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1 Introduction

Entanglement entropy [1–3] has become a powerful diagnostic tool for a variety of phe-

nomena in quantum theory (see for example refs. [4–6]). Very important progress in our

understanding of entanglement arose from the proposal [7] of holographic entanglement

entropy, which has beautifully linked the study of entanglement to gravity and thermody-

namics (for example, the recent work of ref. [8]).

To define entanglement we break up the degrees of freedom into two disjoint sets A

and B. The density matrix of the full system is taken to be ρ. Define the reduced density

matrix in the region A as ρA = trBρ, obtained by tracing out the degrees of freedom in

region B. Then the entanglement entropy is defined as:

SE = −trρA log ρA . (1.1)

A more general quantity called the Rényi entropy is often studied. This is defined as:

Sn =
1

1− n
log trρnA (1.2)

where n is a positive integer. Besides being a diagnostic on its own, the Rényi entropy can

sometimes be used as a trick to compute the entanglement entropy. This happens when

Sn can be unambiguously continued to arbitrary real values of n. Then it is easily verified

that the limit limn→1 Sn = SE . The advantage of focusing on Rényi entropy is that it can

often be computed using the replica trick [9–12]. For this, one constructs “twist fields” and

computes their correlation functions using relatively standard procedures in CFT. The
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twist correlators determine a quantity called the “replica partition function” Zn, in terms

of which the Rényi entropy is:

Sn =
1

1− n
log

Zn

Zn
1

. (1.3)

Entanglement and Rényi entropies have been computed for a wide variety of quantum

field theories but they tend to have the problem that either (i) they are very universal,

depending on limited information about the QFT (in which case they are not a very useful

diagostic), or (ii) they are extremely hard to compute. In class (i) one has conformal field

theories at finite temperature or in a finite space, with a single entangling interval, for

which the entanglement entropy depends only on the central charge. However when the

temperature and spatial size are both finite, there is a finite space with multiple entan-

gling intervals, the same theories do not exhibit such a level of universality and therefore

this situation is more interesting. The case of multiple intervals at zero temperature was

investigated in refs. [13–16]. At finite temperature and finite size (i.e., on a Euclidean

torus), only a few explicit computations exist and these apply to free field theories of

bosons or fermions. The results for the Rényi entropy are found to depend sensitively on

the spectrum of operator dimensions and not just the central charge. To date, explicit

computations have been carried out only for the free Dirac fermion [17, 18] and a pair of

free scalar fields [19–21]. There are also some general results about the universal thermal

correction in generic 2d CFT’s [22, 23]. Quantum corrections to such entropies have been

addressed in the holographic context in refs. [24, 25].

Once we are on the torus (defined by the inverse temperature β and the system size

L), the issue of modular invariance naturally arises. Early computations including those

in [17, 18], obtained the Rényi entropy for free Dirac fermions in a fixed spin structure

(which could be any of (−,−), (+,−), (−,+) but not (+,+)). The computation made use

of local Bose-Fermi equivalence to construct the twist field and compute its correlators,

then manually restricted the bosonic sum to obtain a fixed fermion spin structure. The

results are not modular-invariant and therefore do not respect Bose-Fermi duality. This

brings into question whether Rényi and entanglement entropies are properties of a QFT

independent of its presentation, or depend on the specific fields used to define the QFT.

This point is discussed in ref. [16]1 which makes a strong case that entanglement should

depend only on the theory rather than on its presentation. The consistent definition of

a CFT incorporates modular invariance as a fundamental property and this provides a

valuable constraint on its operator content, partition function and correlators [26, 27].

Motivated by this viewpoint we revisit the previous computation of Rényi entropy for

free fermions, performed using the replica trick, and examine whether a modular-invariant

replica partition function Zn exists satisfying all the desired properties. In order to achieve

modular invariance one needs to perform a sum over spin structures (i.e. over anti-periodic

and periodic boundary conditions in both the spatial and thermal directions) [26].

The replica trick involves extending the original theory to an n-fold copy and per-

forming a twist-field computation on this copy. The presence of fermion spin structures

1We thank Shiraz Minwalla for bringing this work to our attention.
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introduces, quite literally, a new twist on the problem — one has to decide whether the spin

structures are correlated or uncorrelated across replicas. To get some physical input into

which one is correct, we appeal to the universal relation between entanglement and thermal

entropy first noted in ref. [17]. We find a perhaps surprising result: for free fermions, this

relation holds only if we choose two different ways of summing in two different limits: for

a small entangling region one must consider uncorrelated spin structures, while for a large

one (close to the size of the entire space) one has to completely correlate spin structures

across replicas. The correct formula for a general size of the entangling region must in-

terpolate between these two extremes, and we speculate at the end about how this could

come about.

It is known that for large intervals, the replica trick requires a correlation between

states on different replicas, as was originally evident from the work of [22]. In a beautiful

series of works, this relation has been developed further and a formal proof been provided

for the entanglement-thermal entropy relation [20, 28]. Our computation can be seen as a

verification of these ideas in the specific context of fermion spin structures. In ref. [21] the

proof has been explicitly verified for the free-boson partition function. We confirm that our

result agrees with that of the above reference in the special case of radius R = 1 (in units

where α′ = 2), where the free boson is known to be equivalent to a free Dirac fermion.

This provides strong evidence, for the first time, that Bose-Fermi duality is respected by

entanglement entropy on the torus.

Both the ways of summing over spin structures that we use lead to a replica partition

function that is modular covariant rather than invariant. Under modular transformations of

the torus, it transforms into itself with a prefactor. As a result the Rényi and entanglement

entropies acquire an additive contribution upon modular transformations. We will see that

the covariance arises from the fact that twist field correlators are involved: correlation

functions in CFT are modular covariant rather than invariant, and the precise prefactor

that we find agrees with the general expectation. We verify that the Rényi entropy for

a compact free boson at radius R, originally attempted in [19] and recently corrected in

ref. [21], is also modular covariant with the expected prefactor.

Next we turn our attention to more general free 2d CFT’s. The CFT of two Dirac

fermions with correlated spin structures is equivalent to a pair of bosons compactified

at radius R =
√
2 (this is the self-dual value under T-duality). We compute the Rényi

entropies for this theory for small and large intervals and find modular-covariant answers

that satisfy the thermal entropy relation. This is then repeated for theories of multiple

correlated Dirac fermions. These are CFT’s of arbitrarily large central charge d that are

not direct sums of simpler CFT’s. The bosonic duals are given by multiple free bosons

compactified on the weight lattice of Spin(2d) with a specific background B-field [29].

We use the weight-lattice structure to construct a twist field, and compute its two-point

function. Incorporating the sum over spin structures in the two relevant limits provides

the replica partition function in these limits and confirms the arguments made above. We

conclude with some observations and speculations about future directions.

– 3 –



J
H
E
P
0
6
(
2
0
1
5
)
1
0
6

2 Free Dirac fermion and modular invariance

Consider a CFT whose partition function on a rectangular torus of spatial size L and

Euclidean time extent β is Z1(L, β). As mentioned above, the Rényi entropy Sn associated

to a spatial region A running from 0 to ℓ is defined as:

Sn =
1

1− n
log tr ρnA (2.1)

where ρA is the density matrix obtained by tracing out the degrees of freedom outside

A. This can be evaluated using the replica trick, which we briefly summarise here. One

extends the original torus to an n-fold cover with branch cuts along spatial intervals from

0 to ℓ. This can equivalently be thought of as a single copy of the original torus with the

insertion of “twist fields” labelled σk at the endpoints of the entangling interval. Here k

ranges from −n−1
2 to n−1

2 in integral steps. The job of the twist fields is to introduce a

phase factor e
2πik
n on the free fermion field, which we denote D(z), as it goes around the

twist field:

σk(z, z̄)D(w) ∼ (z − w)
k
n (2.2)

and the opposite phase on the anti-holomorphic conjugate fermion:

σk(z, z̄)D̄(w̄) ∼ (z̄ − w̄)−
k
n . (2.3)

The twist fields can be shown to satisfy
∑

k ∆k = c
24

(

n− 1
n

)

in any CFT, where c is the

central charge.

