \perp$; $\varphi \vee \psi:=\neg \varphi \rightarrow \psi ; \varphi \wedge \psi:=\neg(\neg \varphi \vee \neg \psi) ; \varphi \leftrightarrow \psi:=(\varphi \rightarrow \psi) \wedge(\psi \rightarrow \varphi) ;$ $K_{a}^{\vec{t}} \varphi:=\varphi \wedge K_{a}^{\vec{t}} ?_{\varphi} ;\left\langle K_{a}^{\vec{t}}\right\rangle \varphi:=\neg K_{a}^{\vec{t}} \neg \varphi ; K_{a} \varphi:=K_{a}^{\lambda} \varphi$ (where λ is the empty string); $\left\langle K_{a}\right\rangle \varphi:=\neg K_{a} \neg \varphi ; K_{a}^{\varphi} \psi:=K_{a}(\varphi \rightarrow \psi)$. We also put $K_{a}^{\vec{t}} \overrightarrow{t^{\prime}}:=$ $\bigwedge_{1 \leq i \leq k} K_{a}^{\vec{t}} t_{i}^{\prime}$, and $\left(\vec{t}=\overrightarrow{t^{\prime}}\right):=\bigwedge_{1 \leq i \leq k} t_{i}=t_{i}^{\prime}$, where k is the length of $\overrightarrow{t^{\prime}}$.
Ground Terms A ground term is a term that contains no variables and no propositional formulas (hence, no ?); in other words, ground terms are built only from constants $c, d, \ldots \in C$ by recursively applying function symbols f, g, \ldots. Let us denote by \mathcal{T}^{0} the set of all ground terms.
Propositional Substitution: For atoms $p \in P$ and formulas θ, the substitution of p with θ is an operation mapping every formula $\varphi \in \underset{\mathcal{L}}{\mathcal{L}}$ into a new formula $\varphi[p / \theta] \in \mathcal{L}$, and similarly mapping every tuple of term $\vec{t} \in \mathcal{T}$ into a new tuple $\vec{t}[p / \theta]$, obtained by uniformly substituting p with θ as usual. ${ }^{8}$
Variable Substitution: For variables $x \in \operatorname{Var}$ and terms $t \in \mathcal{T}$, the substitution of x with t is an operation mapping every formula $\varphi \in \mathcal{L}$ into a new formula $\varphi[x / t] \in \mathcal{L}$, and mapping every term $t^{\prime} \in \mathcal{T}$ into a new term $t^{\prime}[x / t]$, obtained by uniformly substituting x with t in the usual way. ${ }^{9}$
Example 1. Alice and Bob have each a natural number written on their foreheads. It is common knowledge that Alice's number x_{a} is the immediate successor of Bob's number x_{b}. Both are blindfolded, so nobody can see the numbers. The model has: Var $=\left\{x_{a}, x_{b}\right\}, D=C=N$ is the set of natural numbers; $\mathcal{F}=\{+, \times\}$ and $\mathcal{R}=\{=,>\}$ contain the usual operations and relations on N; the set W of worlds consists of all functions $w: \operatorname{Var} \rightarrow N$, satisfying the given constraint $w\left(x_{a}\right)=w\left(x_{b}\right)+1$; the epistemic relations are given by the universal relations: $\sim_{a}=\sim_{b}=W \times W$. Note that the sentence $\neg K_{a} x_{a} \wedge \neg K_{b} x_{b} \wedge K_{a}\left(x_{a}>x_{b}\right) \wedge K_{b}\left(x_{a}>x_{b}\right) \wedge K_{a}^{x_{b}} x_{a} \wedge K_{b}^{x_{a}} x_{b}$ is true in all worlds. So nobody knows his/her number, but both know that Alice's number is larger, and both could come to know the numbers if given only the other's number.

[^3]Proof system. The proof system $L E D$ consists of the following:

RULES:

- Propositional Substitution: From φ, infer $\varphi[p / \theta]$.
- Variable Substitution: From φ, infer $\varphi[x / t]$.
- Modus Ponens Rule: From φ and $\varphi \rightarrow \psi$, infer ψ.
- Necessitation: From φ, infer $K_{a} \varphi$.
- Existence-of-Value Rule (EVR):

From $x=c \rightarrow \varphi$, infer φ, provided that c does not occur in φ.

AXIOMS:

- All the classical propositional tautologies.
- All the $S 5$ axioms for K_{a}.
- Knowledge De Re:

$$
\left.(\vec{x}=\vec{c} \wedge y=d) \rightarrow\left(K_{a}^{\vec{x}} y \leftrightarrow K_{a}^{\vec{x}=\vec{c}} y=d\right)\right)
$$

- Equality Axioms:

$$
\begin{gathered}
x=x \\
x=y \rightarrow y=x \\
(x=y \wedge y=z) \rightarrow x=z \\
\vec{x}=\vec{y} \rightarrow f(\vec{x})=f(\vec{y}) \\
(x=y \wedge R(\vec{z}, x, \vec{w})) \rightarrow R(\vec{z}, y, \vec{w})
\end{gathered}
$$

- Characteristic Functions:

$$
\begin{gathered}
?_{\varphi}=1 \leftrightarrow \varphi, \\
?_{\varphi}=0 \leftrightarrow \neg \varphi,
\end{gathered}
$$

- Knowledge of Functions:

$$
K_{a}^{\vec{x}} f(\vec{x})
$$

In fact, two of the axioms are redundant: symmetry and transitivity of $=$ follow from the other axioms, but we chose to include them for convenience. We write $\vdash \psi$ if ψ is provable in the proof system $L E D$. For any set of formulas Φ and any formula ψ, we write $\Phi \vdash \psi$ if there exist finitely many formulas $\phi_{1}, \ldots, \phi_{n} \in \Phi$ (for some $\left.n \in N\right)$ such that $\vdash\left(\phi_{1} \wedge \ldots \phi_{n}\right) \rightarrow \psi$. We say that Φ is logically closed if, for every formula $\psi \in \mathcal{L}, \Phi \vdash \psi$ implies $\psi \in \Phi$. We say that Φ is consistent if $\Phi \nvdash \perp$, and that a formula φ is consistent with Φ if $\Phi \cup\{\varphi\}$ is consistent (equivalently: if $\Phi \nvdash \neg \varphi$).
Lemma 2.1 For a set Φ of formulas, put ${K_{a}^{\vec{t}}} \Phi:=\left\{K_{a}^{\vec{t}} \phi: \phi \in \Phi\right\}$. Then we have that:

- if $\Phi \vdash \psi$ then ${K_{a}^{\vec{t}}} \Phi \vdash K_{a}^{\vec{t}} \psi$.
- $\Phi \cup\{\psi\} \vdash \theta$ iff $\Phi \vdash(\psi \rightarrow \theta)$.

Proposition 2.2 Let φ be a formula and z be a variable that does not occur in the scope of any K_{a}-operator in φ. Then the following is provable in LED:

$$
\vdash(x=y \wedge \varphi[z / x]) \rightarrow \varphi[z / y] .
$$

NOTE The unrestricted version of the above schema is not valid! A counterexample is obtained by taking for instance φ to be the formula $K_{a}(z=c)$. This is related to the Phosphorus/Hesperus paradox.
Proposition 2.3 (Knowledge of Ground Terms and Ground Identities). For all ground terms $t, t^{\prime} \in \mathcal{T}^{0}$, all the instances of the following schema are provable in LED:

$$
\begin{gathered}
\vdash K_{a} t ; \\
\vdash t=t^{\prime} \rightarrow K_{a} t=t^{\prime} .
\end{gathered}
$$

Proof. We prove the first claim by induction on t : For the base step, let $t:=c$ be a constant. From the Knowledge De Re axiom, we get $\vdash x=$ $c \rightarrow\left(K_{a} x \leftrightarrow K_{a}(x=c)\right)$. By substituting c for x and using the first equality axiom, we get $\vdash K_{a} c \leftrightarrow K_{a}(c=c)$. But on the other hand, by applying Necessitation to the first equality axiom, we have $\vdash K_{a}(c=c)$, and hence we obtain $\vdash K_{a} c$. For the inductive step: consider a term of the form $f(\vec{t})$, where $\vec{t}=\left(t_{1}, \ldots, t_{n}\right)$ is a tuple of ground terms. By the induction hypothesis, we can assume that $\vdash K_{a} t_{i}$ for all $i=1, n$. Using this and the Knowledge De Re axiom, we derive $\vdash \vec{t}=\vec{c} \rightarrow K_{a} \vec{t}=\vec{c}$. Combining this with $\vdash K_{a} \vec{t}=\vec{c} \rightarrow K_{a} f(\vec{t})=f(\vec{c})$ (obtained by applying Necessitation, Kripke's axiom and Modus Ponens to the fourth equality axiom), we obtain $\vdash \vec{t}=\vec{c} \rightarrow K_{a} f(\vec{t})=f(\vec{c}$. Combining this with the theorem $\vdash(\vec{t}=c \wedge f(\vec{c})=d) \rightarrow K_{a}^{\vec{t}}=\vec{c} f(\vec{t})=d$ (obtained from the axiom $\vdash K_{a}^{\vec{t}} f(\vec{t})$ and the Knowledge De Re axiom), we get that $\vdash(\vec{t}=c \wedge f(\vec{c})=d) \rightarrow K_{a} f(\vec{t})=d$. This, together with the obvious theorem $\vdash \vec{t}=c \rightarrow(f(\vec{t})=d \rightarrow(\vec{t}=c \wedge f(\vec{c})=d)$) (an obvious consequence of the equality axioms), gives us $\vdash \vec{t}=c \rightarrow\left(f(\vec{t})=d \rightarrow K_{a} f(\vec{t})=d\right)$. Applying the the $(E V R)$ rule, we get $\vdash f(\vec{t})=d \rightarrow K_{a} f(\vec{t})=d$, which by the Knowledge De Re axiom, yields $\vdash f(\vec{t})=d \rightarrow K_{a} f(\vec{t})$. Applying again the $(E V R)$ rule, we obtain $\vdash K_{a} f(\vec{t})$, as desired.

As for the second claim: given the first claim, we have $\vdash K_{a} t$ and $\vdash K_{a} t^{\prime}$. This, together with (a suitable substitution instance of) the Knowledge De Re axiom and the conjunctivity of knowledge, gives us $\vdash\left(t=c \wedge t^{\prime}=c\right) \rightarrow K_{a}(t=$ $c \wedge t^{\prime}=c$), and hence (using equality axioms and the axioms of normal modal logic $) \vdash\left(t=c \wedge t^{\prime}=c\right) \rightarrow K_{a} t=t^{\prime}$. Together with $\vdash t=c \rightarrow\left(t=t^{\prime} \rightarrow t^{\prime}=c\right)$ (a consequence of the equality axioms), this yields $\vdash t=c \rightarrow\left(t=t^{\prime} \rightarrow K_{a} t=\right.$ $\left.t^{\prime}\right)$. By the $(E V R)$ rule, we obtain $\vdash t=t^{\prime} \rightarrow K_{a} t=t^{\prime}$, as desired.