One can then show that [9, 12]

tr ρnA =

n−1
2
∏

k=−n−1
2

〈σk(ℓ, ℓ)σ−k(0, 0)〉 . (2.4)

It is convenient to think of the product of un-normalised correlators as defining the “replica

partition function”

Zn =

n−1
2
∏

k=−n−1
2

Z1〈σk(ℓ, ℓ)σ−k(0, 0)〉 =
n−1
2
∏

k=−n−1
2

〈〈σk(ℓ, ℓ)σ−k(0, 0)〉〉 (2.5)

where Z1 is the ordinary partition function of the theory (without insertions), and we use

〈〈· · ·〉〉 to denote un-normalised correlators. It follows that:

tr ρnA =
Zn

Zn
1

(2.6)

from which the Rényi entropies are easily obtained.

Consider a Dirac fermion with a single entangling interval of length ℓ. This theory con-

sists of two Majorana fermions with correlated spin structures. Labelling the holomorphic

parts of the Majorana fermions as ψ1, ψ2 we make the Dirac fermion D(z) = ψ1(z)+iψ2(z).

– 4 –
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The local operators of dimension (12 ,
1
2 ) arising from this are: D(z)D̄(z̄), D†(z)D̄(z̄),

D(z)D̄†(z̄), D†(z)D̄†(z̄). This theory has the modular-invariant partition function:

ZDirac =
1

2

∑

ν=2,3,4

∣

∣

∣

∣

θν(0|τ)
η(τ)

∣

∣

∣

∣

2

. (2.7)

For future use we define:

Z1[m] =
1

2

∑

ν=2,3,4

∣

∣

∣

∣

θν(0|τ)
η(τ)

∣

∣

∣

∣

2m

(2.8)

where the subscript 1 refers to the ordinary partition function (this will later be replaced

by n for the nth replica partition function). This is the ordinary partition function for m

Dirac fermions with correlated spin structures. In this notation the single Dirac fermion

has ordinary partition function Z1[1].

For the replica partition function of the same theory, the following result2 was obtained

in ref. [17]:

〈σk(z, z̄)σ−k(0, 0)〉 =
∣

∣

∣

∣

∣

θ′1(0|τ)
θ1(

ℓ
L
|τ)

∣

∣

∣

∣

∣

4∆k
∣

∣

∣

∣

∣

θν(
kℓ
nL

|τ)
θν(0|τ)

∣

∣

∣

∣

∣

2

. (2.9)

Here ∆k = k2

2n2 , ν = 2, 3, 4 is a fixed spin-structure on the torus corresponding to boundary

conditions (+,−), (−,−), (−,+) respectively,3 and τ = i β
L
. For the (+,+) spin-structure

the result would formally be the same but with ν = 1. Subsequently the above results

were re-derived in ref. [18], where it was observed that the 2-point function in the (+,+)

spin structure is divergent due to the vanishing of θ1(0|τ). Importantly, the entanglement

entropy following from the computations in refs. [17, 18] satisfies the relation proposed in

ref. [17], based on holography, relating its small and large-interval limits to the thermal

entropy of the same system.

Despite meeting all the other physical requirements, the above result raises a puzzle.

As emphasised in ref. [16], entanglement entropy should be a feature of a definite quantum

field theory and independent of the presentation of that theory. If so, in a theory where

Bose-Fermi correspondence holds, one should obtain the same result in both bosonic and

fermionic formulations. A free fermion with a single spin structure is not dual to the

theory of free bosons, rather it is the modular-invariant free fermion partition function

(and correlation functions) that can be compared with those of the boson theory. In this

spirit, we propose that Rényi entropy be computed by performing a sum over all four spin

structures in the replica partition function Zn, and dividing by a corresponding quantity

in the absence of replicas. In principle there is more than one way to do this, and this

point will be central to our discussion.

Let us review the calculation of [17] for the Dirac fermon theory. To compute the

correlators of fermionic twist fields on the torus in this theory, these operators are first

identified with (non-local) operators in a free boson theory using the fact that a Dirac

2In their conventions, L = 1 and ℓ is denoted by L.
3The first entry labels the spatial boundary condition and the second, the boundary condition in Eu-

clidean time.
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fermion is equivalent to a free compact boson of radius R = 1 (in our conventions α′ = 2,

so T-duality acts by R → 2
R

and R =
√
2 is the self-dual radius). At a general radius R,

the free compact boson has vertex operators labelled by integers (e,m):

Oe,m(z, z̄) = Ve,m(z)V̄e,m(z̄) (2.10)

where

Ve,m(z) = ei(
e
R
+mR

2 )φ(z)

V̄e,m(z̄) = ei(
e
R
−mR

2 )φ̄(z̄)
(2.11)

of conformal dimension:

(∆e,m, ∆̄e,m) =

(

1

2

(

e

R
+

mR

2

)2

,
1

2

(

e

R
− mR

2

)2
)

. (2.12)

The OPE’s between the chiral parts of the vertex operators are given by:

Ve,m(z)Ve′,m′(0) ∼ z
( e
R
+mR

2 )
(

e′

R
+m′R

2

)

Ve+e′,m+m′(z) . (2.13)

For the special value R = 1, the compact boson is equivalent to a Dirac fermion. The

fermion field has (∆, ∆̄) = (12 ,
1
2 ) and is given, in bosonic language, by O1,0. In ref. [17]

the fermionic twist fields are identified as:

σk = O0, 2k
n

(2.14)

for k = −n−1
2 , · · · n−1

2 . These operators have (∆, ∆̄) = ( k2

2n2 ,
k2

2n2 ). Since the winding

number m for these operators is not an integer, they are not included in the set of local

operators of the theory. This is expected, since twist operators are mutually non-local with

the physical fields of the theory. One has the OPE’s:

O0, 2k
n
(z, z̄)V1,0(w) ∼ (z − w)

k
n , O0, 2k

n
(z, z̄) V̄1,0(w̄) ∼ (z̄ − w̄)−

k
n (2.15)

as desired. Now we only need to compute:

〈〈O0, 2k
n
(z, z̄)O0,− 2k

n
(0)〉〉 . (2.16)

For this we use the general result (see for example ref. [30]):

〈〈Oe,m(z, z̄)O−e,−m(0)〉〉 =
∣

∣

∣

∣

∣

θ′1(0|τ)
θ1(

ℓ
L
|τ)

∣

∣

∣

∣

∣

4∆e,m

(2.17)

× 1

|η(τ)|2
∑

e′,m′

q2∆e′,m′ q̄2∆̄e′,m′ e4πi(αe′,m′αe,mz−ᾱe′,m′ ᾱe,mz̄) .

With (e,m) = (0, 2k
n
) and R = 1, this reduces to:

〈〈O0, 2k
n
(z, z̄)O0,− 2k

n
(0)〉〉 =

∣

∣

∣

∣

∣

θ′1(0|τ)
θ1(

ℓ
L
|τ)

∣

∣

∣

∣

∣

2k2

n2
1

|η(τ)|2
∑

e,m

q2∆e,m q̄2∆̄e,m e4πi
kℓ
nL

e

=

∣

∣

∣

∣

∣

θ′1(0|τ)
θ1(

ℓ
L
|τ)

∣

∣

∣

∣

∣

2k2

n2

× 1

2

∑4
ν=1 |θν( kℓ

nL
|τ)|2

|η(τ)|2 .

(2.18)
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An important point to emphasise here is that in this approach one has to use free bosons to

represent fermionic twist fields. These do not introduce a phase on the boson, instead they

shift the free boson φ appearing in ψ = eiφ by sending φ → φ + 2πk
n

which is the k/n’th

multiple of its natural period 2π (because R = 1). Correspondingly one has φ̄ → φ̄ − 2πk
n

(here φ, φ̄ are the holomorphic and anti-holomorphic parts of the scalar field respectively).

The bosonic representation is used only as a tool to obtain the correlators of the fermion

twist fields.

At this point, we need to decide how to take the product over replicas. The most

straightforward way would be to just take the product of the above result over all k. In

this way the spin structures are summed over before we carry out replication. Hence the

spin structure on one replica of the torus is uncorrelated with that on any other, leading

to what we call the “uncorrelated replica partition function” Zu
n:

Zu
n(L, β; ℓ) =

n−1
2
∏

k=−n−1
2

〈〈O0, 2k
n
(z, z̄)O0,− 2k

n
(0)〉〉

=

∣

∣

∣

∣

∣

θ′1(0|τ)
θ1(

ℓ
L
|τ)

∣

∣

∣

∣

∣

1
6
(n− 1

n
) n−1

2
∏

k=−n−1
2

1

2

∑4
ν=1 |θν( kℓ

nL
|τ)|2

|η(τ)|2 .

(2.19)

There is another way that one can take the product. First isolate the contribution to

eq. (2.18) corresponding to a given spin structure ν ∈ 1, 2, 3, 4. This simply corresponds

to picking out the function θν . Next, take the product of this term over all replicas and

finally sum over spin structures. In this way the spin structure on each replica of the torus

is the same. We call this the “correlated replica partition function” Zc
n:

Zc
n(L, β; ℓ) =

1

2

∣

∣

∣

∣

∣

θ′1(0|τ)
θ1(

ℓ
L
|τ)

∣

∣

∣

∣

∣

1
6
(n− 1

n
) 4
∑

ν=1

n−1
2
∏

k=−n−1
2

|θν( kℓ
nL

|τ)|2
|η(τ)|2 . (2.20)

Notice that the two types of replica partition functions coincide at n = 1:

Zu
1 = Zc

1 = Z1 =
1

2

∑4
ν=1 |θν(0|τ)|2
|η(τ)|2 (2.21)

which is the ordinary modular-invariant partition function of a Dirac fermion (the contri-

bution from ν = 1 actually vanishes in this case). We also observe that as ℓ → 0 (and

generic n), the two types of partition function are quite different:

Zu
n(L, β; ℓ → 0) ∼

(

ℓ

L

)− 1
6(n−

1
n)

(

1

2

∑4
ν=1 |θν(0|τ)|2
|η(τ)|2

)n

Zc
n(L, β; ℓ → 0) ∼

(

ℓ

L

)− 1
6(n−

1
n) 1

2

∑4
ν=1 |θν(0|τ)|2n
|η(τ)|2n .

(2.22)

The second factors in the two cases are the ordinary partition functions of n Dirac fermions

with, respectively, uncorrelated and correlated spin structures [29].

– 7 –
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In principle we can consider several more variations in which we correlate and sum over

the spin structures on various subsets of the n replicas, and let them remain uncorrelated

across replicas. Such quantities are also modular covariant as one can verify. For the

moment we restrict ourselves to these two “extreme” cases and will comment about the

intermediate cases later on. We could also consider variations in which we sum over a subset

of the spin structures in a correlated fashion and the remaining ones in an uncorrelated

fashion. However, for modular covariance it is essential to sum over all spin structures in a

symmetric way. Hence this possibility is not covariant and we will not consider it further.

Returning to the two replica partitions described above, we can define two Rényi

entropies:

Su
n = lim

n→1

1

1− n
log

Zu
n

(Z1)n

Sc
n = lim

n→1

1

1− n
log

Zc
n

(Z1)n
.

(2.23)

The denominators are the same because, as we pointed out earlier, the two types of partition

functions coincide at n = 1.

Clearly we would like to know which one of these (if any) is the correct Rényi entropy

of the modular-invariant free Dirac fermion theory. Before addressing this question, which

turns out to be quite subtle, let us establish a few properties of the two quantities Zu
n and

Zc
n. First of all, they can be compared to the non-modular-invariant result of ref. [17] for

the replica partition function:

Z(ν)
n =

∣

∣

∣

∣

∣

θ′1(0|τ)
θ1(

ℓ
L
|τ)

∣

∣

∣

∣

∣

1
6
(n− 1

n
) n−1

2
∏

k=−n−1
2

|θν( kℓ
nL

|τ)|2
|η(τ)|2 (2.24)

and the corresponding Rényi entropy:

S(ν)
n =

1

1− n
log

Z
(ν)
n

(Z
(ν)
1 )n

. (2.25)

This makes sense only for the spin structures 2, 3, 4, since Z
(1)
1 vanishes and the Rényi

entropies in this spin structure are correspondingly ill-defined. Notice that the expressions

in eq. (2.23) are not made from linear combinations of the ratios in eq. (2.25).

Let us now check the modular transformation properties of the expressions in eq. (2.19)

and eq. (2.20). This transformation exchanges the two cycles of the torus. We also have

a branch cut along the horizontal axis, which under this transformation becomes a branch

cut along the vertical axis. Thus the transformation acts as β ↔ L and ℓ → iℓ, where we

have used the identification τ = iτ2 = i β
L
and z = ℓ

L
. This permits us to use:

θαβ

(

z

τ

∣

∣

∣
− 1

τ

)

= (−i)αβ(−iτ)
1
2 e

iπz2

τ θβα(z, τ) (2.26)

with the usual dictionary: θ11 → −θ1, θ10 → θ2, θ00 → θ3, θ01 → θ4. Applying this to the

second term in eq. (2.19) or eq. (2.20), one finds that even though the two expressions are
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different, they pick up the same multiplicative factor:

e
iπ
6τ (n−

1
n)(

ℓ
L)

2

. (2.27)

From the first term, which is common to both expressions, we get a corresponding factor:

e−
iπ
6τ (n−

1
n)(

ℓ
L)

2

(2.28)

which cancels the previous one, as well as a factor:

|τ | 16(n− 1
n) . (2.29)

Thus at the end, one has:

Zu,c
n (β, L; iℓ) =

(

β

L

) 1
6(n−

1
n)

Zu,c
n (L, β; ℓ) . (2.30)

We see that even after summing over spin structures, the replica partition functions are not

modular invariant, but rather modular covariant — they acquire a multiplicative pre-factor.

This factor vanishes at n = 1, so Z1 is indeed modular invariant as it must be.

The origin of the pre-factor lies in the fact that the replica partition function Zn is

not a partition function at all, but rather a correlation function — of twist fields. On the

torus, the two-point function of a field φ(z, z̄) of conformal dimension (∆, ∆̄) transforms

as (for this and other standard results in CFT, see for example ref. [30]):
〈

φ

(

z

cτ + d
,

z̄

cτ̄ + d

)

φ(0, 0)

〉

aτ+b
cτ+d

= |cτ + d|2(∆+∆̄)〈φ(z, z̄)φ(0)〉τ . (2.31)

From this it is easy to verify that the product of twist-field correlators should transform

precisely as we have found above. Indeed, since the dimensions (∆k, ∆̄k) of twist fields

satisfy the universal relation:

∑

k

∆k =
c

24

(

n− 1

n

)

(2.32)

one expects that for every CFT of central charge c the analogous result will hold with:

Zn(β, L; iℓ) =

(

β

L

) c
6(n−

1
n)

Zn(L, β; ℓ) . (2.33)

In what follows, we will explicitly verify this in all known cases.