Proposition 2.4 All the following theorems are provable in LED:

$$
\begin{aligned}
& \vdash K_{a}^{x_{1}, \ldots, x_{k}} y \rightarrow K_{a}^{x_{\pi(1)}, \ldots, x_{\pi(k)}} y, \text { for every permutation } \pi:\{1, \ldots, k\} \rightarrow\{1, \ldots, k\} \\
& \vdash\left(K_{a}^{\vec{x}} \vec{y} \wedge K_{a}^{\vec{x}, \vec{y}} \vec{z}\right) \rightarrow K_{a}^{\vec{x}} \vec{z} \\
& \vdash \vdash K_{a}^{\vec{\overrightarrow{ }}} \vec{y} \rightarrow K_{a}^{\vec{x}, \vec{z}} \vec{y} \\
& \vdash K_{a}^{\vec{x}} \vec{y} \rightarrow K_{a}^{\vec{x}} f(\vec{y}) \\
& \vdash \vec{x}=\vec{c} \rightarrow\left(K_{a}^{\vec{x}} \varphi \rightarrow K_{a}^{\vec{a}=\vec{c}} \varphi\right) \\
& \vdash K_{a}^{\vec{x}}(\varphi \rightarrow \psi) \rightarrow\left(K_{a}^{\vec{x}} \varphi \rightarrow K_{a}^{\vec{x}} \psi\right) \\
& \vdash K_{a}^{\vec{x}} \varphi \rightarrow \varphi \\
& \vdash K_{a}^{\vec{x}} \varphi \rightarrow K_{a}^{\vec{x}} K_{a}^{\vec{x}} \varphi \\
& \vdash \neg K_{a}^{\vec{x}} \varphi \rightarrow K_{a}^{\vec{x}} \neg K_{a}^{\vec{x}} \varphi
\end{aligned}
$$

Proof. We only prove the first two formulas, the other proofs are similar. For the first, we use the obvious propositional validity $\vdash\left(x_{1}=c_{1} \wedge \ldots x_{k}=c_{k}\right) \rightarrow$ $\left(x_{\pi(1)}=c_{\pi(1)} \wedge \ldots x_{\pi(k)}=c_{\pi(k)}\right)$, together with two instances of Knowledge De Re axiom: $\vdash\left(x_{1}=c_{1} \wedge \ldots x_{k}=c_{k}\right) \rightarrow\left(K_{a}^{x_{1}, \ldots, x_{k}} y \leftrightarrow K_{a}^{x_{1}=c_{1} \wedge \ldots x_{k}=c_{k}} y\right)$, and \vdash $\left(x_{1}=c_{1} \wedge \ldots x_{k}=c_{k}\right) \rightarrow\left(K_{a}^{x_{\pi(1)}, \ldots, x_{\pi(k)}} y \leftrightarrow K_{a}^{x_{\pi(1)}=c_{\pi(1)} \wedge \ldots x_{\pi(k)}=c_{\pi(k)}} y\right)$. From these we derive $\vdash\left(x_{1}=c_{1} \wedge \ldots x_{k}=c_{k}\right) \rightarrow\left(K_{a}^{x_{1}, \ldots, x_{k}} y \rightarrow K_{a}^{x_{\pi(1)}, \ldots, x_{\pi(k)}} y\right)$, then apply repeatedly the $(E V R)$ rule to obtain the desired conclusion.

For the second, we use three instances of Knowledge De Re axiom: $\vdash(\vec{x}=$ $\vec{c} \wedge \vec{y}=\vec{d}) \rightarrow\left(K_{a}^{\vec{x}} \vec{y} \leftrightarrow K_{a}^{\vec{a}=\vec{c}} \vec{y}=\vec{d}\right), \vdash(\vec{x}=\vec{c} \wedge \vec{y}=\vec{d} \wedge \vec{x}=\vec{e}) \rightarrow$ $\left(K_{a}^{\vec{x}}, \vec{y} \vec{z} \leftrightarrow K_{a}^{\vec{x}=\vec{c} \wedge \vec{y}=\vec{d} \vec{z}=\vec{e}) \text {, and } \vdash(\vec{x}=\vec{c} \wedge \vec{z}=\vec{e}) \rightarrow\left(K_{a}^{\vec{x}} \vec{z} \leftrightarrow, ~\right.}\right.$ $\left.K_{a}^{a}=\vec{c} \vec{z}=\vec{e}\right)$. From these, together with the usual properties of the normal propositional operator $K_{a} \phi$ (and the fact that $K^{\phi} \psi$ is just an abbreviation for $\left.K_{a}(\phi \rightarrow \psi)\right)$, we obtain $\vdash(\vec{x}=\vec{c} \wedge \vec{y}=\vec{d} \wedge=\vec{e}) \rightarrow\left(\left(K_{a}^{\vec{x}} \vec{y} \wedge K_{a}^{\vec{x}, \vec{y}} \vec{z}\right) \rightarrow\right.$ $\left.K_{a}^{\vec{a}} \vec{z}\right)$, then we apply the (EVR) rule.

One can also easily verify that:
Proposition 2.5 The following Necessitation-type rule for ${K_{a}^{t}}^{\vec{t}}$ is derivable in $L E D:$ if $\vdash \varphi$ then $\vdash K_{a}^{\vec{t}} \varphi$.
"Pseudo-modalities": necessitation/possibility forms. For any finite string $s \in\left(\mathcal{L} \cup\left(\mathcal{A} \times \mathcal{T}^{*}\right)\right)^{*}$, consisting of formulas $\phi \in \mathcal{L}$ and/or pairs (a, \vec{t}) of agents $a \in \mathcal{A}$ and strings $\vec{t} \in \mathcal{T}^{*}$ of terms, we define "pseudo-modalities" $[s]$ and $\langle s\rangle$, mapping any formula $\phi \in \mathcal{L}$ to formulas $[s] \phi \in \mathcal{L}$ (called a "necessity form") and $\langle s\rangle \phi \in \mathcal{L}$ (called a "possibility form"). The definition is by recursion, putting for necessity forms: $[\lambda] \phi:=\phi$ for the empty string λ; $[\psi, s] \phi:=\psi \rightarrow[s] \phi$; and $[(a, \vec{t}), s] \phi:=K_{a}^{\vec{t}}[s] \phi$. As for possibility forms, we put $\langle s\rangle \phi:=\neg[s] \neg \phi$.

Lemma 2.6 For every necessity form $[s]$ there exists some formula $\psi \in \mathcal{L}$, such that for all $\theta \in \mathcal{L}$, we have:

$$
\vdash[s] \theta \quad \text { iff } \quad \vdash \psi \rightarrow \theta
$$

Moreover, the same constants and variables occur in ψ as in s.
Proof. If $s=\lambda$, then take $\psi:=\top$. Otherwise, $[s] \theta$ is just a sequence of symbols of the form $\psi \rightarrow \ldots$ and $K_{a}^{\vec{t}} \ldots$, followed at the end by θ. Starting from the left, we can "eliminate" one by one each knowledge symbol $\overrightarrow{K_{a}^{t}} \ldots$ by "pushing" it into the premise, using the fact ${ }^{10}$ that: $\vdash \psi \rightarrow K_{a}^{\vec{t}} \phi$ holds iff $\vdash\left\langle K_{a}^{\vec{t}}\right\rangle \psi \rightarrow \phi$ holds. At the end of this process, we obtain a formula of the form $\psi \rightarrow \theta$. It is easy to see that ψ depends only on s, not on θ, and that moreover ψ contains the same constants and variables as s.
Lemma 2.7 Given $s \in\left(\mathcal{L} \cup\left(\mathcal{A} \times \mathcal{T}^{*}\right)\right)^{*}, t \in \mathcal{T}, \varphi \in \mathcal{L}$, let c be a constant that does not occur in s, t or φ. Then the following rule is admissible in LED:

$$
\text { if } \vdash[s](t=c \rightarrow \varphi) \quad \text { then } \vdash[s] \varphi
$$

Proof. Let ψ be the formula associated to s by the previous Lemma: so for all $\theta, \vdash[s] \theta$ iff $\vdash \psi \rightarrow \theta$. Suppose now that we have $\vdash[s](t=c \rightarrow \varphi)$. Then we also get $\vdash \psi \rightarrow(t=c \rightarrow \varphi)$, and hence $\vdash t=c \rightarrow(\psi \rightarrow \varphi)$. Let x be a variable not occurring in t, φ or s (and hence, by the previous Lemma, not occurring in ψ either). Using (some substitution instance of one of) the Equality Axioms, we obtain $\vdash x=c \rightarrow(t=x \rightarrow(\psi \rightarrow \varphi))$. Since c does not to occur in s, t or φ, by the previous Lemma it doesn't occur in ψ either. By the $(E V R)$ rule, we obtain $\vdash t=x \rightarrow(\psi \rightarrow \varphi)$. Using the Variable Substitution Rule (where we substitute t for x), we get $\vdash t=t \rightarrow(\psi \rightarrow \varphi)$. But we also have $\vdash t=t$ (by another of the Equality axioms), and hence $\vdash \psi \rightarrow \varphi$. Using again the previous Lemma, we obtain $\vdash[s] \varphi$.

Theorem 2.8 The proof system LED is sound and strongly complete (and hence the logic LED is compact). Moreover, this logic has the strong finite model property, and hence it is decidable.

The rest of this section is dedicating to the proof of this theorem. For any countable set of constants C, let \mathcal{L}_{C} be the language of $L E D$ based only on constants in C. A C-theory Φ is a consistent set of formulas in \mathcal{L}_{C}; here, "consistent" means consistent with respect to the proof system $L E D$ formulated for the language \mathcal{L}_{C}. A maximal C-theory is a C-theory Φ that is maximal (w.r.t. inclusion) among all C-theories. A C-witnessed theory is a C-theory Φ such that, for every term $t \in \mathcal{T}_{C}$, string $s \in\left(\mathcal{L}_{C} \cup\left(\mathcal{A} \times \mathcal{T}_{C}^{*}\right)\right)^{*}$ and formula $\varphi \in \mathcal{L}_{C}$, if $\Phi \vdash[s](t=c \rightarrow \varphi)$ for all $c \in C$, then $\Phi \vdash[s] \varphi$. Equivalently: if whenever $\langle s\rangle \varphi$ is consistent with Φ, then there exists some $c \in C$ s.t. $\langle s\rangle(t=c \wedge \varphi)$

[^4]is consistent with Φ. A maximal C-witnessed theory is a C-witnessed theory which is not a proper subset of any other C-witnessed theory.

For the completeness proof, we make use of the following three easily verifiable results:

Lemma 2.9 If Φ is a C-theory and $\Phi \nvdash \neg \phi$, then $\Phi \cup\{\phi\}$ is also a C-theory. Moreover, if Φ is C-witnessed, then $\Phi \cup\{\phi\}$ is C-witnessed.

Lemma 2.10 If $\Phi_{0} \subseteq \Phi_{1} \subseteq \ldots \subseteq \Phi_{n} \subseteq \ldots$ is an increasing chain of C theories, then $\bigcup_{n \in N} \Phi_{n}$ is a C-theory. Moreover, if all Φ_{n} are C-witnessed then $\bigcup_{n \in N} \Phi_{n}$ is C-witnessed.