One still has to physically understand the impact of this modular covariance on the

Rényi entropy Sn. Under eq. (2.33), one finds that Sn that transforms as:

Sn(β, L) = −c(n+ 1)

6n
log

β

L
+ Sn(L, β) . (2.34)

The additive term survives in the limit n → 1, therefore it even appears in the entanglement

entropy. Now we know that the entanglement entropy always contains a non-universal ad-

ditive constant (see for example ref. [12]), and one can take the point of view that this con-

stant simply changes under modular transformations. Such an interpretation is supported

by the fact that the additive term is independent of the length ℓ of the entangling interval.
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Alternatively, we can modify the prescription for computing the replica partition func-

tions (in both uncorrelated and correlated cases) by multiplying them by an overall factor

that renders them modular invariant. This is done as follows (importantly the factor is

independent of ℓ):

Z̃n =

(

β

L

) c
12(n−

1
n)

Zn . (2.35)

We have put in a dependence on c, the central charge, which is equal to 1 in the present

example. One expects that the replica partition function for every CFT, after multipli-

cation by the above factor, will be modular invariant. From the discussion above, such a

modification of Zn can be achieved by re-normalising all the twist fields as:

σk →
∣

∣

∣

∣

β

L

∣

∣

∣

∣

∆k

σk (2.36)

using the fact that
∑

k ∆k = c
24(n− 1

n
).

Returning now to the Dirac fermion, the two Rényi entropies, defined as:

S̃u,c
n =

1

1− n
log

Z̃u,c
n

(Z1)n
(2.37)

will satisfy:

S̃u,c
n (β, L; iℓ) = S̃u,c

n (L, β; ℓ) . (2.38)

It follows that the entanglement entropies obtained by taking n → 1 in the above will also

be modular invariant.

In the following subsection we address the question of which one of Su
n, S

c
n is the correct

Rényi entropy of the theory. From now on, we will not be very careful to insert the prefactor

above or to distinguish between modular covariant and modular invariant expressions at

each stage, since this insertion is ℓ-independent and can always be carried out at the end.

3 Relation to thermodynamic entropy

In ref. [17], the result eq. (2.24) was used to provide evidence for the conjecture, based on

holography, that the entanglement entropy satisfies:

lim
ℓ→0

(

SE(L− ℓ)− SE(ℓ)
)

= Sth (3.1)

where S is the thermodynamic entropy of the theory:

Sth = β2 ∂

∂β

(

− 1

β
logZ1

)

. (3.2)

We will use this as a guide to determine which of our modular-invariant definitions of

the replica partition function, Zu
n or Zc

n, is correct. As emphasised in refs. [22, 28], we

can simply use the low-temperature expansion for this purpose. Note that the overall

factor that we removed from the replica partition function to render it modular-invariant

is independent of the interval size ℓ and therefore drops out of eq. (3.1).
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Consider now the small-ℓ behaviour of the candidate Rényi entropies. From eq. (2.22)

we see that in this limit, Zu
n → (Z1)

n but Zc
n 6→ (Z1)

n (upto an overall power of ℓ). It is a

physical requirement that for small intervals (equivalent to a very large spatial size L) the

replica partition function should indeed tend to (Z1)
n times the given power of ℓ. On this

criterion, the correct Rényi entropy for small ℓ should be Su
n and not Sc

n.

Next consider the large interval limit, ℓ → L. In this case, it has been predicted on

general grounds [22, 28] that the replica partition function should tend to Z1(nτ), i.e. the

ordinary partition function on a torus with n times the original modular parameter, apart

from the same power of ℓ as in the ℓ → 0 case. Moreover it has been shown that this

behaviour (together with the correct ℓ → 0 behaviour) ensures that eq. (3.1) holds. Let us

subject our Zu
n and Zc

n to this test. We start with the latter. From eq. (2.20) one sees that:

Zc
n(ℓ → L) =

1

2

(

ℓ

L

)− 1
6(n−

1
n) 4

∑

ν=1

n−1
2
∏

k=−n−1
2

|θν( kn |τ)|2
|η(τ)|2 . (3.3)

We may now apply an identity involving θ-functions after fractional shifts [31]:

n−1
2
∏

k=−n−1
2

∣

∣

∣θν

(k

n
− z

∣

∣

∣τ
)∣

∣

∣ =





∞
∏

p=1

∣

∣

∣

∣

(1− q2p)n

1− q2pn

∣

∣

∣

∣





∣

∣θν(nz|nτ)
∣

∣ . (3.4)

This is easily derived using the product representation of θ-functions. It is important that

the above relation is true for the three spin structures ν = 2, 3, 4 with no relative factors.

The fourth spin structure ν = 1 does not matter because we have to put z = 0 in the above

equation, and θ1(0|τ) = 0. Using the above relation, we find:

Zc
n(ℓ → L) =

1

2

(

ℓ

L

)− 1
6(n−

1
n) 4

∑

ν=1

|θν(0|nτ)|2
|η(nτ)|2

=

(

ℓ

L

)− 1
6(n−

1
n)

Z1(nτ) .

(3.5)

Thus we see that for a large interval, Zc
n becomes equal to Z1(nτ) upto the standard power

of ℓ, as desired. However, if we repeat the analysis for Zu
n then this is not the case. With

this function we would find cross-terms between θ-functions of different spin structures, for

which an identity like eq. (3.4) does not hold. We thus have clear evidence that as ℓ → L,

the correct replica partition function should be Zc
n and not Zu

n.

Hence we are led to propose that the correct modular-invariant partition function for

the free Dirac fermion theory is Zu
n at small ℓ and Zc

n at large ℓ. Let us now verify that

this proposal precisely satisfies eq. (3.1). We have:

lim
ℓ→0

(

SE(L− ℓ)− SE(ℓ)
)

= lim
n→1

1

1− n
log

(

Z1(nτ)

(Z1(τ))n

)

= logZ1

(

β

L

)

− β

L

Z ′( β
L
)

Z( β
L
)

= Sth .

(3.6)
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Thus our proposal satisfies the relation to thermodynamic entropy. Notably, the final

steps work out just as in the general proof of ref. [28] (see their eq. (11)) but here we

have used explicit θ-function identities to obtain them. The fact that spin structures are

uncorrelated/correlated for small/large intervals is a nice mathematical verification, in a

special class of models, of the general principles put forward in refs. [22, 28]. The key

conclusion for us is that neither Su
n nor Sc

n can be the correct Rényi entropy for all values

of ℓ. This naturally raises the question of what is the general answer that interpolates

between these two limits, a point to which we will return at the end.

As noted above, in addition to the fully correlated and fully uncorrelated replica parti-

tion functions, one can write down other candidate quantities in which the spin structures

are correlated within subsets of the total set of replicas and uncorrelated among different

subsets. It is straightforward to check that such quantities do not behave correctly in

both the limits considered here, in other words as ℓ → 0 they do not give (Z1)
n and as

ℓ → L they do not give Z1(nβ). They are therefore not useful candidates to describe the

limiting behaviour of the Rényi/entanglement entropies. However, as we will suggest in

the concluding section, they could play a role for intermediate values of ℓ.

4 Compact bosons

The replica trick can be applied for free bosons as well. Recall that the partition function

for a single free boson at radius R is:

Z1(R) =
1

|η(τ)|2
∑

e,m

q(
e
R
+mR

2 )
2

q̄(
e
R
−mR

2 )
2

=
1

|η(τ)|2
∑

e

q
2e2

R2

∑

m

q
m2R2

2

(4.1)

where in the second line we have specialised to real q = e−πτ2 .

For the replica partition function, one considers twist fields Tk with k = 0, 1, · · · , n− 1

satisfying:

Tk(z, z̄)φ(w) ∼ (z − w)
k
n , Tk(z, z̄)φ̄(w̄) ∼ (z̄ − w̄)−

k
n (4.2)

and one has:

Zn =
n−1
∏

k=0

〈〈Tk(z, z̄)T−k(0, 0)〉〉 . (4.3)

An important part of the computation of this quantity was carried out in ref. [19] for a

pair of free bosons compactified on a square torus of size R. The result is the product

of a quantum and a classical part. It is rather implicit, involving integrals of products of

fractional powers of θ-functions which appear in the construction of cut differentials on the

torus. Unfortunately the classical part of their answer, which carries all the R-dependence,

is not invariant under R → α′

R
so it does not satisfy T-duality. In ref. [21] this classical

part has been corrected and takes a different form that possesses manifest T-duality.