Lemma 2.11 A C-theory Φ is a C-witnessed maximal C-theory iff it is a maximal C-witnessed theory.

The completeness proof goes now via the following steps:
Lemma 2.12 (Lindenbaum Lemma) Every C-witnessed theory Φ can be extended to a maximal C-witnessed theory $T_{\Phi} \supseteq \Phi$.

Proof. Let $\phi_{0}, \phi_{1}, \ldots, \phi_{n}, \ldots$ be an enumeration of formulas in \mathcal{L}_{C}. We define an increasing chain $\Phi_{0} \subseteq \Phi_{1} \ldots \subseteq \Phi_{n} \subseteq \ldots$ of C-witnessed theories: first, put $\Phi_{0}:=\Phi$; then, given the witnessed C-theory Φ_{n}, put $\Phi_{n+1}:=\Phi_{n}$ if $\Phi \vdash \neg \phi_{n}$, and put $\Phi_{n+1}:=\Phi_{n} \cup\left\{\phi_{n}\right\}$ otherwise (if $\Phi_{n} \nvdash \neg \phi_{n}$). Finally, we put $T_{\Phi}:=\bigcup_{n \in N} \Phi_{n}$. By Lemma 2.10, this is a C-witnessed theory. Moreover, it is also a maximal C-theory (since every formula consistent with T_{Φ} is in T_{Φ}), so it is a maximal C-witnessed theory.

Lemma 2.13 (Extension Lemma) Let C be a set of constants, and let $C^{\prime}=$ $\left\{c_{0}, c_{1}, \ldots, c_{n}, \ldots\right\}$ be a countable set of "fresh" constants, i.e. s.t. $C \cap C^{\prime}=\emptyset$. Put $\tilde{C}=C \cup C^{\prime}$. Then every C-theory Φ can be extended to a \tilde{C}-witnessed theory $\tilde{\Phi} \supseteq \Phi$, and hence (by Lindenbaum Lemma) to a maximal \tilde{C}-witnessed theory $T_{\Phi} \supseteq \Phi$.

Proof. Let $\gamma_{1}, \ldots, \gamma_{n} \ldots$ be an enumeration of all the triplets of the form $\gamma_{n}=\left(s_{n}, t_{n}, \phi_{n}\right)$ consisting of any necessity form $s_{n} \in\left(\mathcal{L}_{\tilde{C}} \cup\left(\mathcal{A} \times \mathcal{T}_{\tilde{C}}^{*}\right)\right)^{*}$, any term $t_{n} \in \mathcal{T}_{\tilde{C}}$ and formula $\phi_{n} \in \mathcal{L}_{\tilde{C}}$. For every such triplet $\gamma_{n}=\left(s_{n}, t_{n}, \phi_{n}\right)$, put $C^{\prime}(n)=:\left\{c^{\prime} \in C^{\prime}: c^{\prime}\right.$ occurs in either s_{n} or t_{n} or $\left.\phi_{n}\right\}$. Note that $C^{\prime}(n)$ is always finite.

We now construct an increasing chain $\Phi_{0} \subseteq \Phi_{1} \ldots \subseteq \Phi_{n} \subseteq \ldots$ of \tilde{C}-theories, satisfying the following three properties: (1) $\Phi_{0}=\Phi$; (2) for every $n \in N$, the set $C_{n}^{\prime}:=\left\{c^{\prime} \in C^{\prime}: c^{\prime}\right.$ occurs in $\left.\Phi_{n}\right\}$ is finite; (3) for every triplet $\gamma_{n}=$ $\left(s_{n}, t_{n}, \phi_{n}\right)$ in the above enumeration, if $\Phi_{n} \nvdash \neg\left\langle s_{n}\right\rangle \phi_{n}$, then $\exists m \in N$ s.t. $\left\langle s_{n}\right\rangle\left(t_{n}=c_{m}^{\prime} \wedge \phi_{n}\right) \in \Phi_{n+1}$. The construction is by recursion. For $n=0$, we put $\Phi_{0}:=\Phi$, which takes care of condition (1) above. At step $n+1$, let Φ_{n} be a \tilde{C}-theory satisfying clause (1) above, and let $\gamma_{n}=\left(s_{n}, t_{n}, \phi_{n}\right)$ be the n-th triplet in the above enumeration. We have two cases: (a) if we have $\Phi_{n} \vdash\left[s_{n}\right] \neg \phi_{n}$, then we put $\Phi_{n+1}:=\Phi_{n} ;(\mathrm{b})$ in case that we have $\Phi_{n} \nvdash\left[s_{n}\right] \neg \phi_{n}$, then we choose m
to be the least natural number bigger ${ }^{11}$ than the indices of all the constants in $C^{\prime}(n) \cup C_{n}^{\prime}$, and put $\Phi_{n}+1:=\Phi_{n} \cup\left\{\left\langle s_{n}\right\rangle\left(t_{n}=c_{m}^{\prime} \wedge \phi_{n}\right)\right\}$. To show that this gives us a C-theory, notice that c_{m}^{\prime} doesn't occur in s_{n}, t_{n}, ϕ_{n} or Φ_{n}. If Φ_{n+1} were inconsistent, then we'd have $\Phi_{n} \vdash\left[s_{n}\right]\left(t_{n}=c_{m}^{\prime} \rightarrow \neg \phi_{n}\right)$, so $\exists \theta_{1}, \ldots, \theta_{k} \in \Phi_{n}$ s.t. $\vdash \theta_{1} \rightarrow\left(\theta_{n} \rightarrow \cdots\left[s_{n}\right]\left(t_{n}=c_{m}^{\prime} \rightarrow \neg \phi_{n}\right)\right)$ is a theorem in LED. But $c_{m}^{\prime} \notin C^{\prime}(n) \cup C_{n}^{\prime}$, so c_{m}^{\prime} doesn't occur in $s_{n}, t_{n}, \phi_{n}, \theta_{1}, \ldots, \theta_{n}$ (or in any other formula of $\left.\Phi_{n}\right)$. By Lemma 2.7, we have that $\vdash \theta_{1} \rightarrow\left(\theta_{n} \rightarrow \cdots\left[s_{n}\right] \neg \phi_{n}\right)$ is also a theorem in $L E D$, and hence that $\Phi_{n} \stackrel{\leftarrow}{\stackrel{ }{2}}[s] \neg \phi_{n}$, contrary to our assumption (in case b). So in both cases Φ_{n+1} is a \tilde{C}-theory. It is also easy to see that it satisfies condition (2): in case (a) we have $C_{n+1}^{\prime}=C_{n}^{\prime}$ (finite by the inductive assumption); in case (b) we have $C_{n+1}^{\prime}=C_{n}^{\prime} \cup C^{\prime}(n) \cup\left\{c_{m}^{\prime}\right\}$ (still finite). Finally, it is obvious that condition (3) is satisfied.

Given now this increasing sequence $\Phi=\Phi_{0} \subseteq \cdots \subseteq \Phi_{n} \subseteq \cdots$ of \tilde{C}-theories satisfying (1)-(3) above, take $\tilde{\Phi}:=\bigcup_{n \in N} \Phi_{n}$. By Lemma 2.10, $\tilde{\Phi}$ is a \tilde{C}-theory, and it obviously includes $\Phi=\Phi_{0}$. Condition (3) above implies that $\tilde{\Phi}$ is \tilde{C} witnessed.

Together, the last three results imply that, in order to show completeness, it is enough to show that, for any countable set C of constants, every maximal C-witnessed theory has a model. We now proceed to prove this.

From now on, we fix the set of constants C, and we assume given a maximal C-witnessed theory T_{0}. For each term $t \in \mathcal{T}=\mathcal{T}_{C}$, we can define an equivalence relation \sim^{t} on maximal C-witnessed theories T, T^{\prime}, by putting: $T \sim^{t} T^{\prime}$ iff $\forall c \in C\left((t=c) \in T \Leftrightarrow(t=c) \in T^{\prime}\right)$. Put $\sim:=\bigcap_{t \in \mathcal{T}^{0}} \sim^{t}$ (where recall that \mathcal{T}^{0} is the set of ground terms). It is obvious that \sim is also an equivalence relation on maximal C-witnessed theories.

In addition, we can define another equivalence relation \equiv on the set of constants C by putting: $c \equiv c^{\prime}$ iff $\left(c=c^{\prime}\right) \in T_{0}$. For any constant $c \in C$, let us denote by $[c]:=\left\{c^{\prime} \in C: c \equiv c^{\prime}\right\}$ the equivalence class of c modulo \equiv.

Canonical Model The canonical model for T_{0} is a model $M=\left(\Omega, D,[0],[1], \sim_{a},\|\bullet\|, \bullet(\bullet), \mathbf{f}, \mathbf{R}\right)_{a \in \mathcal{A}, f \in \mathcal{F}, R \in \mathcal{R}}$ for the language \mathcal{L}_{C}, defined as follows: the state space is $\Omega:=\left\{T \subseteq \mathcal{L}_{C}\right.$: T maximal witnessed \mathcal{L}_{C}-theory with $\left.T \sim T_{0}\right\}$; the set of objects is $D:=\{[c]: c \in C\}$, where $[c]$ is the equivalence class of c modulo \equiv, and the equivalence classes [0] and [1] are the two designated objects; the epistemic relations are: $T \sim_{a} T^{\prime}$ iff $\forall \varphi \in \mathcal{L}_{C}\left(K_{a} \varphi \in T \Rightarrow \varphi \in T^{\prime}\right)$. For $f \in \mathcal{F}$, we put $\mathbf{f}\left(\left[c_{1}\right], \ldots,\left[c_{n}\right]\right):=[c]$ for $c_{1}, \ldots, c_{n}, c \in C$ with $\left(f\left(c_{1}, \ldots, c_{n}\right)=c\right) \in_{0}$; and for $R \in \mathcal{R}$, we put $\mathbf{R}:=\left\{\left(\left[c_{1}\right], \ldots,\left[c_{n}\right]\right): R\left(c_{1}, \ldots, c_{n}\right) \in T_{0}\right.$. The valuation is $\|p\|:=\{T \in W: p \in T\}$. The value $T(\alpha)$ of $\alpha \in \operatorname{Var} \cup C$ at world $T \in \Omega$ is given by $T(c):=[c]$ for $c \in C$, and $T(x):=[c]$, for $x \in \operatorname{Var}$ and $c \in C$ with $(x=c) \in T$. It is easy to check that these definitions are independent of the choice of representatives, so M is indeed a well-defined model for \mathcal{L}_{C}.