Accordingly we will analyse the replica partition function obtained in the latter refer-

ence and compare it with our proposal regarding modular invariance. We adapt it to our
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notation, which includes setting α′ = 2, and to the case of a single free boson. The latter

just involves taking the square root of their answer, which is particularly simple since it is

presented as a perfect square. We write the answer as a product of four factors:

Zn(R) = Z(1)
n Z(2)

n Z(3)
n (R)Z(3)

n

(

2

R

)

. (4.4)

Only the last two factors, which form the classical part of the answer, depend on the

compactification radius R. T-duality invariance is already manifest at this stage. Here,

Z(1) =
1

|η(τ)|2n
n−1
∏

k=0

1

|W 1
1 (k, n;

ℓ
L
|τ)|

Z(2) =

∣

∣

∣

∣

∣

θ′1(0|τ)
θ1(

ℓ
L
|τ)

∣

∣

∣

∣

∣

1
6(n−

1
n)

Z(3)(R) =
∑

mj

exp



−πR2

2n

n−1
∑

k=0

∣

∣

∣

∣

W 2
2 (k, n)

W 1
1 (k, n)

∣

∣

∣

∣

n−1
∑

j,j′=0

[

cos 2π(j − j′)
k

n

]

mjmj′



 .

(4.5)

Here W 1
1 and W 2

2 are integrals of the cut differentials over the different periods of the torus:

W 1
1 (k, n;

ℓ

L
|τ) =

∫ 1

0
dz θ1(z|τ)−(1−

k
n)θ1

(

z − ℓ

L
|τ
)− k

n

θ1

(

z − kℓ

nL
|τ
)

W 2
2 (k, n;

ℓ

L
|τ) =

∫ τ̄

0
dz̄ θ̄1(z̄|τ)−

k
n θ̄1

(

z̄ − ℓ

L
|τ
)−(1− k

n)
θ̄1

(

z̄ −
(

1− k

n

)

ℓ

L
|τ
)

.

(4.6)

The answer eq. (4.4) is normalised such that Z1 is indeed the usual partition function of

the theory. To check this, observe that for n = 1, k = 0 one has W 1
1 = 1,W 2

2 = −iτ2.

Hence:

Z(1) =
1

|η(τ)|2
Z(2) = 1

Z(3)(R) =
∑

m

exp

(

−πR2

2
τ2m

2

)

=
∑

m

q
m2R2

2

Z(3)

(

2

R

)

=
∑

e

exp

(

− 2π

R2
τ2e

2

)

=
∑

e

q
2e2

R2 .

(4.7)

Agreement with eq. (4.1) is immediate.

We would now like to investigate the modular transformation of eq. (4.4). To this end,

we note the following results:

η
(

− 1

τ

)

= (−iτ)
1
2 η(τ)

W 1
1

(

k, n;
iℓ

β
| − 1

τ

)

=
1

τ
e−

iπℓ2

L2τ
k
n(1−

k
n)W 2

2

(

k, n;
ℓ

L
|τ
)

θ′1
(

0| − 1
τ

)

θ1
(

z
τ
| − 1

τ

) = iτe−
iπz2

τ
θ′1(0|τ)
θ1(z|τ)

.

(4.8)
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The first and third of these are well-known, while the second was shown in eq. (B.41) of

ref. [19] (unlike the very subtle issue of the q-expansion of W 2
2 , this result is straightforward

to derive). From the above, it follows that under a modular transformation,

∣

∣

∣

∣

W 2
2 (k, n)

W 1
1 (k, n)

∣

∣

∣

∣

→
∣

∣

∣

∣

W 1
1 (k, n)

W 2
2 (k, n)

∣

∣

∣

∣

. (4.9)

Following this with a multi-variable Poisson resummation as in ref. [21], we find that:

Z(3)
(

R;
z

τ

∣

∣

∣
− 1

τ

)

=
2

n
2

Rn

(

n−1
∏

k=0

∣

∣

∣

∣

W 2
2 (k, n)

W 1
1 (k, n)

∣

∣

∣

∣

1
2

)

Z(3)
( 2

R
; z
∣

∣

∣
τ
)

Z(3)
( 2

R
;
z

τ

∣

∣

∣− 1

τ

)

=
Rn

2
n
2

(

n−1
∏

k=0

∣

∣

∣

∣

W 2
2 (k, n)

W 1
1 (k, n)

∣

∣

∣

∣

1
2

)

Z(3)
(

R; z
∣

∣

∣τ
)

.

(4.10)

Thus the product transforms as:

Z(3)(R)Z(3)

(

2

R

)

→
(

n−1
∏

k=0

∣

∣

∣

∣

W 2
2 (k, n)

W 1
1 (k, n)

∣

∣

∣

∣

)

Z(3)(R)Z(3)

(

2

R

)

. (4.11)

Putting everything together, we find that:

Zn

(

R;
z

τ

∣

∣

∣− 1

τ

)

= |τ | 16(n− 1
n)Zn(R; z|τ) . (4.12)

Thus, it is modular covariant with the expected prefactor (see eq. (2.33)).

The general expression for Rényi entropy eq. (4.4) is rather complicated and it has

proved difficult to extract explicit results from it. However, in ref. [21] the limits as ℓ → 0

and ℓ → L have been extracted and the results correspond (upto the usual powers of ℓ) to

(Z1(τ))
n and Z1(nτ) respectively, where by Z1 we mean the expression in eq. (4.1). This

of course depends on R, and for R = 1 it coincides with the free Dirac fermion partition

function. It follows from this and our previous analysis that our fermion replica partition

function, in the regimes where we know it (small and large ℓ) coincides precisely with that

of the boson theory at R = 1. It is amusing that the boson theory “knows” about the

switchover from uncorrelated to correlated replicas within the single, though complicated,

function in eq. (4.4). We expect there to be a similar fermion partition function that

interpolates between the small and large-ℓ regimes. It should somehow involve an admixture

of correlated/uncorrelated replicas, as we discuss in the last section.

5 Other free-fermion CFT’s

It is interesting to try and extend the previous calculation to free-field CFT’s that are not

direct sums of the Dirac CFT. Recall that in the above calculation we had to use both the

fermionic formulation of the Dirac CFT (to identify the right free field to replicate) and also

the bosonic formulation (to identify the twist field and compute its correlation function).

For multiple Dirac fermions with correlated spin structures, the partition function is not
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simply a power of the single-Dirac partition function.4 Correspondingly, the bosonic dual

is not made up of copies of the R = 1 free boson. Indeed in bosonic language it is not

the product of any number of independent bosons but rather a set of bosons compactified

on the weight lattice of the algebra Spin(2d) with a specific background B-field turned

on [29]. We start with the relatively simple case of Spin(4)∼ SU(2)× SU(2) and then go

on to a general Spin(2d) lattice. Calculation of the Rényi entropy will again require use of

both the fermion and boson descriptions of the theory. In each case, the twist field must

be constructed using lattice vertex operators and their correlation functions computed in

the theory of lattice bosons. We will again find answers for the replica partition function

at small and large ℓ and verify their modular properties.

5.1 Two correlated Dirac fermions

The theory of two Dirac fermions with correlated spin structures has the ordinary partition

function [29]:

Z1[2] =
1

2

∑

ν=2,3,4

|θν(0|τ)|4
|η(τ)|4 . (5.1)

We would like to find its replica partition function. Let us examine the fundamental fields

and physical operators in this theory. We have two Dirac fermions that, following the

notation of ref. [30], we call D1(z) and D2(z). By definition they possess hermitian conju-

gates D†
i (z), i = 1, 2, that are also holomorphic. Combining with their anti-holomorphic

counterparts, we have 16 physical operators of dimension (12 ,
1
2 ), namely:

DiD̄j , D
†
i D̄j , DiD̄

†
j , D

†
i D̄

†
j (5.2)

where i.j run independently over 1, 2 (had the spin structures of D1, D2 been uncorrelated

we would only have had the subset with i = j). This c = 2 theory can be bosonised into two

compact bosons φ1, φ2 that are orthogonal to each other and compactified at the self-dual

radius, which in our conventions is R =
√
2. Thus their periodicity is:

φi → φi + 2
√
2π . (5.3)

If we denote the two left-moving bosons as φi(z) and the right-moving ones as φ̄i(z̄), then

the allowed vertex operators in this theory are:

e
i√
2
(ej+mj)φj(z)e

i√
2
(ek−mk)φ̄k(z̄) (5.4)

where the indices j, k are independently summed over 1, 2. In terms of these bosons, the

free Dirac fields are represented as:

D1(z) = e
i√
2
φ1e

i√
2
φ2 , D2(z) = e

i√
2
φ1e

− i√
2
φ2 . (5.5)

4In this part of the discussion there is some potential for confusion: the multiple fermions can have

correlated/uncorrelated spin structures, which is part of the definition of the theory, while the replica

partition function can also have correlated/uncorrelated spin structures across replicas as was discussed in

previous sections.
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The Hermitian conjugates have the same expressions but with i → −i, while the anti-

holomorphic conjugates have φi → φ̄i without any change of sign on i. The 16 local oper-

ators obtained after combining left- and right-movers correspond to all pairs of orthogonal

vectors of (length)2 = 2 in the unit 2d square lattice:

(ei;mi) = ±((1, 1); (0, 0)), ± ((1,−1); (0, 0)), ± ((0, 0); (1, 1)), ± ((0, 0); (1,−1)),

± ((1, 0); (0, 1)), ± ((1, 0); (0,−1)), ± ((0, 1); (1, 0)), ± ((0, 1); (−1, 0)) .

(5.6)

In order to compute the replica partition function we need to find the twist fields which

satisfy eq. (2.2). On inspecting eq. (5.5), we see that the monodromy induced by the twist

field is:

e
i√
2
φ1e

i√
2
φ2 → e

2πik
n e

i√
2
φ1e

i√
2
φ2

e
i√
2
φ1e

− i√
2
φ2 → e

2πik
n e

i√
2
φ1e

− i√
2
φ2 .

(5.7)

Thus it must leave the boson φ2 inert, while it shifts φ1 by a fraction k
n
of its period:

φ1 → φ1 +
2
√
2πk

n
. (5.8)

We see that the twist field is:

σk = e
√
2i k

n
φ1e−

√
2i k

n
φ̄1 . (5.9)

In other words, it corresponds to O(1)

0, 2k
n

. Remarkably this is the same operator that plays

the role of the twist field in the c = 1 theory of a single Dirac fermion — however, in the

present case it is evaluated at R =
√
2 rather than R = 1. Due to the change of radius,

it has conformal dimension ∆0, 2k
n

= k2

n2 , which is twice that in the single-Dirac case. This

ensures that
∑

k ∆k = c
24

(

n− 1
n

)

with c = 2, as required.

To calculate its correlator we may use eq. (2.17) and make the appropriate change in

radius, to get:

〈〈O0, 2k
n
(z, z̄)O0,− 2k

n
(0)〉〉 =

∣

∣

∣

∣

∣

θ′1(0|τ)
θ1(

ℓ
L
|τ)

∣

∣

∣

∣

∣

4k2

n2
1

|η(τ)|4

×
∑

e1,m1;e2,m2

q2(∆e1,m1+∆e2,m2 )q̄2(∆̄e1,m1+∆̄e2,m2 ) e4πi
kℓ
nL

e1

=

∣

∣

∣

∣

∣

θ′1(0|τ)
θ1(

ℓ
L
|τ)

∣

∣

∣

∣

∣

4k2

n2

× 1

2

∑4
ν=1 |θν( kℓ

nL
|τ)|4

|η(τ)|4 .

(5.10)

The last line follows by the change of variables:

e1 =
1

2
(n1 + n2 + n3 + n4), m1 =

1

2
(n1 + n2 − n3 − n4)

e2 =
1

2
(n1 − n2 + n3 − n4), m2 =

1

2
(n1 − n2 − n3 + n4) .

(5.11)

– 16 –



J
H
E
P
0
6
(
2
0
1
5
)
1
0
6

The ni can be all integers or all half-integers. Moreover, the sum of all the ni is constrained

to be even. Upon implementing these two facts, the sum in eq. (5.10) splits into four parts,

one corresponding to each spin structure. In this way we recover the last line of eq. (5.10).

We now have to take the product over replicas. As before, we can do this after or

before summing over spin structures. The results are then:

Zu
n =

∣

∣

∣

∣

∣

θ′1(0|τ)
θ1(

ℓ
L
|τ)

∣

∣

∣

∣

∣

1
3
(n− 1

n
) n−1

2
∏

k=−n−1
2

1

2

∑4
ν=1 |θν( kℓ

nL
|τ)|4

|η(τ)|4

Zc
n =

∣

∣

∣

∣

∣

θ′1(0|τ)
θ1(

ℓ
L
|τ)

∣

∣

∣

∣

∣

1
3
(n− 1

n
)
1

2

4
∑

ν=1

n−1
2
∏

k=−n−1
2

|θν( kℓ
nL

|τ)|4
|η(τ)|4

(5.12)

We again propose that the first result gives the correct Rényi entropy as ℓ → 0 while the

second one is correct when ℓ → L.

As emphasised at the beginning of this section, the above partition functions do not

directly follow from the single Dirac case. The reason is that one needs a bosonic dual theory

in order to write the twist field. For two Dirac fermions with correlated spin structures,

the bosonic dual is two copies of the R =
√
2 compact boson. Interestingly the twist field

that we found was not symmetric in the two bosons, depending only on one of them. We

will see below that this pattern repeats for multiple correlated fermions, dual to bosons on

Spin(2d) weight lattices.

It is straightforward to demonstrate that under modular transformations the above

replica partition functions satisfy:

Zu,c
n (β, L) =

β

L

1
3(n−

1
n)
Zu,c
n (L, β) (5.13)

which precisely agrees with our expectation.

5.2 Multiple correlated fermions and lattice bosons

For d ≥ 3, the theory of d free Dirac fermions with correlated spin structures is dual to a

specific compactification of d free bosons on a target-space torus:

T c = Rd/Γd (5.14)

where Γd is the root lattice of Spin(2d) (this can be achieved by starting with a rectangular

torus and choosing a suitable constant metric and B-field). In this case the d different

bosons are not orthogonal to each other, while the fermions have correlated spin structures,

so on both sides of the Bose-Fermi duality we are dealing with CFT’s that are not direct

sums of simpler ones.

The ordinary partition function is well-known and has been derived directly within the

free fermion representation as well as from the free boson picture [29]. It corresponds to

Z1[d] in terms of the definition in eq. (2.8). We would like to construct the replica partition

functions for these theories. As in the previous examples, this will be possible only by using

features of both the fermionic and bosonic descriptions together.
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The first step in doing this is to identify the (12 ,
1
2 ) operators in terms of the bosons.