[^5]Lemma 2.14 (Intersection Lemma) For all agents $a \in \mathcal{A}$ and finite strings of terms $\vec{t}=\left(t_{1}, \ldots, t_{n}\right)$, we have: $\sim_{a}^{\vec{t}}=\sim_{a} \cap \sim^{t_{1}} \cap \ldots \sim^{t_{n}}$.
Proof. The left-to-right inclusion: the LED-theorem $\vdash K_{a}^{\vec{x}} \vec{y} \rightarrow K_{a}^{\vec{x}, \vec{z}} \vec{y}$ (proven in Proposition 2.4) yields by substitution $\vdash K_{a} \varphi \rightarrow K_{a}^{\vec{t}} \varphi$ and \vdash $K_{a}^{t_{i}} \varphi \rightarrow K_{a}^{\vec{t}} \varphi$, from which we obtain $\sim_{a}^{\vec{t}} \subseteq \sim_{a}$ and $\sim_{a}^{\vec{t}} \subseteq \sim^{t_{i}}$ (for all $i=1, n$). For the converse inclusion: suppose $T, S \in \Omega$ satisfy $T \sim_{a} S$ and $T \sim^{t_{i}} S$ for all $i=1, n$. To show that $T \sim{ }_{a}^{\vec{t}} S$, let $K_{a}^{\vec{t}} \varphi \in T$. We need to show that $\varphi \in S$: for this, notice that, since T is C-witnessed (and, for each $i=1, n$ there must exist constants $c_{i} \in C$ such that T is consistent with $t_{i}=c_{i}$. Since T is maximal, it follows that $\left(t_{i}=c_{i}\right) \in T$, and moreover that $(\vec{t}=\vec{c}) \in T$. By applying the theorem $\vdash \vec{t}=\vec{c} \rightarrow\left(K_{a}^{\vec{t}} \varphi \rightarrow K_{a}^{\vec{t}}=\vec{c} \varphi\right)$, we obtain that $K_{a}^{\vec{t}}=\vec{c} \varphi \in T$, i.e. $K_{a}(\vec{t}=\vec{c} \rightarrow \varphi) \in T$. This together with $T \sim_{a} S$, gives us that $(\vec{t}=\vec{c} \rightarrow \varphi) \in S$. But from $(\vec{t}=\vec{c}) \in T$ and $T \sim^{t_{i}} S$ for all $i=1, n$, we derive that $(\vec{t}=\vec{c}) \in T$, and hence by closure of (the maximal theory T) under modus ponens, we obtain that $\varphi \in T$.

As a consequence of Lemma 2.14, all $\sim_{a}^{\vec{t}}$ are equivalence relations.
Lemma 2.15 (Diamond Lemma) Let $T \in \Omega$, and let a, \vec{t}, φ be such that $K_{a}^{\vec{t}} \varphi \notin T$. Then there exists some theory $S \in \Omega$ such that $T \sim_{a}^{\vec{t}} S$ but $\varphi \notin S$.
Proof. Let $\Psi:=\left\{\psi: K_{a}^{\vec{t}} \psi \in T\right\}$. We will show the following
Claim: The set $\Psi \cup\{\neg \varphi\}$ is a C-witnessed theory.
To prove this claim, we first need to show that this set is consistent. Suppose not; then there exist $\psi_{1}, \ldots, \psi_{n} \in \Psi$ (hence, $K_{a}^{\vec{t}} \psi_{i} \in T$ for all $i=1, n$) such that $\vdash\left(\psi_{1} \wedge \ldots \psi_{n}\right) \rightarrow \varphi$ is a theorem. But then we also have that $\vdash\left(K_{a}^{\vec{t}} \psi_{1} \wedge \ldots K_{a}^{\vec{t}} \psi_{n}\right) \rightarrow K_{a}^{\vec{t}} \varphi$ and $\left(K_{a}^{\vec{t}} \psi_{1} \wedge \ldots K_{a}^{\vec{t}} \psi_{n}\right) \in T$, hence $K_{a}^{\vec{t}} \varphi \in T$, in contradiction with our assumption (that $K_{a}^{\vec{t}} \varphi \notin T$).

Next, to show that $\Psi \cup\{\neg \varphi\}$ is C-witnessed, suppose that, for some triple $\left(s^{\prime}, t^{\prime}, \varphi^{\prime}\right)$, we have $\Psi \cup\{\neg \varphi\} \vdash\left[s^{\prime}\right]\left(t^{\prime}=c \rightarrow \phi^{\prime}\right)$ for all $c \in C$. By a previous lemma, this gives that $\Psi \vdash\left(\neg \varphi \rightarrow\left[s^{\prime}\right]\left(t^{\prime}=c \rightarrow \phi^{\prime}\right)\right)$ for all c, and by another lemma we obtain that $K_{a}^{\vec{t}} \Psi \vdash K_{a}^{\vec{t}}\left(\neg \varphi \rightarrow\left[s^{\prime}\right]\left(t^{\prime}=c \rightarrow \phi^{\prime}\right)\right.$) (where recall that $K_{a}^{\vec{t}} \Psi=\left\{K_{a}^{\vec{t}} \psi: \psi \in \Psi\right\}$). But note that $K_{a} \Psi \subseteq T$, and hence we get $T \vdash \overrightarrow{K_{a}{ }^{t}}\left(\neg \varphi \rightarrow\left[s^{\prime}\right]\left(t^{\prime}=c \rightarrow \phi^{\prime}\right)\right)$ for all $c \in C$. Since $T \in \Omega$ is C-witnessed, it follows (by applying the C-witnessing condition to the necessitation form $\left.\left((a, \vec{t}), \neg \varphi, s^{\prime}\right)\right)$ that $T \vdash K_{a}^{\vec{t}}\left(\neg \varphi \rightarrow\left[s^{\prime}\right] \phi^{\prime}\right)$, and hence by maximality that $K_{a}^{\vec{t}}\left(\neg \varphi \rightarrow\left[s^{\prime}\right] \phi^{\prime}\right) \in T$, hence $\left(\neg \varphi \rightarrow\left[s^{\prime}\right] \phi^{\prime}\right) \in \Psi$. From this we obtain that $\Psi \cup\{\neg \varphi\} \vdash\left[s^{\prime}\right] \phi^{\prime}$, thus proving our Claim above.

Given the Claim, we can now use the Extension Lemma (in combination with Lindenbaum Lemma) to extend the set $\Psi \cup\{\neg \varphi\}$ to a maximal C-witnessed theory S. It is easy to see that we have $S \sim T \sim T_{0}$, hence $S \in \Omega$. We obviously have $(\neg \varphi) \in S$, so by consistency $\varphi \notin S$. Finally, $\Psi \subseteq S$ gives us that $T \sim_{a}^{\vec{t}} S$.

Lemma 2.16 ("Knowledge de Re" Lemma) Let $T \in \Omega$, and let a, \vec{t}, t^{\prime} be such that $\bar{K}_{a}^{\vec{t}} t^{\prime} \notin T$. Then there exists some theory $S \in \Omega$ such that $T \sim_{a}^{\vec{t}} S$ but $T \not \chi^{t^{\prime}} S$.

Proof. Since T is a maximal C-witnessed theory, there exist $\vec{c} \in C^{*}, c \in C$ such that $\vec{t}=\vec{c}, t^{\prime}=c^{\prime} \in T$. By using the theorem $\vdash\left(\vec{t}=\vec{c} \wedge t^{\prime}=c^{\prime}\right) \rightarrow$ $\left(K_{a}^{\vec{t}} t^{\prime} \leftrightarrow K_{a}\left(\vec{t}=\vec{c} \rightarrow t^{\prime}=c^{\prime}\right)\right)$ (which is a substitution instance of the Knowledge de Re axiom) and the assumption that $K_{a}^{\vec{t}} t^{\prime} \notin T$, we obtain that $K_{a}\left(\vec{t}=\vec{c} \rightarrow t^{\prime}=c^{\prime}\right) \notin T$. By the Diamond Lemma, there exists some $S \in \Omega$ such that $T \sim_{a}^{\vec{t}} S$ but $\left(\vec{t}=\vec{c} \rightarrow t^{\prime}=c^{\prime}\right) \notin S$. By the maximality of S, we get that $\left(\vec{t}=\vec{c} \wedge t^{\prime} \neq c^{\prime}\right) \in S$, and hence that $T \sim_{t_{i}} S$ for all $i=1, n$ but $T \not \chi_{t^{\prime}} S$. Using also $T \sim_{a}^{\vec{t}} S$ and the Intersection Lemma above, we conclude that $T \sim_{a}^{\vec{t}} S$ (and $T \not \chi_{t^{\prime}} S$), as desired.
Lemma 2.17 (Truth Lemma) Let $M=\left(\Omega, D, \sim_{a},\|\bullet\|, \bullet(\bullet), \mathbf{f}\right)_{a \in \mathcal{A}, f \in F}$ be the canonical model for (some theory) T_{0}. Then for every formula φ and every term t, we have:
(1) $T \in\|\varphi\|_{M}$ iff $\varphi \in T$, and
(2) $T(t)=[c]$ iff $(t=c) \in T$.

Proof. We prove both claims by simultaneous induction on the complexity ${ }^{12}$ of formulas φ and terms t :

To prove (1): for atomic formulas $p \in P$, (1) is trivial. For relational atoms $R(\vec{t})$, let $\overrightarrow{[c]} \in D^{*}$ be s.t. $T(\vec{t})=\overrightarrow{[c]}$, so by the induction hypothesis for (2) we have $(\vec{t}=\vec{c}) \in T$. Then we have the following sequence of equivalencies: $T \in\|R(\vec{t})\|_{M}$ iff $T(\vec{t}) \in \mathbf{R}$ iff $\overrightarrow{[c]} \in \mathbf{R}$ iff $R(\overrightarrow{[c]}) \in T_{0}$ iff (using $\left.T \sim T_{0}\right) R(\overrightarrow{[c]}) \in T$ iff $R(\overrightarrow{[t]}) \in T$ (where at the last step we used the fact that $(\vec{t}=\vec{c}) \in T$ and the equality axioms). For implicational formulas $\phi \rightarrow \psi$, this goes as usual, using the properties of maximally consistent theories. For epistemic formulas $K_{a}^{\vec{t}} t^{\prime}$, with $\vec{t}=\left(t_{1}, \ldots, t_{n}\right)$: to prove the left-to-right implication, suppose that $T \in\left\|K_{a}^{\vec{t}} t^{\prime}\right\|_{M}$ but $\left(K_{a}^{\vec{t}} t^{\prime}\right) \notin T$. By the Knowledge de Re Lemma, there exists some $S \in \Omega$ such that $T \sim_{a}^{\vec{t}} S$ but $T \not \chi^{t^{\prime}} S$. By the Intersection Lemma, we obtain that $T \sim_{a} S$ and $T \sim^{t_{i}} S$ for all $i \in\{1, \ldots, n\}$; i.e. for every $c \in C$ and $i \in\{1, \ldots, n\}$, we have that: $\left(t_{i}=c\right) \in T \Leftrightarrow\left(t_{i}=c\right) \in S$. By the induction hypothesis for claim (2), this implies that $T(\vec{t})=S(\vec{t})$. From this, together with $T \sim_{a} S$ and the fact that $T \in\left\|K_{a}^{\vec{t}} t^{\prime}\right\|_{M}$ (as well as the semantic clause for knowledge de re), we obtain that $T\left(t^{\prime}\right)=S\left(t^{\prime}\right)$. Applying again the induction hypothesis for (2), we get that

[^6]$\left(t^{\prime}=c\right) \in T \Leftrightarrow\left(t^{\prime}=c\right) \in S$ holds for all $c \in C$, i.e. $T \sim^{t^{\prime}} S$ contrary to our assumption above. To show the converse: suppose that $\left(K_{a}^{\vec{t}} t^{\prime}\right) \in T$. Since T is C-witnessed there must exist $\vec{c} \in C^{*}, c^{\prime} \in C$ such that $(\vec{t}=\vec{c}),\left(t^{\prime}=c^{\prime}\right) \in T$. By the induction hypothesis for (2), we have $T\left(t_{i}\right)=\left[c_{i}\right]$ for all $i \in\{1, \ldots, n\}$, and also $T\left(t^{\prime}\right)=\left[c^{\prime}\right]$. To prove now that $T \in\|\varphi\|_{M}$, let $S \in \Omega$ be such that $T \sim_{a} S$ and $T(\vec{t})=S(\vec{t})$. It is enough to prove that $T\left(t^{\prime}\right)=S\left(t^{\prime}\right)$. Using the Knowledge de Re axiom, and the fact that $\left(K_{a}^{\vec{t}} t^{\prime}\right) \in T$, we obtain that $\left(K_{a}^{\vec{t}}=\vec{c} t^{\prime}=c^{\prime}\right) \in T$, i.e. $K_{a}\left(\vec{t}=\vec{c} \rightarrow t^{\prime}=c^{\prime}\right) \in T$. Since $T \sim_{a} S$, we must have $\left(\vec{t}=\vec{c} \rightarrow t^{\prime}=c^{\prime}\right) \in S$. From $T(\vec{t})=S(\vec{t})$ and $T\left(t_{i}\right)=\left[c_{i}\right]$ for all i, we get that $S\left(t_{i}\right)=\left[c_{i}\right]$ for all i, and so by the induction hypothesis for (2) we have $(\vec{t}=\vec{c}) \in S$. This, together with $\left(\vec{t}=\vec{c} \rightarrow t^{\prime}=c^{\prime}\right) \in S$, gives us that $\left(t^{\prime}=c^{\prime}\right) \in S$. Applying again the induction hypothesis for the second claim, we obtain that $S\left(t^{\prime}\right)=\left[c^{\prime}\right]=T\left(t^{\prime}\right)$, as desired.

To show (2): it is trivially true for variables $x \in \operatorname{Var}$ and constants $c^{\prime} \in C$. For terms of the form $?_{\varphi}$: we know that by definition $T\left(?_{\varphi}\right)=[1]$ holds iff $T \in\|\varphi\|_{M}$ holds, i.e. (by the induction hypothesis for (1)) iff $\varphi \in T$ iff $\left(?_{\varphi} \leftrightarrow 1\right) \in T$ (by the Characteristic Functions Axiom). A similar argument shows that $T\left(?_{\varphi}\right)=[0]$ iff $\left(?_{\varphi} \leftrightarrow 0\right) \in T$. Since [0] and [1] are the only possible values of $T\left(?_{\varphi}\right)$, we obtain the desired conclusion. For terms of the form $f\left(t_{1}, \ldots, t_{n}\right)$, let $c_{1}, \ldots, c_{n} \in C$ be s. t. $T\left(t_{1}\right)=\left[c_{1}\right], \ldots, T\left(t_{n}\right)=\left[c_{n}\right]$, i.e. $\left(t_{1}=c_{1}\right), \ldots,\left(t_{n}=c_{n}\right) \in T$. (By the definition of the canonical value function, such constants must exist.) We have $T\left(f\left(t_{1}, \ldots, t_{n}\right)=\mathbf{f}\left(T\left(t_{1}\right), \ldots, T\left(t_{n}\right)\right)=\right.$ $\mathbf{f}\left(\left[c_{1}\right], \ldots,\left[c_{n}\right]\right)=\left[f\left(c_{1}, \ldots, c_{n}\right)\right]$. Hence we have that: $T\left(f\left(t_{1}, \ldots, t_{n}\right)=[c]\right.$ holds iff $\left.f\left(c_{1}, \ldots, c_{n}\right)\right]=[c]$ holds, i.e. iff $\left(f\left(c_{1}, \ldots, c_{n}\right)=c\right) \in T$.

In particular, T_{0} is satisfied at world T_{0} in M : this finishes our proof of strong completeness.

The decidability proof goes via the following two steps:
STEP 1: Reduction of $L E D$ validities to validities in a less expressive language. Let $L E D_{0}$ be the language with the following syntax

$$
\begin{aligned}
& \varphi::=p|R(\vec{t})| \varphi \rightarrow \varphi \mid K_{a} \varphi \\
& t::=x|\quad c \quad| f(\vec{t})
\end{aligned}
$$

In other words: we only allow terms that do not contain characteristic functions $?_{\phi}$ and we only allow the usual (propositional) modalities. The semantics is the obvious one, with all constructs interpreted as in $G K$ and with the epistemic modalities interpreted in the usual way (using the relations \sim_{a}).

In fact, for technical reasons it is convenient to also look at the extended language $L E D_{1}$ obtained by adding the usual epistemic modalities to $L E D$:

$$
\begin{aligned}
& \varphi::=p|R(\vec{t})| \varphi \rightarrow \varphi\left|K_{a}^{\vec{t}} t\right| K_{a} \varphi \\
& t::=x|\quad c| \quad ?_{\varphi} \mid f(\vec{t})
\end{aligned}
$$

(Once again, the semantics is the obvious one).
It is clear that $L E D_{1}$ and $L E D_{0}$ are co-expressive, since $K_{a} \varphi$ is equivalent to $\varphi \wedge K_{a}^{\lambda}$? ${ }_{\varphi}$. In contrast, $L E D_{0}$ is a less expressive language than $L E D$ (and hence than $L E D_{1}$):
Counterexample. We show that the formula $K_{a} x$ is not equivalent to any formula in $L E D_{0}$. Suppose, towards a contradiction that $K_{a} x$ is equivalent to some formula ϕ_{0} in $L E D_{0}$. Let C_{0} be the finite set of constants occurring in ϕ_{0}, and $C_{1}:=C_{0} \cup\{0,1\}$. Take a model M_{1} with two distinct worlds $W_{1}=\left\{w, w^{\prime}\right\}$, four distinct objects $D=\left\{[0],[1], d, d^{\prime}\right\}, f(\bullet)=[0]$ for all functions and arguments, $\sim_{a}=W_{1} \times W_{1},\|p\|=\emptyset$ for all p, and $w(x)=d$, $w^{\prime}(x)=d^{\prime}$ for all variables x. Take another model M_{2} with only one world $W_{2}=\left\{w^{\prime \prime}\right\}$, same D, f and $\|p\|$ as for M_{1}, but with $\sim_{a}=W_{2} \times W_{2}$ and $w^{\prime \prime}(x)=d$ for all variables x. It is easy to see that the worlds w, w^{\prime} and $w^{\prime \prime}$ satisfy exactly the same formulas in the language of $L E D_{0}$ based only on constants in C_{0}. Hence, these three worlds are equivalent wrt the truth value of ϕ_{0}. However, $K_{a} x$ is true at $w^{\prime \prime}$, while being false at w and w^{\prime}. This contradicts the equivalence between $K_{a} x$ and ϕ_{0}.

So the modalities for knowledge of a value really increase the expressivity of our language. Nevertheless, we can prove that every validity of $L E D_{1}$ "translates" to a validity of $L E D_{0}$:
Proposition 2.18 ("Validity Reduction") There exists a computable map τ from the language $L E D_{1}$ to the language $L E D_{0}$, such that, for every formula φ of $L E D_{1}$, we have:

$$
\varphi \text { is valid iff } \tau(\varphi) \text { is valid. }
$$

Proof. The proof is by induction, using another notion of complexity γ that counts only the number of nested de re modalities and nested? symbols. ${ }^{13}$ Note that every term t of $L E D_{1}$ can be rewritten as $t=t_{0}\left[x_{1} / ?_{\phi_{1}}, \ldots, x_{n} / ?_{\phi_{n}}\right]$, for some term t_{0} of $L E D_{0}$ as well as some variables x_{1}, \ldots, x_{n} and formulas $\phi_{1}, \ldots, \phi_{n}$ (in $L E D_{1}$), with $\gamma\left(\phi_{i}\right)<\gamma(t)$. For $\vec{c} \in\{0,1\}^{n}$, we introduce the notations $t_{0}[\vec{c}]:=t_{0}\left[x_{1} / c_{1}, \ldots, x_{n} / c_{n}\right]$, and $\vec{c}(\vec{\phi}):=\bigwedge_{i=1, n} c_{i}\left(\phi_{i}\right)$, where $c(\phi):=\phi$ for $c=1$, and $c(\phi)=\neg \phi$ for $c=0$. Now for any tuple of terms $\vec{t}=\left(t^{1}, \ldots, t^{m}\right)$ of $L K G_{1}$, let t_{0}^{i} (with $\left.i \in\{1, \ldots, m\}\right)$ be the corresponding terms in $L E D_{0}$, with variables $x_{1}^{i}, \ldots, x_{n_{i}}^{i}$ and formulas $\phi_{1}^{i}, \ldots, \phi_{n_{i}}^{i}($ for $i \in\{1, \ldots, m\})$, s.t. $\quad t^{i}=t_{0}^{i}\left[x_{1}^{i} / ?_{\phi_{1}^{i}}, \ldots, x_{n_{i}}^{i} / ?_{\phi_{n_{i}}}\right]$ holds for all $i \in\{1, \ldots, m\}$. Then we put $\left(R\left(t^{1}, \ldots, t^{m}\right)_{0}:=\right.$ $\bigvee_{\vec{c}^{1} \in\{0,1\}^{n_{1}}} \ldots \bigvee_{\vec{c}^{m} \in\{0,1\}^{n_{m}}}\left(\bigwedge_{i \in\{1, \ldots, m\}} \vec{c}^{i}\left(\vec{\phi}^{i}\right) \wedge R\left(t_{0}^{1}\left[\vec{c}^{1}\right], \ldots, t_{0}^{m}\left[\vec{c}^{m}\right]\right)\right)$.
Claim A: $R(\vec{t})$ is logically equivalent to $(R(\vec{t}))_{0}$.
(The proof is an easy verification.)

[^7]Given this claim, let φ be any formula in $L E D_{1}$. We can obviously bring it to conjunctive normal form, i.e. establish a validity $\models \varphi \Leftrightarrow \bigwedge_{i} \bigvee_{j} \phi^{i j}$, where the formulas $\phi^{i j}$ are of one the following "basic" forms $p, \neg p, R(\vec{t})$, $\neg R(\vec{t}), K_{a}^{\vec{t}} t^{\prime}, \neg K_{a}^{\vec{t}} t^{\prime}, K_{a} \psi$, or $\neg K_{a} \psi$. Let \mathcal{T}_{φ} be the set of all terms occurring in this normal form, and let F be an injective map that associates to each term $t \in \mathcal{T}_{\varphi}$ some "fresh" constant $F(t) \in C \backslash \mathcal{T}_{\varphi}$ (such that $F(t) \neq F\left(t^{\prime}\right)$ for $\left.t \neq t^{\prime}\right)$. For any string $\vec{t}=\left(t_{1}, \ldots, t_{n}\right)$ of terms in \mathcal{T}_{φ}, put $F(\vec{t}):=$ $\left(F\left(t_{1}\right), \ldots, F\left(t_{n}\right)\right)$. We now associate to each of the above "basic" formulas $\phi^{i j}$ some corresponding formulas $\phi_{0}^{i j}$, as follows: $\phi_{0}^{i j}:=\phi^{i j}$ if $\phi^{i j}$ is the form p or $K_{a} \psi ; \phi_{0}^{i j}:=(R(\vec{t}))_{0}$ (as defined above) if $\phi^{i j}$ is of the form $R(\vec{t})$; $\phi_{0}^{i j}:=K_{a}\left(\vec{t}=F(\vec{t}) \Rightarrow t^{\prime}=F\left(t^{\prime}\right)\right)$ if $\phi^{i j}$ is of the form $K_{a}^{\vec{t}} t^{\prime}$; and finally $\left(\phi^{i j}\right)_{0}:=\neg \psi_{0}$, if $\phi^{i j}=\neg \psi$ with ψ of one of the forms $p, R(\vec{t}), K_{a} \varphi$ or $\overrightarrow{K_{a}^{t}} t^{\prime}$.