As in the case of two Dirac fermions, we have the operators:

DpD̄q, D
†
pD̄q, DpD̄

†
q, D

†
pD̄

†
q (5.15)

where p, q = 1, 2, · · · d. In the free boson theory, let ΛR be the root lattice and ΛW be the

dual weight lattice. Then the vertex operators are:

Owi,w̄i = eiw
iφieiw̄

iφ̄i (5.16)

where wi, w̄i ∈ ΛW and wi−w̄i ∈ ΛR. Elements of the weight lattice can be parametrised as:

wi =
1√
2
gijvj , w̄i =

1√
2
gij v̄j (5.17)

where vi, v̄i are integers and gij is the inverse of gij which is the half the Cartan matrix of

Spin(2d). For the difference to lie in the root lattice, we must require that 1√
2
(vi − v̄i) =√

2ni where ni are integers.

The 2-point function of scalar fields is:

φi(z, z̄)φ(z
′, z̄′) = −gij log |z − z′|2 . (5.18)

Hence the conformal dimension of the above operators is (∆wi , ∆̄w̄i) = 1
2 (gijw

iwj , gijw̄
iw̄j).

Thus to reconstruct the fermion operators, we must look for pairs of points of unit length

in the weight lattice that differ by an element of the root lattice. If ~αi are the d simple

roots of Spin(2d) and ~λi are the fundamental weights then:

~αi · ~λj = δ j
i , gij =

1

2
~αi · ~αj , gij = 2~λi · ~λj . (5.19)

One also has the dual relation:

(~λi)p(~αi)q = δpq (5.20)

which will be important in what follows. Here p, q label the individual components of each

vector, and the sum is over the vectors (not components).

For the conformal dimensions, we have:

∆wi =
1

2
gijw

iwj =
1

4
gijvivj . (5.21)

Therefore to find operators of dimension (12 ,
1
2 ) we must look for sets of integers vi for which:

gijvivj = 2 . (5.22)

From eq. (5.20) it follows that:

gij(~αi)p(~αj)q = 2δpq (5.23)

hence the possible vi are given by:

v
(p)
i = (~αi)p, p = 1, 2, · · · , d . (5.24)
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For the anti-holomorphic part we start by picking it independently from the same set:

v̄
(q)
i = (~αi)q. However, we need to ensure that 1√

2
gij

(

v
(p)
j − v̄

(q)
j

)

is
√
2 times an integer.

This is guaranteed by the fact that

1√
2
gij

(

v
(p)
j − v̄

(q)
j

)

=
1√
2
gij

(

(~αj)p − (~αj)q
)

=
√
2
(

(~λj)p − (~λj)q
)

(5.25)

which is indeed in the root lattice. We conclude that the fermion operators are given in

bosonic language by:

Dp(z)D̄q(z̄) → Op,q = eiw
(p)iφi(z)eiw̄

(q)iφ̄i(z̄) (5.26)

where w(p)i =
√
2(~λi)p.

We can now look for the twist field, an operator σk satisfying eq. (2.2). This induces

a monodromy:

σk : Dp(z) → e
2πik
n Dp(z) (5.27)

corresponding to a shift:

w(p)iφi(z) → w(p)iφi(z) +
2πk

n
. (5.28)

This in turn will be induced by a shift φi → φi + 2πζ
(k)
i where ζ

(k)
i is a constant vector

satisfying:

w(p)iζ
(k)
i =

k

n
(5.29)

for all p. Recalling that the last weight of Spin(2d) is λ(d) = (12 ,
1
2 , · · · , 12 ), we easily find

that the shift is given by:

ζ
(k)
i =

√
2k

n
(0, 0, · · · , 0, 1) . (5.30)

Thus the twist field only acts on the last scalar φd. Indeed, it takes the form:

σk = Oζ(k)i,−ζ(k)i = eiζ
(k)iφi(z)e−iζ(k)iφ̄i(z̄) (5.31)

where one must keep in mind that ζ(k)i = gijζ
(k)
j . To check that this is correct, compute

the OPE with Dp(z) to find:

σk(z)e
iw(p)iφi(z

′) ∼ (z − z′)ζ
(k)igijw

(p)j
= (z − z′)w

(p)iζ(k)i = (z − z′)
k
n . (5.32)

The crucial test of our twist field is whether it has the desired conformal dimension.

We have:

∆k =
1

2
gij ζ

(k)iζ(k)j =
1

2
gijζ

(k)
i ζ

(k)
j =

k2

n2
gdd . (5.33)

Using gdd = 2λ(d) · λ(d) = d
2 we get ∆k = dk2

2n2 from which it follows that:

k=n−1
2

∑

k=−n−1
2

∆k =
d

24

(

n− 1

n

)

(5.34)

as desired.
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It remains to calculate the two-point function of each σk and thereby the replica

partition function. Recall that the ordinary partition function for these theories is:

Z1 =
1

|η(τ)|2d
∑

w,w̄∈ΛW
w−w̄∈ΛR

qw
2
q̄ w̄2

=
1

2

1

|η(τ)|2d
∑

ν=2,3,4

|θν(0|τ)|2d
(5.35)

where, as usual, w2 = gijw
iwj and similarly for w̄2. The equivalence between the first

and second lines of the above equation is the statement of Bose-Fermi equivalence between

lattice bosons and multiple fermions with correlated spin structures. To demonstrate this,

one starts with the observation that for Spin(2d), ΛW = ΛR ⊕ ΛV ⊕ ΛS ⊕ ΛC where

ΛV,S,C are the lattices obtained by shifting ΛR by a fundamental weight in the vector,

spinor and conjugate spinor representations respectively. Now we split a generic vector

w ∈ ΛW into two classes: those that lie is ΛR ∪ ΛV and those in ΛS ∪ ΛC . In the former

set we can write wi =
√
2
∑

p np(~λ
i)p for arbitrary integers np, while in the latter set

wi =
√
2
∑

p(np +
1
2 )(

~λi)p where np are again arbitrary integers. We similarly write w̄i =√
2
∑

pmp(~λ
i)p and w̄i =

√
2
∑

p(mp +
1
2 )(

~λi)p in the two respective cases. Finally, the

restriction w− w̄ ∈ ΛR is implemented by inserting a projection operator that causes both

w and w̄ to lie in ΛR or in ΛV (in the first set) or both to lie in ΛS or in ΛC (in the second

set). In this way we end up with the four Jacobi θ-functions θν(0|τ), ν = 1, 2, 3, 4, of which

θ1 vanishes for familiar reasons.

For the un-normalised two-point function of twist fields, we find instead:

〈〈σk(z, z̄)σ−k(0)〉〉 =
∣

∣

∣

∣

∣

θ′1(0|τ)
θ1(

ℓ
L
|τ)

∣

∣

∣

∣

∣

2dk2

n2
1

|η(τ)|2d
∑

w,w̄∈ΛW
w−w̄∈ΛR

qw
2
q̄ w̄2

e2πi
ℓ
L
gij(w

i+w̄i)ζ(k)j . (5.36)

Now we have

gij(w
i + w̄i)ζ(k)j = (wi + w̄i)ζ

(k)
i =

√
2k

n
(wd + w̄d)

=
k

n

d
∑

p=1

(np +mp), w, w̄ ∈ ΛR ∪ ΛV

=
k

n

d
∑

p=1

(np +mp − 1), w, w̄ ∈ ΛS ∪ ΛC .

(5.37)

It follows that:

〈〈σk(z, z̄)σ−k(0)〉〉 =
1

2

∣

∣

∣

∣

∣

θ′1(0|τ)
θ1(

ℓ
L
|τ)

∣

∣

∣

∣

∣

2dk2

n2 ∑4
ν=1 |θ( kℓ

nL
|τ)|2d

|η(τ)|2d . (5.38)

Taking the product over k outside or inside the sum over spin structures gives us, respec-

tively, the uncorrelated/correlated replica partition functions. As in the previous cases,

under a modular transformation the replica partition function is covariant with the ex-

pected prefactor.
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6 Conclusions

The principle of modular invariance has been consistently useful in understanding confor-

mal field theory. Here we have applied it to the study of Rényi entropies of free Dirac

fermions and found that one can define more than one modular-covariant replica partition

function. Our proposal is that the uncorrelated version, taking the product over repli-

cas performed after the sum over spin structures, defines the correct Rényi/entanglement

entropy as ℓ → 0 while the correlated version, taking the product over replicas before sum-

ming over spin structures, defines the correct entropies as ℓ → L. We verified that in this

way the holographically predicted relation to thermal entropy of ref. [17] is satisfied. Com-

paring with results in the literature for free compact bosons, we showed that Bose-Fermi

duality holds in the small and large-interval regimes.

It is clearly of importance to obtain the correct modular-covariant replica partition

function at arbitrary values of ℓ. For a generic positive integer n one can write a variety of

partition functions as follows. Consider the set S = {k1, k2, · · · , kn} where ki = −n−1
2 +i−1.

Suppose that for a fixed value ki and a fixed spin structure ν, we have a replica partition

function Z
(ν)
n (ki). Partition S into subsets S1, S2, · · · having mj elements of S in the jth

set. Now we can define the replica partition function:

Z [S1,S2,··· ]
n =

∏

j





4
∑

ν=1

∏

k∈Sj

Z(ν)
n (k)



 . (6.1)

Clearly the fermion spin structures are correlated within each subset Sj but uncorrelated

across different subsets. It is straightforward to verify that each of these is modular covari-

ant, with a prefactor that can be eliminated as in eq. (2.35). A particular case is when each

subset Sj contains a single element kj . In this case we find the uncorrelated replica parti-

tion function Zu
n which we have argued is the correct one as ℓ → 0. Another particular case

arises when there is a single subset, the entire set S. In this case one finds the correlated

replica partition function Zc
n which is correct as ℓ → L. All other cases lie somewhere in

between. Therefore we conjecture that the full replica partition function of the free Dirac

fermion is a linear combination (with ℓ-dependent coefficients) over all partitions:

Zn =
∑

all partitions

a[S1,S2,··· ](ℓ/L) Z
[S1,S2,··· ]
n . (6.2)

The physical intuition is that as the branch cut of length ℓ expands from 0 to L, the

degree of correlation among replicas steadily increases. The coefficients a must be such

that only the terms corresponding to Zu
n, Z

c
n contribute at ℓ = 0, L respectively. It will be

interesting to pursue this direction and try to determine the coefficients.

This discussion strongly suggests that the modular-invariant replica partition function

for free fermions is a very complicated quantity (in striking contrast to the one for a single

spin-structure, which is relatively simple and very explicit for all ℓ). From this point of

view it is encouraging that the free boson result of ref. [21] is also very complicated! After

all, the two are supposed to be equal on putting R = 1 in the latter.
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A possible application of the above ideas is to understand entanglement in more general

conformal field theories, which at finite temperature and finite size remains largely an

open problem. All the techniques used so far have been based on free field theory. In

this context, it may be mentioned that minimal models and other CFT’s do have free-

field representations with a screening charge [32] and their modular-invariant partition

functions and correlators are quite well-known. It may be possible to determine replica

partition functions for these theories, or at least their limiting behaviours for small and large

intervals, using a combination of the free field representation and several physical principles

including the relation to thermal entropy and the requirement of modular invariance.
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L
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temperature.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] C. Holzhey, F. Larsen and F. Wilczek, Geometric and renormalized entropy in conformal

field theory, Nucl. Phys. B 424 (1994) 443 [hep-th/9403108] [INSPIRE].

[2] H. Casini and M. Huerta, A finite entanglement entropy and the c-theorem,

Phys. Lett. B 600 (2004) 142 [hep-th/0405111] [INSPIRE].

[3] P. Calabrese and J.L. Cardy, Entanglement entropy and quantum field theory,

J. Stat. Mech. 0406 (2004) P06002 [hep-th/0405152] [INSPIRE].

[4] A. Osterloh, L. Amico, G. Falci and R. Fazio, Scaling of entanglement close to a quantum

phase transition, Nature 416 (2002) 608 [quant-ph/0202029].

[5] I.R. Klebanov, D. Kutasov and A. Murugan, Entanglement as a probe of confinement,

Nucl. Phys. B 796 (2008) 274 [arXiv:0709.2140] [INSPIRE].

– 22 –

http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1016/0550-3213(94)90402-2
http://arxiv.org/abs/hep-th/9403108
http://inspirehep.net/search?p=find+EPRINT+hep-th/9403108
http://dx.doi.org/10.1016/j.physletb.2004.08.072
http://arxiv.org/abs/hep-th/0405111
http://inspirehep.net/search?p=find+EPRINT+hep-th/0405111
http://dx.doi.org/10.1088/1742-5468/2004/06/P06002
http://arxiv.org/abs/hep-th/0405152
http://inspirehep.net/search?p=find+EPRINT+hep-th/0405152
http://dx.doi.org/10.1038/416608a
http://arxiv.org/abs/quant-ph/0202029
http://dx.doi.org/10.1016/j.nuclphysb.2007.12.017
http://arxiv.org/abs/0709.2140
http://inspirehep.net/search?p=find+EPRINT+arXiv:0709.2140


J
H
E
P
0
6
(
2
0
1
5
)
1
0
6

[6] A. Riera and J.I. Latorre, Area law and vacuum reordering in harmonic networks,

Phys. Rev. A 74 (2006) 052326 [quant-ph/0605112] [INSPIRE].

[7] S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT,

Phys. Rev. Lett. 96 (2006) 181602 [hep-th/0603001] [INSPIRE].

[8] T. Faulkner, M. Guica, T. Hartman, R.C. Myers and M. Van Raamsdonk, Gravitation from

Entanglement in Holographic CFTs, JHEP 03 (2014) 051 [arXiv:1312.7856] [INSPIRE].

[9] H. Casini, C.D. Fosco and M. Huerta, Entanglement and alpha entropies for a massive Dirac

field in two dimensions, J. Stat. Mech. 0507 (2005) P07007 [cond-mat/0505563] [INSPIRE].

[10] J.L. Cardy, O.A. Castro-Alvaredo and B. Doyon, Form factors of branch-point twist fields in

quantum integrable models and entanglement entropy, J. Statist. Phys. 130 (2008) 129

[arXiv:0706.3384] [INSPIRE].

[11] H. Casini and M. Huerta, Entanglement entropy in free quantum field theory,

J. Phys. A 42 (2009) 504007 [arXiv:0905.2562] [INSPIRE].

[12] P. Calabrese and J. Cardy, Entanglement entropy and conformal field theory,

J. Phys. A 42 (2009) 504005 [arXiv:0905.4013] [INSPIRE].

[13] H. Casini and M. Huerta, Remarks on the entanglement entropy for disconnected regions,

JHEP 03 (2009) 048 [arXiv:0812.1773] [INSPIRE].

[14] P. Calabrese, J. Cardy and E. Tonni, Entanglement entropy of two disjoint intervals in

conformal field theory, J. Stat. Mech. 0911 (2009) P11001 [arXiv:0905.2069] [INSPIRE].

[15] P. Calabrese, J. Cardy and E. Tonni, Entanglement entropy of two disjoint intervals in

conformal field theory II, J. Stat. Mech. 1101 (2011) P01021 [arXiv:1011.5482] [INSPIRE].

[16] M. Headrick, A. Lawrence and M. Roberts, Bose-Fermi duality and entanglement entropies,

J. Stat. Mech. 1302 (2013) P02022 [arXiv:1209.2428] [INSPIRE].

[17] T. Azeyanagi, T. Nishioka and T. Takayanagi, Near Extremal Black Hole Entropy as

Entanglement Entropy via AdS2/CFT1, Phys. Rev. D 77 (2008) 064005 [arXiv:0710.2956]

[INSPIRE].

[18] C.P. Herzog and T. Nishioka, Entanglement Entropy of a Massive Fermion on a Torus,

JHEP 03 (2013) 077 [arXiv:1301.0336] [INSPIRE].
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