We associate now to our formula φ above a new formula φ_{0} of lower γ complexity, by putting

$$
\varphi^{0}:=\left(\bigwedge_{t \in \mathcal{T}_{\phi}} t=F(t)\right) \Rightarrow \bigwedge_{i} \bigvee_{j} \phi_{0}^{i j}
$$

It is now easy to verify the following:
Claim B: If φ is not in $L E D_{0}$, then $\gamma\left(\varphi^{0}\right)<\gamma(\varphi)$.
Finally, we can prove the key step of our "Validity Reduction":
Claim C: φ is valid iff φ^{0} is valid.
Proof of Claim C: Note the validity $\models\left(\bigwedge_{t \in \mathcal{T}_{\phi}} t=F(t)\right) \Rightarrow\left(\phi^{i j} \Leftrightarrow \phi_{0}^{i j}\right)$. (This is obvious when $\phi^{i j}$ is of the form $p, \neg p, K_{a} \psi$ or $\neg K_{a} \psi$; it follows from Claim A when $\phi^{i j}$ is of the form $R(\vec{t})$ or $\neg R(\vec{t})$; and it follows from the Knowledge de Re Axiom when $\phi^{i j}$ is of the form $K_{a}^{\vec{t}} t^{\prime}$ or $\neg K_{a}^{\vec{t}} t^{\prime}$.) Using the normal form of φ, we obtain the following validity:

$$
(*) \models\left(\bigwedge_{t \in \mathcal{T}_{\varphi}} t=F(t)\right) \Rightarrow\left(\varphi \Leftrightarrow \bigwedge_{i} \bigvee_{j} \phi_{0}^{i j}\right)
$$

To prove now one direction of Claim C, assume that φ is valid. Using $\left(^{*}\right)$, it follows that $\left(\bigwedge_{t \in \mathcal{T}_{\phi}} t=F(t)\right) \Rightarrow \bigwedge_{i} \bigvee_{j} \phi_{0}^{i j}$ is valid, i.e. φ_{0} is valid. For the other direction: assume that φ_{0} is valid, and let $M=\left(W, D,[0],[1], \sim_{a}, \| \bullet\right.$ $\|, \bullet(\bullet), \mathbf{f}, \mathbf{R})_{a \in \mathcal{A}, f \in \mathcal{F}, R \in \mathcal{R}}$ be a model and $w_{0} \in W$ be any world. We can change this to a different model $M^{\prime}=\left(W, D,[0],[1], \sim_{a},\|\bullet\|, \bullet(\bullet)^{\prime}, \mathbf{f}, \mathbf{R}\right)_{a \in \mathcal{A}, f \in \mathcal{F}, R \in \mathcal{R}}$, where we changed only the value map (and only at w_{0}) by putting $w_{0}(c)^{\prime}=$ $w_{0}(t)$ whenever $F(t)=c$ with $t \in \mathcal{T}_{\varphi}$, and $w(c)^{\prime}=w(c)$ in rest. Since F is injective, this gives us a well-defined value map. The change doesn't affect the values of the terms $t \in \mathcal{T}_{\varphi}$ (since they don't contain any of the fresh constants whose value was changed), so we have $w_{0}(t)^{\prime}=w_{0}(t)=w_{0}(F(t))^{\prime}$ for all these
terms, hence $w_{0} \in\left|\bigwedge_{t \in \mathcal{T}_{\phi}} t=F(t)\right|_{M^{\prime}} . \operatorname{Using}\left(^{*}\right)$ and the fact that φ_{0} is valid, it follows that $w_{0} \in \mid \varphi \|_{M^{\prime}}$. But φ contains none of the constants whose values were changed, so its truth value was not affected by the change, i.e. we also have $w_{0} \in \mid \varphi \|_{M}$. Since M and w_{0} are arbitrary, we conclude that φ is valid.

Applying repeatedly the last two Claims, we get an immediate proof of Proposition 2.18, by induction on $\gamma(\varphi)$.

Thus, we have reduced the problem of proving FMP for $L E D$ to the corresponding problem for the simpler language $L E D_{0}$.

STEP 2: Finite Model Property for $L E D_{0}$

Proposition 2.19 The logic $L E D_{0}$ has (strong) finite model property: every satisfiable formula φ_{0} is satisfiable in a finite model.

Proof. Let φ_{0} be a satisfiable formula in a language $\mathcal{L}=\mathcal{L}(P, V a r, C, \mathcal{F}, \mathcal{R}, a r)$ for $L E D_{0}$, and let $M=\left(W, D,[0],[1], \sim_{a},\|\bullet\|, \bullet(\bullet), \mathbf{f}, \mathbf{R}\right)_{a \in \mathcal{A}, f \in \mathcal{F}, R \in \mathcal{R}}$ be a model and $w_{0} \in W$ be a world such that $w_{0} \in\left\|\varphi_{0}\right\|_{M}$. Take $\Sigma \subseteq \mathcal{L} \cup \mathcal{T}$ be the smallest set of formulas and terms in $L E D_{0}$ that contains $\varphi_{0}, 0$ and 1 , and is closed under subterms and subformulas. ${ }^{14}$ It is easy to see that Σ is finite.

Let us put $\mathcal{T}_{\Sigma}:=\mathcal{T} \cap \Sigma, \mathcal{L}_{\Sigma}:=\mathcal{L} \cap \Sigma, P_{\Sigma}:=P \cap \Sigma, \operatorname{Var}_{\Sigma}:=\operatorname{Var} \cap \Sigma$, $C_{\Sigma}:=C \cap \Sigma$. We now define an equivalence relation \cong on W by putting: $w \cong v$ iff $\forall \varphi \in \Sigma\left(w \in\|\varphi\|_{M} \Leftrightarrow v \in\|\varphi\|_{M}\right)$. For any $w \in W$ we denote by $|w|:=\{v \in W: w \cong v\}$ the \cong-equivalence class of w, and we put $W_{\Sigma}:=$ $\{|w|: w \in W\}$ for the set of all \cong-equivalence classes. Note that W_{Σ} is finite. Fix now some arbitrary well-ordering $<$ of W. For every class $w \in W_{\Sigma}$, we denote by w_{0} the first element of the class $|w|$ (wrt $<$). Let $D_{0}:=\{w(t):|w| \in$ $\left.W_{\Sigma}, t \in \mathcal{T}_{\Sigma}\right\} \cup\{[0],[1]\}$. Note that D_{0} is finite. If $D \backslash D_{0} \neq \emptyset$, then choose some $d^{0} \in D \backslash D_{0}$, and put $D_{\Sigma}:=D_{0} \cup\left\{d^{0}\right\}$. If however $D \backslash D_{0}=\emptyset$, then put $D_{\Sigma}:=D_{0}=D$. Note that in both cases D_{Σ} is a finite subset of D.

We now define a "filtrated" model

$$
M_{\Sigma}=\left(W_{\Sigma}, D_{\Sigma},[0]_{\Sigma},[1]_{\Sigma}, \sim_{a}^{\Sigma},\|\bullet\|_{\Sigma}, \bullet(\bullet), \mathbf{f}_{\Sigma}, \mathbf{R}_{\Sigma}\right)_{a \in \mathcal{A}, f \in \mathcal{F}, R \in \mathcal{R}}
$$

by taking W_{Σ} and D_{Σ} as above, and putting $[0]_{\Sigma}:=[0] ;[1]_{\Sigma}:=[1] ; w \sim_{a}^{\Sigma} v$ iff $\forall K_{a} \phi \in \Sigma\left(w \in\left\|K_{a} \phi\right\|_{M} \Leftrightarrow v \in\left\|K_{a} \phi\right\|_{M}\right) ;\|p\|_{\Sigma}:=\left\{|w|: w \in\|p\|_{M}\right\}$ for $p \in P_{\Sigma}$, and $\|p\|_{\Sigma}:=\emptyset$ for $p \in P \backslash P_{\Sigma} ;|w|(\alpha):=w(\alpha)$ for $\alpha \in \operatorname{Var}_{\Sigma} \cup C_{\Sigma}$, and $|w|(\alpha):=d^{0}$ for $\alpha \in(\operatorname{Var} \cup \Sigma) \backslash\left(\operatorname{Var}_{\Sigma} \cup C_{\Sigma}\right) ; \mathbf{f}_{\Sigma}\left(d_{1}, \ldots, d_{n}\right):=\mathbf{f}\left(d_{1}, \ldots, d_{n}\right)$ if there exists a term $f\left(t_{1}, \ldots, t_{n}\right) \in \Sigma$ and a world $|w| \in W_{\Sigma}$ s.t. $|w|\left(t_{i}\right)=d_{i}$ for all $i \in\{1, \ldots, n\}$; and $\mathbf{f}_{\Sigma}\left(d_{1}, \ldots, d_{n}\right):=d^{0}$ otherwise; finally, $\mathbf{R}_{\Sigma}:=\mathbf{R} \cap\left(D_{\Sigma} \times\right.$ $\left.D_{\Sigma}\right)$. Note that $\mathbf{f}_{\Sigma}: D_{\Sigma} \rightarrow D_{\Sigma}$ is a well-defined function, $=_{\Sigma}$ is the diagonal $\left\{(d, d): d \in D_{\Sigma}\right\}$, and M_{Σ} is indeed a finite model.
Claim D ("Term Lemma"): For every term $t \in \mathcal{T}_{\Sigma}$ and $w \in W$, we have $|w|(t)_{\Sigma}=w(t)$.

[^8]Proof of Claim D: Proof by induction: the base case is by definition; for the inductive step: $|w|\left(f\left(t_{1}, \ldots, t_{n}\right)=f_{\Sigma}\left(|w|\left(t_{1}\right), \ldots,|w|\left(t_{n}\right)\right)=\right.$ $f_{\Sigma}\left(w\left(t_{1}\right), \ldots, w\left(t_{n}\right)\right)=f\left(w\left(t_{1}\right), \ldots, w\left(t_{n}\right)\right)=w\left(f\left(t_{1}, \ldots, t_{n}\right)\right)$, where we used the induction hypothesis, the definition of f_{Σ} and $f\left(t_{1}, \ldots, t_{n}\right) \in \mathcal{T}_{\Sigma}$.
Claim E ("Filtration Lemma") For all formulas $\phi \in \Sigma$, we have:

$$
|w| \in\|\phi\|_{M_{\Sigma}} \text { iff } w \in\|\phi\|_{M}, \quad \text { for every } w \in W .
$$

Proof of Claim E: Proof by induction on ϕ. All steps go as in the classical proof of the Filtration Lemma (for the logic $S 5$), except for the relational atoms $R\left(t_{1}, \ldots, t_{n}\right) \in \Sigma$, for which we have $t_{1}, \ldots, t_{n} \in \mathcal{T}_{\Sigma}$, and thus Claim D can be applied. So we have the sequence of equivalencies: $|w| \in \| R\left(t_{1}, \ldots, t_{n} \|_{M_{\Sigma}}\right.$ iff $\left(|w|\left(t_{1}\right), \ldots,|w|\left(t_{n}\right)\right) \in \mathbf{R}_{\Sigma}$ iff (by definition of $\left.R_{\Sigma}\right)\left(|w|\left(t_{1}\right), \ldots,|w|\left(t_{n}\right)\right) \in \mathbf{R}$ iff (by Claim D) $\left(w\left(t_{1}\right), \ldots, w\left(t_{n}\right)\right) \in \mathbf{R}$ iff $w \in\left\|R\left(t_{1}, \ldots, t_{n}\right)\right\|_{M}$.

This finishes our proof that $L E D_{0}$ has FMP.
Putting together Step 1 and Step 2, we conclude that LED also has FMP, and thus (being also axiomatizable) it is decidable.

3 Learning the Value of a Variable

We now extend LED with public value-announcement operators $\langle!\vec{t}\rangle$ for every tuple $\vec{t} \in \mathcal{T}^{*}$. These operators act on both formulas and terms. The syntax of Public Announcement Logic of Epistemic Dependency (PALED) is given by:

$$
\begin{aligned}
& \varphi::=p|R(\vec{t})| \varphi \rightarrow \varphi\left|K_{a}^{\vec{t}} t\right|\langle!\vec{t}\rangle \varphi \\
& t::=x|\quad c| \quad ?_{\varphi} \quad|f(\vec{t})|\langle!\vec{t}\rangle t
\end{aligned}
$$

where x are variables, c are constants, t are term in \mathcal{T}, \vec{t} are finite tuples of terms, and f and R are symbols of arity equal to the length of \vec{t}.

The operations of propositional substitution and variable substitution can be extended in the obvious way to the new formulas and terms. ${ }^{15}$
Semantics. Our notion of model is the same as for LED. For every model M, we define an extended valuation (truth map) $\|\varphi\|$, an extended value map $w(t)_{M}$, and the update $M^{\vec{t}}$ of model M with any finite string of terms $\vec{t} \in \mathcal{T}^{*}$. The truth map and the extended value map are defined as for $L E D$, except that we add the clauses:

$$
\|\langle!\vec{t}\rangle \varphi\|_{M}=\|\varphi\|_{M \vec{t}}, \quad \text { and } \quad w\left(\langle!\vec{t}\rangle t^{\prime}\right)_{M}=w\left(t^{\prime}\right)_{M \vec{t}} .
$$

For the update $M^{\vec{t}}:=\left(W, \sim_{M \vec{t}}^{a},\|\bullet\|, \bullet(\bullet), \mathbf{f}, \mathbf{R}\right)$, we leave all the components the same, except for changing the epistemic relations as follows:

$$
\sim_{M^{\vec{t}}}^{a}=\left\{(w, s) \in W \times W \mid w \sim^{a} s, w(\vec{t})_{M}=s(\vec{t})_{M}\right\} .
$$

[^9]So all agents jointly learn the values of \vec{t}, and nothing else changes.
Example 2 The formula $\left\langle!x_{a}\right\rangle\left(K_{a} x_{b} \wedge K_{b} x_{b}\right)$ is true in (all worlds of) the model from Example 1 above. This can be verified by performing an update $!x_{a}$, which removes epistemic arrows between worlds having different values for x_{a} and checking that $K_{a} x_{b} \wedge K_{b} x_{b}$ holds in the updated model. So, after the value of Alice's number is announced, everybody will know Bob's number.
Propositional Public Announcements. The standard (propositional) public announcement formulas from $P A L$ can be defined as abbreviations in our syntax, by putting: $\langle!\phi\rangle \psi:=\phi \wedge\langle!(? \phi)\rangle \psi$, and $[!\phi] \psi:=\phi \rightarrow\langle!(? \phi)\rangle \psi$.
Proof system. We obtain a complete system for PALED by restricting the Substitution Rules to static contexts, and adding a Necessitation Rule for announcements, as well as Reduction Axioms. More precisely:
(i) Restricted Propositional Substitution: From φ, infer $\varphi[p / \theta]$, provided that p doesn't occur in the scope of any dynamic operator in φ.
(ii) Restricted Variable Substitution: From φ, infer $\varphi[x / t]$, provided that x doesn't occur in the scope of any dynamic operator in φ.
(iii) All the other axioms and rules of the system LED.
(iv) Necessitation Rule for Announcements: From $\vdash \varphi$ infer $\vdash\langle!\vec{t}\rangle \varphi$.
(v) Propositional Reduction Axioms ${ }^{16}$:

$$
\begin{gathered}
\langle!\vec{t}\rangle p \leftrightarrow p \\
\langle!\vec{t}\rangle R\left(t_{1}, \ldots, t_{n}\right) \leftrightarrow R\left(\langle!\vec{t}\rangle t_{1}, \ldots,\langle!\vec{t}\rangle t_{n}\right) \\
\langle!\vec{t}\rangle(\varphi \rightarrow \psi) \leftrightarrow(\langle!\vec{t}\rangle \varphi \rightarrow\langle!\vec{t}\rangle \psi) \\
\langle!\vec{t}\rangle K_{a}^{t_{1}, \ldots, t_{n}} t^{\prime} \leftrightarrow K_{a}^{\vec{t}},\langle!\vec{t}\rangle t_{1}, \ldots,\langle!\vec{t}\rangle t_{n}\langle!\vec{t}\rangle t^{\prime}
\end{gathered}
$$

(vi) Term Reduction Axioms:

$$
\begin{gathered}
\langle!\vec{t}\rangle c=c \\
\langle!\vec{t}\rangle x=x \\
\langle!\vec{t}\rangle ?_{\varphi}=?_{\langle!\vec{t}\rangle \varphi} \\
\langle!\vec{t}\rangle f\left(t_{1}, \ldots, t_{n}\right)=f\left(\langle!\vec{t}\rangle t_{1}, \ldots\langle!\vec{t}\rangle t_{n}\right)
\end{gathered}
$$

Applying the Reduction Axiom iteratively, we can eliminate all dynamic operators in the usual way, and thus prove:

[^10]Theorem 3.1 The proof system $P A L E D$ is sound and weakly complete for the logic $P A L E D$. Moreover, $P A L E D$ has the same expressivity as $L E D$.

4 Comparison with other work

Our epistemic dependency formulas are closely connected to Dependency Logic [18,19]. Note that $K_{a}^{x_{1}, \ldots, x_{n}} y$ expresses only a "local" dependency (at the actual world): this is reflected in the fact that this attitude is not introspective (i.e. $K_{a}^{x_{1}, \ldots, x_{n}} y$ does not imply $K_{a} K_{a}^{x_{1}, \ldots, x_{n}} y$). However, its "introspective version" $K_{a} K_{a}^{x_{1}, \ldots, x_{n}} y$ gives a more "global" dependency (across all the epistemicallypossible worlds), thus capturing knowledge of the dependency. It is easy to see that $w \models K_{a} K_{a}^{x_{1}, \ldots, x_{n}} y$ is equivalent to the assertion that the dependence atom $=\left(x_{1}, \ldots, x_{n}, y\right)$ holds at the "team" $\left\{v: w \sim_{a} v\right\}$ comprising the set of (variable assignments associated to all) epistemic alternatives of w. But note that $L E D$ is decidable, in contrast to most variants of Dependence Logic!

Our logic has also interesting relations with the so-called 'erotetic logics' [8,12,26], including inquisitive logics [10]. First, as Hintikka [13], Schaffer [17], Aloni and others [1] argued, all types of knowledge (knowing that, knowing what, knowing who, knowing how, knowing whether, knowing which) are special cases of knowing the answer to a question: "All knowledge involves a question. To know is to know the answer" ([17]: 401). Second, every "variable" (mapping worlds to a set D of values) induces a partition of the state space; so variables could be used to represent any partitional question. Knowing the answer to a question is the same as knowing the value of the corresponding map. ${ }^{17}$ Our epistemic dependency formulas capture an 'epistemic' version of interrogative implication, as studied in inquisitive logics. But the variable representation gives us more information: if we identify the values in D with abstract "answers", then we can compare answers for different questions, and thus formalize phenomena such as "knowing the answer without knowing the question", that cannot be dealt with in standard inquisitive semantics. We believe that an account of questions as functions from worlds to (sets of) "answers" gives a better model for interrogatives then the usual inquisitive representation.

In contrast to both Inquisitive Logic and Dependency Logic, our approach preserves the "classicality" of propositional calculus, and re-interprets the nonclassical features in terms of modal-epistemic operators. As in Dynamic Epistemic Logic [14,7,5,22,20], and its most natural interrogative versions [3,21,6,4], our semantics is "modal" in the usual sense, with formulas evaluated at worlds, rather than at sets of worlds. We think of this as an advantage of our approach, suggesting that questions (and variable dependency) can be understood without denying the classical logical principles. To know is to know the answer. But the logic of Aristotle, Boole and Frege is not dead just yet.

[^11]
References

[1] Aloni, M., P. Egré and T. De Jager, Knowing whether a or b, Synthese 190 (2013), pp. 2595-2621.
[2] Armstrong, W. J., Dependency structures of data base relationships, IFIP Congress 74 (1974), pp. 580-583.
[3] Baltag, A., Logics for insecure communication, in: Proceedings of the 8th conference on Theoretical aspects of rationality and knowledge, Morgan Kaufmann Publishers Inc., 2001, pp. 111-121.
[4] Baltag, A., R. Boddy and S. Smets, Group knowledge in interrogative epistemology, in: Outstanding Contributions to Logic: J. Hintikka, Springer, 2016 p. to appear.
[5] Baltag, A., L. Moss and S. Solecki, The logic of public announcements, common knowledge, and private suspicions, in: Proceedings of the 7th conference on Theoretical aspects of rationality and knowledge, Morgan Kaufmann Publishers Inc., 1998, pp. 43-56.
[6] Baltag, A. and S. Smets, Learning by questions and answers: From belief-revision cycles to doxastic fixed points, in: Logic, Language, Information and Computation, Springer, 2009 pp. 124-139.
[7] Baltag, A., H. van Ditmarsch and L. Moss, Epistemic logic and information update, Handbook of the Philosophy of Information, Elsevier Science Publishers, Amsterdam (2008), pp. 361-456.
[8] Belnap Jr, N. D., Questions, answers, and presuppositions, The Journal of Philosophy 63 (1966), pp. 609-611.
[9] Burrows, M., M. Abadi and R. Needham, A logic of authentication, Proceedings of the Royal Society of London 426 (1989), pp. 233-271.
[10] Ciardelli, I. and F. Roelofsen, Inquisitive logic, Journal of Philosophical Logic 40 (2011), pp. 55-94.
[11] Dechesne, F. and Y. Wang, To know or not to know: epistemic approaches to security protocol verification, Synthese 177 (2010), pp. 51-76.
[12] Groenendijk, J. and M. Stokhof, On the semantics of questions and the pragmatics of answers, Semantics: Critical Concepts in Linguistics (1985), p. 288.
[13] Hintikka, J., "Socratic epistemology: Explorations of knowledge-seeking by questioning," Cambridge University Press, 2007.
[14] Plaza, J., Logics of public communication, in: Proceedings of the 4th International Symposium on Methodologies for Intelligent Systems (1989), pp. 201-216.
[15] Plaza, J., Logics of public communication, Synthese 158 (2007), pp. 165-179.
[16] Quine, W. V., On what there is, Review of Metaphysics 2 (1948), pp. 21-36.
[17] Schaffer, J., Knowing the answer, Philosophy and Phenomenological Research 75 (2007), pp. 383-403.
[18] Vaananen, J., "Dependence logic," Cambridge University Press, 2007.
[19] Vaananen, J., Modal dependence logic, Texts in Logic and Games 4 (2008), pp. 237-254.
[20] van Benthem, J., "Logical dynamics of information and interaction," Cambridge University Press, 2011.
[21] van Benthem, J. and S. Minica, Toward a dynamic logic of questions, Journal of Philosophical Logic 41 (2012), pp. 633-669.
[22] van Ditmarsch, H., W. van Der Hoek and B. Kooi, 337, Springer Science \& Business Media, 2007.
[23] van Ditmarsch, H. P., J. Ruan and R. Verbrugge, Sum and product in dynamic epistemic logic, Journal of Logic and Computation 18 (2008), pp. 563-588.
[24] Wang, Y. and J. Fan, Knowing that, knowing what, and public communication: Public announcement logic with kv operators, in: Proceedings of IJCAI, 2013, pp. 1139-1146.
[25] Wang, Y. and J. Fan, Conditionally knowing what, in: Advances in Modal Logic (2014), pp. 569-587.
[26] Wisniewski, A., "The Posing of Questions, Logical Foundations of Erotetic Inferences," Synthese Library. Kluwer., 1995.

[^0]: 1 thealexandrubaltag@gmail.com
 2 In its turn, the work of Wang and Fan builds on previous research in Security on knowledge of keys and passwords, e.g. [9,11,23].
 3 We use the the same symbol K_{a} for "knowledge what" as the usual epistemic operator for "knowledge that", and we use variables x, y, \ldots to denote the non-rigid designators. Plaza, and Wang and Fan, use a different notation $K v_{a}$ for "knowledge what", and denote the non-rigid designators by constants c. In our framework, doing this would be very confusing, since we also have rigid designators, which are naturally denoted by constants.

[^1]: ${ }^{4}$ We use the dynamic-logic style notation for this operator that is by now standard in Dynamic Epistemic Logic, which we regard as natural: this is a dynamic modality, capturing weakest precondition of an action exactly as in $P D L$, except that the action is the one of publicly announcing φ. Plaza uses the more opaque notation $\varphi+\psi$.
 ${ }^{5}$ After submitting the AiML abstract, we became aware of an unpublished draft by van Eijck, Gattinger and Wang, containing work in progress on a partial solution to this problem. The logic axiomatized there has knowledge de re operators $K x$ and value announcements $[!x] \psi$, but it cannot express the usual "knowledge that" $K \phi$, nor the usual (propositional) public announcements $[!\phi] \psi$, so it is not a complete solution to the above problem.
 ${ }^{6}$ See Section 4.

[^2]: 7 "To be is, purely and simply, to be the value of a variable" [16].

[^3]: $\overline{8}$ More precisely: $p[p / \theta]:=\theta ; q[p / \theta]:=q ;\left(R\left(t_{1}, \ldots, t_{n}\right)\right)[p / \theta]:=R\left(t_{1}[p / \theta], \ldots, t_{n}[p / \theta]\right) ;$ $(\varphi \rightarrow \psi)[p / \theta]:=\varphi[p / \theta] \rightarrow \psi[p / \theta] ; K_{a}^{t_{1}, \ldots, t_{n}} t[p / \theta]:=K_{a}^{t_{1}[p / \theta], \ldots, t_{n}[p / \theta]} t[p / \theta] ; \lambda[p / \theta]:=\lambda ;$ $c[p / \theta]:=c ; x[p / \theta]:=x ; ?_{\varphi}[p / \theta]:=? \varphi[p / \theta] ; f\left(t_{1}, \ldots, t_{n}\right)[p / \theta]:=f\left(t_{1}[p / \theta], \ldots, t_{n}[p / \theta]\right)$.
 ${ }^{9}$ I.e., $\lambda[x / t]:=\lambda ; c[x / t]:=c ; x[x / t]:=t ; y[x / t]:=y ; ?_{\varphi}[x / t]:=?{ }_{\varphi}[x / t] ; f\left(t_{1}, \ldots, t_{n}\right)[x / t]:=$ $f\left(t_{1}[x / t], \ldots, t_{n}[x / t]\right) ; p[x / t]:=p ;\left(R\left(t_{1}, \ldots, t_{n}\right)[x / t]:=R\left(t_{1}[x / t], \ldots, t_{n}[x / t]\right) ; \quad(\varphi \rightarrow\right.$ $\psi)[x / t]:=\varphi[x / t] \rightarrow \psi[x / t] ;\left(K_{a}^{t_{1}, \ldots, t_{n}} t^{\prime}\right)[x / t]:=K_{a}^{t_{1}[x / t], \ldots, t_{n}[x / t]} t^{\prime}[x / t]$.

[^4]: ${ }^{10}$ This is an instance of the well-known fact that in the axiomatic system $S 5$, a formula $\psi \rightarrow \square \phi$ is a theorem iff the formula $\diamond \psi \rightarrow \phi$ is a theorem.

[^5]: ${ }^{11}$ Such a number exists, due to the inductive assumption (2) above.

[^6]: ${ }^{12}$ Our notion of complexity is a function comp : $\mathcal{L}_{C} \cup \mathcal{T}_{C} \rightarrow N$, defined recursively by putting: $\operatorname{comp}(p)=\operatorname{comp}(c)=\operatorname{comp}(x)=0, \operatorname{comp}\left(R\left(t_{1}, \ldots, t_{n}\right)\right)=$ $1+\max \left(\operatorname{comp}\left(t_{1}\right), \ldots, \operatorname{comp}\left(t_{n}\right)\right), \operatorname{comp}(\phi \rightarrow \psi)=1+\max (\operatorname{comp}(\phi), \operatorname{comp}(\psi))$, $\operatorname{comp}\left(K_{a}^{t_{1}, \ldots, t_{n}} t^{\prime}\right)=1+\max \left(\operatorname{comp}\left(t_{1}\right), \ldots, \operatorname{comp}\left(t_{n}\right), \operatorname{comp}\left(t^{\prime}\right)\right), \operatorname{comp}\left(?_{\phi}\right)=1+\operatorname{comp}(\phi)$, $\operatorname{comp}\left(f\left(t_{1}, \ldots, t_{n}\right)\right)=1+\max \left(\operatorname{comp}\left(t_{1}\right), \ldots, \operatorname{comp}\left(t_{n}\right)\right)$.

[^7]: ${ }^{13}$ More precisely, we recursively put: $\gamma(p)=\gamma(x)=\gamma(c)=0, \gamma(\varphi \rightarrow \psi)=\max (\gamma(\varphi), \gamma(\psi))$, $\gamma\left(K_{a} \varphi\right)=\gamma(\neg \varphi)=\gamma(\varphi), \gamma\left(K_{a}^{t_{1}, \ldots, t_{n}} t\right)=1+\max \left(\gamma\left(t_{1}\right), \ldots, \gamma\left(t_{n}\right), \gamma(t)\right), \gamma(? \varphi)=1+\gamma(\varphi)$, $\gamma\left(R\left(t_{1}, \ldots, t_{n}\right)\right)=\gamma\left(f\left(t_{1}, \ldots, f_{n}\right)\right)=\max \left(\gamma\left(t_{1}\right), \ldots, \gamma\left(t_{n}\right)\right)$.

[^8]: ${ }^{14}$ More precisely, Σ has to satisfy the following closure conditions: (1) if $(\varphi \rightarrow \psi) \in \Sigma$ then $\varphi, \psi \in \Sigma ;(2)$ if $K_{a} \varphi \in \Sigma$ then $\varphi \in \Sigma$; (3) if $f\left(t_{1}, \ldots, t_{n}\right) \in \Sigma$ then $t_{1}, \ldots, t_{n} \in \Sigma$; (4) if $R\left(t_{1}, \ldots, t_{n}\right) \in \Sigma$ then $t_{1}, \ldots, t_{n} \in \Sigma$.

[^9]: 15 Formally, we put: $\left(\left\langle!t_{1}, \ldots, t_{n}\right\rangle \varphi\right)[p / \theta]:=\left\langle!t_{1}[p / \theta], \ldots, t_{n}[p / \theta]\right\rangle(\varphi[p / \theta])$;
 $\left(\left\langle!t_{1}, \ldots, t_{n}\right\rangle t^{\prime}\right)[p / \theta] \quad:=\quad\left\langle!t_{1}[p / \theta], \ldots, t_{n}[p / \theta]\right\rangle\left(t^{\prime}[p / \theta]\right) ; \quad\left(\left\langle!t_{1}, \ldots, t_{n}\right\rangle \varphi\right)[x / t] \quad:=$
 $\left\langle!t_{1}[x / t], \ldots, t_{n}[x / t]\right\rangle(\varphi[x / t]) ;\left(\left\langle!t_{1}, \ldots, t_{n}\right\rangle t^{\prime}\right)[x / t]:=\left\langle!t_{1}[x / t], \ldots, t_{n}[x / t]\right\rangle\left(t^{\prime}[x / t]\right)$.

[^10]: ${ }^{16}$ Note that the third reduction axiom is the axiom K for announcements. This is usually stated for universal modalities $[\alpha] \psi$, but these coincide with the existential ones in our case, since value announcements are deterministic actions (whose transition relations are functions). Combining this axiom with the Necessitation Rule for announcements, one can show that formulas obtained by prefixing provably equivalent formulas with dynamic operators are provably equivalent. This is needed to apply Reduction Axioms repeatedly in order to gradually reduce (and eventually eliminate) nested announcement operators, e.g. $\left\langle\vec{t}^{1}\right\rangle\left\langle\vec{t}^{2}\right\rangle \psi$.

[^11]: ${ }^{17}$ As for the "non-partitional" questions (having non-unique complete answers), as considered in Inquisitive Semantics, they could be represented in our framework as functions from worlds to sets of answers in $\mathcal{P}(D)$. It would be interesting to study the epistemic logic of "knowing an answer" (rather than 'the' answer) in this generalized framework.

